
The Assessment of potential and promotion of new generation of renewable technologies -Geothermal Energy

Ruggero Bertani Enel Green Power Geothermal Business Development Vice President EGEC

Bruxelles, 22nd March 2011

Global Resources Availability and EGP presence

European Geothermal Energy Council

< Enel

Power

THE VOICE OF THE GEOTHERMAL SECTOR IN EUROPE

EGEC, the European Geothermal Energy Council, was founded in 1998 as an international non-profit association in Brussels. Its office is based nearby the European Institutions.

- E EGEC has now members nom 20 unterent European country
- EGEC is a member of EREC, the European Renewable Energy Council, which groups together all main European renewable energy industry and research associations under one roof, in the Renewable Energy House.

EGEC is also a member of the International Geothermal Association (IGA).

OBJECTIVES

The aims of our organisation are to promote the use of geothermal energy, as follows :

- Promote the market deployment of geothermal energy in Europe and the export of European geothermal technology, services and equipment to other parts of the world.
- By exercising appropriate actions among European institutions to implement a legal and institutional framework and fiscal instruments allowing geothermal sources to compete with conventional energy systems, and to secure economic support in consideration of the environmental benefits.
- By encouraging R&D in the field of geothermal utilisation of the existing resources in Europe and allowing the public at large to access to the R&D results and maximise the utilisation of this renewable energy.
- By representing the interests of the European geothermal energy industry and users to governments and international organisations, with a view to improving business conditions for the industry.
- By co-operating with national geothermal associations, and in particular with the International Geothermal Association (IGA) and its European branch, and with any other asso-

Contact details of EGEC

EUROPEAN GEOTHERMAL ENERGY COUNCIL Renewable Energy House Rue d'Arlon 63-67 * 1040 Brussels * Belgium T: + 32 2 400 10 24 F: + 32 2 400 10 10 E: Info@egec.org I: www.egec.org clations promoting research and application of renewable energy sources, in order to join forces to achieve successful development and implementation in the field of geothermal energy use throughout Europe, and to foster Inter-European cooperation.

- By disseminating, through publications, meetings, discussions or any other activity, the use of geothermal energy, as well as its marketing, and to forward information on products and services to authorities, industry, and the public at large.
- By publicising, at European level, the opinions of researchers, engineers, managers, and any other commentators or proponents on the use of geothermal energy, and bringing them to the attention of governments, national and international organisations, decision makers, and the public at large.

Contact details of EREC

EGC, IGA

ells:

EUROPEAN RENEWABLE ENERGY COUNCIL EREC Renewable Energy House Rue d'Arlon 63-67 • B-1040 Brussels • Belgium T: +32 2 546 1933 F: +32 2 546 1934 E: erec@erec.org I: www.erec.org

GEOTHERMAL ENERGY:

from the earth, a renewable energy resource delivering heat and power 24 hours a day throughout the year, an energy resource nearly infinite and available all over the world.

European Geothermal Power Market Vision 2050 – EU27

EU27 - Geothermal Power Installed Capacity (2007-2050)

Geothermal Electricity (MW)	2007	2010	2020	2030	2050	
Electricity Conventional	815	920	1,200	2,000	2,500	Based on existing technologies
Electricity Low Temperature	15	70	300	5,000	7,500	
Electricity EGS	-	10	4,500	15,000	90,000	EGS still at very early stage of development
Total Installed Capacity	830	990- 1,000	1,500- 6,000	7,000- 21,000	10,000- 100,000	
Yearly Electricity Production (TWh)	6.5	8.0	50.0	234	780	

Source: EGEC data in RE-thinking 2050, April 2010.

Note: At the end of 2010 10MW EGS pilot plants will be operating (of which: 1.5MW in France, expected to be upgraded to 5MW by year-end and 3MW in Germany). In order to achieve the forecasted installed capacity, EGS commercial plants are expected to have an average capacity of 25-50 MW each.

