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Abstract. We study numerically the “analyticity breakdown” tran-
sition in 1-dimensional quasi-periodic media. This transition cor-
responds physically to the transition between pinned down and
sliding ground states. Mathematically, it corresponds to the solu-
tions of a functional equation losing their analyticity properties.

We implemented some recent numerical algorithms that are ef-
ficient and backed up by rigorous results so that we can compute
with confidence even close to the breakdown.

We have uncovered several phenomena that we believe deserve
a theoretical explanation: A) The transition happens in a smooth
surface. B) There are scaling relations near breakdown. C) The
scaling near breakdown is very anisotropic. Derivatives in different
directions blow up at different rates.

Similar phenomena seem to happen in other KAM problems.

Quasi-periodic solutions, quasi-crystals, hull functions, KAM theory
[2000] 70K43, 52C23, 37A60, 37J40, 82B20

1. Introduction

In this paper we present detailed numerical results on the analytic-
ity breakdown transition in models of one-dimensional quasi-periodic
media. This analyticity breakdown transition is widely accepted to
correspond to the transition between pinned down and sliding ground
states. Hence, the position of the transition affects the properties of
the material described by the models. For the physical motivation of
the theory see Section 2 and [AA80, vE99].

From the mathematical point of view, the problem is to study the
analyticity properties of the solution of a functional equation depend-
ing on parameters (the function is the hull function parameterizing a
ground state and the functional equation is the expression that the sys-
tem is in equilibrium). It is expected that, for some parameter values,
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the solution is analytic but that, as we move parameters, the domain
of analyticity decreases and eventually disappears. See Section 2 for a
more precise description of the problem.

The phenomenon of analyticity breakdown is very similar to the
widely studied phenomena of breakdown of KAM tori in mechanics.
Indeed, the problem of analyticity breakdown in periodic media is com-
pletely equivalent to the breakdown of KAM circles in two dimensional
twist mappings. In the case of quasi-periodic media considered here,
the problem does not seem to have an easy dynamical representation
and the treatment of the functional equations describing the equilib-
ria for KAM theory is very different from the Hamiltonian counterpart
because, besides the lack of a dynamical interpretation, the system has
an extra frequency. The KAM theory for the equilibrium equation in
quasi-periodic media has been obtained recently in [SdlL12a, SdlL12b].

The KAM theory in [SdlL12a, SdlL12b] is very different from the
regular KAM theory for two reasons: one is that the models do not
admit an easy dynamical interpretation and a second reason is be-
cause the quasi-periodicity of the substratum introduces the an extra
variable. This extra frequency has very drastic effects, which are not
just mathematical artifacts. For instance, there are counterexamples
to some standard predictions of the Aubry-Mather theory which de-
scribes the ground states in periodic media [LS03]. In the periodic
case, when Aubry-Mather theory applies, the analyticity breakdown
transition could be described as saying that the smooth tori break up
into Cantori (see [Per79]). In the case of quasi-periodic media, we are
not sure of what could take the place of the Aubry-Mather theory after
the breakdown of KAM theory. This is a question that deserves further
study, but which we are not considering in this paper.

Nevertheless, we expect that some of the phenomena studied in detail
here, notably the anisotropic regularity at breakdown happen also in
other KAM problems involving two-dimensional functions. Indications
to that effect have already been found qualitatively [Tom96, HS99,
CFL04], but in this paper we can obtain rather quantitative aspects of
the phenomenon.

Since the main goal is to compute accurately functions as close as
possible to their breakdown, it is clear that the numerics are going to
be delicate and that it is very important to have criteria that allows to
be confident that the computed solutions are correct. We note that the
experience shows that close to the breakdown, the truncated equations
admit many spurious solutions that do not correspond to truncations
of true solutions of the equations [vEF02, GvE05].
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In this paper we have implemented the algorithms suggested in [SdlL12a].
The main results of [SdlL12a] are based on a Newton method which is
very efficient (see Section 3.4). If the function is discretized using N
Fourier coefficients, the Algorithm 3.2 gives quadratic convergence but
requires only O(N) storage and O(N log(N)) arithmetic operations.
Note that, even if we obtain the Newton-like quadratic convergence
a step does not require to store (and much less to invert) an N × N
matrix.

