
The AI Systems of Left 4 Dead

Michael Booth, Valve

What is Left 4 Dead?

 Left 4 Dead is a
replayable, cooperative,
survival-horror game
where four Survivors
cooperate to escape
environments swarming
with murderously enraged
“Infected” (ie: zombies)

Left 4 Dead: The Survivor Team

Left 4 Dead: Enraged Infected Mob

Left 4 Dead: The Special Infected

Left 4 Dead: The Boss Infected

Left 4 Dead

Left 4 Dead

Left 4 Dead

Goals of Left 4 Dead AI

 Deliver Robust Behavior Performances

 Provide Competent Human Player Proxies

 Promote Replayability

 Generate Dramatic Game Pacing

Goals of Left 4 Dead AI

Deliver Robust Behavior Performances

 Provide Competent Human Player Proxies

 Promote Replayability

 Generate Dramatic Game Pacing

Goal: Deliver Robust Behavior Performances

 Moving through the Environment

• A* through Navigation Mesh

• Creates jagged path

• How to move fluidly?

Goal: Deliver Robust Behavior Performances

 Path Optimization
• Collapse redundant path

nodes

• Good
• Creates minimal and direct

path

• Bad
• Nontrivial CPU cost at path

build time

• Paths are recomputed
often in the game

• Following path directly
looks robotic

Goal: Deliver Robust Behavior Performances

 Reactive Path Following
• Move towards “look ahead”

point farther down path

• Use local obstacle avoidance

• Good
• (Re)pathing is cheap

• Local avoidance handles small
physics props, other bots,
corners, etc

• Superposes well with mob
flocking behavior

• Resultant motion is fluid

• Bad
• Can avoid off path too much,

requiring repath

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Reactive Path Following

Goal: Deliver Robust Behavior Performances

 Path Optimization vs
Reactive Path Following

• Resultant path is reasonably
close to optimized path

• Reactive Path Following is
used for all actors in Left 4
Dead

Goal: Deliver Robust Behavior Performances

 Reactive Path Following: Climbing

• To ensure the Common Infected horde are always
dangerous, they have the ability to rapidly climb

• Climbing is algorithmic, using a similar technique to local
obstacle avoidance

• Algorithmic climbing solves two major issues

• Navigating the complex geometry of the post apocalyptic world
of Left 4 Dead

• Navigating over movable physics props

Goal: Deliver Robust Behavior Performances

Goal: Deliver Robust Behavior Performances

 Approach

• Bot periodically tests for
obstacles immediately
ahead as it follows its path

Goal: Deliver Robust Behavior Performances

 Find Ceiling

• Once an obstacle has been
detected, another hull trace
determines the available
vertical space above the bot

Goal: Deliver Robust Behavior Performances

 Find Ledge

• The vertical space is then
scanned via a series of hull
traces from lowest to
highest to find the first
unobstructed hull trace

Goal: Deliver Robust Behavior Performances

 Find Ledge Height

• Another hull trace
downward from the
unobstructed trace finds the
precise height of the ledge
to be climbed

Goal: Deliver Robust Behavior Performances

 Find Ledge Forward Edge

• A final series of downward
hull traces that step
backwards determine the
forward edge of the ledge

Goal: Deliver Robust Behavior Performances

 Perform Climb

• Pick closest match
animation from dozens of
motion captured climb
animations of various height
increments

G rr. A rgh.

Goal: Deliver Robust Behavior Performances

 Behaviors and decision making

Goal: Deliver Robust Behavior Performances

 Locomotion
Owns moving the actor to a new
position in the environment (collision
resolution, etc)

 Body
Owns animation state

 Vision
Owns line-of-sight, field of view, and
“am I able to see <X>” queries.
Maintains recognized set of entities.

 Intention
Contains and manages a system of
concurrent Behaviors (HFSM+Stack)

• Behavior
Contains and manages a system of
Actions

• Action
The building blocks of intentional
actions. An Action can contain a child
Action, which executes concurrently.