European Geothermal Power Market Breakdown by Key Markets - 2020

EU27 Markets				
Installed Capacity (MW)	2009	E 2015	High / Low Inthalpy in the Country	
Italy	843	923	High / Low	
Portugal	23	60	High	
Spain	-	40	Low	
Greece	-	30	Low *	
France	17	35	High	
Germany	7	15	Low	
UK	-	-	Low	
Austria	1	5	Low	
Czech Republic	-	5	Low	
Hungary	-	5	Low	
Romania	-	5	Low	
Slovakia	-	5	Low	
Netherland	-	5	Low	
Latvia	-	-	Low	
Poland	-	1	Low	
Total	891	1.134		

Other European Markets				
Installed Capacity (MW)	2009	2015	High / Low Enthalpy in the Country	
Iceland	573	800	High	
Turkey	87	206	High / Low	
Russia	82	194	High	
Total	742	1.200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

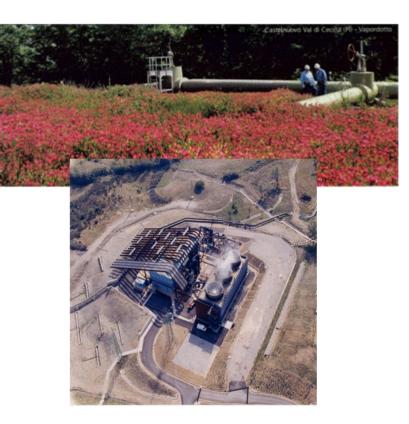
Industry development plan in Europe should be in both traditional high temperature resources and binary projects

*Sources: IGA, EGP estimates, ABS The Geothermal Energy Report, EER. * High enthalpy is available in Greece, but public opposition is blocking every commercial initiative in this technology.*

European Geothermal Power Market Key Barriers and Actions Needed

Barrier	Description	Actions Needed
Resource	 Geothermal resource availability Well productivity & field capacity Presence of earthquakes-volcanic activity near the resource 	 R&D activity: technology improvements to identify the resource and to exploit geothermal resources at different temperatures Coordination of activities to share exploration results (i.e. public databases providing location of resources)
Environment	 Regulation for construction and operations Air emissions & noise pollution Visual impact 	 Coordination of activities to address permitting issues Technological solutions (i.e. Enel development of AMIS technology) Architecture solutions
Project economics	High initial investment costsHigh O&M costsFinancial support and incentives	 Coordination at EU, national and regional levels to support and regulate the sector, providing visibility Support bank financing
Social	 Misleading information Lack of knowledge Local hostile institutions / environmental associations 	 Creation of consensus through information and communication Improvement of the relationship with communities
Demand	 Trend of energy demand Competition from other renewable sources 	 Planning of geothermal projects with grid access Support to distributed generation/smart grids





EGP in Italy

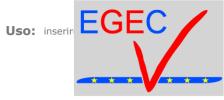
To reduce environmental impacts

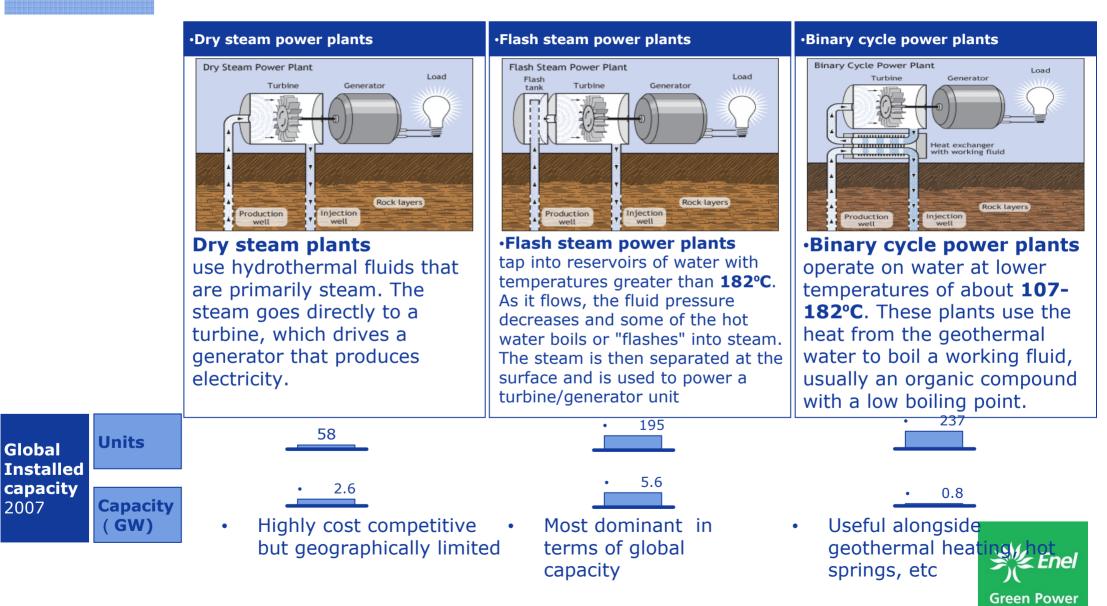
- Innovative AMIS[®] technology to decrease H_2S and Hg emissions
- Environmental plans: 30 M€ invested in land recovery
- New architecture solutions to create consensus and avoid negative visual impact