Furthermore, the main result of [SdlL12a] is a result in a posteriori
format. It asserts that, if we have a function which solves approxi-
mately the invariance equation (e.g. a numerical solution of the equa-
tion, where the error of truncation and round off is small) and that
satisfy some easy to verify non-degeneracy assumptions corresponds
to a true solution of the problem. Hence, by computing with a trun-
cation, estimating the truncation error by changing the degree of the
truncation and monitoring the non-degeneracy conditions, we may be
reasonably confident that we have obtained a true solution.

Of course, a numerical implementation requires many more details
than a mathematical algorithm and one has to discuss implementation
issues such as data structures used, choice of iteration steps, order of
truncation, etc. These considerations are undertaken in Section 4. The
results are presented in Section 4.1 and the conclusions are presented
in Section 5. We anticipate that the conclusions are A) The breakdown
happens in a smooth surface, B) There are scaling relations. Sobolev
norms of the function blow up as a power of the distance to the critical
surface. C) The breakdown is extremely anisotropic.

Of course, A) and B) have been observed many times in phase transi-
tions and are one of the predictions of renormalization group theory but
C) seems somewhat unexpected. There have been visual observations
indicating that the tori near breakdown look “filamented”. We think
that there are reasons to expect that this phenomena will happen in
other KAM problems involving several variables and we hope to come
to that problem. In this paper, we will just present some numerical
observations in a class of models.

2. The problem of analyticity breakdown

The simplest way to motivate the models studied here is to consider
the problem of deposition of a material over a one-dimensional quasi-
periodic substratum.

If ui represents the position of the ith particle of the deposited mate-
rial, the state of the system is given by the configuration {ui}i∈Z, which
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is sequence giving the position of all the deposited particles. Note that
ui will be a real variable.

The Physics of the problem is obtained by assigning an formal energy
to the configurations [Rue69, Isr79, Mat09]. This formal energy is
obtained as a formal sum of the energies associated to every finite set
of particles. Hopefully, most of the terms will be zero or decrease very
fast with the diameter. Nevertheless, due to the translation invariance
one does not hope that the sum of the energies converges.

The main example considered in this paper will be the quasi-periodic
Frenkel-Kontorova model given by:

(2.1) S({u}i∈Z) =
∑
n∈Z

1

2
(un − un+1)

2 − V̂ (αun)

where V̂ : Td → R and α ∈ Rd is a sufficiently irrational vector.
The term 1

2
(un − un+1)

2 represents the interaction between nearest

neighbors and the term V̂ (αun) represents the interaction with the sub-
stratum at the position un. Note that this function is quasi-periodic as
a reflection of the fact that the substratum is quasi-periodic. The clas-
sical Frenkel-Kontorova model [FK39] considered the case of periodic
potentials with d = 1.

Other physical interpretations of the model are possible, for exam-
ple, the classical [FK39] introduced the Frenkel-Kontorova model to
describe the motion of planar dislocations in a crystal.

2.1. Some standard definitions. Now we recall some standard def-
initions [AA80, ALD83].

A configuration {ui}i∈Z is in equilibrium when

(2.2) ∂uiS({ui}i∈Z) = 0

In the case (2.1), the equilibrium equations (2.2) become:

(2.3) α · ∇V̂ (αui) + ui+1 + ui−1 − 2ui = 0

Note that, even if the sum in (2.1) is a formal sum, the equilibrium
equations (2.3) are very well defined.

A configuration {ui}i∈Z is a ground state when

(2.4) S(u+ η)− S(u) ≥ 0

for all η that vanish at all but a finite number of indices. Note that the
left hand side of (2.4) can be given a good interpretation in the model
(2.1) because the two formal sums only differ in a a finite number of
sites.
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A configuration is given by a hull function when we can find h :
Td → R and ω ∈ R such that

(2.5) un = ωn+ h(nωα).

