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PREFACE

In the aftermath of the 1939—45 war, as a more scientific approach began to supplement cut-and-try as a basis for the
design of parachutes, W.D.Brown first established 2 sound acrodynamic foundation for his subject in kis book, ‘ Parachutes'.
Roles which were being fulfilled by the parachutes which he described in it were firstly man-carrying for both life-saving and
military applications; secondly weapon and store dropping; and thirdly deceleration of aircraft. Looking back over the 35
years that have elapsed since this publication, although their form has been greatly expanded, all of these are still essential
tasks for parachutes to fulfil. However, additional ones also are now required. For example, crews of spacecraft as well as
aircraft make encapsulated descents using parachutes as essential parts of their toial cscape systems and in addition to drag
production contemporary parachutes may also need to demonstrate silniﬁcam lift-producing abilities or the capability of
rotation at chosen spin rates during their descent. Not ony have parachufes been used on a number of occasions to assist re-

entry into the carth’s atmosphere, they have also been employed in landing éssential instruments on to other planets as well
as on to the planet carth.

They have also had to find their place within the much wider classification of acrodynamic decelerators, in which they
share a primarily decelerative task with balloons and various metallic non-inflatable devices. In his glossary in 1951, Brown
defined a parachute as ‘an umbrella-shaped device to produce drag, commeonly used to reduce the rate of descent of a falling
body’. A more precise and limiting definition is now customary. Within this broader classification of aerodynamic
decelerators parachutes are now considered to be that class of drag-producing bodies whose essential characteristics include
their flexibility, their inflated shape being depenident on the flow field which surrounds them.

A greater precision in definition epitomises changes taking place in many engineering fields, not only in that of
parachute acrodynamics. With the availability in most design offices of powerful mainframe computers and in many
situations of relatively inexpensive mini- and micro-computers, new possibilities exist for engineers to establish the relevant
basic relationships and to develop their subsequent solutions. For these task to be performed adequately, basic principles
must be appreciated and agreed sign conventions implemented.

Itis to meet all these kinds of need that * The Aerodynamics of Parachutes' has been written. In the subject of parachute
acrodynamics this AGARDograph is envisaged as a direct descendant of Brown's * Paruchutes’, for it has the same emphasis,
that of selecting ‘the principal acrodynamic characteristics of parachutes and the various known factors which affect these
characteristics’. It takes into account not only many of the subsequent publications which have becn summarised in the 1963
and 1978 United States Air Force Parachute Design Guides, but also the proceedings of the American Institute of
Acronautics and Astronautics Aerodynamic Decelerator Corferences which have been held every two and a half years, the
Helmut G.Heinrich Decelerator Systems Engineering Short Courses which took place in 1983, 1985 and 1987 and * The
Parachute Recovery System Design Manual’, which will shortly be used by the United States Naval Weapons Center.

It has been anticipated that its main readers will be recent engineering graduates entering research establishments,

parachute companies or related industries. In its preparation some appreciation on the part of the reader of basic mechanics,
elementary fluid mechanics and the principles of computing has been assumed.

Apart from Karl-Friedrich Doherr and my own research associates, too many other individuals have contributed their
components, criticisms and suggestions for me to mention their names individually. I can only hope that they will recognise
their invaluable contributions in the publication which has resulted from all of our efforts.

David Cockrell
Leicester — 1987

Au lendemain de la guerre de 1939—45, alors qu'un démarche plus scientifique commengait a compléter les méthodes
empiriques du genre “on découpe et on esszic” comme base de la conception des parachutes, W.D.Brown fut le premier &
élaborer une théorie aérodynamique saine pour ce qui faisait 'cbjet de son livre “Les parachutes™ Les fonctions remplies par
les matériels qu'il y décrivait étaient d’abord Femport des hommes dans le double but de la sauvegarde de a vie humainc ct
des applications militaires, en deuxiéme licu le largage d'armes et d'approvisionnements, en troisieme et dernier lieu la
décélération des avions & I'atterrissage. Si on étudie les 35 années qui se sont écoulées depuis cette publication, tous ces
emplois sont encore essentiellement ceux que F'on attribue aux parachutes méme si leur aspect extérieur s'est beaucoup
diversifié. Néanmoins il en faut maintenant quelques modéles supplémentaires. Par exemiple, les équipages des véhicules de
I'espace comme ceux des avions font des descentes enfermé dans des capsules équipées de parachutes qui constituent la
partic essenticlle de I'enscmble de leur systeme d'évacuation; et en plus de la production d'engins basés sur la trainée, il peut
aussi étre demandé aux parachutes modernes de posseder des qualités de portance ou d'aptitude a tourner sur cux-mémes a
une vitessc donnée au cours de leur descente. Des parachutes ont été utilisés non seulement en de nombreuses occasions
pour faciliter la rentrée dans I'atmosphere terrestre, mais aussi comme instruments essentiels d'atterrisage, qu'il s’agisse de sc
pozer sur niotre globe ou sur dautre planétes.

11 a également fallu leur trouver un créneau dans la classe beaucoup plus vaste de décélérateurs aérodynamiques ol ils
remplissent, concurrement avec les ballons et divers dispesitifs métalliques non gonflables, une tiche qui consiste
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essenticllement & assurer un freinage. Dans son glossaire de 1951, Brown a défini le parachute comme “un dispositif en
forme de parapluie, fournissant une trainée, utilisé communément pour diminuer la vitesse de descente d’un corps qui
tombe”. La définition courante actuelle est plus précise et plus limitative. Au sein de 1a catégorie trés vaste des décélérateurs
aérodynamiques, les parachutes sont générateurs de trainée dont une des caractéristiques essentielles est 1a souplesse
d'emploi, car une fois gonflés, leur forme dépend de I'écoulerent de Fair autour d'eux.

Cette meilleure précision dans la définition résume bien P'évolution qui s’est faite dans beaucoup de secteurs de
Vindustrie, ¢t pas seulement dans I'aérodynamique des parachutes. Grice & la présence de puissants ordinateurs centraux
dans ta plupart des bureaux d'étude et, dans beaucoup de cas, & I'utilisation de mini- et de micro-ordinateurs relativement
peu coliteux, les ingénicurs disposent de possibilités nouvelles pour établir les formules de base voulues et développer les
solutions qui en découlent en vue de 1a conception. Pour que ces tiches puissent étre exécutées efficacement, il faut bien
cerner les principes de base et appliquer les conventions de symbolique convenues.

C’est pour satisfaire tous ces besoins que 'ouvrage “Aérodynamique des parachutes” a été écrit. Dans le domaine dont
il port le titre, cet “AGARDographe™ est considére comme la suite directe du livre “Les parachutes” de Brown, car il insiste
sur Je méme théme: “les principales caractéristiques des parachutes et les divers facteurs connus qui les affectent™ Il tient
compte, non seulement du grand nombre de publications postéricures qui ont été répertoriées et résumées dans les “Guides
de conception des parachutes” de I'armée de I'air américaine de 1963 4 1978, mais également des comptes rendus de débats
des conférences de I'institut américain d’Aéronautique et d'Astronautique (“American Institute of Aeronautics and
Astronautics”) sur la décélération aérodynamique qui se sont tenues tous les deux ans et demi, des cours techniques abrégés
de Helmut G Heinrich sur la technique des systémes de décélération qu'il a donriés en 1983, 1985 et 1987, et du “Manucl de
conception d'un projet de récupération par parachute™ qui sera prochainement publié par le Centre des armements navals
américain (“U.S. Naval Weapons Center”).

On a prévu que les principaux lecteurs de cet ouvrage seraient les ingénieurs fraichement diplémés qui sont sur les
point d'entrer les établissements de recherche, les sociétés de fabrication de parachutes ou les industries qui leur sont
associées. Pour préparer sa présentation, on a supposé que le lecteur possédait quelques connaissances de mécanique
fondamentale, des notions Zlémentaires de mécanique des fluides et des principes de I'informatique.

En dehors de Karl-Friedrich Doherr et de mes propres associés en matiére de recherche, les autres personnes qui ont
apporté la contribution de leurs connaissances, de leurs critiques et de leurs suggestions sont trops nombreuses pour que je
puisse les citer toutes individucliement. Pespére sculzment qu'elles pourront reconnaitre au passage les apports inestimables
qu'clics ont faits a cette publication qui est I'aboutissement de tous nos efforts conjugués.

David Cockrell
Leicester — 1987
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1LINTRODUCTION

1.1 FUNCTION OF A PARACHUTE

The word ‘parachute’ is derived from the French words parare , meaning to shield, or to ward off and chute ,
meaning a fall. Thus the word parachute rneans any natural or artificial contrivance which serves to check a fall through
the air and thereby support in the air sorae load or store. But for present purposes this is too wide s definition. Within
thizs AGARDograph the parachute wiil be considered to be one subdivision within 2 much larger classification of
aerodynamic decelerators. Ibrahim'? defines the latter as ‘devices whose primary function is to maximise the drag of
systems of which they form a part’ and parachutes as ‘flexible elastic bodies whose inflated shapes are dependent on the
flow conditions’. Because of the structural form of the rigid decelerator, the improper primary function of the flexible
wing and the invariability of the ballute's inflated shape (a ballute is a cross between a balloor and & parachute, used as
a high-speed aerodynamic decelerator) these devices are excluded from consideration as parachutes here, except as
possible illustrations of certain acrodynamic principles.

Although the primary function of the parachute is the maximisation of system drig, among possible secondary
r6les may be the provision of a horizontal velocity component (termed drive) to the system or even to be the means
whereby this system acquires a lift force. Thus the distinction betwsen parachutes and flexible wings may not be as
clear cut as it first appears.

From their initial man-carrying rle, parachutes have been required to undertake a much wider rangre of tasks. As
well as men, stores are often decelerated by parachutes. These include weaponry as well as other supplics. Parachutes
can also be used to decelerate rapidly-moving vehicles, such as aircraft and motor-cars. Sometimes, instead of an
individual ejecied from a malfunctioning aircraft, an entir2 crew-carrying module is decelerated by a parachute. As Fig.
1.1 irdicates, parachutes must be capable of operation over a wide range of velocities and hence dynamic pressvres, in
very different environments. For example, extra-terrestrial applications may be requirsd when instruments have to be
landed on other planets. Even on the earth’s surface, as natural acrodynamic decelerators such as dandelion seeds bear
witness, some applications of parachutes call for unusual designs.

p
g
M Pig. 1.1 PARACHUTE PERFORMANCE ENVELOPE T
ﬁ‘ From Ref. 1.3
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Delivery Planetary Entry (Mars landing)
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Missile Recovery
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f A 1.2 AERODYNAMICS: ONE AMONG MANY DESIGN CRITERIA
3 The acrodyramics of parachutes is only one aspect of their multi-faceted design. Their flexible structure must be of
3 light weight, yet strong enough to vrithstand the high loads imposed during inflation. Their deployment must be both
J E simple and relisble. They must be relatively ezsy to manufacture so that their cost is small compared with that of the
3 store which they decelerate and then deliver. Parachute acrodynamics is concemned with the mechanism of iaflation, the
determination of flight mechanics, such as the raic of system descent in a given application, the drive and the lifting
] behaviour of the parachute. Included are system stability characteristics such as equilibrium angles, frequency of
oscillation and the oscillation damping rates. To predict satisfactorily ali these characteristics the necessary ;
mathematical relationships must first be developed and relevant data acquired through appropriate experimental
programmes. Having been acquired, these data must then be made generally available. The Parachute Design and
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Performance Data Bank'2, established at the United States Air Force Flight Dynamics Laboratory in the period 1970-
73, was a significant step in data dissemination and this AGARDograph has been written to further assist data
formalisation, application and dissemination,

1.3 BRIEF HISTORICAL SURVEY (REFERENCES 1.3 TO 1.1})

Although evidence of parachute-like devices 1o lower both animals and humans from high towers exists in Chinese
archives from as early as the 12th-century &nd in 1514 skeiches of parachutes were made by Leonardo da Vinci, the
first authenticated parachute descent was not made until October 22 1797, when André-Jacques Ganerin jumped from a
balloon over Paris. Early users of parachutes were stunt men, descending from towers or from tethered balloons for the
entertainment of spectators. By the early nineteenth century, exhibition parachute descents from balloons were being
made all over the world and in this capacity, in 1808 a parachute first savid 2 human life.

At the outbreak of the 1914 world war, participants on both sides :tudied activities behind the enemy lines by
stationing observers in baskets, slung beneath tethered hydrogen-filled lalloons. As these balloons exploded if they
were hit by machine-gun fire, on the approach of enemy aircraft the obsurvers would bail out, using for this purposs
cotton parachutes, some 9 - 11 metres in diameter which wers tethered to their baskets. A large number of observers'
lives were thus saved, there being 407 successful parachute descents in France by members of the British Ballocn
Wings alone and a further 125 by members of the United States Forces. For French observers a parachute system wag
evolved in which the entire basket was retrieved, becoming the first recorded ‘encapsulated’ retrieval by parachute.
Similar observational practices were carried out by the German Army, with a corresponding high success rate in
observer retrieval.

When aircraft entered the war the use of parachutes by aircrew was delayed. The probable reason for niot using them
initially was because of difficulties in egress from aircraft cockpits. Since it took valuable time to put the parachute
harness on and to extract the parachute from its container which was fixed to the aircraft, often there was insufficient
altitude remaining for the parachute to fully open. But eventually, the prime importance of pilots’ lives was
recognised, probably because of the considerable investment in training cost and time which they represented. The first
recorded saving of life from an aircraft by a parachute was in 1916. At that time parachutes were opened by static lines
attached to the aircraft, the opening being delayed until the parachutist was well clear of the machine.

By this stage in the war, individual aviators on the German side were equipping themselves with appropriately
modified Heinecke parachutes which had originally been intended for balloon observers. As these parachutes opened
they lifted the aviators clear of their cockpits. Following the development of ‘packaged’ or pack parachutes by Charles
Broadwick and cthers in the early 1900's, all combatants rapidly made the necessary developments in materials and in
parachute packing. On April 28 1919, Leslic L. Irvin made the first free parachute descent, from 1500 ft above the
ground. By this time, parachutes were in regular use for the dropping of flares and in 1918 they were often the means
by which spies were infiltrated behind enemy lines.

The first parachute designed for military personnel was standardised in 1924. After that time, first in the United
States and later 1n Great Britain, the use of parachutes became compulsory for aircrew. By about 1930 the Soviet
Army had begun to equip and train some of its units for airbome operations, using parachutes. Corresponding German
units were deployed in Holland and Belgium during the early stages of the 193945 war.

By this stage in many countries a systematic testing and development programme had become essential. There was
an over-riding need for reliability, thus for a better appreciation of paraciiute materials characteristics, of structural
strengths, opening factors, drag characteristics and stability behaviour. Research took place in many places but
incre: “ingly in the United Kingdom and in Germany. By the outbreak of the second world war in 1939 there was
considerable experience in using parachutes for weapon stabilisation, required both for impact attitude and the need to
obviate high g-loading in the direction normal to that of the weapon axis, in the dropping of supplies by parachute ~.ad
in paratrooping. During that war there was considerable development in all these applications as well as in the aircraft
deceierator tdle, made necessary through both the advent of dive bombing and the rapid deceleration on landing required
by some fighter aircraft. During the 1930's the needs for high aircraft deceleration led to the development of ribbon
parachutes by Georg Madelung. At the high speeds which were necessary such parachutes were able to provide the
required low opening shock loads and also exhibit stability in pitch.

These varicus applications were demanding differing parachute characteristics, for example a low degree of parachute
; stability tolerable to a member of aircrew making an emerg.ncy escape from his aircraft would be quite unacceptable to

a regular parachutist such as a paratrooper, or for an aircraft decelerator system. For such ejector sysiems knowledge of
the relevant parameters influencing parachute inflation became essential so that satisfactory predictions of the time
! taken for inflation and the corresponding forces which were developed could be achieved .  Using parachules, guided
missiles, such as the V.1 and V.2, as well as missile components were successfully recovered in 1944 and the carliest
ejector seat deceleration was made by parachute about 1944-6, the idea for 30 doing originating in Sweden.
. During the 1939-45 war, at the various research establishmente parachute sections were established, For example,
r at the Royal Aircraft Establishment under W.D.Brown, the British Parachute Section was established in 1942. After
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this war was over, when T.F.Johns, a member of this Section, published the Report "Parachute Design®, he stated that
most usual requircments for parachutes were:-

(i). that they will invariably inflate;

(i). that they will develop specified drag forces at particular descent speeds;

(iii).  that they will be sufficiently strong to withstand opening at speeds which are usually higher than their
descent speeds, and
(iv). that they will give specificd degrees of stability 10 the payloads to which they are attached,

In this AGARDograph, the acrodynamic aspects of requirement (ii) are discussed in chapter 2, those of (i) in chapter
5 and (iv) in chapter 4, The serodynamic aspects of requirement (iii) are considered in chapters 2, 3 and 4.

After the end of the second world war, in the United States the military engagements in Viet-Nam and elsewhere
stimulated more parachute research into gliding parachutes such as the ram-air inflated textile wing originally proposed
in 1961 by Jalbert, the emergency cscape of aircrew and the airborne delivery of personnel, stores and weapons as well
as into aircraft retardation and vehicle recovery over a wide dynamic pressure range. Deceleration through the
deployment of a series of parachute canopies in a number of separate stages became commonplace. By the 1960's the
ribbon parachutes developed for this purpose were used for the deceleration of the United States astronauts retuming
from the Moon in the Mercury, Gemini and Apollo spacecraft as well as those in the Soviet Union's Vostok and
Soyuz space vehicles, Yuri Gagarin safely landed Vostok I by parachute in April 1961 and in February 1962 John
Glenn used a ringsail ribbon perachute 1o land 2 Mercury spacecraft. In July 1976, using parachutes, successful
landings of the first of two Viking spacecraft was made on the planet Mars.
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2.STEADY-STATE AERODYNAMICS

Although it is more logical to begin by describing the deployment and the inflation of the parachute canopy,
proceed with its deceleration and then to consider its behaviour in the steady state, basic acrodynamic concepts for
parachutes are most readily introduced by first considering their fully-deployed steady descent.

2.1 SOME DEFINITIONS. RELEVANT DIMENSIONLESS PARAMETERS

In flight mechanics the characteristic forward direction of vehicles in motion is first detezmined. Then a common
procedure is to establish orthogonal sets of axes which are fixed in these vehicles, passing through ar origin which
itself is fixed in the vehicle. Such axes are referred to as body axes. Customarily the axis O-x is so positioned that it
points in that characteristic forward direction. As Fig. 2.1 illustrates, the angle of attac’, a ,is the angle measured
between the component in the Oxz plane of the resultant airflow V), in that forward direction and the body axis O-x.
The body axcs are right-handed in direction,

As Terms and Symbols for Flight Dynamics®' makes clear, in acronautical parlance the term angle of incidence is
no longer an acceptable alternative for angle of attack, o .

Like any other immersed body, when a parachute moves through a fluid a resultant aerodynamic force R is
daveloped on it. Experiments can be deviscd by which to measure both the magnitude of this force and its moment
about any specified location. Though these measurements are sufficient to define the line of action of this resultant
force they do not determine the precise position of the centre of pressure, a specific point on that line of action at
which the resultant acrodynamic force can be considered to act. I most acrodynamic applications the location of the
centre of pressure is determined by convention. Thus, for a section of aircraft wing section or for a gliding parachute
the centre of pressure position is defincd as being at the intersection of the resultant aerodynamic force line of action
with the chord line of the aerofoil section which constitutes the wing or the gliding parachute. A gliding parachute,
such as that with & ram-air canopy described in Appendix 2B, is one which is capable of imparting a horizontal
component of velocity or drive to the parachute and its payload. Momentarily it is possible for a system comprising
a gliding parachute and payload to develop a resultant lift force. In contrast is the conventional parachute, possessing
solely a drag-generating réle. A number of conventional parachuie canopies are illustratcd in Appendix 2A. In some
situations this distinction between these two types of parachute canopics becomes artificial, since conventional
parachutes become gliding parachutes if appropriate panels are removed from the canopy. When this occurs either
definition of parachute could be adopted, whichever is the more convenient.

In the physical appreciation of parachute behaviour, such as when formulating and solving equations ot motion, it
is sometimes desirable (though not cssential) to know the centre of pressure location. For conventional parachutes
the centre of pressure position is defined to be at the the intersection of the line of action of the resultant acrodynamic
force with the parachute axis of symmetry.
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The components of the resultant acrodynamic force which are paralfe] and normal respectively to the O-x and O-z
axes and in the reverse sense (o these axes are termed the tangential force, T and the rormal force, N, For a

conventional parachute, a3 shown in Fig. 2.1, the tangential component of force is parallel to the parachute’s axis of
symmetry. Expressed non-dimensionally they are;
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Cr = T/I(hpV3s,) and Cy = NI(WpVis,) (1 & 2.2)

where p is the local air density, Vyis the parachute resultant velocity at the origin of a co-ordinate system,
which is fixed in the parachute and S, is the nominal tozal surface area of the canopy that is, it represents the tota}
canopy surface area, inclusive of any openings, slots and vent areas,

Since steady acrodynamic forces and moments developed on an immersed body such as a parachute are considered 1o
be functions of the body shape, inclusive of its attitude in the fluid, the body size, together with its relative velocity

through the fluid in which it is immersed, as well as the flyid propertics density, viscosily and temperature, then by
dimensional analysis;

Cr and C, = f(o;Re;Ma) (2.3)
whete Re = V,D v is the Reynolds number and

. D,

= [48,/m))"3 24)
: D, being defined as the parachute nominal diameter andv as the fluid’s kinematic viscosity.
i ( ~
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Since the nominal total surface area of the canopy is not always clearly defined there can be confusion over the
magnitude of the parachute’s nominal dismeter D,. To avoid this confusion the term constructed diameter, D, is
sometimes used. The Recovery Systems Design Guide, reference 1.9, defines the construcied diameter of a parachute
canopy as ‘the distance measured along the radial seam between points where the maximum width of opposing gores
intersects that radial seam’,

The Mach number Ma equals Vy/a , where a is the local speed of sound in the undisturbed fluid. The ways in
which these and other acrodynamic force and moment coefficients vary with the angle of attack, Reynolds number and
Mach number are described in Section 2.2,

For gliding parachutes the acrodynamic reaction R is usvally expressed in terms of its two components, /ift L and
drag D respectively perpendicular to and parallel to the resultant airflow, as illustrated in fig.2.2 The positive
direction of lift is in the opposite sense to the weight of the system and the positive direction of drag is in the
opposite sense 1o the parachute’s resultant velocity. Like tangential and normal force components, lift and drag forces
are similarly expressed in terms of non-dimensional coefficients as C, and Cy:

C, = L
LovIs 2.5

2P VR >0

ad Cp = _D
VTS, 26

2

The non-dimensional force coefficients C, and C,can be expressed as functions of the angle ot attack, the
Reynolds number and the Mach number in exactly the same way as were the force coefficients C, and Cy in
equation 2.3.