To increase social acceptance

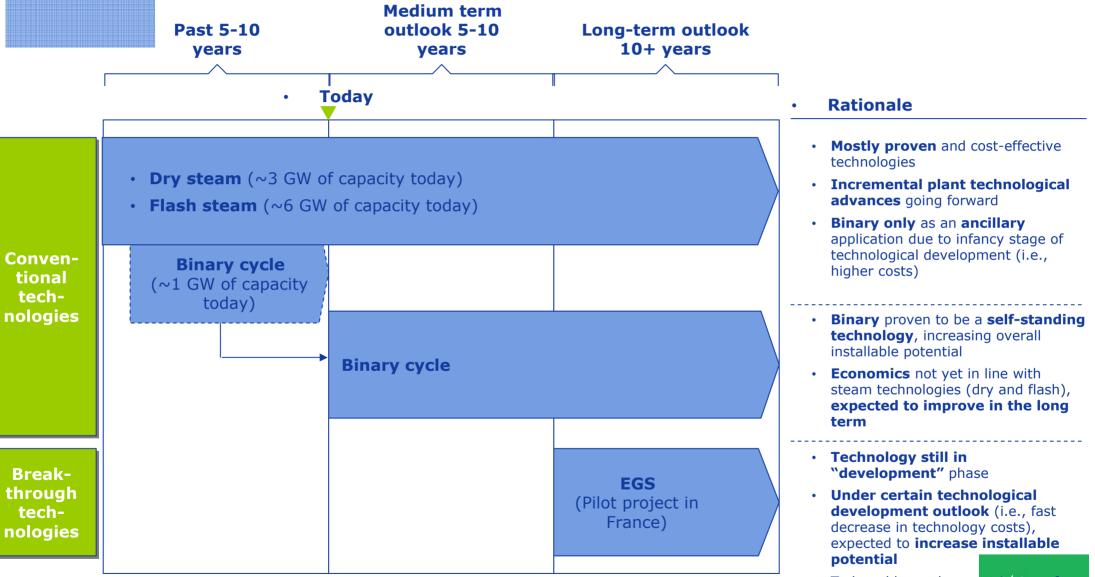
- Improved communication to local communities (ISO 14001 certification for each power plant, technical data on air and water quality, etc.)
- Diffusion of knowledge on geothermal technology (i.e. cooperation with schools)
- Improved cooperation with the regional Authority to achieve an agreement in terms of environmental standards