2.2. Equilibrium equations for hull functions. Formulation of
our problem. Substituting (2.5) into (2.2), we obtain that an equi-
librium configuration is given by a hull function if and only if
(2.6)

h(nωα + ωα) + h(nωα− ωα)− 2h(nωα) + (α · ∇) V̂ (nωα + h(nωα)).

If {nωα}n∈Z is dense on Td (which is well known to happen if and
only if k · ωα /∈ Z for k ∈ Zd − {0}, [KH95]), for a continuous h we
obtain that (2.6) is equivalent to

(2.7) h(θ + ωα) + h(θ − ωα)− 2h(θ) + (α · ∇) V̂ (θ + h(θ)).

Of course, it could well happen that there are discontinuous hull
functions, but we are interested in studying precisely the existence of
continuous – indeed analytic – functions.

Hence, (2.7) will be the centerpiece of our attention. We will fix ωα

satisfying good number theoretical properties, assume that V̂ depends
on parameters and study numerically the set of parameters for which
(2.7) has an analytic solution. We will pay special attention to the
behavior of these solutions near the boundary of existence.

We note that the existence of a continuous solution of (2.7) implies
that there is a continuous family of equilibrium configurations. On can
note that for any σ0 ∈ Td, hσ0 given by

(2.8) hσ0(θ) = h(θ + σ0)

is also a solution of (2.7). Hence, the configuration corresponding to it
according to (2.5) is also an equilibrium configuration. The fact that
we obtain a continuous family of configurations which are equilibria
indicates that there is no energetic impediment to the solutions making
small transitions and sliding. Hence one expects that the solutions can
be modified easily. In contrast, if the set of equilibrium configurations
is discontinuous, there may be an energetic barrier (the Peierls-Nabarro
barrier) to perform jumps from a configuration to the nearest one and
the solutions are pinned down.

Notice that hσ0 corresponds to choosing a different origin of coor-
dinates to the internal phase of the problem. This can be considered
as a gauge symmetry of the problem. The Ward identities associ-
ated to this gauge symmetry play an important role in the study in
[dlL08, CdlL10b, SdlL12a, SdlL12b] and also in our numerical treat-
ment.
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3. Mathematical results

3.1. An overview of the rigorous results. In the periodic case (d =
1), the problem of existence of continuous hull functions satisfying (2.7)
is equivalent to the problem of existence of rotational invariant circles
for a twist mapping [ALD83]. In the periodic case, there are several well
developed mathematical theories which can lead to an understanding
of the problem.

• Kolmogorov-Arnold-Moser (KAM) theory [Mos66, Her83].
• Aubry-Mather theory [ALD83, Mat82, Mos86].
• Renormalization group theory [Mac93, Koc04].

In the periodic case, there are a number of numerical methods to study
the breakdown. The appendix A of [CdlL10b] contains a comparative
summary of the literature and compares the methods.

The KAM theory is perturbative but produces analytic solutions of
(2.7) when the frequency satisfies some number theoretic properties
(called “Diophantine”). Aubry-Mather theory is non-perturbative and
it does not require any number theoretic properties of the function.
On the other hand, the solutions of (2.7) may be discontinuous. The
renormalization theory has as an aim to describe a subset of the bound-
ary of analyticity. It was originally developed based on non-rigorous
arguments supported by very careful numerics [Mac93], but by now
there are quite a number of rigorous results (some of them proved by
computer-assisted proofs).

In the quasi-periodic case considered here, the situation is very differ-
ent. The Aubry-Mather theory seems somewhat problematic due to the
examples in [LS03] (but there are some topological results in [GGP06]).
To the best of our knowledge, there is no renormalization group theory
for general quasi-periodic FK models (see, however [MO00]). There
has been a recent development of a KAM theory in [SdlL12a, SdlL12b]
which will be the basis of our work.

3.2. A posteriori results. The main result of [SdlL12a] is formulated
in an a-posteriori format standard in numerical analysis.