To avoid any confusion in determining the sense of the lift component force it is preferable to confine the use of
tangential and normal force components to conventional parachutes while reserving lift and drag components for
gliding parachutes. When considering flight mechanics however, the component of aerodynamic force in the direction
of the relative airflow, i.c. the drag component is often required, so transformation is necessary from one set of
acrodynamic force components to the other. The relationships shown in Fig.2.3 are:

( )

Conventional
Parach
Vv Fig. 2.3 RELATIONSHIPS BETWEEN
Ay A\ R THE AERODYNAMIC COEFFICIENTS
0-x VR C, AND Cp AND THE COEFFICIENTS
CN AND Cy
\— J
€Cpr = Cycosa + Cysina @D
and C, = Cycosa - Crsina (2.8)
Correspondingly, €y = Coema - C sina 29




and C" = C., cosa + C,, sin a . (2-10)

And since UpVi = YpIVik (2.11)

where the subscripts o and E respectively imply measurement at sea level and the equivalent air speed, the
expressions for the acrodynamic force components in equations 2.1, 2.2, 2.5 and 2.6 can be written in terms of the
equivalent air speed Vg, The latter is the appropriately-comrected speed be recorded by an air speed indicator.

2.2 SOME STEADY.-STATE AERODYNAMIC CHARACTERISTICS

To illustrate the functional relationships expressed in equation 2.3, some typical aerodynamic characteristics of
various canopy shapes are now considered. A list of the most common parachute canopy shapes, together with a brief
account of their acrodynamic characteristics, is appended o Section 2.
2.2.1 Shape of Parachute Canopy

As explained in the Introduction, the process of parachute design is mevitably one of making compromise
decisions. The shape of the parachute canopy is determined by considering all the rdles which the parachute may be
required to fulfil. Some of the factors which will influence the choice of design are outlined below.

2.2.1.1 Opening_Characteristics The speeds at which parachute canopies are required to deploy and to inflate
strongly influence the maximum structural loads which they must be designed to withstand, On strength
considerations, if inflation is required at high equivalent air speeds, ribbon parachute canopies, such as that shown in
Fig.2.4, are almost exclusively chosen.

4 N\
il

235
)
A
7, L

\ 4
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2.2.1.2 ]s Drive’ Reauired? Drive, defined in Section 2.1, may be a stragetic requirement, as it is for airbomne
forces parachules, oz it may be undesirable, as would be the case for dropping swores by parachute into a confined zone.
As will be outlined in Section 2.3.2, a parachute canopy possessing drive is likely to be strongly statically stabie in
pitch,

When drive is required, a gliding parachute cznopy must be adopted. But where drive would be sn undesiiable
characteristic 8 conventional pacachute canopy is used instead.

Since many gliding parachutes are effectively inflatable low aspect ratio wings, their acrodynamic characteristics
vary with the angle of attack and wing aspect ratio in & manner typical of these ratio wings. Gliding parachuscs are
limited by control considerations to a maximuns aspect ratio of about 3:1, giving a gentle stall and a correspondingly
slow increase in drag coefficient, Tie ratio of 1ift to drag is Jow; at the present stste of the art sbout 3:1 is
characteristic but higher ratios are attainable with the more advanced design of swept-wing closed-cell ram-air gliding
pasrachutes described in Section 9.5.1. The characteristic variation of Jift coefficient with angle of attack for ram-air
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gliding parschute canopics having aspect ratios varying from 1:1 to 3:1 is shown in Fig. 2.5. These experimental
results were quoted by Lingard®® from an carlier report by Nicolaides™,
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It will be shown ia Section 2.3.3 thai for a given canopy size and

What Value of Cr is Reguired?
payloadmm&emc’dumtofawthedeamu:bemmnﬂeafﬂumzmmfmcccoeiﬁcnemQ
increases. In general, as high a value as is practicable is desirable for Cy. At zero angle of attack, C; is equal to the
drag coefficient C,. Some typical characteristics for the variation of Cp, and C, with angle of attack are shown in
Figs.2.6 and 2.7. They are seen t0 be dependent on the porosity of the parachuie canopy, & property which wiil be
discussed in Section 2.4. Whereas in Fig.2.6 characteristics for a typical gliding parachute have been given, in
Fig.2.7 they are shown for flat circular parachute canopics, 30 called because when these canopies ave spread out fist
on a plane surface they are circular in shape.




P

2.2.14 What Cy
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 Characteristic is Required? It will be shown in Section 2.3.1 that the attitude of the canopy
when in equilibrium is deterinined by the angle of attack at which Cy is equal to zero. Further, the condition for a
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parachute to be statically stable in pitch is shown in Section 2.3.2 10 be that when in equilibrium, dCy/da must be
positive. Almost any parachute canopy will descend stably if only it is made safficiently porous for example, ribbon
parachute canopies, being highly porous, characteristically display strong static stability in pitch.

Typical characteristics showing the variation of Cy with angle of attack for flat circulsr parachute canopics are

shown in Fig.2.8. ‘They, too, are strongly porosity depeadent. For these and other parachute canopy shapes, as

porosity is increased not only does the tangential force coefficiert, C; markediy decrease, resulting foe & given canopy

shape and size in sn increased descent velocity, but as very porous canopies infiae they may exkibit squidding, defined

by Brown'? as 2 tendency for the open canopy to collapse to a fon: in which the open diameter lies between one-

third and one-quanter of the fully-open diameier; the shape of the collapsed parachute canopy then resembling that of a

squid. The phenomenon of squidding is further discussed in Section 5.2,




i

»

o ]

L =
“Sax

10

2.2.2, Varistion of Aerodynamic Coefficients with Reynolds Number

Publislwddmonlbevuiaﬁonofpuuhmmodynmkwelﬁcienuwi&keywldsnmbumalmosten&ely
concemned with drag coefficient variation. mewm.bmdmmhmmymiml
diameter, is greater than about 10 Figs. 2.9a and 2.9b indicate that liutle variation in drag coefficient with Reynolds
number occurs. By inference, at these Reynolds numbers little variation of other acrodynamic force coefficients with
Reynolds number is anticipated. In Fig.2.92, comparing corresponding data for other bluff bodies, i.c. & sphere and a
ci:cuhtdiscmaltothethw.itisevidenuhuuhixhkeymldsnumbmdlebmmdzyhymdemhmdnwdw
leading edge of these bodies flow separation occurs.

ﬁ)rag Coeficient, Cy ' )
1.20 s () e O
V‘ “®~ Hemispherical
1.00% Parachute
Canopy
0.80 & _ 00—l 0= Circular Disc
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0.60 + O- Cross
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B Canopy
0.40 4 @
Fig. 2.9a EFFECT
OF REYNOLDS
0.20 1 S — L T ] NUMBER ON
AERODYNAMIC
CHARACTERISTICS
0.00 + + 4= *- 4 < After jorgensen
1.0x10°2.0x10°  3.0x1054.0x10° 5.0x16° 6.0v10°
\_ Reynolds Number y

Since for these bluff bodies there is lintle or no boundary layer variation with Reynolds number, the resulting
variation in acrodynamic coefficients with Reynolds number is also small. In Figs. 2.92 and 2.9b cross parachute
canopies canopies are referred to, Thwmmuﬁcued&anmmmguhrsuipsofmumjomdmmum
produice a cross or a cruciform shape, appearing as shown in Fig. 2.10.
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014
Reynolds Number
0.0 $ ¢ e |
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As Fig.2.9b indicates, for Reynolds numbers above 10°, smalt variations with Reynolds number in the drag
coefﬁdmofmhmmm.mmmmomnkmwsimifm However, from free flight
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2.2.3 Variation of Aerodynamic Coefficients with Mach Number
With bluff bodies such us parachite canopies substantial variations in drag coefficients with Mach number are to
be anticipated. This variation is strongly dependent on both the canopy shape and the local Reynolds number. Fig.
21lais genenlly illustrative of the substantial drag coefficient dependence on Mach number, a dependence which
develops in subsonic flows as Fig. 2.11b, describing the characteristics of a parachute cluster, illuswrates. Hyperflo
parachute canopies, whose characteristics are shown in Fig, 2,113, were flexible ribbon concepis which were
specifically designed for supersonic operation by the Cook Research Laboratories.
~ )
Fig. 2.11a EFFECT OF SUPERSONIC MACH NUMBERS ON
PARACHUTE AERODYNAMIC CHARACTERISTICS

0.8 -[

Hyperflo Canopy with a Mcsh Roof
0.6¢ - Berndt & Babish, ref.2.9

N‘.‘ o A\
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Coefficient, .04 ] .‘\\.
D ".

0.24
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20 25 30 35 40 45 50 55 6.0
\ y
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0.60 ¢
0.40 ¢
0.20 4
Fig.2.11b EFFECT OF
TRANSONIC MACH NUMBERS
ON AERODYNAMIC CHARACTERISTICS
0.00 . 1973 Recovery Symm Design Gnide. rer 19 - :
0.6 o7 oe os 1.o 1.1 1.2 13 14 '
\_ Mach Numbar )

. In order 10 establish high Mach sumber aerodynsmic characteristics of parachute canopies, it is esseatial to use
either vecy large high-speed wind tunnet facilitics to obviate blockage effects or else 1o flight test full-scale canopies.
The blockage constrzint of parachute models in wind tunnels is discussed in Section 6.3.
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2.3 STEADY-STATE FLIGHT MECHANICS
23.1 Equilibrium

2.3.1.1 The Conventional Parachute By resolving and taking the moments of the external forces acting on the
conventional parachute shown in Fig.2.12 the conditions for its equilibrium can be established. As the figure shows,
the angle 0 is the inclination of the parachute axis of symmetry, defined in Section 2.1, with the vertical. Initially,
the drag of the payload is considered as negligible compared with that of the canopy.

4 )

O Origin of co-ordinate system
G System centroid
y cp Canopy centre of pressure
Vg Resultant velocity at origin
N Normal aerodynamic force
component
T Tangential acrodynamic force
component
Angle of attack
Inclination angle of the
parachute

-3~

Jpositive Fig. 2.12 EQUILIBRIUM CONDITIONS
FOR CONVENTIONAL PARACHUTES

mg
\. L
Resolving in the Ox direction:
mg cos 6 - T =0 2.12)
Resolving in the Oz direction:
mg sin 6 - N =0 .13

Taking moments about the system centroid, G:

Mg = -N(x,x) 0o . 2.14)

Then since (x,-x,) is non-z¢fo, for equilibrium the normal acrodynamic force component, N must be zero.

Equation 2.13 then shows that since mg is necessarily non-zero, at equilibrium the angle 8 must be zero. Under
this condition equation 2.12 shows that the angeatial force component, T equals mg. Hence, when it is in
equilibrium a conventional parachute descends with its axis of symmetry vertical, at such an argle of attack, & that no
normal acrodynamic force component is developed on it.

When the drag of the payload is not negligible when compared with that of the canopy, at equilibrium the normal
force component is small and positive. Under these conditions, a »:able canopy descends at a smalt positive angle of
attack, describing a coning motion with the semi-apex angle of the cone equal to this angle of attack. In order to
minimise this coning motion the drag of the psyload must be small compared with that of the canopy.

2.3.1.2 The Gliding Parachute Foreucuymemmsonasforaconvenwnal pamhutc. if the drag of the
payload attached to a gliding parachute is neglected then when us parachute is in equilibrium it descends so that its
axis Oz is vertical. This axis is drawn through both the canopy centre of pressure, cp, located on the aerofcil section
chorg line at about the quarter-chord position and the parachute-payload system centroid, G. From the origin O,
selected on the axis Oz, the axis Ox extends at right angles to Oz in the plane of symmetry and in the same sense as
that of the parachute’s resultant velocity Vy.
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Fig. 2.13 has been drawn in the equilibrium position. In this figure the line OP has been drawn through the
crigin O and perpendicular to the aerofoil chord line. The adjustable rigging angle ¢ lics between OP and the axis Oz,

In reference 2.1 the symbol y is used for the angle of climb of an aircraft. ‘Throughout The Aerodynamics of
Parachuses the angle of descens, ¥, will be adopted instead, where

Y = Y. (2.15)

Using the symbols shown in Fig.2.13 and applying equilibrium conditions corrssponding to those adopted for
conventional parachutes in equations 2.12 to 2.14, including neglecting the drag of the payload, by resolving forces in
the Ox direction:

Lanvy, -~ D cosy, =0 {2.16)
by resolving forces in the Oz direction:
mg -Lcosy,-Dsiny, =0 @17
and by taking moments abcut the centroid,G:

Mg =-(Lsiny,- Dcosy, Xz-2)= 0. (2.18)

~

O Origin of co-ordinate system

G System centroid

cp System centre of piossure

V Resultant velocity at origin

L Lift acrodynamic force

component

D Drag aerodynamic force
component

Angle of attack

Rigging angle

Angle of descent

2o R

iomal__ | % Fig 213 EQUILIBRIUM CONDITIONS
mg FOR GLIDING PARACHUTES ]

\—

From the inset diagram in Fig. 2.13:
tan vy, = DiL. = 1 . (2.193)
L/D
and cosy, = Limg. (2.19b)

From the conditions established in Fig. 2.13, at equilibrium the angle of desceat 7, is related 1o the angle of aitack
o by:

“ = c+¢ (2.20)
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If the drag of the payload is not neglected, then at equilibrium the Oz axis of the gliding parachute is inclined at an
angle @ to the vertical, so that:

a+d = 0+7,. @.21)

By adding the payload dray to the forces shown in Fig. 2.13 it can readily be seen that the condition for
equilibrium is that the axis Oz is inclined at a small negative angle 0 to the vertical. As this angle is, in general,
small equation 2.20 is approximately valid even when it is necessary to take the drag of the payload into
consideration. Thus:

Yo = a+¢ . 2.22)

Now, through equation 2.19, v,is a function of the angle of sttack, . Equation 2.22 demonstrates that the
purpose of allowing the rigging angle ¢ to vary is to adjust the angle of attack at which the gliding parachute flies,
making possible a range of equilibrium ratios of Lift to drag at which the parachute descends.

2.3.2 Static Stability

Whether or a0t a system is stable is determined by its response to swall displacements from its equilibrium
position, Static stability is solely concemed with the directions of the moments which are developed on such a
displaced system, a statically stable system being one which, as a corsequence of a small displacement from
equilibrium, develops a moment in a direction which would restore the system to equilibrium. This concept has
nothing to say about the equilibrium of forces which act on the system afier displacement or about the frequency and
attenuation or amplification of any resulting oscillations, nevertheless, it is a very valuable concept in a number of
fields including aircraft dynamics and in Section 4.3.2 it is shown to have particular merit when applied to parachute
dynamic pitching motion. Since a system which exhibits satic stability about one axis need not necessarily do so
about any other, it is important {0 define the axis about which the stability of a system is being considered.

( o Fig. 2.14 THE STATIC STABILITY CONCEPT )
e
Y
\ Pistarbing .«-*""@ ™
A forse
' 7 “ laverted pendulum ~
—\ A Statically uastable
\
\
\‘ ‘\
Hanging péndulum - \
Statically stable :
'y 7 \\/‘:‘:
(—
ra \‘
- @ \
‘Yo
\_
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The concepts of static stability and instability are illustrated in Fig.2.14 by reference to s pendulum, hanging on
the end of a light, straight rod. When this supposting rod hangs vertically the peadulum’s suspended mass is in
equilibrium Work must be done to displace it from this equilibrium position and to incline the supposting string
through an anzle A8. Having made such a small displucement, the pendulum develops a moment AM about the
suspension point O. This moment is in the direction to restore the system to the equilibrium state and is opposed to
that of the displacement. The static stability of the system is characterised by the relationships that:

(). in equilibrium, the moment about O:

M@® = 0 2.23)

(ii). and afier a small displacement:
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dM/jdé < 0 . Q.24

However, if the pendulum were inverted, with the supporting rod vertical the system is also in equilisrium. But,
in allowing the supporting rod to deflect, work is done by the sysiem on the rod. Having deflected through a small
angle AG the moment then develoned about the suspension point O is in the same direction as that of the
displacement. Hence, for this invertea pondulum dM,/dO is greater than 0.

In exactly the same way, the criteria required for the equilibrium and the static stability of a parachute in pitch are,
from equations 2,12 to 2.14 and 2,16 to 2.18, that

Mg@) = 0 229)
and Mghe < 0 . (2.26)

By specifying moments about the parachute centroid it is ensured that the moment consequent upon a small
disturbance from the equilibrium state is wholly aerodynamic. Its magnitude and its sign can then be determined
readily, solely from steady-state acrodynamic tests.

For a conventional parachute, the necessary conditions for equilibrium and static stability in pitch are given from
equations 2,14 and 2.25 as:

Mg(@) = -N(x,x,) =0 . 227
together with Mo < 0 (228)
or, from equation 2.27: dN/da > 0 (2.29)

Whereas, for a gliding parachute, from equations 2.18 and 2.25:
Mg = - [L sin (& + ¢)-D cos (@ + ¢))Jzg = 0 . (2.30)
together with Mg < o . 231y

Some typical steady-state aerodynamic pitching moment characteristics for conventional parachutes have been
taken from the Recovery Systems Design Guide'? and are shown in Fig. 2.15.

("~ Piiching Moment Coefficient, Cmg )\
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The aerodynamic pitching moment coefficient C, is defined in a similar way to the force coefficients in
equations 2.1,2.2, 2.5 and 2.6 by:

C. = M (2.32)
Y,0V?$,D,

the nominal diameter,D, being defined in equation 2.4,

Since pitching moments are the products of the normat forcs, N and an appropriate moment arm, when tabulating
experimental results it is important to specify precisely the location of the axis about which the pitching moment has
been measured . As equation 2.25 indicates, the system centroid, G is often an important location about which
pitching moments are required but as this is dependent on the mass of the payload which is suspended from the canopy
its location may not be known with precision at the time of performing acrodynamic experiments on the parachute
canopy. In much of the established pitching moment coefficient data for parachute canopies the point about which
this moment has been measured is unspecified. Often it is the suspension line confluence point which, for all
practical purposes, can be considered to be the system centroid, This lack of precision can make these data unreliable.
In his experimental data Doherr®' has overcome this probiem by specifying the canopy centre of pressure location
relative to the canopy hem line at the skirt periphery.

The parachute canopies whose characteristics are shown in Fig.2.15 are all in equilibrium at zero angle of attack.
However, of the five canopies illustrated only those that are cross-shaped are statically stable at this angle, the other
three canopies illustrated exhibiting simultaneous equilibrium and static stability at certain positive angles of attack.
For example, the flat circular canopy is in equilibrium and is statically stable in pitch at an angle of antack of about
20 degrees. These pitching moment characteristics are skew-symmetric about zero angle of attack, thus the flat
circular canopy described is also in equilibrium and i3 statically stable at - 20 degrees angle of attack.

Both of these solutions are within the Oxz plane. The flat circular canopy exhibits the required equilibrium and
stability characteristics whenever it flies with its axis of symmetry vertical and the resultant relative airflow lies on
the surface of 2 cone whose axis is the canopy axis of symmetry and whose semi-apex angle is 20 degrees. Since no
particular direction is preferred, during descent the parachute oscillates through approximately + 20 degrees. In the
literature such a parachute is referred to as an unstable parachute .

On the other hand, the cross (or cruciform) parachute canopy of 3.8:1 arm ratio shown in Fig. 2.10, is referred to
as a stable parachute . It is in equilibrium and is statically stable in pitch at zero angle of attack, thus any disturbance
from this equilibzium state will be attenuated. Since the angles through which stable parachutes oscillate depend on
the amplitude of the forces which disturb them from equilibrium, during descent they cannot be stated with any
exactitude. However, the oscillatory motion which ensues is often heavily damped, for reasons to be explained in
Section 4.3.2. Thus the observed oscillatory motion can be quite minimal and in the literature it is customary,
though inaccurate, to specify these small pitching angles through which stable, as well as unstable, parachutes
oscillate,

1t is clear from Fig.2.15 that the steady-state acrodynamic characteristics of cross parachutes are functions of arm
ratio, defined in Fig. 2.10 as the constructed length to width ratio of one of the two cancpy arms. Normal force
coefficient variations with angle of attack for a variety of arm ratios are shown in Fig.2.16. Equations 2.2 and 2.29
indicate that 2 necessary condition for a conventional parachute to be stable in pitch is that dCy/do: must be positive at
o= 0", For the cross parachute canopics shown in Figs. 2.16, this condition is satisfied by appropriate combinations
of arm ratios and fabric porosities, for example the curves drawn in Fig. 2.16a are for imporous canopies, showing

that a condition for static stability in pitch is that the arm ratio of imporous cross-shaped canopies should exceed
3.0:1.

SRR ASRRLLRNKSTDN S ORA B r b2 > o




L -

( Fig 2.16a EFFECT OF ARM RATIO VARIATION )
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Reference to Fig. 2.16b shows that cross canopies with an arm ratio of 3.0:1 can exhibit static stability in pitch
provided that they are ot manufactured from imporous fabric. Figs. 2.4 and 2.5 have already made clear that the
porosity of the canopy has a very marked effect on parachute acrodynamic characteristics.




( Fig.2.16b EFFECT OF CANOPY POROSITY VARIATION )
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Of course, cross parachutes are not the only canopies which exhibit static stability in pitch. As Figs. 2.3 and
2.15 have already indicated, a tendency to parachute stability is 8 consequence of canopies increasing in pocosity.
However, as Fig. 2.5 indicates, this is accompanied by a comresponding reduction in drag coefficient and as explained
in Section 2.3.3, leads to deteriorating descent characteristics, A considerabls experimental test programme on
canopy stability was undertaken in 1962 by Heinrich and Haak™®, A number of its results are given in Chapter 4
of the 1963 Parachute Design Guide?”.