Classification of Geothermal System

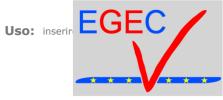

Wet	Dry•
 Conventional hydrothermal systems or heat exchange 	•Heat exchange
• Description: Hot shallow reservoirs are used for generation of electricity in a conventional geothermal system	 Description: Heat pumps are used to transfer heat between the surface and subterranean levels
 Cold shallow reservoirs are used for heat exchange, cooling buildings in summer and heating in winter 	 Methods include horizontal loops, borehole heat exchanges, and energy piles
• Uses: Electricity generation and heat	• Uses: Heat exchange
•Conventional Hydrothermal systems	•Enhanced geothermal systems
 Description: Super heated ground water is released through geothermal wells and is transformed into steam to generate electricity as it travels toward the surface Uses: Electricity generation 	 Description: Hot dry rock reservoirs are developed by injecting high pressure water into a stressed zone, causing it to fracture. Heat is transferred to the water, used for generation and re-injected into the reservoir, forming a closed-loop system Uses: Electricity generation
	 are used for generation of electricity in a conventional geothermal system Cold shallow reservoirs are used for heat exchange, cooling buildings in summer and heating in winter Uses: Electricity generation and heat Conventional Hydrothermal systems Description: Super heated ground water is released through geothermal wells and is transformed into steam to generate electricity as it travels toward


-Shallow reservoirs

Sreen Power


Classification of Geothermal Plants

Global

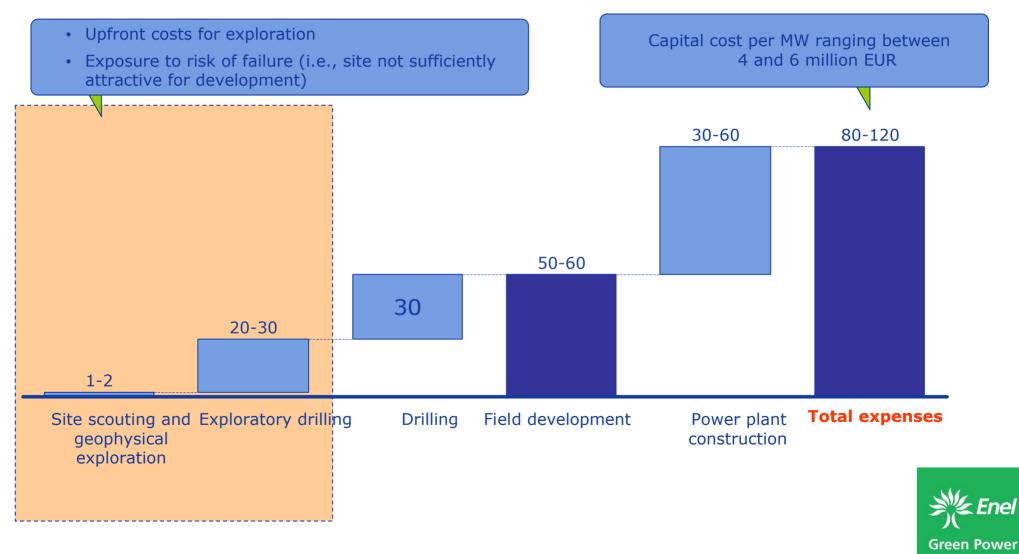


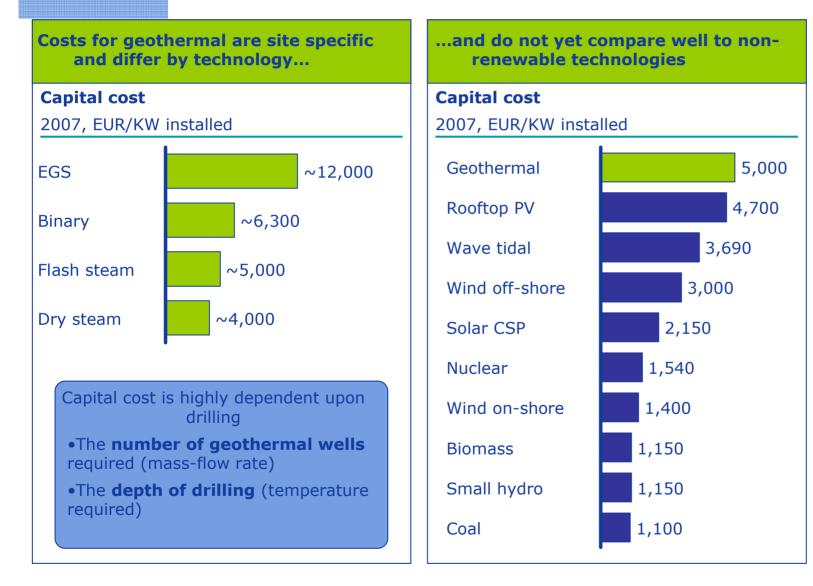
Geothermal Forecasting

 To be addressed current issues of seismic complications and people replicability across sites