We define the operator T acting on hull functions by:

(3.1) T [h](θ) ≡ h(θ + ωα) + h(θ − ωα)− 2h(θ) + (α · ∇) V̂ (θ + h(θ))

So that (2.7), the equilibrium equation for hull functions can be con-
cisely expressed as

(3.2) T [h] = 0
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The main result of [SdlL12a] says (omitting some mathematical as-
sumptions on regularity, definition of norms and number theoretic prop-
erties of ωα) that if we can find a function that satisfies approximately
the equation (in some norm) and satisfies some non-degeneracy condi-
tions, we can find a true solution and bound the distance from the true
solution to the original guess (measured in another norm) by a constant
times the size of the residual of the initial approximate solution.

Prototype Theorem 3.1. Assume that we can find a function h0 :
Td → R. such that

||T [h0]||1 ≤ ε

M1(h0) ≤ A1, . . . ,Mm(h0) ≤ Am

then, if

ε ≤ ε∗(A1, . . . , Am)

there exists a true solution h∗ of T (h∗) = 0. and

||h∗ − h0||2 ≤ K(A1, · · · , Am)ε

Furthermore, the solution is the only solution (up to the gauge trans-
formations associated to the change of origin in (2.8))

In the above, M1, . . . ,Mm are rather explicit condition numbers.
and ε∗ is also an explicit function. Note that, as customary in KAM
theory, there may be a loss of regularity and that the norm in which we
measure the error may be different than the norm in which we reach
the conclusions. In [SdlL12a], one can find results where the norms
|| · ||1, || · ||2 are norms in spaces of analytic functions and also results
for Sobolev norms.

In applications, the approximate solution will be the product of a
numerical calculation. It is important that in view of the above result,
that to be confident that the approximate solution corresponds to a
true solution, we do not need to study the algorithm used to produce
it. We just need to verify that the condition numbers are reasonable
and that the numerical error is small compared to them.

As we will see, the method of proof in [SdlL12a] is based on a rapidly
convergent iterative method which is explicitly described. This method
leads to an efficient algorithm (See Section 3.4, which we have imple-
mented in Section 4 and which is the basis of our results. It is also
important that the method leads to a numerically accesible criteria for
breakdown, which we discuss in Section 3.3.
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3.3. A numerically accessible criterion for breakdown of an-
alyticity. In [CdlL10b], it was shown in great generality that, when
one has an a posteriori result of the form Prototype 3.1 working for
Sobolev and analytic spaces, one can get several results automatically.

Bootstrap of regularity All the solutions which are in a Sobolev
space of order r ≥ r0 are analytic.

The critical value r0 depends only on the number theoretic properties
of ωα.

Criterion for breakdown of analyticity If we consider a family
depending on parameters, and obtain a family of approximate solutions
with bounded non-degeneracy conditions, the parameters approach the
boundary if and only if Sobolev norms of high enough order go to
infinity.

Hence, it is clear how one should proceed. Implement the algorithm
described in Section 3.4, run it monitoring the condition numbers (so
that we are sure that we are not considering any spurious solutions)
and the Sobolev norms. If the Sobolev norms blow up dramatically
and nothing else happens, we are approaching the breakdown. Since
the algorithm gives the Fourier coefficients of the hull function, the
computation of the Sobolev norm is rather straightforward.

It is important to note that this criterion does not require a dynam-
ical interpretation and in [CdlL09, CdlL10b] one can find a study of
systems with long-range interaction for which there is no dynamical
interpretation. The paper [CdlL10b] contains a comparison with other
methods.

The above criterion for blow up has been implemented several times.
For twist mappings it has been implemented in [CdlL09, CdlL10a,
FM12]. For dissipative systems it has been implemented in [CC10,
CF12].

3.4. An efficient algorithm for a Newton method. The proof of
[SdlL12a] is based on a Newton-like method that given an approximate
solution produces a much more accurate one. The error after the cor-
rection is, roughly, the square of the error before the correction, but
there is a loss of regularity. It is well known in the Nash-Moser hard
implicit function theorems that these methods still lead to convergence.

The algorithm in [SdlL12a], which we detail below, is obtained taking
advantage of several identities satisfied by (2.7) that come from its
variational character and the gauge symmetry (2.8).