\
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Fig.2.17 STATIC STABILITY CHARACTERISTICS
FOR CERTAIN RIBBON PARACHUTE CANOPIES
« Doherr, ref.2.10 -
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4 Figure 2.17 is taken from later experimental work performed by Dehen®'® in which he demonstrated the static
stability in pitch of certain solid textile canopies and that of a number of slotied parachute canopies. In the reference
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Guored he indicated that there was some Reynolds number dependency in his results. He also showed that substantial
interference to the canopy's acrodynamic characteristics is often caused by the presence of the payload forebody.
Aevodynamic characteristics of unstable conventional parachute canopies can be considerably changed by removal
of a panel or a portion of a panel. The consequent loss in axial symmetry results in the parachute acquiring a
horizontal component of velosity or ‘drive’ during descent and thus becoming a gliding parachute. Jorgensen and
Cockreli*'? have demonstrated that the resultant relative airflow is then at a high and statically-stable angle of attack,
thus the parachute acquires & satisfactory descent perfermance.
2.3.3 Steady Descent
In a steady equilibrium descent it has been shown in Section 2.3.1 that, provided the payload drag is negligible
compared with that of the parachute canopy, the attitude of the axis of symmetry Ox for a conventional parachute and
of the axis Oz for a gliding parachute is vertical. Under these conditions, for conventional parachutes equation 2.12
reduces to:

mg = T 2.33)

If the parachute is stable then during descent its angle of attack is zero and from equation 2.7 C; = C,. Hence,
from equation 2.6, for & stable cenventional parachute:

mg =  YpViS.C, (2.34)

From this equation it is evident that the descent velocity Vy, is inversely proportional to the square roct of the
drag coefficient Cp,. It is also proportional to the square root of the parachute and payload weight and as the former is
generally negligible compared with the latter the descent velocity can be considered to be a function of the weight of
the payload. It decreases as the ground is approached and the air density, p increases and it is inversely proportional to
the square root of the canopy surface area, S,. By measuring the descent velocity V,, and knowing the other
pamameters the drag area of the perachute, C,,S, , can thus be calculated.

It is normal practice to apply equation 2.34 to unstable as well as to stable conventional parachutes. This is then
an average determination made for a body whose angle of sttack during descent will vary. It may thesefore differ in
magnitude from wind tunne! derivations made at fixed angles of attack, Although with stable parachutcs this
difference is not marked with unstable canopies it could be significant,

r

Fig. 2.18 STEADY DESCENT OF A GLIDING PARACHUTE )
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For gliding parachuics, from equation 2.16:

mg = Lecosy, +Dsinvy, (2.35)
Thus, from the definitions of C, and Cy, in equations 2.5 and 2.6 snd the expression for cos ¥, in equation 2.19b;
mg = 1/2pViS,[Cy/ cos ] (2.36)
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and thus

V, = [Zn:,zgc.%s:v‘]"’ @37

As Fig.2.18 shows, the korizontal and vertical components of the parachute’s resultant velocity, Vy are given
respectively by u and w, where

g = Vacosy, (2.38a)
and w = V. sin Yo - (2.38b)

From equation 2.37, the velocity down the glide path, Vy increases with increasing altitude and increasing wing
loading, mg/S,. But for a given height loss, the horizontal distance travelled is a function of the angle of descent ¥,

which, equation 2.21 shows, is solkly a fuction of the gliding parachute’s acrodynamic characteristic, C/Cp.
2,3.4 Froude Number, F

The Froude rumber F for a parachute is defined as:

F = V3 /Dg (2.39)

Since it relates the descent speed in a given gravitational field to the required size of the parachute canopy, this
similarity parameter is a very useful performance number. It is not wholly an acrodynamic characteristic of the
parachute, since it is & combination of the system's drag coefficient with its mass ratio, R,,:

F « 1/(R,Cyp) (240)

where the mass ratio R, is a measure of the ratio of air mass enclosid in the fully-inflated parachute canopy to
the payload mass m,, thus:

R, = pVim,. @41)

In equation 2.41 the symbol V denotes the representative displaced volume of an immersed body. For a parachute
canopy the representative displaced volume is considercd 1o be that of a hemisphere which has a diameter equal to the
canopy nominal diameter D,. The concept of the representative displaced volume is further discussed in Section 4.2.1.

Fig.2.19 YARIATION OF THE FROUDE NUMBER WITH THE
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This relationship between the Froude number and the mass ratio for parachutes is illustrated in Fig, 2.19, devised
by Dohesr as & means of illustrating the descent characteristics for four different parachute classes, It illusirates
equation 2.40 which shows that for a given drag coefficient the Froude number F is inversely proportional to the mass
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: 3 the latter is determined from the peoduct of the mouth arca and the rate of canopy descent, V. The volaavetric

outflow can be estimated from the air velocity U discharging through an arca which, because of cut outs, is lees than
the nominal ares of the canopy, together with the discharge determined from the product of the descent velocity and the
cut-out arca. The unknown velocity U at & pressure difference Ap squal to 1/2pV3 can be calculated from equation
2.44, using previously determined values of k; and k, for the canopy fabric.

' 2.5 STOKES-FLOW PARACHUTE SYSTEMS

’ . Where the spplication is one in which very low descent velocitics oc very high altitude performance is required, the

i resulting Jow Reynolds number leads to in a very different parachute concapt, that of a Stokes-flow perachute system,

which Mihora®" has described.

Xf the Reynolds number is 30 small that inertia forces are negligible compared with those caused by viscosity the

' parachute's drag mechanism and therefore its basic shape will be changed. To achieve a low descent velocity the
canopy must be of an extremely lightweight construction of open-mesh fabric or else formed from very small dismeter
widely-spaced filaments. Its nominal drag coefficient, based on its total projected arca, could well exceed 1.0. While
its overall Reynolds number might exceed 10 000 when based on the canopy diameter, if it were based on the
filaments’ diametes it could well be less than 0.5, a necessary criterion for Stokes flow. Because of the large voids
present in such & canopy it can be packed intc a very small container.

Niederes*!* describes studies for a Stokes-flow decelerator system, designed to provide subsonic rates of descent at
altitndes up 10 90 km (56 miles). Experiments were conducied in a high altitude 125t chamber in which either full scale
Reynolds number or full scale Kandsen number could be reproduced but not both at the same time, The Knudsen
number is the ratio 2, /L, where A is the mean free path for the molecules of the gas in which parachute filaments,
having a typical linear dimension L, are immersed. One of Niederer's sample desigas is for a Stokes-flow parachute
which weighs 0.44 New:oas (0.1 1bf) and which supports a 4.0 Newton (0.9 Ibf) payload. At an altitude of 45.8 km
(28.5 miles) its rate of descent would be 24.4 m/scc. (80 ft/sec.).

Although suited to high altitude applications because there the kinematic viscosity is high and s low Reynolds
number ig thus more readily achieved, Siokes-flow parachutes can be used successfully at much lower altitudes. An
exampie in nature of the Stokes-flow parachue, found at sea fevel, is the dandelion seed.
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APPENDIX TO SECTION 2
SOME COMMONLY-ADOPTED SHAPES FOR CONVENTIONAL PARACHUTE CANOPIES
A Summary of Aerodynamic Characteristics, drawn from references 1.7, 1.9 and 2.7.
2A.1 SOLID TEXTILE CANOPIES
Description Usage Aervéyeamic
FLAT CIRCULAR CANOPY Characteristics
CONSTRUCTION SCHENATIC
Exhibits instability in
. pitch, possessing a conic
A low cost, lighz w.ugh ¢ osciilation of some 20-30°
canopy which is suitable for N
INFLATED PROFI! . semi-apex angle. Clusters
deployment at low dynamic . .

. : . of flat circular canopics do
pressures. It is most widely not exhibit this characteristic
used by personnel and for ince. cach i '

ay. since. cach canopy in e
Cargo recav cluster is no longer at 0°

angle of attack,
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Description Usage
EXTENDED SKIRT CANOPY
\mrnucnox ScHEMA nc,/

Suitable for the airdrop of
macrial and for the recovery
of drones,

GUIDE SURFA(I CANOPY
mmrnm:cnfmm
Guite Sretete Fuvet Frequently used as a pilot
parachute, for extraction
purposes. Has been used
with both very low and
; very high dynamic pressures,
Y the Mach number ranging
Nt from 010 3.0
2A.2 SLOTTED TEXTILE CANOPIES
Description Usage
CROSS CANOPY

An easily-constructed low
cost parachute which
ilﬁ'emmtlymedforme

| vehicles and sircraft. Its
applications also include

stabilisation.

CONSTRUCTION SCHEMATIC WFLATED PROFILE

25

Aerodynamic
Characteristics

This canopy has a higher
drug than 2 flat circular
canopy. Italsohasa
longer opening ume, but it

Has a high geometric
porosity (15% to 30%),
which gives it good
stability in pich. It is also
very reliable in inflation.

Aerodynamic
Characteristics

Good drag characteristics
and provided that its
arm ratio 2ad porosity
are properly selected it
has an excelient
stability in pitch.
However, it displays

a tendency 1o rotaie about
its axis of symmotry.
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Description Usage Aerodynamic
RIBEON CANCPY Characteristics

--------- e bl L L T T YO

A very strong canopy which Has a lower drag
:ﬂmwf“?"ﬂ;ﬁ efficiency than a solid
relati ?lemmm' textile canopy but it
pressures {up to 270 kN/m? mzpitch. :
(5 700 1b/0t}) 1
This is like a ribbon canopy but
oo manmuny with much wider hands, Since . :
these lead 0 i being relatively T derodymmic
cheap 10 manufacture it is ith those
f Iy used for high dynamic c?:epaublem 082
pressure cargo delivery and of the ribbon canopy.
INFLATED PROFILE aircraft deceleration.
1)
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2.3 GLIDING PARACHUTE CANOPIES
The Ram-Air Canopy, drawn from references 1.9, 2.3 and 9.1.

Descriptior Usage Aerodynamic
Characteristics

Used when ‘drive’ is
Of the high-glide parachuies
described in ref. 1.9 the most common
are ies which are ir inflated
They have a variety of commercial The angle of descent v, is
names. im[enely proportional to the
They are characterised by aerofoil  Fatio L/D (cquation 2.19a).
cross-sectionai shapes and planforms  Typically, (L/D),,, is about
whogwmm”h‘e” 3:1, but sec Section 9.5.1
possible on aerodynsmic grouads.
However.haderdmgoodmmis
maintained they are limited to a
Rear Suspension Lines have not been shown maximum of about 3:1. ,

somrn b el
t




o
WL

¢
1
i
H

. e———————aT (AT

e L M b g e o o

3.TRAJECTORY DYNAMICS

The object of Trajectory Dynamics is to predict the flight path for the system which comprises the combination of
a parachute and payload. In principle, provided the parachule’s significant acrodynamic characteristics, in perticular the
canopy drag area C,,S,, defined in Section 2.3.3, are known as a function of time, then the appropriate equations of
motion for the parachute-payload system can be written and approximate numerical solutions obtained, In the crurse
of the time over which these equations are valid the parachute might be undeployed, undergoing deployment, inflating
or be fully infiated.

For all but the simplest models of this system, the equations of motion are not straightforward. Consequently,
their solutions, 100, are complex.

3.1 THE TRAJECTORY SYSTEM. AXES SYSTEMS. DEGREES OF FREEDOM

‘The nature of the trajectory sysiem which it is necessary to consider, the axis system to be adopted and the number
of degrees of freedom which are required in the consequent analysis depend on both the input data which are available
and the complexity of the solution which is required. The number of equations required to describe the motion of the
system depend on the number of degrees of freedom which the system possesses. A single body which can move
freely in a plane possesses three degrees of freedom. It requires three independent variables to define its position
relative to fixed axes, two co-ordinates to locate a chosen point in ihe body and a further co-ordinate {0 orientate the
body. The total number of co-ordinates required to specify the configuration of » unconnected bodies is 3n, but if
these bodies are connected together by various mechanisms then degrees of freedom are lost.

In order to establish the equations of motion it is important to choose carcfuily the frames of reference which are
to be adopted. In Newton's laws, on which rigid-body dynamics is based, all motion is ultimately considered relative
19 2 stationary reference frame. These laws state that the external forces and moments which act on a system, together
with the system's inertia forces 2nd momeats, are in a state of equilibrium. Inertia forces and moments are the
revarsed rate of change of ihe system's linear and angular momenta,

For most parachute applications, the earth can be considered to provide an absolute frame of reference and axes
which are fixed refative to the carth are termed earth-fixed axes. When the frame of reference is fixed relative to a
moving body, as could occur in a system consisting of a parachute canopy rigidly connected to its payload, they are
termed body axes. In general, on both parachute and payload the aerodynamic and the inertial forces and moments
which act on the systen can be determined relative to these body axes, since they are functions of the body resultant
velocity and its attitnde. However, not only are the gravitational forces and moments determined relative to earth-fixed
axes but the trajectory of the descending system is ultimately required relative to these axes. Thus, in obtaining
solutions 10 trajectory dynamics problems, it is usually necessary to adopt both earth-fixed axes and body axes,
together with the geometric transformation relationships between these two axes sets. Since the payload can move
relative to the parechute it may be necessary to adopt more than onc set of body axes, establishing some idealised
relationship to describe the mdde of coupling between the parachute and its payload.

There is no universally-agreed method of modelling the parachute-payload system. It is important to model the
system's mechanics in no more complex a manner than is appropriate 10 develop the required solution within the
constraints imposed by the available data. The approach adopted here owes much to Purvis™, Two-degree of
freedom equations of motion are first described for the motion in two dimensions of a point mass representative of
both the parachute and the payload, subjected to both acrodynamic and gravitaticnal forces. Next, a three-degree of
freedom set of equations is developed for two-dimensional motion of a payload which is simply-connected to a
parachute of negligible mass, Using these equations, the consequences are considered of including the parachute
canopy mass in this trajectory dynamics model. The third case described is a three-degree of freedom model for a
parachute canopy assumed to be rigidly-connected to its payload. Finally, refecence is made to publications which
describe trajectory models with six or more degrees of freedom and to the use of finite-clement analysis in order o
model parachute canopies during their deployment and inflation phases as if they were a series of elastically-connected
mass nodes.

3.2 TWO-DEGREE OF FREEDOM MODEL

Consider the motion of a point mass in the x-z plane, shown in Fig.3.1. As this mass is considered to act ai a
point, the system which it represents cannot possess any moments of inertia; hence no moments arc exeriedon it. In
the plane Oxz, therefore, the system possesses only two degrees of freedom, translational motion in the direction O-x
and translational motion in the ditection O-z.

On symmetry grounds, the point mass cannot sustain any component of acrodynamic force normal o0 the line of
flight. Thus, the resultant componeat forces which act on it in the O-x and O-z directions, F, and F,, are

F, = «(DyDycosy, @.n
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and F, = mg - (Dp+Dy)sin v, 3.2

where m denotes the mass of the system inclusive of any added mass, D, is the dray developed by the parachute,
D; is the drag developed by the payload and v, is the angle of descent. Added mass is discussed in Section 4.

( 0 X W
>
Dp + Dg =30 V:(CiS o+ S
4
z
v
mg
V:
Fig. 3.1 TWO-DEGREE OF FREEDOM TRAJECTORY SYSTEM
MODEL
. J
Measuring the displacements x and z relative to the earth-fixed axes O-x and O-z, since
x = Vecosy, (3.3)
and z = Visiny, G4
then the trajectory equations are:
m‘i = - (m)pVi (Cps.*f CAS|) (3.5)
ad m'i = mg - (IIZ)pVi (CgS.+ CAS.) (3.6)

where CoS, is the parachute canopy drag area, Sy denotes the payload reference area and C, the payload axial
force coefficient.

From known initial conditions of the parachute and payload, equations 3.3 and 3.4 give initial values of x and .
Then, for known values of the payload reference area and axial force coefficient, the system weight mg, the canopy
drag area as a function of time, together with the parachute system's initial altimde and velocity, equations 3.5 and 3.6
are soluble. They yield as functions of time the system's horizontal and vertical co-ordinates, its velocity and its
flight path.

Initial values of % and Z can then be determined from the equations 3.5 and 3.6. These relationships are first-order
differential equations in x and 2. Over shor, finite time increments, At their solutions for X and Z can be used to
update s and 2. To achieve this end, a namber of appropriate numerical integration schemes exist, of which the
following is illustrative:

() = (x) + (&x),At 3.7
and () = @)+ @At . (3.9
3.3 THREE-DEGREE OF FREEDOM MODEL
When angular as well as linear motion in the Oxz plane is required for the parachute and its payload, then a three-

degree of freedom model is adopied. Purvis notes that at this stage the method adopted to represent the parachute and
the payioad must be considered carefully and lists four differcnt approaches:
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().  amassless parachute is joined by a massless rigid link to its payload, the link being pin-joined at its
attachment points;
(ii). the parachute and its payload constitute a single rigid body;
(iif). the parachute and its payload each possess mass and each constitute a single rigid system, the systems
being joined by a massless rigid link, and
(iv). the parachute is represented as an elastic system, the payload as a single rigid body.
3.3.1 The Massless Parachute Joined to the Payload
For the point mass system described in Section 3.2 the resultant acrodynamic force must, on symmetry grounds,
act along the flight path. But if the parachute is now represented as a solid body, it need not possess axisl symmetry
and then, in general, aerodynamic force components along and at right angles to the flight path will act on it.
However, if m is made equal to zero, Fig 3.2 shows that the parachute is medeiled as possessing no mass, then the
resultant force T, which it develops on the payload, must be equal and opposite to the parachute drag D,, acting along
the flight path,

( > -
mz
T
mg mk = (T- D,)Jcos v, + L, sin y,
' mz = mg - (T- D,)sin v, - L, cos v,
z  Fig.3.2 FORCES ACTING ON THE PARACHUTE CANOPY

J

To develop the trenslational equations of motion, carth-bound axes are used as in Section 3.2, but for the
rotation.«' equation, body axes will be adopted.

f

c earth-jixed axes N

\L

\Fig.S.S ROTATIONAL MOTION, USING BODY AXES

PRSI RENVIT S, (opreae s PR

In Fig.3.3 u body rotates with angular velocity q about an origin O'. Relative to the earth-fixed axes Ox and Oz,
the velocity components at the origin of the body are u and w respectively. Then, relative to those axes, the velocity
components at a gencral point P within the body ace:
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3 = Weq%X. (3.10)

Relative to these carth-fixed axes, the component rates of change of lincar momentum for the body are therefore:

Tm,x, = Imu+qEm,z, = Imuu (3.1
and Img, = Zmyw-qZmpx,=Imw, 6.12)
Whereas, relative to the body axes origin O', the rate of change of angular momentum in two dimensions can be
shown (e.g. Duncan®3) 1o equal I,,q, where 1, is tie system moment of inertia about the body axis O'y".
0 >
X
L //'—&
o
T-DP
z
PAYLOAD AERODYNAMIC FORCES
Normalcomponent Fy =  YpVi5,Cy
=0+y d Axialcomponent F, =  YpVS5,C,
'z Acrodynamic moment about payload centroid G
i = M
§ Fig.3.4 EQUATIONS OF MOTION FOR A PAYLOAD JOINED
{ \_ TO A MASSLESS CANOPY y,
}
1
f From Fig.3.4, the equations of motiun for the payload in three degrees of freedom are therefore:
‘ mx = Fysin 0 - F,cos 0 - Y,pVxC,S, (3.13)
b mz =-.Fycos 0 - F,sin 9 - Y/,pVzC,S, + mg 3.19)
and I = Mg-YpVC,Sp(L-Lg)sina . (3.15)
In these equations the drag of the parachute D, has becn expressed as 1/,pV*CyS,, while m and I, respectively
'1 denote the total mass, inclusive of the added mass and the total moment of inentis, inclusive of the added moment of
inertia, for the system under acceleratior.. Added masses and moments of inestia are explained later, in Chapter 4,

3.3.2 The Parachute and its Payload Modelled as a Single Rigid Body

The classical approach to the desivation of the 2quations of motion for the trajectory of a rigid body is to use body
axes for all the required equations. It is clearly desirable to use body axes for the rotational equations of niotion: if
they are also used for translational motion the resulting equations can readily be linearised to determine the system
response to sma!! disturbances Thus Duncan®2 and Etkin®® both use body axes in order to develop the equations
of motion for a rigid body such as an aircraft, moving through space.

In developing the dynamical equations of motion for descending paraciutes, there are two problems which do not
occur il uircraft. The first is the large angics though which parachutes can oscillate during their descent. ‘These
might well limit the usefulness of any linearisation techniques which are developed as a part of the solution procedure.
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The second problem is the necessity for the introduction of added mass terms in the parachute's equations of
motion. The fluid through which the parachute and store descend is real rather than ideal and it will be shown in
Section 4 that it is necessary to add experimentally-obtained values of certain added mass components into the
equations of motion. These will add to their complexity.

When adopting the more classical approach of using body axes for both the translational and rotational equations
of motion the fundamentai problem is that, relative to fixed earth-bound axes, the body axes rotate. However, in both
establishing the equations of motion and in the presenta’ion of their soluticn, the motion of the system must be
referred 1o an earth-fixed axcs system.

For parachute trajectory analysis Purvis' has recommenced she use of body axes for the associated rotational
equations but earth-fixed axes for the translational equations, together with the necessary axis conversion matrix set.
The transiationsl motion equations expressed relative to carth-fixed axes, as in equations 3.13 and 3.14, do not include
terms which include the product of lincar and angular velocities. Equation 3.16 which follows, expresses the
parachute’s equation of motion relative to the body axis Ox and in 30 doing it includes the terms (m+0,Xrv-qw). The
presence of terms of this form adds to the equation's complexity and alsc. when the perachute’s angular velocity
components p, q and r are large, to the length of the process for numerical solution of the equation. Using earth-fixed
axes rather than body axes for the system's transiational motion can therefore simplify both the prescatation and
solution of these equations, though it will complicate the task of expressing the relationships for the system's attitude
angles.

In the presentation of the equations of motion inclusive of added mass terms, in accordance with Section 4.3.2,
only the two added mass coefficieats k,, and ky, have been retained and these have been assumed to be known
constants, determined experimentally for the parachute system under consideration.

( Oxyz  Axis system 1)
X,Y,Z External force
components
LMN External moment
components
u, v, w Component
linear velocities
P @ r Component
angular velocities
L, k3 Moments of

inertia about
0x,0y and Oz
0;;  Added mass
o components
33 along Ox, Oy
positive and Oz
- Fig.3.5 EQUATIONS OF MOTION FOR A
x PARACHUTE-PAYLOAD MODELLED AS
L A SINGLE BODY y

For a conventional parachute subjected to external aerodynamic and gravitational force components X,Y aiid Z and
external acrodynamic and gravitational moment components L, M and N, as shown in Fig.3.5, relative tn the body
axes Ox, Oy and Oz the appropriate equstions of motion have been shown by Cockrell and Doherr™ to be:
= (W +0)0 (1 + Cy)rv - qw)emx(q? + 1) (3.16
= (R4 Qy)(V - pW) + (m + a,)ru + mx(F + pg) (31T
2 (4 A} (W + PY) - (m + a,,)qu - mx,(q - pr) (3.18)

= lul" 3.19

T N e M

= ad - MX(W - qu+ pv) ¢ (I - Ipp)or (3.20)

.