Green Power

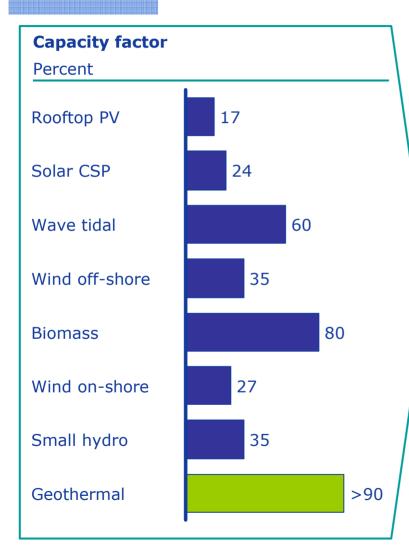
MAIN GOVERNING FACTORS

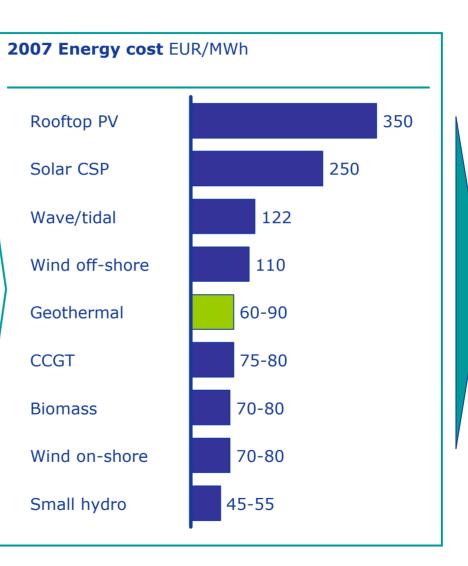

- •Nature of the Project (greenfield vs. expansion)
- •Size of the project (economy of scale)


•Rock and Resources characteristics (site accessibility, depth, permeability, volume of reservoir, temperature, well productivity, water table level, chemical and gas contents, fluid pressure, thermodynamical fluid characteristics)

- Permitting and Environmental constraints
- •Grid access
- •Cooling system: water vs. air
- •Scaling, corrosion, H_2S abatement system , non-condensable gas

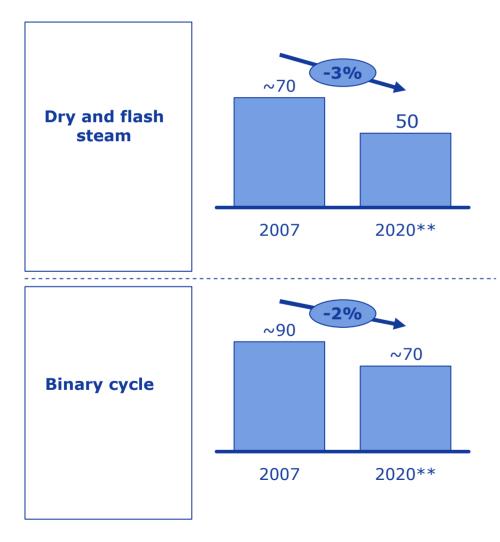
EUR million, based on a 20 MW plant


Geothermal generation capital costs


•Are large and highly dependent upon the specific site and technology

•Require a greater investment than all other renewable and conventional technologies

13



Among the renewable, geothermal energy is best suited for base load capacity, having

High capacity factors
Low full generation costs

LCOE, EUR/MWh

Assumptions

- Reduction in drilling and exploration costs of 25% (improvement beneficial to all geothermal technologies)
- Incremental decrease in plant construction cost of ~1.3% p.a. (driven by 10% historical learning effect and demand evolution from current ~10 GW to ~30 GW by 2020) driving CAPEX
 - » From ~5 million to 4 million/MW for flash steam technology
 - » From 6 million to ~5 million/MW for binary cycle technology
- Higher **plant availability** from 6/7000 hours of utilization to 8,400 hours