These identities reduce the Newton step to a sequence of elementary
operations on functions (composing, taking derivatives, multiplying,
solving difference equations with constant coefficients). A remarkable
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feature is that all of these operations are diagonal either in a discretiza-
tion in Fourier terms or in a discretization based on points on a grid. Of
course, the Fast Fourier Transform allows to pass from one discretiza-
tion to another in a easy way.

The upshot is that if we discretize the function h in terms of N
Fourier coefficients and the values at N points in a grid, a Newton-like
step requires O(N) storage and O(N log(N) operations.

In practice, the constants in front of the asymptotics are moderate,
since there are very optimized implementations of FFT for almost any
architecture. As we will see, it is quite possible to use N ≈ 105 in a
common desktop.

For the sake of completeness, we include verbatim the algorithm from
[SdlL12a].

The algorithm of [SdlL12a] is actually slightly more general instead
of (3.2) it consideres the equation

(3.3) T [h] + λ = 0

where λ ∈ R, and both h and λ are the unknowns.
The equation (3.3) allows to consider also also forces that do not

come from a potential. Nevertheless, it is shown in [SdlL12a] that
when the forces come from a potential, any solution of (3.3) satisfies
λ = 0 and, hence gives a solution of (3.2).

As we will see, the algorithm consists of steps which are all elemen-
tary manipulations of functions (derivatives, multiplications, compo-
sitions) as well as solving the so called cohomology equations. That
is, given b(θ) periodic of period 1 and with

∫
b(θ) dθ = 0, find W also

periodic with period 1 and with average 0 such that

(3.4) W −W ◦ Tσ = b

where Tσ(θ) = θ + σ.
Note that (3.4) can be solved very efficietly using Fourier coefficients

and that it is equivalent to the equation for Fourier coefficients

Ŵk(1− e2πik·σ) = b̂k

The factor in parenthesis in the LHS vanishes for k = 0, and the
equation for k = 0 is overdetermined. It does not have a solution if
b̂0 6= 0, but if b̂0 = 0 any Ŵ0 is a solution, we choose the solution with
Ŵ0 = 0. If ω is irrational, the term in parenthesis does not vanish
for k 6= 0 and, if it is Diophantine, we have lower bounds for it that
lead to estimates for the solutions of the cohomology equation [Rüs75,
Rüs76]. These estimates are used in [SdlL12a] to prove convergence of
the algorithm, but in this paper, we will not discuss estimates.
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Algorithm 3.2. Given h : Td → R, λ ∈ R with h(θ) =
∑

k∈Zd ĥke
2πikθ

and h̃(t) = h(αt) for t ∈ R and any irrational vector α ∈ Rd, we will
perform the following calculations (where 〈·〉 denotes the average)

1) Let L = h̃(t+ ω) + h̃(t− ω)− 2h̃(t).

In Fourier components L̂k = 2(cosωα · k − 1)ĥk.

2) We calculate Û ≡ V̂ (θ + h(θ).

3) Calculate e = L + Û + λ ≡ T [h]

4) Calculate l̂ = 1 + ∂αĥ.

In Fourier components l̂k = δk,0 + 2πi(k · α)ĥk.

5) Let f = l̂ · e.
6) Choose δ = −f0.
7) Denote b = l̂ · (e+ δ).

8) Solve the cohomology equation (3.4) for Ŵ 0 with zero average.

That is, Ŵ 0
k = bk

2(cosωα·k−1) .

9) Take
¯̂
W = −

〈
Ŵ0

l̂·l̂◦T−ωα

〉
〈

1

l̂·l̂◦T−ωα

〉 .
10) Calculate Ŵ = Ŵ 0 +

¯̂
W .

11) Solve the cohomology equation for ∆̃. That is, ∆̃k = ak
2(cosωα·k−1)

where a = Ŵ

l̂·l̂◦T−ωα
.

12) We obtain ∆̂ = ∆̃ · l̂.
13) The new improved solution is h+ ∆, λ+ δ.