Actor

Locomotion

Body

V ision

Intention

Behavior

Action

Action

Action

Behavior

Action

Action

Action

Goal: Deliver Robust Behavior Performances

 Encapsulation of Action processing
• OnStart

• Executed when the Action is transtioned into
• Can return an immediate transition

• Update
• Does the “work” of the Action
• Update can return a transition to a new Action

• OnEnd
• Is executed when the Action is transitioned out of

• OnSuspend
• Executed when Action has been put on hold for another Action
• Can return a transition

• OnResume
• Executed when Action resumes after being suspended
• Can return a transition (perhaps Action is no longer valid)

Goal: Deliver Robust Behavior Performances

 Action Transitions
• Continue()

No transition, continue this Action next frame.

• ChangeTo(NextAction, “reason”)
Exit the current Action and transition into NextAction.

• SuspendFor(NextAction, “reason”)
Put the current Action “on hold” (bury it) and enter NextAction.

• Done(“reason”)
This Action is finished. Resume the “buried” Action.

• “reason”
A string documenting the reason why the transition occurred (ie:
“The player I was chasing died”). Reason strings help clarify the
Action system and are invaluable for realtime debug output.

Goal: Deliver Robust Behavior Performances

 Encapsulation of Action Transitions
• Returning ActionResults enforces atomic transitions since no

behavior code can be run between the decision to change to a new
Action and the actual change

• The only way to go from Action A to Action B is for Action A to
return a transition to Action B

• There is no way to force a transition from Action A to Action B
without Action A’s “knowledge”

• Keeps related behavior code encapsulated within the Action

Goal: Deliver Robust Behavior Performances

 Event Propagation

 Events propagate to all
components

 In the Intention subsystem,
events are
• First handled by the

innermost child Action

• If child has no response,
event is sent to buried
Action

• If no buried Actions have a
response, event is sent to
parent

Actor

Locomotion

Body

V ision

Intention

Behavior

Action

Action

A ction

Behavior

Action

Action

A ction

Event: OnInjured

Goal: Deliver Robust Behavior Performances

 Example events
• OnMoveToSuccess, OnMoveToFailure,

OnStuck, OnUnStuck,
OnAnimationActivityComplete,
OnAnimationEvent,
OnContact, OnInjured,
OnKilled, OnOtherKilled,
OnSight, OnLostSight,
OnSound,
OnPickUp, OnDrop

 Actions can implement event handler
methods, providing context-specific
reactions to game events

Goal: Deliver Robust Behavior Performances

 Contextual Query System

 Actions can implement query methods, providing context-
specific answers to questions

 Defines queries that can be asked of the Behavior/Action system
as a “black box”

 Queries propagate from childmost Action outward until an
answer is given, identically to Event propagation

 Allows concurrent Behaviors to coordinate

• ie: We are able to opportunistically able to pick up an object,
should we?

Goal: Deliver Robust Behavior Performances

 Example Queries

• SelectMoreDangerousThreat(me, subject, threat1, threat2)

• Allows bot to find the most dangerous threat to someone else
(ie: an incapacitated player it wants to help)

• ShouldPickUp

• ShouldHurry

• IsHindrance

Goals of Left 4 Dead AI

 Deliver Robust Behavior Performances

 Provide Competent Human Player Proxies

 Promote Replayability

 Generate Dramatic Game Pacing

Goal: Provide Competent Human Player Proxies

 Survivor Bots
• Allowed us to assume 4 player Survivor team for game tuning and balance

• Drop in/out (“Take a Break”) incredibly valuable in the wild

• Automated stress testing with 4 SurvivorBots and accelerated game time

Goal: Provide Competent Human Player Proxies

 Believability/Fairness

• Players need to believe bot
replacements are “fair”

• Imperfect knowledge –
simulated senses

• Simulated aiming

• Reaction times

• Reliable and predictable
decision making

• Difficult issue: Rescuing
incapacitated humans

Goal: Provide Competent Human Player Proxies

 Trust
• Cooperative nature of game

requires close collaboration of
Survivor team and implicit trust
in teammate’s action choices