Geothermal and other Renewables

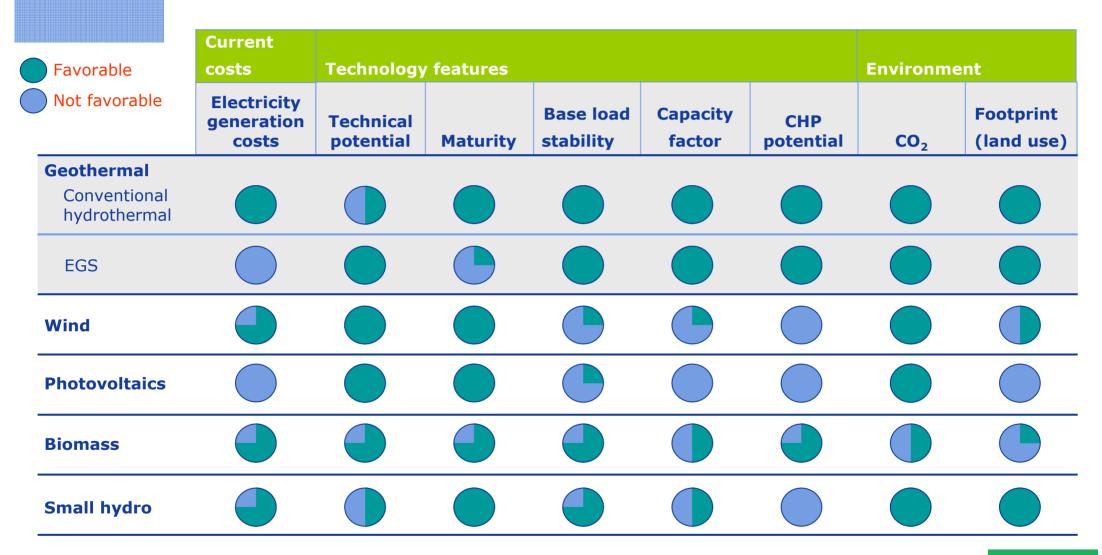
* = Estimated

	Installed capacity		Production	Capacity	
	GWe	%	TWh/yr	%	factor (%)
Hydro	778	87.5	2,837	89	42
Biomass	40*	4.5	183	5.7	52*
Wind	59	6.6	106	3.3	21
Geothermal	9	1.0	57	1.8	72
Solar	4	0.4	5	0.2	14
Total	890	100	3,188	100	41

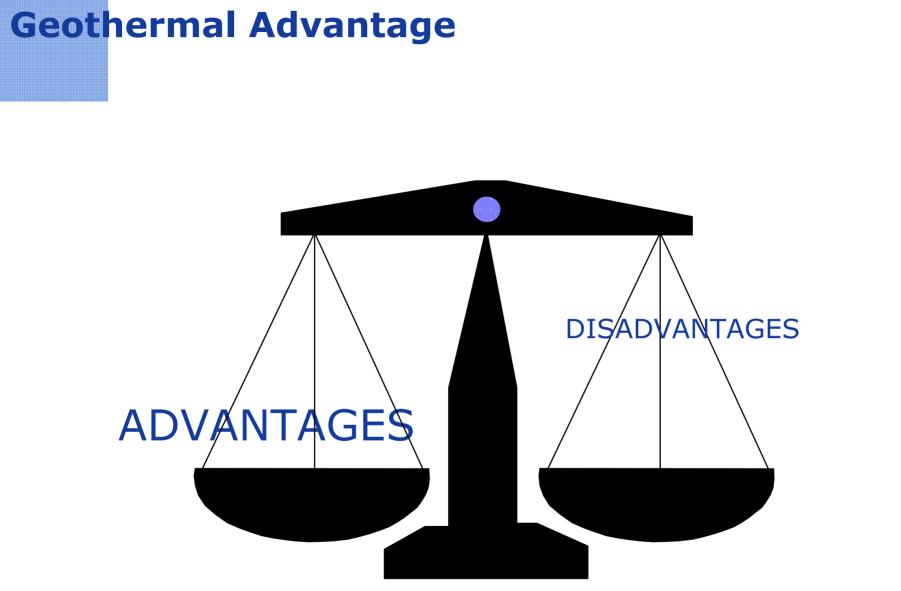
Geothermal energy is available day and **night every day of the year** and can thus serve as a partner with energy sources which are only available intermittently.