4. Numerical Implementation

The most computationally expensive steps in Algorithm 3.2 are di-
agonal in either real space or in frequency space, so we use the Fast
Fourier Transform multiple times in each application of the Newton
step. We use Matlab, and typically 218 Fourier modes, so a discretiza-
tion for h is a 512×512 complex-double. All non-degeneracy conditions
are satisfied if the norm of the error is small enough, so we monitor the
error throughout.

To implement the algorithm, we compute the error of an initial guess,
then perform the Newton step to improve the guess, and then compute
the new error for the improvement. If the new error is not below a
threshold, the Newton step is performed again and the process repeats.
If the new error is below the threshold, we conclude a torus exists
nearby and we increase the parameter values. If the Newton step fails
to bring the error below the threshold (after some number of attempts)
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or if the error increases, we end the program and start again with a
better initial guess.

We explore the parameter space along rays at a fixed angle θ by
starting at (ε1, ε2) = (0, 0), and increasing (ε1, ε2) → (ε1 + ∆ε, ε2 +
∆ε tan θ). We use the most recently computed invariant torus as our
initial guess (possibly scaled a bit) at the next parameter value. If the
Newton step cannot bring the error low enough after a certain number
of iterations, we take data from the last point of convergence, and try
again but with a close parameter value. For example, if the program
converged with (ε1, ε2) and we take the step ε1 → ε1 + ∆ε1, ε2 →
ε2 + ∆ε2, at which point the program fails, then we try again with
ε1 → ε1 + 1

2
∆ε1, ε2 → ε2 + 1

2
∆ε2. If the program fails to converge, and

we have taken a very small step in parameter space, then we terminate
the program and consider the lack of convergence as an indication that
the boundary of analyticity is very close.

The Newton step itself can bring in errors. The FFT is used exten-
sively, and occasionally a mode ĥk with small modulus will appear from
computer error, which can be amplified as the iterations continue. This
can lead to problems with convergence due to artificially large Sobolev
norms. We have found it necessary to monitor the appearance of false
modes and to eliminated them. We implement a method that sets to
zero all modes whose amplitude is below a certain threshold: they are
deemed to be numerical errors and are set to zero so no amplification
is possible. This slows the convergence of the Newton method, but
allows us to compute tori much closer to the boundary of analyticity.
This is a delicate process; if done poorly, it can cause the Newton step
to return the zero function, and thus fail to find an improvement. We
use a cut-off threshold that is allowed to vary.

When implementing the algorithm, we can only consider a finite
number of Fourier modes, which can lead to “spurious” solutions. That
is, solutions of the discretized problem that do not correspond to so-
lutions of the original problem. For example, when we are looking for
a solution to T [h] = 0, and we replace this with a discretized problem
TN [h] = 0 using N Fourier modes, we need to ensure the discretized
solution hN satisfying TN [hN ] = 0 will also satisfy T [hN ] ≈ 0. To avoid
computing discrete solutions hN that satisfy TN [hN ] = 0 but do not
satisfy T [hN ] ≈ 0, we compute the error of hN on a finer grid. That is,
check if T2N [hN ] ≈ 0.
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We will consider two different models, whose potentials are given by

V1(φ1, φ2) = − ε1
2π

cos(2πφ1)−
ε2
2π

cos(2πφ2),

(4.1)

V2(φ1, φ2) = − ε1
4π

cos(4πφ1 + 4πφ2)−
ε2
2π

(cos(2πφ1) + cos(2πφ2)) .

(4.2)

4.1. Results for Models (4.1) and (4.2). The results we present are
for the values

(4.3) ω = 1, α = (1.246979603717467, 2.801937735804838).

These numbers are roots of cubic polynomials (x3− 4x2 + 3x+ 1, x3 +
x2 − 2x− 1), but we found similar results for other numbers.

For a fixed rotation, we use the algorithm to explore rays in param-
eter space (ε1, ε2). In Figure 1 we plot the domains of analyticity for
Models (4.1) and (4.2), that is, values of (ε1, ε2) where the algorithm
converged. The boundary of the domains of analyticity for each model
appear to be smooth curves (at least locally). For Model (4.1) the
domain appears to have reflection symmetries over both the ε1 and ε2
axes. Model (4.2) appears to only have reflection symmetry over the
ε1 axis.