• SurvivorBots prioritize human
teammates over bots

• Game “cheats” to guarantee
some undesirable events
cannot occur

• SurvivorBots cannot deal
friendly fire damage

• SurvivorBots never use
Molotovs

• If a SurvivorBot ever gets far
out of place for any reason, it
is teleported near the team
when no human is looking at it

Goal: Provide Competent Human Player Proxies

 SurvivorBots exercised complexity encapsulation
• Two concurrent Behavior systems: Main and Legs

• Main: Primary decision making, attention, target
selection and attack

• Legs: Slaved to Main, responsible for staying near
team unless otherwise directed

• Many hierarchical behavior states reacting to
dozens of game events

• Interrupting, resuming

• Complex contextual decision making
• Tank, Witch, Boomer, Smoker, Hunter, Mob rushes,

wandering horde, Survivor teammates, item
scavenging, healing self, healing teammates,
weapon selection, Rescue Closets, incapacitation,
limping, complex 3D terrain, movable physics
obstacles, transient fires, ladders, elevators, in any
combination

• Replicating human performance based on actual
gameplay experience

• Behavior system built to reproduce decisions and
actions players make while playing the game

Goals of Left 4 Dead AI

 Deliver Robust Behavior Performances

 Provide Competent Human Player Proxies

 Promote Replayability

 Generate Dramatic Game Pacing

Goal: Promote Replayability

 Replayability promotes long-term engagement with the game,
resulting in growth of the game’s community

• Growing online community results in ongoing sales

• Creates exposure opportunities for other related content

 Examples: Counter-Strike, Team Fortress, Day of Defeat

• Thriving online communities with ongoing sales revenue

• Comparatively few maps, played repeatedly for years on end

• Unpredictable experience created by interactions between teams of
players drives replayability

Goal: Promote Replayability

 In Left 4 Dead, Procedural Population of enemies
and loot strongly promotes replayability

• Creates unpredictable encounters analogous to CS, TF, DoD

• Game session is viewed as a skill challenge instead of a
memorization exercise

Goal: Promote Replayability

 Static placement of enemies and loot hinders
replayability
• Players are good at memorizing all static locations

• Removes suspense of not knowing what will happen next

• Results in “optimal strategy” that works every time

• Players expect everyone to have memorized all encounters

• Kills cooperation and degenerates into a race

 Even multiple sets of manually placed triggers/scripts
fails
• Players learn all of them, and if they don’t see A, they

prepare for B or C, etc.

Goal: Promote Replayability
Procedurally Populated Environments

 How do we procedurally populate the environment
with interesting distributions of enemies?

• Using Structured Unpredictability

• Part of the collection of systems called the “AI Director”

Goal: Promote Replayability
Procedurally Populated Environments

 First, a short summary of tools used to generate
Structured Unpredictability

• Navigation Mesh

• Flow Distance

• Potential Visibility

• Active Area Set

Goal: Promote Replayability
Procedurally Populated Environments

 The Navigation Mesh
• Represents “walkable space”

• Originally created for Counter-
Strike Bot pathfinding

• Useful for general spatial
reasoning and spatially
localized information

• Has area A ever been seen by
actor B?

• Is area X potentially visible by
area Y?

• Where is a spot near the
Survivors, not visible to any of
them?

• How far have we traveled to
reach this area?

Goal: Promote Replayability
Procedurally Populated Environments

 “Flow Distance”
• Travel distance from the

starting safe room to each
area in the navigation mesh

• Following increasing flow
gradient always takes you to
the exit room

• “Escape Route” = shortest
path from start safe room to
exit

• Used as a metric for
populating enemies and loot,
and for answering questions
such as “is this spot ahead or
behind the Survivor group”

Goal: Promote Replayability
Procedurally Populated Environments

 The Active Area Set (AAS)

• The set of Navigation Areas
surrounding the Survivor team

• The AI Director creates/destroys
population as the AAS moves
through the environment