It is most economical for geothermal power stations to serve as **base load** throughout the year.

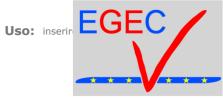
Geothermal and other Renewables

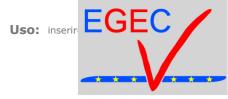

	GWh	%
Coal	6.944.328	39,61
Gas	3.418.676	19,50
Nuclear	2.738.012	15,62
Oil	1.170.152	6,67
Other sources	2.292	0,01
Non-rene wables total	14.273.460	81,42
Hydro	2.889.094	16,48
Biomass	149.811	0,85
Waste	77.471	0,44
Wind	82.259	0,47
Geothermal	55.896	0,32
Solar thermal	1.608	0,01
Solar PV	840	0,00
Tide, Wave, Ocean	551	0,00
Renewables total	3.257.530	18,58
Total world generation	17.530.990	100,00

The present geothermal installed capacity of 10 GW is expected to increase up to 11 GW in 2010.


The overall CO₂ saving from geothermal electricity can be in the range 1000 (coal)/500 (gas) million tons per year, if the target of 140 GW will be reached

Geothermal and other Renewables



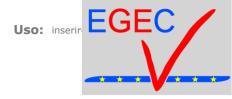

Geothermal Advantage

ADVANTAGES

Indigenous and Sustainable Resource **Environmentally Benign** Readily Available, Easily Tapped **Competitive Cost Enormous Resource Base** High Availability, not bounded by external factors Appropriate for Electricity Generation as Base Load Resource Cascade Direct-Heat Utilization

Geothermal Advantage

ADVANTAGES

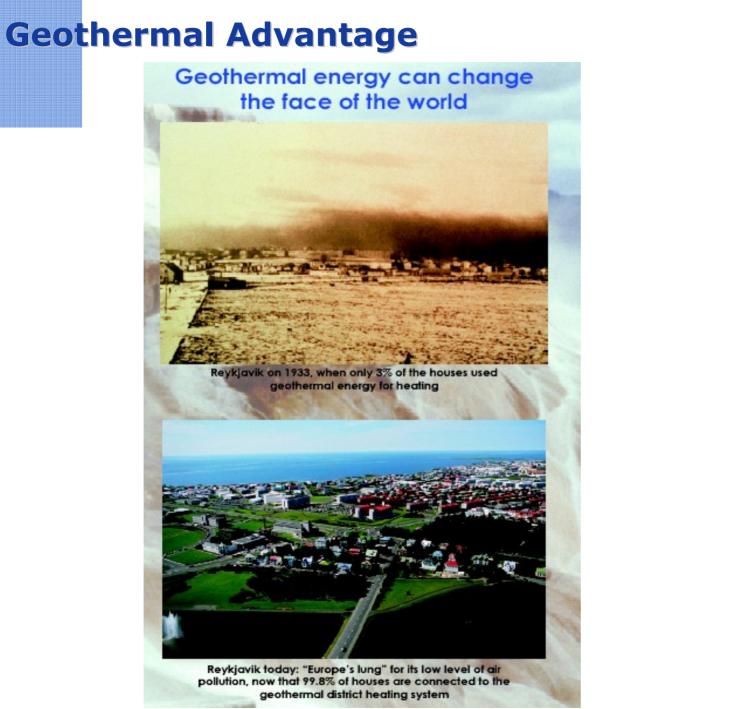

IT IS CLEAN

IT IS HOMEGROWN

IT IS SUSTAINABLE

IT IS CHEAP

Geothermal Advantage


DISADVANTAGES

Electricity production, with present technology, is bounded only to limited areas where geological conditions are favorable

It requires big initial investment, generally not accessible to small companies

It requires a risky exploration phases, which can result as a no-profit activity in case of negative results

Geothermal Energy:

Uso: inserir EGEC

FIRE WITHOUT SMOKE