1
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N = l,," + mx.(& + - pw) - a" bd I”)pq . (3.21)

In this family of equations the origin O has been located at the canopy centroid and the store, at a distance x, from
O, has been assumed to be rigidly connected 10 the canopy. The symbols I,, and I,, have been used to denote
moments of inertia of the entire system about the axes Ox and Oy (or Oz) respectively and o, and o, to denote the
added mass components of the canopy in the directions of the axes Ox and Oy (or Oz) respectively.

In accordance with equation 4.3, the added mass components a;, and o, are given by:

& = Py (3.22)
and Oy = p,Vk”. (3.23) ) '

The symbols p.and V respectively denote the density of the fluid in which the parachute is immersed and the
representative displaced volume of the parachute canopy. In comparison with other terms, the added masses and
added moments of inertia of the store have been neglected. The symbols u,v and w, also the symbols p,q and r refer to
linear and angular velocity components respectively, along and about the axes 0x, Oy and 0z, as shown in Fig.3.5.

In this presentation, the reasoning of Sedov®* and others has been followed and the steady translational inertinl
moments, such as (¢, - &y )uw, have been neglected.

f

O Origin of co-ordinate
system

G Parachute system centroid

cp System centre of pressure

VR Resultant velocity at
origin

Angle of attack

Inclination angle of
parachute system

Resultant aerodynamic
force

Normal aerodynamic
force component

Tangential aerodynamic
force component

Aerodynamic forces
developed on the
have

been neglected

- Z ® o

Fig.3.6 AERODYNAMIC AND GRAVITATIONAL
FORCES AND MOMENTS

Negiecting any acrodynamic forces developed on the payload, for a parachute which is oscillating in the Oxz plane,
Fig.3.6 gives for the external forces and moment about O acting on it:

X = mgcos®-.T (3.24)
Z = mgsin®.-N (3.25)
M = N x, + (mg sin 6) x, (3.29)

and expressions like these, or the corresponding ones in three dimensions which are given by both Duncan®2 and
Etkin?, should be inserted into equations 3.16 to 3.21, the equations of motion.

‘When solutions are requircd in all three planes, Euler angle transformations appropriate both to the gravitational
forces and moments acting on the system and also to the trajectory solution which is being sought, are used to relate
the body uxes to the carth-fixed set of axis.

The equations of motion given in equations 3.16 (o 3.21 were developed from a model, originally published by
Tory and Ayres®, of a parachute which was rigidly-connected to its payload. A somewhat similar five-degree of

!
3
i
|
¥




e

4

P

e | TV

o i

i erA A RO R

33

frecdom model for this system, but with rather different assumptions about the magnitudes of the unstcady
acrodynamic forces and moments, has boen devcloped and published by White and Wolf*”,
3.3.3 The Parachute and its Payload Modelled as Two Rigid and Linked Systems

If the mass of the parachute canopy cannot be considered to be negligible, so that the parachute and its payload
comprise two separate but linked rigid systems, then appropriate modifications to equations 3.13 to 3.15 for the
payload can be written and solved in conjunction with the equations given in Fig.3.2 for the parachute.

For a six-degree of frecdom coupled paylead and pas ‘chute model, Cutchins, Purvis and Bunton*® have
developed the concept discussed in Section 3.3.1 of using eartu-fixed axes for the translational equations of motion and
body axes for the rotational equations of motion.

Traditionally however, this problem has been tackled by the method developed in Section 3.3.2, using body axes
for both the rotational and translational motions. For example, using two different sets of body axes, Schatzle and
Curry®® have developed a nine-degree of freedom model consisting of a system of equations for a forebody (or
payload) coupled 1o a parachute. They considered the acrodynamic forces and moments developed on each body,
together with the weight of the forebody. Similarly, allowing for the weight of the parachute as well as that of the
forebody, Dohemr™® developed a body axis model and among others, Wolf** has published a model for a coupled
payload and parachute, All these models start from the same premises but differ slightly in the way that they treat the
unsteady aerodynamic forces, in the presentation of their equations of motion and in the subsequent linearisation

techniques which they propose.

.

3.34 The Parachute as an Elastic System, Linked to a Rigid Body Payload

Sundberg®*! has explained the application to trajectory dynamics of finite-clement methods, which enable both
the canopy and its suspension lines (o be modelled as flexible, distributed mass structures, coupled to a rigid payload.

This is a particularly appropriate model for the deployment and inflation phases of the parachute. An extension of
this earlier work has been made by Purvis*'2,
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4. UNSTEADY AERODYNAMICS

During the deployment and inflation stages and even during descent, much of a parachute’s motion is unsteady.
Whether the axis system which is adogted is carth-bound or is fixed within the canopy-store system, linear sn angular
components of acceleration, along and about these axes, will occur, In this chapter the acrodynamic consequences of
this unsteady motion are discussed.

4.1 INYRODUCTION TO THE UNSTEADY FLOW PROBLEM

In describing the unsteady motion of a body immersed in a fluid care must be tzken in defining the constituent
parts of the systecm under consideration.

Fi:st.cmsxduutocoasmofasphueofmassmnnmetsedmaﬂmd. Suppose this sphere to be driven through
the fluid by a thrust T so that at time t the sphere is moving with an instantaneous linear velocity V(t) and an
instantaneous linear acceleration V(t) On the sphere an acrodynamic force D'(t) is developed. This force is larger than
the drag force D, which would be developed if it were to move steadily through the fluid at velocity V. The difference,

D'-D, certainly depends the instantancous acceleration, V(t). As is discussed in Section 4.2.2, it may also depend on
the nature of the accelerated motion, though this may not be an important dependency.

The reason for this increased drag is that the fluid which surrounds the moving sphere will also acquire .
momentum. Thus, as the sphere accelerates, not only is there a rate of change in the momentum of the sphere, mV, \
but in that of the surrounding fluid. If this fluid were ideud, that is if it were incompressible and inotatior.l, then the
rate of change of fluid momentum, M,, is determinable by methods to be explained in Section 7. It caa be expressed
by:

M, = DD = aV @.1)

where a is described as an added mass component for the system. For a sphere whose volume is denoted by V,
linearly accelerating through an idea! fluid of density p,, the added mass component a, can be shown to be equal to
0.5p,v.

If the sphere were to accelerate through a real fluid as distinct from one which is ideal, a similar added mass
component, a,, but of a different numerical valuc from o, would be develcped. A real fluid is one whose viscosity is
the cause for 1t to possess vorticity, hence to be rotational. Writing the rate of change of momentum for the body
immersed in the real fluid as M, und assuming @, to be independent of time gives:

Ni. = T-D*
where from aquation 4.1, since DD = aV;

then M, T-D-aV

[}

and thus @ +a)V T-D. [7%))

where D is the drag force which the sphere develops in steady motion. Uniike equation 4.1, equation 4.2 treats the
immersed body of mass m together with the fluid in which it is immersed as two constituent paxts of a single
dynamical system. The approach has a 120-year long history, extending from both Themson and Tait™* and
Kirchhoff*®. Lamb*® remarked that, “it avoids the troublesoee calculation of the effect of fluid pressures on the
suriaces of solids”, which would be a neressary procedure if the aercdynamic force D' were 10 be determined directly for
the unsteady motion of a spherc through an ideat fluid. Both the importance and the method of desermining added
mass compcnents relevant to the motion of a parachute canopy through ideal fluids remains to be discussed in Section
7.1. No analytical methods exizt by which acrodynamic forces cap be determisied foc unsteadily-moving bodies
immersed in real fluids: the ideal fluid concept gives an approximate model which, for a bluff body like a conventional
parachute, is of yncertain value.

In exactly the same way as that outlined in equation 4.1, when any ix.mersed body moves unsiesaily in any
direction through a fluid the aerodynamic forces and moments are developed on it aiffer in magnitude froa their steady
state values. In a given problem, whether oc not this diffesence is of any enginesring significance devends on the
relative magpitudes of the rate of change of momentum for the immersed body, M, 10 wat of the fluid in which it is
immersed, M, This ratio is a function of:

(). the immersed body density compared with that of the fluid which it displaces;

(i). the immersed body shape inclusiw of its porosity, if any; and

(iii). the direction in which these raies of change of moments occur.
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For parachutes, the ratio is certainly of engineering significance when considering parachute inflation and also
when modelling the oscillatory motion of parachute canopies in their descent through the air.

4.2 THE ADDED MASS CONCEPT IN PARACHUTE UNSTEADY MOTION
4.2.1 General Considerations

There are two important applications of the added mass concept to unsteady parachute motion. The first is to
canopy inflation, Knacke'? states that Scheubs*4 reporied in 1946, was the firsy 10 investigate added mass effects on
parachute opening processes and these will be discussed here in Sections 4.3.2 and 5.3. The second application is to
the parachute’s dynamic stability characteristics in pitch during its fully-inflated descent motion. Whereas static
stability has been shown in Section 2.3.2 to be concerned with the direction of the moments developed on a parachute
system after it has been disturbed from the equilibrium state, dynamic stabélity characteristics are related to the
frequency and to the damping of the oscillatory unsteady motions which then ensue. To analyse these motions
satisfactorily it is necessary to write and to solve systems of equations similar in form to those expressed in Section
3.3. For the adequate analysis of both t%z canopy inflation phase and the oscilfatory motion of the parachute system
when the canopy is fully inflated, it is first necessary to determine the added mass components appropriate io a given
<anopy shape. If analytical methods are to be adopted, it is necessary to assume that the {luid field in which the
parachute canopy is immersed is ideal.

With the application to parachuie canopies in mind and following Lamb and Milne-Thomson** among other
authors, Tbrahim*# in 1965 evaluated some of the added mass compounents for cup-shaped parachute canopies in idcal
fluid flow. Later, Klimas*? demonstrated shat these analytical values are strongly dependent on the porosity of the
canopy. By methods such as they adopted it can be shown that the canopy added mass component a is a function of
its shape and attitude. It is also proportioral to the body size and the fluid density, p, thus:

a = koY, “3)

where, in ideal fluid flow, the added mass coefficient k, is a constant for a given immersed body shape and
attitude. The symbol V is used fcr the representative disp’aced volume. Where « straightforward definition is
possible, e.g. for an immersed sphere, the representative displaced volume is the actual displaced volume. Fora
parachute canopy it is convestionaily considered to be that of a hemispkere (though some authorities define the added

mass coefficients for a canopy in terms of 2 sphere rather than a hemisphere) having a diameter D, equal to the
nominal diameter of the canopy, i.c

) v = xbY12 . 4.4)
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Table 4.1 ADDED MASS COEFFICIENTS DETERMINED ANALYTICALLY
FOR BLUFF BODIES IMMERSED IN IDEAL FLUIDS
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Some appropriste analytical values of added mass coefficients are given in Table 4.1. In this Tsble the added
mmmtol‘mmcoefﬂcwmk,,.mmedabananwanghta.glestotheplawwminmgk,.mdk,,.udeﬁned
in terms of the added moment of inertia component oy, 23

ky = agl, 4.5
where I, is the moment of inertis of the fluid in the representative volume. For g parachute canopy:
L = (Dv)ie , .6

the density of the fluid in which the canopy is immersed being denoted by p,

A number of experimesits have been performed to determine the added mass components for bluff bedies moving
unsteadily through fiuids since at icact as long ago as 1826, when Bessel*” tested the periodic motion of a spherical
pendulum, both in air and under water, As shown in Table 4.2, many of these results have proved to be inconclusive.
Often the added mass components which kave been evaluated differed only marginally from those obtained analytically
for unsteady motion through an ideal fluid. Howener, other tests have shown some mecked differences.

SHAPE | INVESTIGATOR ks [REYNOLUS | NATURE GF EAPERIMENT '
(Axial} |NUMBER

Sphere | Bessel-~ 1826} Air 09| - Oscillating Spherical Pendulum
Yater 0.6 -
Lunnon - 1928 | Air & Q.S 10*t0 10 | Unicirectional
Vater 2?0
McEwan-1911] Water 0.5 - Oscillzting Torsional Pendulum
f ter 0.8 - 0 t i P
tfﬂm Ss; 1918 Vater seillating Torsional Pendulem
Cock- 1920 Water 05| 107 | Freefan
Frazer &i9¢9| Walter 10| 10 Unidirectional
Simmons= 026
Flat Grac 1947 ] Air-0.94 Qscillating Pendulum
Plate i & 0.96 ting
Disc Vee-Tak Yu | Varwus Oscillating Torsiona: Pendulum

- 1942 -0.81 3
brahim-1965 | Water 6.8 10 Oscillating Torsional Pendulum

References
Bessel 4.9; Lunnon 4.10 ; McEwan 4.11 ; Relf & Jones 4.12; Cook 4.13 ; Frazer & Simmens 4.14 ;
Gracey 4.15; Yee~Tak Yu4 .16 ; Drahim 4.17

Table 4.2 ADDED MASS COEFFICIENTS DETERMINED EXPERIMENTALLY
FOR BLUFF BODIES IN REAL FLUIDS

4.2.2 Determining the Added Mass Componenis
In their desermination of the added mass components from suitably-designed expeziments most workers adopted
methods similsr to those which Iversen and Balent™'* described in 1951. From equation 4.2;

(n#a,)\; = T-D

and writing the steady-state drag D as equai 1o '/,pV3S.Co, they considered the appropeiate component of
acrodynamic force, F(t) to consist of two parts: one which could be expressed in terms of the instantaneous velocity,
V(1) and the other which could be expressed in serms of the instantoneous acceleration, V(t). Thus in unsteady flow
the toeal acrodynamic force F(() at time t was written in terms of coefficients a and b as:

F(t) = avi{t) + bV(Y) . 4.7
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It remains to devise an experimental programme from which 10 detesminc 2 and b.

One way of doing this is would be to measure the aerodynamic focce, F, at a steady velocity V first, so obtaining
the ccmponent a. ‘The component b would then be given from the difference in magnitude between the acrodynamic
forces developed on the immersed body in comesponding uasteady and steady motion, F(1)-F,. Using equation 4.3, the
approprisic added mass coefficient could then be calculated from the component b. This mcthod assumes that the
velocity-dependent component of acrodynamic force in unsteady motiou is unchanged from its comesponding value in
steady motion, an assumption which is difficult 10 jusiify on physical grounds.

In a method applicable to pesiodic motion, which owes much 10 both Sarpkaya & Isaacson**® and also to Bearman
et al*™, average values of the components a and b are calculated by first multiplying equation 4.7 either by V(t) or by
V(t).mmgwmdmcmmrdemaputh %0 that

ke

IR

g - ATROVE) 8t = ylT AV dt + T BVOV(D) dt “.8)
b and Y TRV dt = YefT aVAOV(D) dt + Y fT bVYE) dt . @.9
§ Average valucs of 2 and b can then be determined, since
% 1T Vv at = [TVinv@ma = 0. @4.10)
’? A simpler procedure would be 0 apply the method described in Section 2.4 by first writing equation 4.7 in the
i form:
FOIV()} = a o+ BVG/IV@). @1y
1‘ This is » linear relationship between the two variables (F(VV¥(1)} and {V(1)/V2()). Having plotted experimental
: data in this form, regression analysis can be used to yield values for the two components 2 and b.
Fs An advantange of this Isties technique over the onc desctibed peeviously is that it is immediately possible to see
i from the graph of equation 4.11 if the (wo components & and b are sensibly constant over an entire period, oc if they
%‘; vary. For exanple, they could possess diffarent values when the acceleration of the system is positive from those
%;: when it is negative. An illustrasios by Harwood*®, in the course of his determination of Table 4.3, is shown in Fig.
5 (Fig. 4.1 DETERMINATICN OF )
£ THE COEFFICIENTS a AND b 80.0 7
g BY THE METHOD OF t
3 EQUATION 4.11 7001
; 4 ®
60.0 52 . by
: 4:1 Arm: Ratio Imporous Cross Canopy, 5004 _ee ¢
as Table 4.3 o s
: . .03 e
3 L4 e 300%
* ¢ ¢ 20.0 + (
10.0 $ %, — !
' ! ' +—0.0 + et ' i
k -0.80 -0.60 -040 -0.20 0.00 020 040 060 0.80 ) ;

4.1 mmmudmwghmmﬂummximmitmmumxupubkmpmg
relationship for the unsscady acrodynamic force F(t) developed on parachute canopies.

Expummcouimmwmmevmmmwdmhbb42mmvm“w In
some, the unsicady motion was unidirectional. In others it was either wholly oscillatory or & combination of these
two modes. Methods of determination of the added mass coefficient varied t00; in some experiments average values of
acrodynamic force were determined, in others instantancous values were obtained. In most of these tests, the
experimental uncertainty with which the added mass coeflicients were obtained was high.

Among others, Hamikon and Lindell*® have suggested that the manner in which unsteady motion is impanted to
an immersed body is significant and there is a significant weight of experimental evidence 10 support their view,
They suggesied that only if there are long periods of constant velocity or constant acceleration can the instantancous
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serodynamic force Ti(t) be weil expressed solely in terms of the instantcneous velocity, V(t) and th) inctantancous
acceleration, V(t), in the manner proposed in equation 4.7, Hamilton 2nd Liadell stated thit ‘the practice of expaescing
flcid force as a function of the instantaneous velocity sud the acceleration of the body (or the fluic) hae carricd ovesto
eagincering problems in which conveciive scoeicrations, fiow separation and wrkes are important (nonlinesar) cases.
‘The force is detern.ined experimentally and its reiationship to velocity, acceleration snd other parameters is expressed
in a variety of ways. The equations may, or may nok, include an added mass teem and, if they do, it may be a constant
or a function of various pcrameters. The choice depends on the kind of movion and, 10 some exeent, on ihe view uf
the suthor’. Instead they proposed that & more general form of eiation 4.7 should be written:

F(t) = aV%B + bV(t) + flow Nistory term “.119)

the form of the latter term depeading on the ryaner in which the nastady motion is imparted o the immessed
body.

4.3 SIGNIFICANCE OF ADDED MASS COEFFICIENTS TO PARACHUTE UNSTEADY
MOTION PREDICTION
4.3.1 Their Historical Importance

For fluid dynamical problems concerning parachute canopies, whose drag-producing capabilities are among their
most significant acrodynamic characteristics, to basc analysis on the assumiption that the fluid through which the
canopy descends is ideal would appear to be unrealistic, for in such a fluid no separated wake could be develuned and
steady motion descent would necessarily be drag free. 1t is thus ciear that results obtained from such 2 mathematical
model must be validated through appeal to sppropriste experimental programmes.

Considering the canopy deployment and inflation application and based on flow visualization studies for inflating
parachute canopics, Lingard*® and others have suggesied that since cancpy deployment is 2 very rapid process it
may well be realistic 10 consider the surrounding flow field as though it were immotational and thus, if i weze also
efiectively incompressibie, as ideal. O'Hara*™, for example, aisumed that the added mass coefficient for an inflating
parachute canopy was equal to that for a flat disc immersed in an ideal fluid, with a diameter equal 1o that of the
canopy and thus during inflation its added mass would increase as the cube of its diameter.

In his 1944 paper on parachute descent behaviour, Hena*® discussed the significance of added mass components on
parachute dynamic stability. He called these components ‘co-accelerated air masses’ and stased that they were of the
order of size of the combined mass of the canopy and its load. For their determination in two degrees of freedom he
introduced an ellipsoid having the same major dimaeter, volume and location a3 the parachute canopy, using the
analytical values foe this ellipsoid of the axial, transverse and rotational added mass coefficients which Lamb*® had
previously determined and which have been given in Table 4.1. He concluded that added masses have a significant
effect on the determination of parachute dynamic stability. Later, Lester** reformulated Henn's equations. Both Henn
and he had shown that added mass coefficients were of importance in determining parachute dynamic stability
characteristics. Lester commented on the unsatisfactory procedure of using analytical values, derived from the
behaviour of ideal fluids around bluff parschute canopies, for these coefficients.

White and Wolf's*” 1968 paper on parachute dynamic stability and Wolf's*? later 1971 contribution, while
recognising that the added mass coefficients wers tensors, nevertheless over-simplified the problem of representing
parachute unsteady motion. More recently Eaton*® has reformulated the analytical problem, discussing the relative
significance of the analytical values for the added mass coefficients which various authors have obtained. However, he
presemed its solution without recourse to experimentally-desermined added mass coefficients.

In 1965 Ibrahim*"” published a paper desc:ibing an experimental method of determining added moments of inertia
for parachute canopies. Apart from this earlier work, sysiematic experiments to determine added mass coefficients for
parschute canopies were not reported until Yavuz*® first published his work in 1982
4.3.2 Their Contemporary Importance

During canopy inflation there is no doabt that the effects of added mass are of significance. If they were negiected
and inssead a series of sieady flow solutions were obtained for canopics with increasing degrees of inflation in
potential flow, it is highly unlikely that good approximations would be obtained for pressure distributions within the
inflating canopies. In the continuity relationship given as equation 5.10 in Section $.3.2 Heinrich introduced the
added mass of the inflating canopy. However, as the atrodynamics of canopy inflation is still very much in its
infancy, even very opproximate estimates for the pressure distribution round the inflating canopy would be of real
value. Insufficient material has been published 10 warrant sny further discussion here of canopy added masses during
the inflation process, in consequence only the dynamic stability pitching characteristics of fully-inflated canopics will
be considered.

For a body which moves unsteadily through a fluid the added mass coefficients form a second-order tensor with
twenty-one independent components, comprising six in which both the force and the sccelerition components are
translMory, six in which both moments and angular acceleration components are rotary and nine which describe mixed
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translatory and rotacy behaviour, Following the form of the equations derived in Scctior: 3.4 for a parachute system
wuhmdegreeaofﬁmlomanda&amhngamberdmphfymgmmpwm.cmnmDoheu"‘arguedtha.
for a conve=tional parachute canopy cemsidered 1o be rigidly conr.acted to its payload and for which, as shown in
Fig.2.1, Ox is the axis of symmetry with planes of symmetry Oxy and Oxz, only four indey. .ndent ard significant
added mass coefficieits need be considered. In the tersor nomenclature which they adoped the first subs.ript denoted
the direction in which the unsteady force was measured and the secord that of the scceleration cavsing the added mass
componeat under consideration. The numbers 1,2 and 3 implied linear motion in the directions of the axes Ox, Oy
and Oz respectively whilc 4,5 and 6 described angular moiion respectively about the axes Ox, Oy and Oz. Tausk,, is
the, added mass coefTicient (referred 10 a8 the axial added mass coefficient) which is determined when an x-directed force
is measured on a canopy undergoing an x-directed linear acceleration, i.e atong the axis of symmetry.
‘These four significant added mass coefficients are:

. Ky = aloV; “.12)
(i5). | % = ky i, @4.13)

These latter are, respectively, the sdded mass coefficients determined when a y-directed force is measured on a
canopy undergoing a y-direcied linear acceleration and when a z-directed force is measured on a canopy undergoing a z-
directed Inear acceleration. They are non-dimeasionalised from their appropriate added mass componeats o, and @y,
in exacly the same way a8 was k;, in equation 4.3;

These are the added moraent of inertia coefficients dete:mined when a moment about the y-axis is measured on 2
cancpy undergoing an angular acceleration about the y-axis and when 3 moment about the z-axis is measured on a
canony undergoing an angular acceleraticns about the z-axis, respectively. As has been shown in equations 4.4, 4.5
and 4.6, they are non-dimensionalised from their respective added moment of inertia components, 0w, and o thus:

kys = ayl(npD}/192) 4.15)
and | 9 = O4/(xpD3/192) . (4.16)
(iv). ‘The remaining significant added mass coefficient is:

| = ky, 4.17)

non-dimensionalised from Oug= @y, This is the added mass cocfficient which is determined when a y-
directed force is measured on a canopy undergoing an angular acceleration about the O-z axis, or when a z-directed force
is measured on a canopy undergoing sa angular scceleration about the -y axis. Yavuz*® has shown that if the
origin of the co-ordinate system is located close to the canopy centre of pressure then this latter coeificient is of
negligible magnitude.