Figure 2 shows an invariant torus (from Model (4.1)) for parameter
values near the breakdown of analyticity (2a and 2b are two different
views of this torus). One can see that the torus oscillates rapidly in a
single direction (this is the direction ωα). This “filamented” appear-
ance indicates an anisotropic breakdown: the derivatives of h blow up
faster in the direction ωα than they do in the direction ωα⊥. Figure 3
shows two curves that lie on the surface depicted in Figure 2. These
curves are obtained by cutting the surface in Figure 2 along the di-
rections ωα and ωα⊥. Along, ωα, we see fast oscillations (left graph)
compared to the cut along ωα⊥ (right graph). (A more quantitative
description of the anisotropic breakdown is given in Figure 5, described
below.)

In Figure 4 we have depicted the indices k for which the correspond-
ing Fourier mode ĥk of the torus in Figure 2 is far from zero. We
observe that the support of the Fourier transform is clustered along a
line in Fourier space.

That means that the function h can be aproximated by a function

h(θ1, θ2) =
∑
k∈Z

ĥk,βke
2πikθ1+βkθ2 = H(θ1 + βθ2)
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(a) Domain of analyticity for Model (4.1).

(b) Domain of analyticity for Model (4.2).

Figure 1. Values of (ε1, ε2) where the models have an-
alytic invariant tori.
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(a) Torus near breakdown for Model (4.1).

(b) Rotated view of the torus.

Figure 2. Two views of a torus near breakdown for
Model (4.1). Ridges appear as though h has a frequency
close to ωα.

which also lends credence to the belief that the result near breakdown
is basically a one dimensional function.

Notice that, once we know that the final result is essentially a one
dimensional function, it should be possible to perform linear changes
of the θ variables so that this line is approximately parallel to one of
the coordinate axis. Then, it would be more efficient to choose more
Fourier modes along this direction. Of course, since our goal was to
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Figure 3. Left plot is of a cut along the direction ωα
of the torus from Fig. 2. The right plot is a surface cut
along the direction ωα⊥. The torus is much smoother
along the ωα⊥ direction.

illustrate the appearence of this linear structure, we decided to use
general algorithms that do not take advantage of its presence.

In Figure 5, we plot a log-log scale of the Hr
‖ -norms and Hr

⊥-norms

(for r = 4, 5) versus ε1,crit − ε1, where ε1,crit is the critical value of ε1
along the line ε2 = tan

(
π
3

)
ε1. We see that the Hr

‖ -norms blow up much
faster than the Hr

⊥-norms, exhibiting the anisotropic breakdown.
In Figure 6a, we plot ‖h‖r,‖ against ‖h‖8,‖, and ‖h‖r,⊥ against ‖h‖8,⊥

for r = 9, 10 on log-log scales. As the parameters (ε1, ε2) approach crit-
ical values, the log-log scale behavior is linear. (The Hr-norm behaves
like the Hr

‖ -norm because of the anisotropic behavior.)

The blow-up behavior seen in Figure 5 fits a power-law form ‖h‖r,‖ ≈
C(εcrit− ε)p(r), with exponent p depending on the order of the Sobolev
norm. Computing the exponent for different values of r, we find a
nearly linear dependence on r. In Figure 6b we plot the blow-up ex-
ponent for values r = 1, 1.5, 2, . . . , 10 as computed along two different
lines in parameter space for Model (4.1). The blow-up exponent is
p(r) = −β‖r + γ‖ for some constants β‖, γ‖. The fit-line in the left
plot has β‖ ≈ 0.34 and γ‖ ≈ 0.41, while in right plot β‖ ≈ 0.33 and
γ‖ ≈ 0.26. With higher-accuracy numerics, we expect to have similar
plots for the Hr

⊥-norms, too. These subdominant norms are measured
with lower accuracy and more susceptible to noise in the numerics. We
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can see that they blow up like a power as (ε1, ε2) approach the bound-
ary of analyticity (Figure 5), but measuring the exponents as functions
of the regularity will require more powerful numerics.