• Allows for hundreds of enemies
using a small set of reused entities

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

 Potentially Visible Areas

• The set of Navigation Areas
potentially visible to any Survivor

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

 The Active Area Set

Goal: Promote Replayability
Procedurally Populated Environments

 The Active Area Set

Goal: Promote Replayability
Procedurally Populated Environments

 The Active Area Set

Goal: Promote Replayability
Procedurally Populated Environments

 Populating via Structured Unpredictability

• Not purely random, nor deterministically uniform

• Population functions where space and/or time varies based
on designer-defined amount of randomization

• Example: Mob spawns

• Occur at randomized interval between 90 and 180 seconds

• Located at randomized spot “behind” the Survivor team

• Structured Unpredictability = Superposition of several of
these population functions

Goal: Promote Replayability
Procedurally Populated Environments

 Structured Unpredictability in Left 4 Dead
• Wanderers (high frequency)

• Common Infected that wander around in a daze until alerted by a
Survivor

• Mobs (medium frequency)
• A large group (20-30) of enraged Common Infected that periodically

rush the Survivors

• Special Infected (medium frequency)
• Individual Infected with special abilities that harass the Survivor team

• Bosses (low frequency)
• Powerful Infected that force the Survivors to change their strategy

• Weapon Caches (low frequency)
• Collections of more powerful weapons

• Scavenge Items (medium frequency)
• Pipe bombs, Molotovs, Pain Pills, Extra Pistols

Goal: Promote Replayability
Procedurally Populated Environments

 Populating Wandering Infected
• Stored as a simple count (N) in each area

• Counts are randomly determined at map
(re)start based on Escape Route length
and desired density

• When an area enters the AAS
• Create N Infected (if possible)

• When an area leaves the AAS, or a
pending Mob needs more members

• Wanderers in the area are deleted and N is
increased accordingly

• Wanderer count (N) is zeroed:
• When an area becomes visible to any

Survivor

• When the Director is in Relax mode

Goal: Promote Replayability
Procedurally Populated Environments

 Example

• Green areas are entering
the AAS and wanderers are
being spawned

• Red areas are leaving the
AAS, and the Infected
within will be de-spawned

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

 Populating Mobs

• Created at randomized
intervals (90-180 seconds on
Normal difficulty)

• Boomer Vomit forces Mob
spawn, resets random
interval

• Mob size grows from
minimum just after spawn to
maximum after a duration to
balance difficulty of
successive, frequent Mobs

Goal: Promote Replayability
Procedurally Populated Environments

 Populating the Special Infected

• Created at individually randomized intervals

• Use valid area in the AAS not visible by the Survivor team
appropriate to Special’s class

• Boomers spawn ahead, since they are slow and can’t chase well

• Smokers attempt to select areas above the Survivor team

Goal: Promote Replayability
Procedurally Populated Environments

Where to spawn

• Behind Survivors

• Only select valid areas in the AAS
that are at or behind the Survivor
team’s “flow” distance

• 75% of Mobs come from behind,
since wanderers and
Special/Boss Infected are usually
engaged ahead of the team

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

Where to spawn

• Ahead of Survivors

• Only select valid areas in the AAS
that are at or greater than the
Survivor team’s “flow” distance

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

Where to spawn

• Near Boomer Vomit Victim

• Only select valid areas in the AAS
that are near the Boomer Vomit
Victim’s “flow” distance

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

Where to spawn

• Anywhere

• Any valid area in the AAS

• Default if there are no valid
areas in the more specific sets

E NT E R

E X IT

Goal: Promote Replayability
Procedurally Populated Environments

 Boss Population

• Positioned every N units along
“escape route” +/- random
amount at map (re)start.

• Three Boss events are shuffled
and dealt out: Tank, Witch, and
Nothing.