Hence the problem of determining added mass cocfficients has become one of determining experimentally only
three added mass coefficients, k,, , k= kyyand ke = k. These three can be further reduced to two coefficients. If the
origin of the co-ordinate sysiem is locatea close to the canopy centre of pressure then the apparent moment of inertias
of the canopy, Oigs ubout the axis O-y and o about the axis O-z will be totally dominated by the moments of inertia
of the payload and heace they can be neglected.

The two remaining added mass coefficicnts are k,, and k, = ky,. In the determination of parachute dynamic
stability characteristics thesc can be shown 10 be significant.

In tes's performed on parachule canopics which moved steadily under water while they were forced to oscillate in
cither their axial or trarsverse direction, Cockrell, Shen, Harwood and Baxter*” obtained the average values for the
sdded mass coeficients k;, and ky, which are given in columas 5 and 6 of Table 4.3. From these experiments it is
evident that the real fluid flow values obtained for these added mass coefficients substantially exceed the potential flow
evaluations which Lamb, Ibrahim and others eaclier determined.

Using Table 4.1 and ideslising a parachute canopy into an ellipsoid having a length/diameter ratio of 0.5,
analytical values for the added mass cocfficients k;, = 0.70 and ky, = 0.21 can be obtained. These are based o the
ellipsoid's displaced volume, which is equal in magnitude to that of & hemisphere whose diameter is equal to length of
the ellipsoid’s major axis. Hence, for this model for the parachute canopy, analytical values based on the canopy
projected diameter are also 0.70 and 0.21 respectively. Assuming the projected diameter to equal 0.7 of the nominal
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projected diameter are also 0.70 and 0.21 respectively. Assuming the projocted diameier to equal 0.7 of the nominal
diameter the analytical values, in terms of the representative displaced volume based on nominal canopy diameter D,
would equal:

ki (analytical) = 0.24; k,,(analytical) = 0.07. 4.18)

Corresponding values which Dohesr and Saliaris*™ nsed, written in terms of the nominal canopy diameter D, and
the present axis convention were:

ky (analytical) = 0.34; kyy(analytical) = 0.17, (4.19)
Cr
CANOPY sirﬁy Nl e
TYPE State |-steady Swﬂdv ‘i‘wfﬁf'jﬂvm kn k33
Mouom / /radi Axial Transverse
Round Canopies:
Without Drive Slots | 063 { 0.6 | -040 - 1.1 02
With Drive Slots 061 {057 | -026 - 1.0 .
Cross Canoples
3:1 Arm Ratio
porous 064 068 | -019 | -013 24 03
V«z lia:uskﬁ:i 066 1067 | +046 | +042 0.8 0.1
| impoious 2 0} 077 1076 ] +0.52 | 4043 | 1.6 0.1

cubic ft./sq.ft./sec. measured at 1G inches of water pressure
Table 43 EXPERIMENTAL CHARACTERISTICS FOR PARACHUTE
CANOPIES IN STEADY AND IN UNSTEADY MOTION
(after Cockrell, Shen, Harwood and Baxter*® and later revised by Harwood*®)

Tbrahim*#, modelling the canopy as if it were a spherical cup, obtained a value of k,, (based on projected diameter)
of about 2.6. In terms of nominal diameter D, this becomes a value of about three times that in equation 4.19; of the
order of the experimental values shown in Table 4.3. They vary with the volume of air enciosed by th2 canopies and
they decrease appropriately with increasing canopy porosity. The uncertainties in the measurements of the transverse
added mass coefficients ky, are high but they are seen to be of the ocder of one fifth 10 one tenth the comrésponding
values of ky,.

r

T 4.2 EFFECT OF ADDED MASS
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The velocity-dependent tangential force coefficients measured in these tests and presented in column 2 of Table 4.3
ar= gpproximately equal the cocresponding tangentisl force coefficients in steady motion given i column 1. Values of
[dCx /A0 ) e determined in unsieady moii -, and presented in column 4 of the table do nox differ appreciably from
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charac:cﬁﬂicmueisagrmerﬁeqw:cyofosciuaﬁonforagivenvalueofac,,/aa than is shown in curve a. The
curvuwgm:emsmemm;ionthatk,,=2xk,,.Hmtbeﬁeqm*yofpitchingoscmaﬁmsrmcomiduablyincmsed
and thege is also 2 mild';y destabilising tendency,

Ly surimary, casteady serodynamic effects on dynamic stabilityinpitchmonly of real consequencs if
[dCy /da) .2 is small, Bmifthisis:hemse,inuns(eadyﬂowd\eaxialaddedmsscoeﬂ"xdmtk,,hasadesxabilising
tendency. Smxwdedmmsmvdmdepmdemwmwodymkfmmmmmm&mbﬂising
m:.dawywﬂ!humasmcsiuofummnmmnopyﬁms.
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S5PARACHUTE DEPLOYMENT AND INFLATION

Since parachutes must be designed to be sufficiently strong to withstand the opening loads which occur as part of
the inflation presess, when considering parachute acrodynamics ari appreciation of the parameters which influence these
Joads aud the manner in which they relate to these independent parameters is of fundamental concern. Because inflation
is an unsteady serodynamic phenomenon in which there are nccessary changes in the canopy shape during the process,
it is no simplc matter (o develop an ad~quate inflation model. Aerodynamic models which are available range from
readily-usable empirical methods to models which by comparison are so complex as to be almost useless to the

parachute designer.
5.1 INTERACTION FORCE BETWEEN CANOPY AND PAYLOAD
During the canopy deployment phase, the time-varying interactive force developed between the canopy and its
payload significantly exceeds its steady-state value and it is therefore of importance. This interactive force can be
measured and interpreted either when the parachute-payload system is in free flight or when it is in a wind tunnel,
However, it is very difficult to establish a mathematical model which contains all the relationships necessary for it to
be adequate for design purposes. From such a model the maximum loading during deployment and inflation is
certainly required. Some information is desirable so that the trajectory of the parachute snd payload during the inflation
process can also be predicted. From more sophisticated models it might be possible to predict with confidence the
stress distribution over the canopy. It cestainly would be desirable if, during the inflation process, the model were
capable of predicting the canopy shape and size.
Methods of analysis have been developed in three different directions:
(i). the determination of physically-based relationship.. the closure of which depends on the development of
appropriate empirical expressions;
(ii). the reproduction of dynamic similitude in either full-icale or model test situations through the establishment
of appropriate functional relationships for the r-quired unknown parameters; and
(iii). the construction of complex mathematical mode's which depend on knowledge of the pressure distribution
around the inflating canopy in ordci w establish the force required to drive the inflation process.
S.1.1 Expression for the Interactive Forees, F,
In order 10 develop expressions for the time-varying force which is developed between the canopy and its payload,
consider in the direction of the flight path the separate equations of motion for the parachute canopy and the payload, as

l" = Interactive Force between Parachute
& Payload

Equation of Motioa for Parachute
F-D,=m¥ + 2y

Equation of Motioa for Paylosd

“K-Dy+mg siny, = ny

Fig.5.1 EQUATIONS FOR THE INTERACTIVE FORCE, ¥

are shown in Fig 5.1,

For the parachute canopy, neglecting its component of weight down the flight path in comparison with the canopy
drag D, and the interactive foece Fy:

F, = D,emVoeny 6.0

As Lingard*® has indicated, the total interactive force F, depends on both the acrodynamic force D, and the
inertial force -(m,V + wh,V). When establishing the inertial force during the deployment and inflation phases,
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developing an expression for the canopy mass, inclusive of its addcd mass (the latter defined in Section 4.1) as a
funciion of time presents rea! difficulties, The acrodynamic force could be measurcd directly in an appropriaie wind
tunnel test, as could the inertial force, ¢.g. Lingard™, but if the canopy is rigidly mounted in the wind tunnel the
measured interactive force would not include the inertial term in equation 5.1.

In figure 5.2a conditions in such a wind tunnel test are shown. Under these circumstances, not only is the inertia
force excluded but as the canopy inflates the velocity of air relative to it does not decrease but will remain of constant
magnitude. The measurement of the interactive force is described as having been made under an infinite mass
condition, since if the canopy mass were infinite then under the action of a finite force there could be no deceleration of

h—
%
g '
g :
)
ﬁ ! (a). Interactive Forces
B ' measured in & Wind Tunnel
E ' (Infinite Mass Case)
)
& i
-
je—t; —
Fe (b). Interactive Forces

measured in the free atmosphere
(Finitc Mass Case)

F

(-]

Interactive Forces !‘,

et ; —1

F, Snatch Force F, Peak Opening Force F. Steady-State Force
t; Inflation Time

Fig 5.2 Forces Developed Between the Canopy and the Payload
During Inflation
(after Knacke'?)

the relative airflow.

By contrast, in figure 5.2b canopy inflation is shown as taking place under free flight conditions. Under such
circumssances deceleration of the relative airflow occurs and there is a consequential reduction in the interactive forces.
Appropriate measurements are now described as having been made under finite mass conditions, when the peak opening
force F, occurs considerably earlier than at the instant when the canopy becomes fully infiated.

The processes of canopy deployment and inflation can be divided into a number of distinct stages. The first of
these is before deployment, when no aerodynamic force is developed on the canopy. The trajectory of the canopy and
the payload system is then solely determined by the system’s initial conditions and by the payload's aerodynamics and
weight. Next follows the initial deployment stage, which ends when th2 canopy rigging lines ars fully stretched. As
this occurs the interactive force peaks to a focal maximum, called the lines-taut snatch force. Then follows the
inflation stage: this is from the instant at which the parachute canopy begins to open until it first reaches its normal
fully-inflated projected area. At the commencement of this third stage the canopy skirt forms a mouth which begins to
open and inhale the air. Within the canopy this inhaled air forms a ball which moves down the length of the partly-
inflated canopy to the vent, with which it impacts. Once this impact has occurred the canopy begins to inflate radiaily
and during this process the interactive force achieves a peak opening load As figure 5.2 indicates, this peak opening
load is the maximum interactive force which the system experiences.

In this figure the interactive forces are shown as functions of time, the inflation time ¢; being that between the
peak of the lines-taut saatch force and the peak value of the inflation force or, mote strictly, dbetween the peak values of
their respective coefiicicnts. Though the inflation time is shorter than the Giling time 1,, defined as the time taken
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preduction of the snacch force to the instant at which the canopy first reaches its steady-state diameter and is thus

considered to be fully inflated, in an experimental situation the inflation time is more clearly defined than is the filling
time.

5.2 CRITICAL OPENING AND CLOSING SPEEDS. SQUIDDING

Consider an uninflated canopy in a wind tunnel, If the relative velocity of the airflow is increased a speed will be
reached at which the canopy will just inflate. The practical applications of parachutes ensure their uzage at much
higher retative air speeds than this minimum inflation speed so this latter is not considered t0 be one of the canopy's
critical speeds,

If in the wind tunnel the canopy were now fully inflated at a relative airflow which is above this minimum
inflation speed and if this relative velocity were now gradually increased, conditions would eventuatly occur at which
the canopy collapses to a form in which its maximum diameter was only between one-quarter and one-third of its fully-
inflated diameter. Sinee the shape of the canopy then resembles that of a sqid, this phenomenon of canopy partial
closure, occurring at a critical closing speed , is wermed squidding. The occurrence of this squid configuration is a
consequence of premature equilibrium between the radial pressure load and structural tension, thus the critical closing
speed varics from one canopy shape to another and is a function of the canopy porosity. Still further increases in the
relative air speed do not cause the squidding parachute shape to alter greatly. When the relative air speed is seduced
below this critical closing speed the crown of the squidding parachute begins to inflate ard at some considerably lower
relative air speed, called the criticai opening speed, the canopy suddenly opens fuily.

Since it is the maximum speed at which the canopy fully inflates the critical opening speed is of importance and
the velocity at which a canopy is required to deploy must be less than the critical opening speed. Once the canopy has
fully inflated, the air speed relative to it seldom increases any more and thus the critical closing speed is of much less
practical significance.

5.3 CANOPY INFLATION THEORIES

In his 1927 examination of canopy inflation physics, Miiller’2 applied the principle of conservation of mass to the
control volume defined by the physical boundary of the parachute canopy. In so doing, he stated that the rate of
increase of the canopy volume was equal to the product of the canopy mouth ares and the canopy speed, In filling time
models which developed from this work empirical expressions were established for the variation of the canopy mouth
area with time during inflation. Through his proposal that "the distance necessary for the complete inflation of a given
canopy is a constant and is proportional to the linear dimensions of the parachute”, Scheubel*# idealised the inflation
process into one in which the assumed shape of the canopy remains effectively constant as its size increases. His
filling distance inflation theory which resulted was extended by O'Hare®, who adopted a rather more sophisticated
shape for the inflating canopy than Schenbel had proposed. It was then further developed by others who established
relatively simple and effective inflation theories. Since Scheubel's hypothesis is generally valid and since the
empirical relationships upon which these inflation thearies depend must fit the circumstances for which they have been
formulated, these empirical inflation theories are reliable and have been very widely adopted. However, Roberts and
Reddy** have commented that their essential weakniess rests in their acceptance as a necessary input of the shape which
the inflating canopy adopts, rather than this time-dependent canopy shape being determined instant-by-instant as a
significant output from the inflation calculation.
§.3.1 Semi-empirical Inflation Models Based on the Filling Distance Concept

In a wind tunncl test at 2 constant relative wind speed V, i.e. under infinite mass conditions, consider the
instantancous peak opening force F, to be measured on the inflating canopy compared with the corresponding steady-

state force F,, measured on the fully-inflated canopy. The ratio of the peak to steady force is called the opening force
coefficient C,, thus

F,

1pVHC,S), 62
= FC, = HpVHCS)C, 5.3)

where (CpS), is the canopy's instantaneous drag area and (CpS), is the drag area of the fully inflated canopy.
‘Thus

C, = (CpS),/ (CyS),. 5.4
Figure 5.2 shows that during canopy inflation in free flight.i.e. under finitc mass conditions the peak opening force
is considerably reduced from its infinite mass value. The ratio of its magnitudes, under infinite mass conditions to

finite mass conditions, is called the opening force reduction factor and this is denoted by the symbol X,.
Thus in free flight the peak opening force is written as

F, = F.C,

PV (CoSUCX,  (5.9)
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where V, is the snatch velocity, ie. ihe volocity of the parachute system at the instant when the snatch force is
developed. Very approximately, this is the velocity at which the canopy deploys.

To use equation 5.5 it is first necessary to determine both C, and X;. Knacke*1%%4 argues that for a given
canopy shape the opening force reduction factor X, is a function of the canopy loading W/CpS,), where W denotes the
payload weight, Since the canopy loading has dimensions, its units must be specified.

Typical values quited by Knacke for X, are 1.0 for an aircraft decelerator parachute with 2 canopy loading of 14
kPa; 0.33 for a parachute retarder of ordnance supplies with a canopy loading of some 200 Pa and as little as 0.03 for a
personne] parachute with a canopy loading of only 25 Pa.

5.3.1.1 The Mass Ratic Method In the mass ratio method, the coefficients C, and X, are combined to form an
instartaneous shock factor, x, thus:

xx = CX = {VHCeS),l (Vi (CoS)).  (56)

The factor x, is the ratio of the peak interactive force developed during inflation to the interactive force when the
canopy is fully inflated. In Section 5.3.3 the load factor X will be further described, Unlike x;, the load factor is
defined as the instantaneous value of the ratio of the acrodynamic force developed on the inflating canopy to the force
in the steady state. The load factor is thus a function of time and at its maximum value it is equal in magnitude to the
opening foece factor x;.

Following Schilling*® the opening force factor is considered to be an empirical function of the mass ratio R,. The
mass ratio is a measure of the air mass included in the fully-inflated parachute canopy to the store mass m, where m =
Ww/g.

Hence Ra. [p(CpS)**)/m . ()]

function (R,) . (58)

3.3.12 The Canopy Loading Method In the canopy loading method, the values for X, are given as functions of
canopy loading in the manner explained in Section 5.3.1. Then, following Knacke, the opening force coefficient C,
can be considered to be a function of the canopy shape only, hence for different canopy shapes C, can be tabulated. For
example, for flat circular canopics Knacke quotes C, as equal t0 0.7,

5.3.1.3 The Pflanz Method Following Pilanz*4, in the manner outlined above the opening force coefficient C, is
considered to be a function of canopy shape. Then, once the increasing drag area of the inflating canopy has been
modelled as a function of time by one of 3 number of simple, definable relationships, for a specific canopy shape the
opening force reduction factor X, is given as an e:apirical function of a relationship whose magnitude can be
determined.

In any of these semi-empirical inflation methods, once the peak opening force has been determined the filling time
can be estimated. Using Scheubel's concept that the filling distance s, is expressed in terms of the canopy’s nominal
diameter D, by:

and C,

H

s¢e = nD, (5.9)

where the fill constant n can be determined experimentally for a given type of parachute, the filling time 1, is then
expressed in terms of the velocity at deployment V, as:

‘( = ’llvc = (npc)lv' . (s'lo)
5.3.2 More Sopbisticated Filling Time Models
By using the two equations quoted in figure S.1, a first order linear differential equation can be written for the
motion along the flight path of the parachuse and peyioad system.
Since the interaction force F, is there expressed through:
F] - D’ = -,V. + I',V
and -F-D, = mgsay,+my,

by neglecting both the payload drag compared with that of the canopy and the component along the flight path of
the store weight, then:

D, = (mam)V +mV. 6.11)
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values of drag coefficient corresponding 1o simulated canopy shapes. In this equation the mass of the canopy is
inclusive of its time-varying added mass. In order to obtain its time rate of change, some estimation must be made for
the rate of change of canopy volume during the inflation process. Heinrich®” and others have suggested that this be
done through the application of the continuily principle:

V = vsRL.v,"nD} (5.12)
where V' represents the rate of change of fluid within the canopy control volume;
vantR2 represents the inflow to the canopy, with velocity vy, through the canopy mouth, radius R.;

and v,,'/;nDj] represents the outflow from the canopy, with velocity v, through a porous hemispherical canopy
of projected diameter D,.

There remains the problem of estimating the inlet flow velocity v,. Heinrich, utilising the filling time concept,
assumed this to be an empirical function of the filling time 1, determining this function from the results of
appropriate wind tunnel tests.

Wolf** has argued that by using such a continuity expression, requiring empirical inputs, the prediction cf
canopy inflation has become unnecessarily restricted. What such filling time models have neglected is the prospect of
a dynamic relationship in which the shape of the inflating canopy would be determined instant-by-instant through
knowledge of the radial component of fluid momentum driving force, which depends on the pressure difference across

the inflating canopy., In 1951 Weinig** had introduced such ideas and these were later developed both by Toni**®
and by Roberts* ",

5.3.3 Ludtke's Parachute Opening Force Analysis

In reference 5.12, by introducing the dimensionless ballistic mass ratio M, Ludtke throws some fresh light on the
interrelationship between velocities and aerodynamic forces during the inflation process. Neglecting the mass of the
parachute compared with that of the payload, in equation 5.1:

| = D. (.13

Then, from equations 5.2 and 5.13, together with the equation of motion for the payload in Fig. 5.1, assuming that
both the payload drag and the angle of descent ¥, are negligible:

«D, = <YpV*(SCp), = mV . (5.14)

Integrating equation 5.14 with respect 1o time from t = 0, at the peak value of the lines-taut snatch force and the
velocity is the snatch velocity V,, to t = t, when the canopy is fully-inflated and its velocity is V:

f§ 5Co), dt = (2m,/p) fi -V / V) at (5.15
and since V dt = dV:
= (2m, )Y, AV /I VY. (5.16)
Dividing equation 5.16 through by (C5S), oV, . Where t is the inflation time, and by writing:
M = 2m, /p (C,S), V) (5.17)

:
where M is called the dimensionless ballistic mass ratio. Equation 5.16 can then be solved in terms of M to give:

ViVs = 1 (5.18)

{1 + (UMt} ((SCy),/(SCp)y] dt}

Dnﬁngmﬂaﬁmmeexprmk[(scg),l(scp).]dt]isah\owncommforagivmtypeofcamyso.once
a value has been ascribed to the ballistic mass ratio, the ratio V/V, can be determined. Then, having calcuiated V/V, ,
other characteristics of the inflation phase, such as the instantaneous shock factor x;, can be evaluated. Ludtke
argued that the dimensionless ballistic mass ratio is the most appropriate scaling parameter with which lo cansider the
acrodynamic characteristics of parachutes doring the inflation peocess.
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5,34 A Dynpwic Similitude Model for Parachute Canopy Iaflation
Using dimensional analysis, for a given parachute system Lingard*®*** developed a semi-cmpirica! method
of predicting over the entire opesational envelope, from a limited number of fieid trials, the relationship between the
total interactive focce F), or the inflation load, and the tinie which elapses.
Assuming that the drag D, of the parachute caisopy at an instant in time is a function of:
canopy shape and size; .
its instantaneous velocity V and acceleration V;
the density p and viscosity p of the fluid in which it is inflating;
ihen, by further assuming that the acceleration V is a function of:
the snatch velocity V,;
the time t, sncasured from the instant when the snatch force is developed;
the canopy drag D,,;
the gravitational acceleration g;
the masse of the payload m, and the canopy m,:
the canopy rate of change of mass mh,; and
the insto :taneous angle of the parachute irajectory relative to the vertical, or the
deployment angle 6 ;
then:

D, = function{shape; D, ; V,;¢;p;n;g;m,;m,; 6}. (5.19

For a canopy of a given shape, by neglecting the effects of jt, m, and nt, Lingard showed that for geometrically
similar parachute systems with similar porosity constants:

Cy =D/ppiv?

function{M,; F; t;0 ) (5.20)

and X =D/mg

function{M,; F; t;0} (521)

whee C; is the dimensionless aerodynamic force developed on the canopy;
X is the load factor, defined as the ratio of the instantaneous to the steady acrodynamic force developed on the
parachute canopy;
M, is the mass ratio, here defined as the ratio of payload mass m, to a mass representative of that included
within the canopy, pD} ;
F is the Froude number V,/gD, defired in Section 2.3.4;
< is the dimensionless time, V,UD, ;
0 is the deployment angle, i.e. the instantaneous angle of the parachute trajeciory, relativ to the vertical.
Since he was primarily concemed with persoanel parachutes, in his enalysis Lingand did not consider the Mach
number o be a significant independent parameter.
Unsteady inflation force data obtained from experiments conducted on & variety of canopies tested over a range of
mass ratios and descent parameters correlated well when plotted in the form:

Cy = fanction (1) (5.22)

Lingard™ therefore concluded that each canopy shape has a unique dimensionless inflation force/time signature,
which can be extracted from a limited number of trials of a given systera. By employing this :nformetion, together
with the application of Newton's laws of motion, as shown in Chapter 3, to the system it is rossible to predict the
performance of the parachute and the payload system over its entire operationat savelope.