5. Conclusions

We have studied numerically the problem of breakdown of analyticity
of hull functions in quasi-periodic media. This transition corresponds to
the physical effect of transition between pinned down or sliding ground
states.

Our computation has been carried out by efficient algorithms backed
up by a-posteriori theorems that allow to compute confidently ex-
tremely close to the break up. We have uncovered certain regularities
that, following the style of [Gre79], we call Assertions.

Assertion I The boundary of the domain of analyticity is a smooth
curve (at least locally in the region explored).

Note that, following [AA80] this is analogous to what happens in
phase transitions, where the phase transitions – which also correspond
to a breakdown of analyticity – happen often in smooth surfaces (Gibbs
rule) [Isr79]. The fact that the transitions happen locally in a smooth
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manifolds is one of the predictions of the renormalization group because
they are the stable manifolds of a fixed point.

Of course, it can well happen that there are regions where the phase
transition has cusps or other singularities, but we have not encoun-
tered them. It is, of course, quite conceivable that a more detailed
exploration will uncover these singularities. As a cautionary tail, we
mention that the paper [CdlL10b] uncovered singularities in the case
of twist mappings that appeared only when a very large range of pa-
rameters was explored. The singularities are an indication that the
renormalization group dynamics may have a more complicated behav-
ior. Note that the apparent cusps found in Figure 1 near the coordinate
axis are not real singularities. The potential has symmetries that the
reflections along axis with the change in the origin.

Assertion II There are scaling behaviors near the blow up
We have seen that near the blow up we have

||hε||r ≈ C|ε− εc|−βr+γ

where β (and perhaps γ too) is a universal number.
Actually, we have found a more precise version of scalings in each

direction.
Assertion III The blow up of the norms is very anisotropic
If we define

||h||r,|| = ||(ωα · ∇)rh||L2

||h||r,⊥ = ||(ωα⊥ · ∇)rh||L2

we have near the breakdown

||hε||r,|| ≈ C||ε− εc|−β||r+γ|| .
Moreover, when ε→ εc, we have:

||hε||r,⊥/||hε||r,|| → 0.

Note that, as a particular case of the assertion, the tori remain some-
what regular up to the breakdown along lines.

Remark 5.1. We think that it is also possible that there are scaling
relations

||hε||r,⊥ ≈ C||ε− εc|−β⊥+γ⊥
with smaller exponents than those for the parallel norm. Unfortu-
nately, verifying the above scaling relations is beyond reach at the mo-
ment. The fact that the asymptotic expansion is subdominant makes it
harder to compute numerically (the calculations are contaminated by
the larger effect) and also one can expect that this effect will manifest
itself only much closer to breakdown.
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(a) Log-log plots of ‖h‖r,‖ and ‖h‖r,⊥ vs. ε1,crit − ε1 for r = 4, 5.
Model (4.1).
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(b) Log-log plots of ‖h‖r,‖, ‖h‖r,⊥ vs. ε1,crit− ε1 for r = 4, 5. Model
(4.2).

Figure 5. ‖h‖r,‖ and ‖h‖r,⊥ blow up at different rates as

(ε1, ε2) increase along the line ε2 = tan
(
π
5

)
ε1 for Model

(4.1). 5a shows blow-up behavior for Model (4.1), and 5b
shows blow-up behavior for Model (4.2). The Hr

‖ -norms
blow up much faster than the Hr

⊥-norms.
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(a) Log-log plots of ‖h‖r,‖ vs. ‖h‖8,‖ and ‖h‖r,⊥ vs. ‖h‖8,⊥ for
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(b) Blow-up exponents for ‖h‖r,‖ vs. r.

Figure 6. 6a shows log-log plots of Hr
‖ vs H8

‖ and Hr
⊥ vs

H8
⊥ for r = 9, 10. (All plots in this figure come from tori

for Model (4.1)). 6b shows the relationship between the
blow-up exponent of ‖h‖r,‖ as a function of r as (ε1, ε2)

move along the rays ε2 = tan
(
π
5

)
ε1 and ε2 = tan

(
π
3

)
ε1.

We see that ‖h‖r,‖ ≈ c(εc − ε)−β‖r+γ‖ .