• Successive repeats are not
allowed (ie: Tank, then Tank
again)

Tank Witch TankWitch TankWitch

Goal: Promote Replayability
Procedurally Populated Environments

 Weapon Caches
• Map designer creates several possible weapon

caches in each map, the AI Director chooses
which will actually exist

 Scavenge Items
• Map designer creates many possible item groups

throughout the map, the AI Direction chooses
which groups actually exist

 Why designer-placed?
• Prediction of possible locations beneficial in this

case

• Allows visual storytelling/intention

• Solves item placement issues (leaning against
wall, mounted in gun rack, etc)

Goal: Promote Replayability

 Procedural Content

• Promotes replayability

• Solution for linear, yet replayable multiplayer experiences

• Greatly multiplies output of development team

• Improves community created content

Goals of Left 4 Dead AI

 Deliver Robust Behavior Performances

 Provide Competent Human Player Proxies

 Promote Replayability

Generate Dramatic Game Pacing

Goal: Generate dramatic game pacing

 What do we mean by “dramatic game pacing”?
• Algorithmically adjusting game pacing on the fly to maximize

“drama” (player excitement/intensity)

 Inspired by Observations from Counter-Strike
• Natural pacing of CS is "spiky”, with periods of quiet tension

punctuated by unpredictable moments of intense combat

• Constant, unchanging combat is fatiguing

• Long periods of inactivity are boring

• Unpredictable peaks and valleys of intensity create a powerfully
compelling and replayable experience

• Same scenario, often the same map, yet different and compelling
experience each round

Goal: Generate dramatic game pacing

 Adaptive Dramatic Pacing algorithm

• Creates peaks and valleys of intensity similar to the proven
pacing success of Counter-Strike

• Algorithm:

• Estimate the “emotional intensity” of each Survivor

• Track the max intensity of all 4 Survivors

• If intensity is too high, remove major threats for awhile

• Otherwise, create an interesting population of threats

• Another key system of the “AI Director”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 Estimating the “emotional intensity” of each
Survivor
• Represent Survivor Intensity as a value

• Increase Survivor Intensity
• When injured by the Infected, proportional to

damage taken

• When the player becomes incapacitated

• When player is pulled/pushed off of a ledge
by the Infected

• When nearby Infected dies, inversely
proportional to distance

• Decay Survivor Intensity towards zero over
time

• Do NOT decay Survivor Intensity if there are
Infected actively engaging the Survivor

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 Use Survivor Intensity to modulate the Infected population
• Build Up

• Create full threat population until Survivor Intensity crosses peak
threshold

• Sustain Peak
• Continue full threat population for 3-5 seconds after Survivor

Intensity has peaked
• Ensures minimum “build up” duration.

• Peak Fade
• Switch to minimal threat population (“Relax period”) and monitor

Survivor Intensity until it decays out of peak range
• This state is needed so current combat engagement can play out

without using up entire Relax period. Peak Fade won’t allow the
Relax period to start until a natural break in the action occurs.

• Relax
• Maintain minimal threat population for 30-45 seconds, or until

Survivors have traveled far enough toward the next safe room,
then resume Build Up.

B uild

Up

S us tain

P e ak

P e ak

F ad e

R e lax

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 Full Threat Population (Build Up)
• Wanderers

• Mobs

• Special Infected

 Minimal Threat Population (Relax)
• No Wanderers until team is “calm”

• No Mobs

• No Special Infected (although existing Specials may attack)

 Boss Encounters NOT affected by adaptive pacing
• Overall pacing affected too much if they are missing

• Boss encounters are intended to change up the pacing anyhow

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 An example procedurally generated population

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 How the AI Director modulates the population based
on the Survivor team’s “emotional intensity”

Goal: Generate dramatic game pacing
Adaptive Dramatic Pacing

 Comparing population after modulation by the AI
Director

Goal: Generate dramatic game pacing

 Adaptive Dramatic Pacing reacts to Survivor team

• Generates reliable peaks of intensity without completely
overwhelming the team

• Because of player variation and procedural threat population,
timing and location of peaks will differ
each time the game is played

 Algorithm adjusts pacing, not difficulty

• Amplitude (difficulty) is not changed, frequency (pacing) is

 Simple algorithms can generate compelling pacing schedules

• Survivor Intensity estimation is crude, yet the resulting pacing
works

Future Work

 Just the beginning…

• Expand repertoire of verbs
available to the AI Director

• Explore further procedural
content generation
opportunities

• How to utilize these systems in
other game projects?

For more information…

www.L4D.com

www.valvesoftware.com

mike.booth at valvesoftware dot com

THANK YOU!