5.3.5 Zinetic Models for Parachute Canopy Inflation

The inflation method, introduced in 1971 by Robexts, represented the parzchute canopy by a continuous elastic
system. The pressure distribution required to determinc *he force which causes the necessary rate of change of Juid
momenium was calculated by assuming potential flow about an expanding and decelerating parabolic shell,
representative of the canopy. B-cause of its geometrical and mathematical sophistication such an advanced model is
difficult to apply and thus reccives only pastial acceptance within the pacachute indusiry.

Provided that some overs!l data for canopies during their inflation phese have been obiained by conducting
appropriate experiments, ¢.g. the pesk opening force cecfficicnt and the dimensiraless filling time, together with their
payload and canopy mass ratios, Wolf's** 1973 single degree of freedom canopy mode! solves ths necessary
momentum equations and satisfactorily predicts some observed phenomena, such as the effects of altitude on parachute
inflation time. The mass ratios are defined here as the respective payload or canopy mass, divided by the mass of air
displaced by a fully-inflated representative spherical caropy.
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Different racthods were adopted by Roberts™?, by Klimas®* 33 and by others in order to ideatify the
pressure distribution in the flow field associated with the inflating canopy. These arc discussed in greater detail in
Section 7.1. In 1981 Parvis*'* developed an analyticai model based on a simplifcation of the changing canopy
shape during the inflation process. This model nceds no experimentat inputs at all. 1t could be used to predict the
trajectory of an inflating canspy.

In his model the canopy is modelled as a sight circular cylinder whosc radius is free w increzse with time. For the
inflation of this cylinder immersed ia: an inviscid and incompressible fluid an expression for the time rate of change of
axial momentum over the surface of the expanding cylinder is first established and then solved. First-order effects onty
arc considered. In reference S.16 Purvis made comparisons for both imporous and porous canopies between the results
obtained with this model and experimentally-obtained data, inflating under both iufinitc mass and finite mass
conditions.

The real significance of anciytical inflation models, such as th’s one deaveloped by Purvis, is that they reveal which

are the gross parameters governing the inflation process, indicating what may be the consequences of their independent
variation.
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6. EXPERIMENTS TO DETERMINE PARACHUTE AERODYNAMIC CHARACTERISTICS

At first sight, the proper manner in which to conduct experiments in order 1o establish the acrodynamic characteristics
of parachutes wauld appear to be through the use of full-scale protoypes deploying, inflating and descending through
their natural environment. Indeed, some experiments are conducted in this way. Many others are performed in wind
tunnels or similar environments, both because these can readily be controlled and because under these circumstances it
is ofien much easier 1o obtain the required data by instrumenting the support requized for the model parachute than it is
to determine them from flight tests. Wind tunnels are most often used for both static and dynamic tests on model
parachutes, as a means of enabling the flow around the parachutes to be visualised and for measuring as a fuction of
canopy attitude the aerodynamic forces which are developed. Other facilities which have been used for special-purpose
tesis include water tunnels, in which air is replaced with water as the test medium in which the parachute is immersed.

6.1 EXPERIMENTS CONDUCTED ON FULL-SCALE PARACHUTES IN AIR

As described in Section 2.3.3, the drag area C,,S, of a descending parachute can be determined from a knowledge of

the weight of the parachute system, the density of the air through which it descends and the descent velocity Vp. The
latter can be crudely estimated by observation. James®', for example, hung a 61-m fong axial cord below the

payload and observed the time which clapsed between the two ends of this cord striking the ground. However,
Drake*?, by analysing kinétheodolite data over a 5001t descent, used a more sophisticated technique with which to

estimate the desceat velocity.

The drag area so obtained over the time of descent would be an average value. Since the canopy nominzl surface
area S, is known, the average drag coefficient for the system is determined. For stable parachutes this measurement
accords well with wind tunnel evaluations, but as the angle of attack of an unstable parachute varies continuously
during its descent, for such a parachute there may well be a substantial discrepancy between the averaze value of Cp
obtained during its free descent through the air and the corresponding wind tunnel evaluation of C;, at zero angle of
attack,

Depending on their application, parachutes being tested may be allowed to inflate freely, having been dropp=d from
tethered balloons, they may be ejected from aircraft, using specially-designed test vehicles such as those which have
buen described by Key and Barker®® or they could be launched from ground-based test vehicles such as the British
compressed-air launcher, recently being uscd at the Royal Aircraft Establishment. Such facilities can be instramented
10 telemeter appropriate data from the parachute system to the ground. A test vehicle described bty Barker and
Nosworthy** was designed to be dropped from tethered balloons which fly at altitudes up to 1 000 m. This test
vehicle fell freely and as it did so, afier pre-set time intervals the test parachutes were deployed from it. Lingard uscd
this test vehicle to obtain required the canopy inflation dimensioniess time signature described in Section 5.3.4.

6.2 EXPERIMENTS IN A CONTROLLED ENVIRONMENT

Although when the weights of both canopy and payload aze known the drag coefiicients for stable parachute caropies
can be determined by measuring their rate of descent through the atmosphere, to acquire more sophisticated
aerodynamic data the instantaneous angle of attack of the canopy will also be required. To deduce this angle both the
magnitude and the direction of the relative airflow must be obtained. The most satisfactory way of determining these
data is to fly the canopy in a controlied environment in which the relative velocity of the fluid will be known. Thus
the main reason for conducting measuremnents on scale models of parachutes in wind tunnels is in order to provide
such a controlled environment. It is highly desirable to use wind tunnels rather than flight tests when obtaining drag
data for unstable parachute canopies end when determining canopy static stability characteristics. For such
mcasurements static tests can be performed on rigidly-mounted canopies. Similasly, some form of controlled
environment is preferable when canopy inflation behaviour or dynamic stability characteristics are sought, but for

these purposes dynamic testing is necessary, on models which can move through the controlled environment wiih a
limited amount of freedom.

6.3 REQUIREMENTS FOR MODEL TESTS CONDUCYED IN A CONTROLLED
ENVIRONMENT

To model the airflow round a descending parachute faithfully when it is flying in a controlled environment such as
that in a wind tunnel two important requircments must be satisfied:

(i). the shape of the model, including the means of fixing it 1o any force-measuring apparatus and to the walls of
the controlled environment, together with the canopy porosity and its flexibility, must be truly
representative of the prototype full-scale parachute. The scaling of canopy flexibility, as Loe® has
indicated, is particularly difficult to achieve and this can lead 1o problems in data interpretation,
particularly for inflation loads, This shape requirement also includes ensuring that any blockage
constraint which is caused by the presence of the controlled environment walls is minimal;
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(ii). the Reynolds number of the test programme and also its Mach number, where it is applicable, must als» be
representative of the full-scale parachute. As discussed in Sections 2.2.2 and 2.2.3 these parameters
need not nccessarily be equal to those in full-scale flight but in the model tests any differences in their
magnitudes must be considered carefully.

Incvitably, when conducting model tests the shape requirement will, to some extent, be compromised. Early
experiments were oficn performed on rigid rather than flexible models of canopies and in some cases the tests
conducted on these canopies were not pesformed at sufficiently high Reynolds aumbers to avoid laminar boundary
fayer separation. Often in static tests models are mounted on axial stings which can both limit the movement of the
modcl canopies and may develop drag forces on their own account. Because parachute canopies are bluff rather than
streamlined bodies anry effects on aerodynamic characteristics caus~d by blockage constraint can be of considerable
significance.

6.4 WIND TUNNEL TESTS ON MODEL PARACHUTES
The scale effect and blockage problems referred to above were mentioned as long ago as 1946, in Block's*® brief
report. Early Gesman wind tunnel tests which Munson®? described are principally concerned with the establishment
of the proper dimersionless parameters influencing the aerodynamic forces developed on parachute canopies, also with
determining both static stability requirements and the opening-shock forces. Heinrich's wind tunnel tests, originally
conducted in Germany and later in the United States, have been described in a variety of reports, such as references 1.8,
2.2,6.8 and 69.

Later German research has beea considered by both Doherr, in references 6.10 and 2.10, and by Saliaris®®. In
this experimental work the techniques which were adopted for static tests can be considered as a development of those
which Weinrich had earlier implemented in the United States. Experimental mettiods to determine parachute dynamic
stability characteristics were also developed in Germany.

Although much of the more recent British parachute testing has been performed in the free cir, in reference 1.5
Dennis refers to some wind tunnel testing in the United Kingdom. Other recent British experimental work has been
described by Shen and Cockrell in reference 2.11.

6.4.1 Flow Visualisation Around Model Parachutes

Wool tufts fixed to detect the onset of flow separation from model parachute canopies and smoke employed as a flow
tracer are the most commonly-used wind tunnel techniques for flow visualisation around parachute canopies, though
because of the rapid dissipation of the smoke the latter is not a very appropriate technigue at Reynolds numbers which
approach full scale.

Techniques for using neutrally-buoyant helium-filled soap bubbles as flow tracers around model parachute canopies
have been described by Pounder®'?, Klimas & Rogers®?, Lingard*! and by Shen & Cockrell**,

One of the major advantages of testing parachutes under water zather than in air is that this makes possible the use
as flow tracers of either small, near neutrally-buoyant, polystyrene beads and this technique has been described by
Lingard*!,or of hydrogen bubbles gencrated by local electrolysis at fine wire cathodes immersed in the waier. This
latter technique has been outlined by Cockrell, Huntley and Ayress**,

When sesting model parachute canopies under water scaling problems can arise. In particular, as Cockrell, Harwood
and Shen*** have discussed, the nominal porosity A of a parachute tested under water can differ appreciably from its
value when determined in air.

6.4.2 Measurement of Steady Aerodynamic Forces and Moments
In order to measure steady acrodynamic forces and moments developed on mode! parachutes, generally the inodels are
rigidly fixed in their test media. By using strain gauges or other appropriate transducers the required acrodynamic
reactions on the supporting structure can be determined. Such a measuring tecitnique has been well described both by
Heinrich & Haok*? and by Dohenr®'?,
6.4.3 Unsteady Acrodynamic Measurements
Unswadymdynamwmmmmshavebeeamdemuwddpamhuwmlesmmwdmmmmme
gloadsdnnng mﬂamaandﬂuaddedmmwmchted:vdopedon mswadily-moviug ﬁllly-mﬂatedw:opllf es.
. 1 i k e - I ml
pmchmecanopmwmchmngndlymedmwmdmmkmmﬂmmupmcmmllmuacmemd
velocity refative 1o the model. In Section §.1.1 it is explained that infinite-mass measurements made under these
conditions of the interactive force F, developed between the parachume canopy and the payload are unrepresentative of
full-scale canopy inflation. However, both Heinrich & Noreen®™** and Lingard™! have shown that by m.ounting
the canopy in the wind tunnel 3o that as it inflates it is free 10 move, then diring its inflation the surrounding air flow
will decelernte relative lo the canopy and the finite-miss inflation process cin be modelled.
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By appropriately modelling the system shown in Fig. 6.1a, its ensuing behaviour can be designed to be
representative of that around a vertically-descending payload in the free air, decelerating under the influence of a

parachute undergoing a finite mass inflation.

For the purposes of analysis Fig. 6.1b shows the same system broken into a number of separate free-bedy

diagrams.
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The cquations of motion for cach of thesc sub-systems arc then as follows:

F,- T, = hwV equation (i);
{Ts-Tyr, = laVir equation (ii);
T,+Lwg - T, = LwV equation (jii);
(Te-Tor, = LV, equation {iv);
T, - T, = iwV equation (v);
(T¢ - Tyr, = LVIr, equation (vi);
Ty« lowg T, = ..wy equation (vii);
T,-mg = myV equation (viii).

The solution to this set of equations is:

Viw(l+141541) + LIrkLJrd+l/r? + m,)

- gl(s1;) + m, 6.1

This equation is of the same form as that for the vertically-descending payload shown in Fig. 6.1b where in both
equations F, represents the required interactive force between the payload and the parachute.
‘Thus, with an appropriate choice of the constants for the wind tunnel system equation 6.1 can be made (o represent:
Vm, = F,+D,-mg 62

andsomemtaacnvefmembeddemmed.

order o dezenmne these added mass ooefﬁc:cnts apmmenully, Cockrell Shen Harwood and Baxta“' masnred
the aerodynamic forces which were developed on fully-inflated model parachute canopies when the latter were subjected
to a known periodic motion. The aerodynamic forces were calculated from output signals transmitted from strain
gauges which were attached to the models’ support sting.

6.5 AERODYNAMIC MEASUREMENTS MADE ON PARACHUTES IN OTHER FACILITIES
THAN IN WIND TUNNELS

From time to time acrodynamic measurements on parachute canopies have been made in other facilities than wind
wnnels, For example, at some time prior {0 1967 measurements which Colbourne®*” has described were made of
the drag developed by a 4.6 m. (15 ft.) flat circular parachute when it was caused o descend freely inside the 107 m.
(350 f1.) high cooling tower of an electricity power station. This tower had a base diameter of 100 m. (325 ft.), a
diameter at the apex of 66 m. (218 (1) and a throat diameter of 62 m. (205 ft.). Its varying diameter was a source of
some difficulty in that it caused a corresponding variation in descent velocity. This facility was only available over a
very limited period for experimental purposes and, probably in consequence, Colbourne’s report on the measurements
which he made is somewhat inconclusive.

As described in reference 6.185, in order to minimise the ratio of the inestia forces developed on the canopy supports
1o the added masses developed on parachute canopies when they move unsteadily, measurements of the acrodynamic
characteristics for fully-inflated parachute canopies have been made under water rather than in the air. Waterisa
suitable medium because the aerodynamic forces are proportional o the fluid density and that of water is some 800
times the density of air, whereas the inertia forces, being proportional to the density of the canopy supports, are of the
same order of magnitude whichever medium is adopted. In the experiments described the canopy models were towed
through a 61.0 m. long ship tank, having been suspended from the ship-towing carriage.

6.6 BLOCKAGE CAUSED BY MODEL PARACHUTE CANOPIES
The flow past any body immersed in a stream of fluid is subjected to blockage constraint, caused by restraint of the
fluid’s free lateral displacement. This stream of fluid might be constrained either by the test environment's solid
walls, as it is when the body is held in the closed working section of & wind tunnel or in & less confined situation
such as would occur if the model were immessed in an open jet of fluid. In the former state the boundary condition
imposedmmefbwuthaamesohdbmndarythmanbemmmvdomywmmcmmelanersmeme
bomdmyemdmnhmmhemabngdwbmmd-ymmbcmmuycmmtmdeqmm
the ambient pressure. In these two states, the corrections which arz to be applied to measured pressures, acrodynamic
forces and moments are of opposite sign.  Maskell*'® shows that the dominant effect of blockage constraint is a
simple increase in the fluid's free-strcam velocity, in part relsted 10 the volume distribution of the body itself, iermed
solid blockage, and in part related 10 the displacement effect of the wake, termed wake blockage,
Conventional parachute canopics are byl bodies, that is bodies for which the surrounding flow is dominated by
large regions of flow separation, Unless the blockage area ratio, defined as the matio of the cross-sectional area of the
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body S 10 the cross-sectional area of the fluid stream at the body location A, is small (say under 15%), the variation in
the flow pattem around the body and its downstream wake which is caused by blockage, is extreme. In the published
literature, e.g. Blockage Corrections for Bluff Bodies in Confined Flows, reference 6.19, the emphasis is on correction
of drag measurements for blockage constraint and because bluff bodies are inefficient generators of lift, little has been
written about the correction of acrodynamic force components developed on them which are normal to the direction of
the relative flow, An estimate from reference 6.19 for this blulf body acrass-flow force coefficient blockage cormrection
AC. is:

(AC.)/C ~ - 0.2%, 6.3)

and for a parachute canopy presenting as large a blockage ratio in a wind tunnel (or similar facility) as 15%, this
gives a negligible - 3% across-flow force coefficient blockage correction

Reference 6.19 states that for bluff bodies such as parachute canopies blockage areas of 5% and under are to be
preferred; blockage areas in excess of 10% are not to be reccommended. For blockage ratios under 10% corrections to
the drag of conventional parachutes can readily be made by one of four methods, the choice of which depends on the
location of flow separation from the canopy and the amount of experimental data which are available. This reference
also contains data on blockage corrections for both mean pressure measurements and for fluctuating quantities, such as
for Strouhal numbets.

Estimates of blockage constraint for gliding parachutes should be based on the more extensive literature available
conceming blockage corrections for mode! wings in wind munnel iests, e.g. Lift-interference and Blockage Corrections
for Two-dimensional Subsonic Flow in Ventilated and Closed Wind Tunnels, reference 6.20.

6.6.1 Maskell's Bluif-body Blockage Constraint Method

For a conventional parachute canopy, from which the flow separates at or ahead of its maximum cross-sectional area,
the estimated correction to drag, AC,, consequentional on wind tunnel blockage which was obtained by Maskell**
can be expressed as:

ACJC, = - 277 Cn./A . (6.4)

Thus, for a mode! parachute canopy subjected to a 5% blockage area ratio in a wind tunnel, if the measured drag
coefficient were 0.80 the corrected drag coefficient would be 0.71.
6.6.2 Cowdrey's Alternative Expression for Bluff-body Blockage Constraint

When values of drag coefficient are not readily available Cowdrey's*?! aliemative expression for blockage constraint
can be used:

ACY/Cy = . 315%,. 65

Since in this relationship Cowdrey was primarily concerned with very large bluff bodies such as buildings, equation
6.5 tends to overestimate the blockage correction necessary for parachute canopies. When the blockage area ratio is
only 5% the drag coefficient for the wind tunnel mode! must be as high as 1.3 in order to acheive the same drag
correction from equation 6.5 ss is given by equation 64. If the measured drag coefficient were 0.80, then by using
equation 6.5 the corrected drag coefficient would be 0.67, instead of 0.71 which is given in the paragraph above.

6.6.3 The Quasi-Streamlined Flow Method for Bluff-body Blockage Constraint

If separation were to occur downstream of the canopy’s maximum cross-sectional area, a relationship originally
developed by Gamer, Rogers, Acum and Maskeli** gives for the blockage constraint of a conventional parachute
canopy mounted centrally in a wind tennel which has a rectangular working section of aspect ratio A:

ACY/Cy = - 0.54 A (/,)** - 0.50 C,¥,. (6.6)
where A = OTAI+AVA . 67

For a measured drag coefficient of 0.80 on 2 conventional parachutz canopy with a 5% blockage area ratio in a
1.4:1 aspect rativ wind tunnel working section, the corrected drag coefficient determined by using equations 6.6 and
6.7 is 0.77. ‘

6.6.4 Bluff-body Blockage Constraint Determined from the Working Section Wall Pressure

. Distribution
1f the static pressure can be measured on the wind tunnel wall at the sections at which the blockage is a maximum and
at a second section downstream of the first a further method, described in reference 6.19 and originaliy developed by
Gamer et al*® can be used 0 estimaie the blockage comection,
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6.6.5 Estimation of Blockage Constraint in Wind Tunnel Tests on Parachute Canopies

In order to minimise blockage effects, acrodynamic tests on model parachutes must be performed in large wind
tunnels, For much of the published experimental data, not only is it not known if any blockage corrections were
made by the originators, but as wind tunnel blockage arca ratios may not now be readify available, making
contemporary corrections is often not possible. Values of drag coefficient obtained from different wind tunnel tests
can vary substantially from one another and although in published data the sign of dCy/da may be reliable, its
numerical value is much less certain,

In determining the acrodynamic characteristics of parachute clusters Braun and Walcot*®, using the 3.7 m. (12
ft) diameter vertical wind tunnel at the Wright-Pattersor Air Force Base, Ohio found that their blockage factors
approached 19%. Earlier Auterson®®, using the 7.3 m. (24 1) diameter low-speed wind tunnel at the Royal
Aircraft Establishment, Famborough, UK., performed tests on clusters of from one to five parachute cancpies with
only a2 4% maximum blockage area ratio, Heinrich and Noreen®'® tested clusters of from one to four solid flat
circular and ring slot parachute canopies in the 1.5 m. x 1.5 m. (5 ft. x 5 ft.) open working section wind tunnel at the
University of Minnesota at Minneapolis, experiencing blockage factors of up to 22%. Using the 2.1 m. x 3.0 m. (7
ft. x 10 ft.) working section of the Vought Corporation wind tunnel, clusters of between one and eight 0.4 m. (16 in.)
nominal diameter flat circular canopies were tested by Baca®®, In these latter tests the blockage factor varied from
1.8% t0 14%. In his determination of the canopy drag coefficient for the free stream dynamic pressure Baca estimated
the effect of this blockage factor by determining the dynamic pressure variation along the wind tunnel ceiling outside
of the parachutes’ boundary layer and using the value which was obtained in the plane closest to that containg the
canopy skirt hem. His method is an approximation to that outlined in Section 6.6.4 ahove.

Shen and Cockrell*!! measured ihe drag of cross-shaped parachute canopies both in a wind tunnel with a wocking
section of 1,14 m x 0.84 m and in a water tank which had a cross-sectional area of 3.66 m x 1.83 m. The blockage
area ratios, based on the projected areas of the canopies, were between 7% and 8% in the wind tunnel and of the order
of anegligible 1% in the ship tank. Corresponding drag coefficient characteristics have been drawn in Fig. 6.2. The
upper curve shows the values of drag coefficient which were obtained in the wind tunnel.  The corrected wind tunnel
results which are shown by the open symbols in Fig. 6.2 were obtained by using equation 6.4 for the correction to
drag, ACp,. These compare very well with the drag cocfficient measurements independently obtained in the ship tank
with the much larger cross-sectional area using the same model parachute canopies.

4 )
Drag Cosfficient, CD
1.0
0.8 ky e
‘Q‘\
0.8 -1
“®= Wind Tunne! Resuits
0.4 <0~ Corracted Wind
Tunnel Results
0.2 - Ship Tank Results
0.0
0 13 23

Canopy Porosity, in cu.ft./sq.ft./sec.
At 10 inches of Water Pressure

Fig. 6.2 BLOCKAGE CORRECTIONS APPLIED TO CROSS-SHAPED
PARACHUTE CANOPIES - after Shen and Cockrell, vef, 2.11 Y,
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7. METHODS OF ANALYSIS FOR FLOW AROUND PARACHUTE CANOPIES

For a varicty of reasons analytic solutions are required to &8 number of parachute acrodynamic problems, Because
of the interactive relationship between the canopy shape and the acrodynamic forces developed on it, even when it is
possible to make experimental measurements they may well be insufficient for predictive purpcses. Often the
unsteady nature of the flow around bluff parachutc canopies causes difficulties in both the planning and the execution
of experimental programmes and even where raany acrodynamiic characteristics have been described in Section 2 as
steady, they are in fact the average values of time-varying quantities which fluctuate with the unsteady wake pattern
downstream. For these and other reasons reliable experimental solutions for parachuie aerodynamic characteristics can
be difficult to obtain and analytical solutions are sought, noz only for predictive purposes but also in order to obtain a
better understanding of the fluid flow processes involved.

A thorough analysis of the whole flow field around the parachute is possible only by solution of the Navier-
Stokes equations. Though certain low Reynolds number flow problems do respond to the computer solution of these
cquations the flow round a parachute canopy and payload is at a high Reynolds number, implying that convection in
the flow field is of more significance than diffusion and that viscosity is a relatively unimportant fluid property. In
the immediate future parachute acrodynamic characteristics are most unlikely to be obtained from full sojutions to the
Navier-Stokes equations and other methods must be sought insiead. However, because the three-dimensional fiow
field around a bluff body such as a parachute canopy contains large-scale structures which arise from fres-shear layers
brought about by flow separation, its solution is far from staightforward..

Currently there are two possible lines of attack, in both of which a largely irrotational flow fieid is assumed. In
the first of these approaches, in spite of some evident disadvantages in this assumption, the entire flow field outside of
any near-surface singularities is considered to be irrotational, This is the meshod thag Ibrahim, Klimas and Roberts all
adopted, described below in Section 7.2, In the second, described in Section 7.3, an identifiable region of vorticity is
used to model the characteristics of the wake which is shed by the parachute.

Irrotational flow is an essential ingredient of any analytical model which is developed in order to determine the
characteristics of the flow around an arbitrarily-shaped body, for it is only if the flow is irrotational that it posscsses a
velocity potential and hence can be termed potential flow. Potential flows can be steady or unsteady. In steady
potential flows streamlines can be drawn orthogonal to the equipotential lines. Vorticity is a measure of fluid element
rotation thus, in a region in which a fluid is considered to be irrotational, there can be no vorticity, Since vorticity is
necessarily present in fluid regions in which there are shear stresses, within boundary layers and wakes the flow is not
potential, Thus, it is an idealisation to conceive of the whole flow field in which a given body is immersed as being
potential, To contrast this idealisation with the actual flow ficld, in which vorticity is present in certain high shear
regions, the potential flow field is also referred to as ideal fluid flow, or sometimes as perfect fluid flow. Itis
customary, though not essential, to consider that a characteristic property of an ideal fluid is its incompressibility.

Certain features of unsteady flows around bluff bodies such as parachute canopies can be predicted with remarkable
accuracy by using steady flow mode!s but with such methods a cautious approach is necessary. In reference 7.1 it is
stated that “they may amount to little more than the creation of a highly idealised flows, some of whose features
coincide with the corresponding features of the real flow. The extent of the approximations inherent in such models
might only be revealed by the comparison with experiment of other features of the flow, such as the pressure
distribution over the downstream surface of the biuff body. It is at this point thar we are handicapped by the fact that
experimental techniques are, at this moment, lagging behind the advance of theory™.

7.1 RELEVANCE OF POTENTIAL FLUID FLOW SOLUTIONS TO PARACHUTE
AERODYNAMICS

In steady potential fluid flow all or a part of the immersed body's impervious boundary is considered to be one of a
family of streamlines which represent the flow. Since these streamlines and their associated equipotential lines form
an orthogonal net, in a fluid which is wholly irrotational the flow pattern which is developed around a symmetrically-
shaped body is itself symmetrical. This leads to a symmetrical pressure distribution and in consequence in steady
flows, 10 zero rormal pressure drag, or form drag, developing on the immersed body. By considering the momentum
of the entire flow field surrounding the immersed body it can readily be shown that, provided that the body's
dimension.; are finite and it is considered to be immersed in a steady, frictionless incompressible fluid whick is
entirely free of vorticity, then regardiess of its shape no net aerodynamic force can be developed on that immer.ed
body. This is a statement of the D' Alembert Paradox.

In view of this paradox and considering the serodynamic characteristics which are required from an analytical model
of a parachute, the apparant lack of relevance of potential flow solutions to parachute acrodynamic problems must
certainly be considered. 1 spite of what D’Alembert declared o0 be a paradox, lift is certainly developed on some
bodics which are immersed in potential flows and similarly, trailing-vortex drag component forces can be generated on
modcls which have a finite span. However, the major part of the drag developed on parachute canopics is form drag
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and if they are immersed in steady potential fluid flows which are wholly irrotational, it is not possible to determine
this form drag from solutions to potential flow problems. This is the evident disadvantage of the first approach.

Through free-streamline theory, ogiginating with Helmholtz’2and Kirchhoff’®, which postulated that the
pressure is constant on streamlines which extend to infinity from the bluff body and which bound the wake region, a
non-zero drag force on such an immersed bluff body can be established. Foilowing Fage and Johansen’s™
assumption that the fluid pressure varies along these boundary streamlines, a plausible value for the biuff body drag
can be obtained. Although in free-streamline theory the assumption is made that flows are steady, this approach
serves as a useful introduction to the vortex-sheet methods of analysing unsteady flows around bluff bodies, described
below in Section 7.3.

7.2 THF IRROTATIONAL FLOW FIELD APPROACH
7.2.1 Ibrahim’s Solution for the Added Mass of Fully-Inflated Parachute Canopies

By idealising their shapes into thin-walled, rigid cup shapes and applying conformal transformation techniques
Ibrahim*4, in his 1965 doctoral thesis, developed a potential solution for flow arnund fully-inflated parachute
canopies. His reason for making this analysis was in order to determine the added mass coefficients associated with
the unsteady osciilatory motion of the parachute during its descent. Lester*®, whose work was broadly
contemporary with that of Ibrahim, noted that “the theoretical concept of added mass with regard to motion of bodies
in an ideal fluid is not necessarily representative of the physical phenomena which occur in a real fluid”. Later
experimental measurements tend to justify this earlier opinion.

7.2.2 Klimas’® Parachute Canopy Method

Only certain representative shapes of immersed bodies respond well to the methods of conformal transformation
and a more flexible technique is required with which to represent axi-symmetrical canopies with arbitrary cross-
sectional shapes. Milne-Thomson** modelled two-dimensional thin aerofoil sections, representing them by a line
vortex sheet and in 1972 Klimas*'* followed his example, modelling an axi-symmetric parachute by a system of
vortex rings which covered the canopy. The modelling .of axi-symmetric shapes by vortex rings is discussed in
reference 7.1. This representation enabled Klimas to include the effects of canopy porosity in his model.

Klimas' initial objective was that of determining the pressure field round an inflating canopy. In seeking to meet
this aim he needed good experimental data with which to validate his model and this was not easy to find. In 1977,
like Ibrahim, Klimas*’ used a development of his earlier model as the basis for determining the added mass
coefficients in unsteady motion, remarking that *“no obstacle exists to extension of the approach to include the non-
steady canopy geometries (of he inflation process)”. In a third paper published in 1979 Klimas*'* adopted his
carlier vortex sheet canopy model as the means by which he determined the pressure field round an inflating parachute
canopy. The shapes adopted by the inflating canopy were assumed and the process of inflation was permitted to
continue until the axial aerodynamic force, evaluated by integration of the pressure distribution, was equal 10 a value
which had been indepently determined or had been assumed.

An objection, ascribed to Roberts and Reddy™® in Section 5.3, to this technique which Klimas adopted is the
necessity for the inflating canopy shape to be an input to the determination of the pressure field, rather than the
canopy shape developing as a significant output to the analytical procedure which is adopted.

7.2.3 Roberts’ Inflating Canopy Method

In order to determine inflaticn times and inflation loads for parachutes, Roberts*!* determined the unsteady
pressure distribution over an axisymmetric, impervious, inflating shell. In order that its potential flow pressure
distribution could be developed by conformal transformation techniques from that in a right-angled comer a paraboioid
was chosen as the gensral shape of this shell. At any instant in time the dynamics of the canopy inflation process
could be determined from the payload mass and knowledge of the drag force developed on the canopy, the latter being
given immediately from the known pressure distribution which developed over it.

Its aerodynamic analysis is developed by considering the existence of a stasting vortex ring which forms and grows
in a location adjacent to the skirt of the shell. It is through the existence of this vortex ring that the Kuta-Joukowski
condition is satisfied at the shell skirt. From observations of parachute characteristics it is evident that, as the shell
becomes nearly fully inflated, the vortex ring at the shell skirt become unstable, drifting downstream from the shell
and forming the axisymmetric wake in the canopy. In his mode! Roberts showed how the position of this vortex ring
could be determined.

In Roberts’ method, unlike the one which Klimas adopted, the particular shape of the inflating canopy followed
from the determination of the pressure field which developed around ii. Essentially, it is a vortex sheet method of
calculation applied to a canopy shape which varies with time.

7.3 VORTEX SHEET METHODS OF REPRESENTING THE WAKES SHED BY
PARACHUTES

The representation within an otherwise irrotational fluid flow of an identifiable region of vorticity has a long
history. This is the method which Prandu’® adopted to model the boundary layer. Lanchester™® similarly
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modelied the vortex system which forms behind an aircraft wing and von Kérm4n™ used vortex sheet methods to
model the wake established behind a bluff body .,

The first representation by discrete vortices of a two-dimensional continuous vortex sheet was made by
Rosenhead™, He showed that this vortex sheet was unstable, rolling up smoothiy into concentrated clusters of
vortices. An extensive review of more recent two-dimensional vortex sheet representations has been made by
Clements and Maull™,

The simulation by vortex rings of the wakes shed by axi-symmetrical bodies poses an additional problem 1o the
two-dimensional representation; that of the self-induced velocity field induced by the curvature of the vortices. In order
to model the asymmetry of the seal fluid flow around a symmetrical parachute canopy, Shirayama and
Kuwahara™%*#* have simulated the wake by using segmented vortex rings, thereby forming a series of vortex
sticks. In a recent review paper Strickland™? has described a number of contemporary applications of vortex-sheet
analysis methods for parachute canopies.

By using vortex-sheet methods it is possible to determin~ the pressure distribution over an immersed bluff bod~
under any known instantaneous velocity and acceleratior. This can then be integrated to obtain the component
aerodynamic forces and moments developed in any required direction. Work by Rehbach”** has shown that by such
a method normal force coefficients developed on inclined flat plates can be determined.

Canopy porosity can be simulated in any panel of the bound vortex rings. Although compressibility effects have
been included in steady flow vortex methods Strickland remarked that at this instant of time their inclusion into the
unsteady method necessary to simulate the a bluff body wake appeared to be premature.,

7.3.1 Vortex Sheet Methods Applied to Bodies of Various Geometries by Meyer and Paurvis

Preliminary results from a model capable of predicting unsiweady, visccus, incompressible flows about parachute
canapies have been published by Meyer and Purvis™, At the time at which they made this presentation the results
from their model were limited to the two-dimensional pressure distribution around a circular cylinder, which they
compared with experimental results. Ultimately, they plan to extend their technique so that it can be applied to
predictions of the pressure distribution associated with an inflating axi-symmetric parachute canopy.

7.3.2 Flow Around Discs by de Bernardinis, Graham and Parker

Assuming potential fluid flow around a disc and representing that disc by an appropriate distribution of bound
vortex rings while the vortex sheets that it sheds are simulated by discrete vortex rings, de Bernardinis, Graham and
Parke™ obtained a solution to flow behaviour in the neighbourhood of a sinusoidally-oscillating disc. The
method which they adopted is essentially similar to that used by Roberts in reference 5.11. The Kutta-Joukowski
condition was applied at the region of flow separation from the disc. From this region a free vortex sheet, represented
by a number of vortex rings, was convected with the Jocal fluid velocicy.

The flow was detesrmined at a number of different Keulegan-Carpenter numbers, K = V_ T/R, where V. is
the amplitude of velocity oscillation for the disc, R is the disc radius and T the period of oscillation. These
calculations were found to be in reasonably good agreement with results from flow visualication experiments. The
unsteady pressure field acting on the disc was also determined. It was concluded that the vonex-sheet method which
they adopted accurately predicted the dominant features of the flow around the oscillating disc.
7.3.3 McCoy and Wcrme's Axisymmetric Vortex Lattice Method Applied to Parachute Shapes

Applications to axisymmetric parachute canopy shapes are shown in the paper describing McCoy and
Werme’s™* vortex lattice method, still in its early stages of development. By assuming that the velocity-
dependent drag coefficient was equal 10 its steady-state value in a decelerating flow and considering the remaining part
of the total aerodynamic force to be acceleration-dependent, the instantaneous added mass coefficients described in
Section 4.2 were calculated. McCoy and Werme found that although the initial value of these coefficients comparcd
well with an inviscid flow calculation made in the absence of vortex sheets, over a period of time the added mass
coefficients rapidly decreased in valuc, eventuaily becoming negative.

7.4 SUMMARY OF REQUIREMENTS FOR THE DETERMINATION OF PARACHUTE
AERODYNAMIC CHARACTERISTICS BY VORTEX SHEET METHODS
Currenily, analytical methods are required by which the aerodynamic characteristics of parachute canopies can be
determined under the following flow conditions:
(). insteady flows.
The current state of the art is that parachute drag coefficients appear to be calculabie by vortex-sheet
methods and it is probable that by similar techniques both normal and axial acrodynamic force
coefficients could be calculated. Although determinations have been made by Rehbach™ on
rectangular plates, no publications are known in which this hes been shown for axisymmetric bodies
like parachute canopies, set at known angles of attack in steady flows.
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(ii).  in unsteedy flows, for fully-inflatcd purachute canogrics.

The problem here is tc delermine the added mass coefficienss analytically. Ibrahim*# and others have
achieved this for wholly irrotational flows, although Lestes** has questioned the engincering
significance of the resuits which they obtained. As McCoy and Werrr.” ¢ have indicated such
determinations can be made by vortex-sheet methods but as yet it is still too early for much published
data to be available.

(iii).  in unsteady flows, for inflating parachute canopies.
Here, reliable methods are still required with which to couple the acrodynamic forces obtained by
vortex-sheet methods to a strectural analysis technique, Roberts™ has indicated that such a
coupling is possible: Meyer and Purvis™* are attempling its solution, but, as yet, there are no
indications that a soluiiun has been obtained to this problem.
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8. EXTRA-TERRESTRIAL APPLICATIONS OF PARACHUTES

During the ten years which began in 1976 intensive activities in both the United States of America and the Sovict
Union have beendirected towards.exploring the characteristics of three other planets in the solar system, Mars, Venus
and Jupiter. In separate missions during July and August 1976 two Viking instrument packages launched from the
United States were soft-landed on to the susface of the planet Mars. Parachutes were used on both of these operations
as a significant part of their deceleration phase. ‘The entry capsules entered the Martian atmosphere at a Mach number
of about 2.0, at which stage ihe parachutes were deployed in order to decelerate the system. They were then
jettisoned as retropropulsion was responsible for the payloads’ terminal descent. As the atmospheric characteristics
on the planet Mars might well support life as we understand it, it was imponant to sterilise the entire descent
systems, including the parachute canopies. This was done for 200 hours at a temperature of about 140 deg.C. (280
deg.F).

A mission whose purpose is to bring back to earth a selected 5 kg. set of sample materials from the surface of
Mars had been planned by the United States. This was to have taken piace in the late 1980°s, but budgetary and other
considerations have delayed this intended mission until the 1990's.

In September 1977 two United States Pioneer probes began their journey to the planet Venus, having been
schcduled to arrive there in December 1978. For partial trajectory control over altitudes from 67 - 44 km in the
Venus atmosphere the largest of these two probes was designed to employ a parachute. Though this mission was
sufficiently succossful for soms data io be acquired, it is not known by the writer 10 what extent this larger probe and
its parachute decelerator materially contributed to this success.

Reference 8.1 indicates that in March 1982 two Soviet probes which had been launched in 1981 safely landed on
Venus. These probes, which were called Veneras 13 and 14, had parachutes which were jettisoned about 45 km (28
miles) above that planet’s surface. Since the Venus atmosphere is hostile, having an atmospheric pressure some 90
times that on earth and an stmospheric temperature which is around 450 deg C. (850 deg. F.) the surface survival
time would be small. However, it was long enough for chemical analyses to be made of the soit and for landing sites
to be photographed, the relevant data being radioed back io the carth. By late 1982 a total of seven successful Soviet
landings on Venus had been reported but it is not known for how many of these missions parachutes were employed
to decelerate the probes.

A Galileo spacecraft designed 1o enter the aimospheie around the planet Jupiter in August 1988 was also planned.
Although scheduled for an American launch in May 1986 this research programme has also suffered considerable
delays.

Over this ten year period there has been a very considerable increase in knowledge conceming the physical
characteristics of the planets which were being explored. Many writers report that at the time the Venus probes were
faunched the atmosphere around that planet was much better understood than was the atmosphere around Mars in the
late 1970’s.

For all of these planets the adopted parachute designs closely resemble those which have already been used for
spacecraft recovery in the earth’s atmosphere.

8.1 ATMOSPHERIC CHARACTERISTICS ON MARS, VENUS AND JUPITER

According to reference 1.9, little is known with any certitude about the characteristics of the atmosphere around
Mass. At the surface it is certainly very cold and it has only about 0.01 times the density of the carth’s atmosphere.
The pressure there has been obtained from the Mariner space research programme. Damell, Henning and
Lundstrom®? report data frcm Mariner IV which gives pressure at the surface of Mars as probably between 5 and 10
mullibars, Moog, Bendura, Timmons and Lau®® add that even with the data from the Mariner 9 mission large
uncertaintics still remain about the Martian atmospheric densities and scale heights. For Jandings on Mars high entry
velocitics are necessary, soference 8.2 quoting 3.7 to 4.9 m/scc. (presumably what was intended was 3.7 to 4.9
km/sec.) (12 000 0 16 000 fusec.) 2t altitudes of 4.6 10 6.1 km (15 000 to 20 000ft.). The corresponding entry
Mach Number was believed to be a little sbove 1.0. Reference 8.3 states that the parachute must be capable of
operating over a Mach naraber range from as high as 2.0 to a low subsonic Mach number and pesform without
damage in a range of dynamic pressures from 24 - 479 N/m? (0.5 to 10 Ibf/ft’). In this reference an entry dynamic
pressure of 239 - 311 N/m? (5.0 to 6.5 Ibf/fe®) is claimed. In a much earlier paper Heinrich®, quoting NASA®?
and General Electric Company®* data, estimated the first stage of entry into the Martiaa atmospliere 0 be at 2
velocity of 093 km/sec. (3 C56 fi/sec.) at an altitude of 7.35 km. (24 000ft) and a Much number 0 4 0. Even
allowing for the undoubted rapid refinement of data on the atmosphere around Mars it is clear that there are vor; wide
uncertainty bands present.

On the planet Venus reference 1.9 indicates that the atmospheric conditions are reasonably well established. The
atmospheric density is about 100 times that of the earth’s atmasphere and the surface temperature is close 10 480
deg.C {900 deg. F.) Because of this hostile environment, life was not considered to be possible and thus a
biologically clean exploratury systen: was tot considered essential,




A source of relevant .nd up-to-date information about the propesties cf the atmosphere around these three planets
is the Journat of Geophysical Research. For example, data on the Martian atmosphicre ere contained in references 8.7
and 8.8, Reference 8.9 is also to a model of the atmosphere around Mars, while reference 8.10 is to the atmosphere
around Jupiter.

8.2 MISSION REQUIREMENTS FOR PARACHUTES

On the Viking Mars mission reference 1.9 explains that the capsules were designed (o enter the Martian
atmosphere at about 245 km (800 000 ft). At about 6.5 km (21 &0 ft). above the surface and at a velocity of about
365 m/sec. (1 200 ft /sec.) a disc-gap-band parachute opened. This parachute was disconnected at an altitude of about
1.2 km (4 000 f1.) when the payload velocity was about 60 m/sec. (200 ft /sec.).

On the Pioneer Venus mission, reference 1.9 states that the planet’s aturosphere was entered at about 67 km (220
000 ft), the 300 kg {670 Ib) probe decelerating to a Mach number of about C.8. At this altitude the dynamic pressure
was 3 300 N/m? (69 Ibf/ft?). Using a guide surfacs pilot patachute the main conical ribbon parachute was then
deployed. The prime function of this 5 m (16.2 ft) nominal diameter canopy, which had a drag coefficient of 0.52,
was to stabilise the probe through the Venus cloud cover so that scientific examination of the atmosphere could be
carried out. By 47 km (155 000 ft) the velocity of the parachute and its payload was so low that the parachute was
jeuisoned, the impact of the probe on the surface of Venus occurring 37 minutes later. The requirement for this
parachute was thus much more limited than was that for the Viking mission to Mars. However, as the density of the
atmosphere on Venus is large and the atmospheric temperature close to the planet very high, at a lower altitude than
47 km a parachute is neither nceded nor would it have been a practicable proposition,

Corridan, Givens and Kepley**! indicate that the purpose of the Galileo mission is to explore the planet Jupiter
and its sateltites by indirect measurements, made from an orbiting vehicle, as well as more direct by atmospheric
measurements, made from an entry probe. This probe is designed to enser the atmosphere of Jupiter at 47 km/sec.
(29 miles/sec.), then to be siowed by its blunt forebody to a transonic velocity. At a Mach number of between 0.91
and 1.01 and a corresponding dynamic pressure of between 4 850 and 7 650 N/1a? (102 and 160 1bf/ft°) a 20 deg.
conical ribbon pilot parachute of 1.1 m (3.74 ft) nominal diameter is to deploy. When the eatry Mach number
decreases to between 0.87 to 0.97 the conical ribbon main parachute of 3.8 m (1248 ft) nominal diameter is to be
deployed. The purposes of this latter are to separate the instrumented descent module fom its heat shield and to
provide drag for a controlled descent through tlv: atmosphere. Further details of the Galileo mission to the planet
Jupiter are given in references 8.12 and 8.13.

8.3 HEINRICH'S 1966 ANALYSIS OF EXTRA-TERRESTRIAL PARACHUTE
AERODYNAMICS

In 1966, when considering the behaviour of parachutes descending in a Martian environment, Heinrich®4
stated that the most significant performance characteristics of 2 parachute system were:

@i). its rate of descent;

(ii).  its dynamic stability characteristics in pitch;

(iii).  its opening time uud

(iv).  its opening shock load.

These characteristics depend on the weight cf the payload and on the parachutes's aezodynamic characteristics.
These latter are functions of the canopy shape and attitude, its Reynolds number and its Mach number. Heinrich
argued that the most significant way in which the parachute canopy shape would be altered when it descended through
the atmospheric environment of a planet other than the Earth is through the changes which would occur in the
effective perosity of the canopy.

Working from earlier research?'® which he had undertakenr on the porosity of parachute canopies, Heinrich
argued that at a given dimensionless pressure ratio across the canopy the varsiation in the effective porosity of the
canopy from that a1 s=a Jevel in the easth's atmosphere coukt be expresced as a function of two varigbles, the ratio of
the density of the fluid in which the canopy is immersed to that of air a1 sea level and the Reynolds number at which
the parachute descends. Heinrich defincd the dimensionless pressure ratio across the canopy fabric o3 the ratio of the
actual pressure difference across the canopy (o that which would establish sonic flow in the fabric interstices. Because
the fluid density in the Martian environment is much lower than it is above the carth's surface, he established that the
effective porosity of a parachute canopy descending on the planet Mars would be only between 15% and 30% of its
value when descending above the earth's surface.

For the type of parachute canopy envisaged for high Mach number inflation in the Martian environment he argued
that the variation of its acrodynamic chamcicristics with Reynolds number rvould be weak and that the Mach number
was the dominating dimensionless parameser. He therefore recommended that in mode! ests the Mach number should
be made equal t0 that of the prototype, defining the modelling conditions as follows:-
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().  the model Mach number should be that of the prototype;
(ii).  the fluid density for the model tests should be that of the fluid in which the prototype is immersed;

(iii).  the dimensionless pressure ratio, defined above, across the canopy fabric for he model tests should be the

same as that for the prototype.

By establishing these three modelling conditions, Heinrich sought to establish values of acrodynamic coefficients
on model canopies in the earth’s atmosphere which would be identical to those on full-scale prototype canopics in the
Mastian atmosphere. Then, by making the fluid density for the model canopy equal to that for the full-scale
prototype, the rates of descent Vp, could be related through the respective sizes of canopy, the known gravitational
accelerations in both environments and the known masses of the payloads which would be attached to the canopies.

Next, he considered a simplificd expression for the motion of a parachute and it: payload when oscillating in
pitch. Using a relationship which was similar in form to equation 3.20, but taking the origin of the parachute and
payload system to be at its centroid; by neglecting the gravitational moment of the canopy about the origin compared
with that of the payload at bD from the centroid, he obtained:

mb’D?q = YeV3(*,)DC, @.1)
and substituting for the dzscent velocity Vy

\H mg / {'p (1) DPCp) ®2

roduced:

q (C. /Cy)(g/b’D) . @®3)

With identical acrodynamic characteristics in the two eavironments Heunrich thus established that for q to be the
same in each, then:

(g/D)h,.. = ‘ gl D) Mars ¢ (8.4)
Since the ratio of the gravitational accelerations, By, /Bees = 0-38, this established that
Dyers Dy = 038 . 8.5)

Thus, the size of the model would need to be 2.63 times the size of the prototype. Similarity in the rate of
descent requirement, equation 8.2, thea led to the ratio of payload masses:

m*,' lmm = 038 . (8.6}

‘Thus, in order to achieve the same acrodynamic coefficients in the two different environments Heinrich sought to
make tests on a mode! which was of the same shape as the prototype. To easure the siapes were wholly identical he
considered how 1o make the canopy porosity on the Earth similar to that on Mars. Alihough Heinrich’s model
canopy was tested at full-scale Mach number its Reynolds number was diL “imilar to that of the proiotype.

If model acrodynamic tests in the earth’s atmosphere are performed under conditions in which the air density is
equal to the fluid density in the atmosphere around Mars, equation 8.2 thea indicates that the rate of descent for the
model will be equal that of the prototype. This entails testing the model canopy in the carth’s atmosphere at an
altitude of about 32 km {195 000 fi) above the carth’s surface. Under these circumstances, in the carth’s atmosphere
the Froude number F, shown in equation 2.39 to equal V3/D g, will be about one-seventh of its value for the
prototype descending in the Martian atmosphere,

Although the model test in the earth’s atmosphere may meet all of Heinrich's specifications, because of
differences in Reynolds number snd of canopy porosity in these tests there is no possibility of ensuring total dynamic
similarity, However, the prototype parachute in the Martian environment has 1o be deployed at high Mach numbers
and in order to mect this requirement highly porous ribbon canopies are requised, For thess there will be minimal
variation of acrodynamic characteristics with Reynolds number. Since a given parachute canopy is less porous in the
Martian stmosphere than it is in the atmosphere surrounding the earth and as has been discussed in Section 2.2.14,
reducing the porosity decreaszs the canopy stability in pitch, it is necessary 1o test in the earth’s atmosphere, but at
altitudes of some 32 km (105 000 ft) where the atmospheric density is of the order of that on Mars, parachutes
intended for use within the Martian atmosphere. If under these conditions the ribbon cenopies exhibit the required
stability characteristics in pitch, thea in the Mantian environment they should be adequately stable,
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8.4 TESTS ON PARACEUTES FOR EXTRA-TERRESTRIAL APPLICATIONS CONDUCTED

IN THE EARTH’S ATMOSPHERE

Reference 1.5 describes the three expesimental programmes which were devised 10 establish the characteristics of
the parachutes for Viking Mars landings. Initially, the'Planetary Entry Parachute Programme was established to
select the most appropriate canopy shape. Disk-gap-band, ringsail and cross parachutes ware deployed at altitudes in
excess of 30 km (100 000 fi.) and at Mach numbers from 1.0 to 2.8 in these rocket and balloon-Iaunched tests. Asa
conscquence the disk-gap-band parachute was selected.

In the subsequent Low Altitude Drop Test Programme parachute opening loads and stresses at up to 1.5 times the
predicted design loads were investigated as the canopies were depioyed from a B-57 aircraft flying at 15 km (50 000 ft)
altitude. Finally, in order 10 test the transonic interference effects produced by the large and blunt forebody and to
check the stability characteristics, Moog, Bendura, Timmons and Lau®® report that balloon-launched tests wire
conducted in which a simalated full-scale Viking vehicle attached to a 16 metre {53 f.) nominal diameter parachute
was tested over a Mach number range from 0.47 to 2.18.

From reference 1.9 it is secn that tests in the earth’s atmosphere of the Pioneer-Venus probe vehicle and parachute
occurred in two stages. In the first of these a boinb-shaped test vehicle was dropped from an F-4 aircraft flying at 12
km (40 000 ft) altitude. In the second stage a simulated probe test vehicle with 2 mass of 304 kg (670 1b) together
with its entire parachute system was released from: a balloon at 27.5 km (90 000 ft) and the parachute was deployed
satisfactority.

Tests in the earth’s atmosphere devised to simnlate the Galileo-Jupiter mission are reporied by Corridan, Givens
and Kepley®". Parachute deployment was required at 16.5 km (54 391 ft), a dynamic pressure of 6 000 N/m?
(125 1bf/ft?) and a Mach number of 0.92. At transonic speeds problems were encountered because of poor parachute
performance in the wake of the blunt forebody and some wind wnnel deployment tests were initiated in the NASA
Langley transonic dynamics wind tunnel. In ihese experiments freon 12 used as the test medium and one-quarier and
one-half scale models of the pilot parachute were tested. Since the wind tunnel working section had a cross-sectional
area of 23 m? (248 £%) the blockage area ratios, described in Section 6.6, for these tests were a negligible 0.4% for
the one-quarter scale model and beiween 1% and 3% for the onc-half scale model.
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9.FURTHER AERODYNAMIC RESEARCH INTO PARACHUTES

Knacke!!! has suggested three important miilestones that have occurred in parachute development:

(). Irvin's free-fall parachute jump in April 1919 as a member of Hoffman's U.S, Army tcam. After freefalling
for a short distance Irvin pulled a ripcord and opencd his parachute pack which had no static line
connection between the pack and the aircraft;

(ii). thc work by Madelung's team at the Flugtechnisches Institut, Stuttgart leading to the development of ribbon
parachutes in about 1934. These were necessary in order to increase the stability and reduce the
inflation louds on parachutes required for the in-flight and landing deceleration of aircraft;

(iii). manoeuverable gliding parachutes, These have a complex history of development, achieving designs capable
of contemporary commercial development through Jalbert’s 1961 ram-air design.

Parachute aerodynamics has correspondingly developed from its initial role, that of providing a service to aid the
understanding and extension of full-scale flight trials, conducted on descending parachutes in the atmosphere. Instead,
it has become the means whereby appropriate wind tunnel tests, together with-the analytical prediction of parachute
performance and stability characteristics, can supplement without supplanting these flight trials.

9.1 AERODYNAMIC PROBLEMS IN FULL-SCALE FLIGHT TESTINC

As has been indicated in Section 6.1, the testing of parachutes during free flight in ¢ atmosphere appears to be
the most obvious experimental procedure. However, because the atmospheric eavironment is uncontrollied itcanbe a
difficult medium in which to make acrodynamic measarements which, having been made, can be as difficult to
interpret. Determination of the parachute drag is still a fundamental problem but this is given by equation 2.34 once
the parachute’s rate of descent is known. Near the ground a mean rate of descent can be determined, either crudely by a
timing process or by more sophisticated kinétheodolite methods, but both of these techniques are limited to relatively
{ow altitudes,

Measurcinen« of the manner in which the canopy’s acrodynamic coefficients vary with the angle of attack is
limited by the difficulty in determining this angle in flight. It can only be estimated when the instantaneous direction
of the relative airflow is known with certainty. Since the parachute camopy is bluff the flow around it is strongly
influenced both by its own shape and that of its payload. The only known method of estimating the relative airflow
is from frame-by-frame study of ciné-film records and as these are unlikely to include any means of flow tracing, at
best such a technique can only be a very approximate process.

Much of the parachute’s flight performance and stability analysis must be determined by visual inspection,
supported by photographic recards. Because of this limitation it is necessary to judge the stability or the instability
in pitch of a descending parachute solely in terms of the angle through which the descending parachute oscillates.
During its descent the variation of such an angle can be measured through the use of gyroscopically-controlled
instruments, Although this anyle’s amplitude is of significance if the parachute is unstable in pitch, for a stable
parachute, as has tzen indicated in Section 2.3.2, its amplitude may be as much a function of the local atmospheric
instabilitics as it is of the degree of the parachute’s stability in pitch. The widespread practice of quoting average
angles of oscillation, particularly for stable parachutes, can therefcee be misleading.

Wherever possiblc, canopy inflation tests are bess carrisd out in the atmospheric environment using full-scale
parachutes. Depending on the parachute application, differsnt designs oi’ launchers are used to carry these parachutes
up to their deplovment altitude. As the parachutes deploy the required acrodynamic data is relayed back to the ground
conirol station.

9.2 AERODYNAMIC PROBLEMS IN WIND TUNNEL TESTING

Although the ultimate critzrion of a parachute’s performance is its behaviour in the atmospheric environment, for
a better appreciation of its acrodynamic characteristics it is clearly necessary to supplement performarce data gathered
there with inforination from appropriate wind tunnel tests. In order to perform these tests the difficuities in achieving
geometric similarity between the wind wunnel model and the full-scale prototype parachute canopy, which have been
described in Section 6.3, must be overcome. These include blockage constraints around the bluff parachuie canopy
imposed by the wind tunne! walls and which, Scction 6.6 indicates, necessitate testing in a facility whose working
section cross-sectional area is some twenty times the parachute canopy's projected area. Parachutes required for re-
entey vehicles and for extra-terrestrial applications must be tested in wind tunnels operating at fuli-scale Mach number
and, as has been outlined in Section 8.4, this is pasticularly important for parachutes operating in the transonic Mach
number range.

Although procedures by which canopy inflation loads under finite mass conditions can be deicrmined in wind
tunnels have been outlined in Section 6.4.3.1, they are only appropriate for large scaie wind tunnel models, because
the dimensioaicss inflation force/time signature refationship described in Section 5.3.4 is dependent on the model
shape and the smaller the wind tunncl modc: the more difficult it is 1o model ive shape faithfully. Lee** has
contirmed that when determining inflation loads the shape of the canopy includes its flexibility and that canopy
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flexibility has a marked effect on the values obtained for both the dimensionless opening time and dimensionless
opening force,

The only solution to these wind tunnel problems is to use costly test facilities that will be adequate for the
proposed experimental programme.

9.3 AERODYNAMIC PROBLEMS IN THE ANALYTICAL DETERMINATION OF A
PARACHUTE’S CHARACTERISTICS
Following the work of Rosenhcad™ and of others, as has been described in Section 7.3, a promising start to the
development of a theoretical model capable of representing the continuous vortex sheet which is shed by parachute
canopies has been made. Srickland™'? has made clear that applications of this technique to parachutes are, as yet,
in their infancy. Currently, analytical solutions are sought for:
(i). the steady-state pressure distribution over an imporous canopy at zero angle of aitack;
(ii). the effect of canopy porosity on these last solutions;
(iif).  the stcady-state pressure distribution as the angle of attack is varied, making the canopy asymmetric to the
flow;
(iv). the comresponding pressure distributions when the flow is unsteady;
(v). the effect on these pressure distribution of the canopy shape varying with time, as occurs i the inflation
process; and
(vi). compressibility eftects on all of these solutions.
There would appear to be excellent prospects of achieving such solutions in the not-toe-distant future,

9.4 EFFECTS OF GROWTH IN COMPUTER POWER

The single niost significant factor in the contemporary development of parachute acrodynamics is the growth in
computer power, made readily available through developments in both mainframe and mini-computers. The power
that is now available makes possible the replacement of semi-empirical and strongly experimentally-orientated
methods of analysis. Not only does the computer readily access a vast amount of ¢xperimentat data so that these can
be compared for design optimisation studies but it enables solutions to be made of arrays of non-licear equations
where lirearisation or special-case solutions were all that used to be available. It also demands a new type of
experimental approach, since analysts now require the answers to different kinds of questions. Not only does the
computer make it possible to achieve complete solutions to sophisticated problems, but through its data storage
capabilities and its ability to achieve numerical solutions to differential equations, it can identify the major
indcpendent parameters in any investigation and determine how required dependent parameters vary as a function of any
one of them. As a direct consequence of these computer-based parameter identification and optimisation techniques
industrially-relevant predictive studies are now made.

9.5 REWARDING FIELDS IN CONTEMPORARY EXPERIMENTAL RESEARCH

For much contcmporary wind tunnel research Section 9.2 has indicated that large, high-speed wind tunnels,
available only at national or international ievels, may be necessary. However, other problems can be identified which
are capable of study in more locally-available experimental facilities.

9.5.1 The Aerodynamics of High Performance Gliding Parachutes

Lingard®™ states that the optimum performance for conventional ram-air gliding parachutes occurs at an aspect
ratio of ahout 2:1 when the ratio of lift o drag is about 3:1. By developing a mathematical model for the
acrodynamics of ram-air pazachutes he has identificd the factors which limit this gliding parachute’s performance.

To obtain a higher liit to drag ratio it is first necessary to close the leading edge of the parachute, leaving a single
open ccll on the under surface. This leads to a substantial reduction ia drag but, because the internal pressure of the
wing is then somewhat less than the stagnation pressure, the leading edge of the parachuie will now collapse inwards
and, in order to maintain the inflated shape, it is necessary to sweep the leading edge backwards. Where this has been
done, the resulting swept-wing closed-cell concept for the ram-air gliding parachute develops lift to drag ratios ratios
which exceed 5:1. Ratios of up to 6:1 have been predicted, doubling the glide ratio from the maximum cumently
possible with the contemporary unswept ram-air parachutes.

In experiments conducted in the 7.3 m. (24 ft.) diamcter low-speed wind winnel a2 the Royal Aircraft
Establishment, Famborough, U.K,, lift to drag ratios in excess of 5:1 have been measured on such gliding pazachutes.
Currently, experimental rescarch into high pertormance gliding parachutes js continuing in order to obtain this
performance improvement without impairment of either the parachute’s inflation characteristics or its stability and
controllability.

9.5.2 The Aerodynamics of Rotating Parachutes

An important 2pplicatica for rotating parachutcs which was mentioned in Scction 2.3.4 is to provide a facility by
which submunitions can rotate about one of their body axes dunng their initial deceleration and subsequent steady
descent. Ibrahim'! has described the search pattern which is traced by certain forms of submunition during such a
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descent. Pepper®® shows how these canopics are designed to generate the necessary rotation, a component of the
total acrodynamic force providing the torque which results in the canopy autorotation. He also describes other benefits
which can follow from canopy rotation, these are increased canopy drag and improved stability characteristics in
pitch. For the rotating parachute application which he describes, thut of recovery of high performance re-entry
vehicles, high rates of rotation are desirable and with these the drag coefficient developed on the autorotating parachute
described was some four or five times the value that it would have had if this parachute did not rotate.

Doherr, Milnscher and Saliaris™® defined a rotor quality number Ry, in terms of the canopy drag coefficient Cp
and the rotor coefficient C,

R, = CAC, ©.n
where C = tD, IV 02

and f is the autorotation frequency in revolutions per second, D, is the canopy nominal diameter and Vy its rate
of descent, so that C;= 1/, J being the advance ratio, as normally defined for propellors. The significance of this
rotor quality number has been discussed by Doherr and Synofzik*4, who describe a series o1 wind tunnel experiments
devised to measure Ry, for a rotating guide surface parachute. The methods of performance evaluation which they
describe are recommended for more general application in wind tunnel tests on rotating parachutes.

9.5.3 Experiments to Further the Applicaticn of Vortex Sheet Theories to Parachutes

Writing of the development of vortex shest theories, a quotatior included in the introduction to Section 7 stated:
“It is at this point that we are handicapped by the fact that experimental techniques are, at this moment, lagging
behind the advance of theory”. Given the desire and the facilities to perform these necessary experiments, what facts
need to be discemed from them?

Much of the experimental work performed on parachutes in wind tunnels has been with a view tc determining the
mean values of the acrodynamic coefficients which are developed. Any observation that these coefficicnts might
fluctuate in magnitude has been considered to arise from extraneous factors, such as poor wind tunnel design or the
blockage constraint imposed by the model.

A deeper understanding is now required of the nature of the flow around bluff bodies in general and around
parachute canopies in particular. A fundamental question is: when the canopy is set symmetrically in the flow, what
is the frequency at which it sheds vortices and what determines this frequency? Can it be disassociated from the
stiffness of the sting support? Is it a function of the propertics of the canopy fabric? Is the oscillation in resonance
with a much lower amplitude driving oscillation? Is it eynolds number dependent?

If this flow in the wake is periodic, then are the acrodynamic forces developed on the canopy correspondingly
periodic and if they are, with what amplitude do they vary?

Since the purpose for which this information is required is the construction of a vortex sheet model, what is the
simplest form in which these new physical insights can be expressed?
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10. POSTSCRIPT

Thers continue to be a number of fundamental and challenging problems in parachute aerodynamics, the reasonz
for which are very similar to what they were when W.D.Brown published ‘Parachutes’ ' in 1951, declaring as his
aim that of selecting ‘the principal acrodynamic characteristics of parachutes and the various known factors which
affect these characteristics’. The bluff body of the conventional parachute canopy still possesscss « non-rigid structure
and has a mass which is of the order of mass of the air which it displaces. However, Brown could not have
appreciated how the passage of 35 years would bring such a diversity of parachute application or, accompanying this
diversity, the necessity for a deeper fundamental understanding of physical principles. One of the many benefit of
trying to bring threads together in this AGARDograph has been a much deeper appreciation of the developments
which have occurred in such a short period of time.

Twenty years later, in a review on aerodynamic decelerators written from the Sandia Laboratories at Albuguerque,
Pepper and Maydew'? remarked that Brown had written the only book on parachute technology that was known to
them. At that time extensive ribbon parachute development work was taking place at the Sandia Laboratories,
Although this AGARDograph migh: not have done justice to that particular activity, it does contain more than a

dozen references to significant acrodynamic research performed subsequently by individuals working at the Sandia
Laboratories.

What led to these developments has been both the circumstances and the individuals whose contributions to the
subject have been demanded by these circumstances. Knacke'*! states that *it was World War 11, its forebearings and
its aftermath, that started the widespread application of parachutes for the air drop of wroops and supplies, for the
retardation of ordnance, the in-flight 2nd landing deceleration of aircraft and the recovery of missiles, drones and

spacecraft’ and although Brown wrote with direct experience of that war he could not have fosetold all of this
aftermath.

Brown mentions Heinrich and Knacke, the first of whom he describes as a German technician, who designed
during World War '1 the ‘mushroom’ or ‘beret’ parachute, primusily for dropping heavy bombs and sea mines. He
referred to Knacke as a German scientist who appears to have invented the “Taschengurt”. In this AGARDograph
there are ninc separate refercrices to Heinrich’s work and the contribution made to parachute research and developmant
by the Minncapolis postgraduate school which he established, has been outstanding. Similarly, tarough his research
and teaching. Knacke has made a series of memorable contributions to this subject. Both have been honoured by the
AIAA for the outstanding pans they have played in the development of parachutes.

Over these years the most significant contribution to the dissemination of information on parachute technology
has been the AIAA Asrodynamic Decelerator Conferences, held in the United States every two and a half years. Most
active pusticipants in parachute acrodynamics throughout the world have been present and have contributed to these
Conferences. Pepper «nd Maydew refer 10 the first and second ones, held in 1966 and 1969, Since that time these
conferences have grown in significance. In October 1986 the Sth AIAA Acrodynamic Decelerator and Balioon
Technology Conference took place in Albuquerque, New Mexico.
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