The Automation of Invention: Implications for Education

Robert Plotkin

Author, <u>The Genie in the Machine</u> (Stanford 2009)

rplotkin@automatinginvention.com

Center for Curriculum Redesign © 2012 Robert Plotkin


September 20, 2012

Overview

- Examples of invention automation ("artificial invention")
- Interlude: automatophobia
- Framework for invention automation (and a cure for automatophobia)
- Implications of invention automation for invention
- Implications of invention automation for education

Examples of "Artificial Inventions"

- Antenna on NASA's Space Technology 5 mission
 - Software: evolutionary algorithm
 - People: Jason Lohn, Greg Hornby, Derek Linden at NASA Ames Research Center
- PID controller
 - Software: genetic programming
 - People: John Koza et al.
 - Patents granted on controller and method of designing it
- Oral-B CrossAction toothbrush
 - Software: Creativity Machine
 - People: Stephen Thaler

Some more examples

- NuTech Solutions:
 - Technology: combination of genetic algorithms, neural networks, simulated annealing, evolutionary computation, and swarm intelligence
 - Result: Improved car frame for GM
- Natural Selection, Inc.:
 - Technology: evolutionary algorithm
 - Result: software for finding improved drugs
- Matrix Advanced Solutions:
 - Technology: proprietary software
 - Result: anticoagulant
- Hitachi:
 - Technology: genetic algorithm
 - Result: improved nosecone for bullet train

How invention automation technology works

Many kinds of technology
Just one example for now
Many more at www.geniemachine.com

How the NASA antenna was invented

- Evolutionary algorithm, so-called because it "evolves" designs in a way that is analogous to how biological evolution evolves organisms
 - Generated initial "population" of potential antennas
 - Largely random, therefore largely useless
 - Let "unfit" antennas die
 - <u>"Fitness" defined by "fitness criteria" provided by</u> <u>human engineers</u>
 - Note: fitness criteria did *not* describe shape of antenna
 - Role is to be an abstract description of the problem to be solved by antenna
 - In the case of the NASA antenna, the fitness criteria favored characteristics such as the ability to transmit and receive signals at certain frequencies, and the ability to physically fit within a 6" cylinder.

How the NASA Antenna was invented

- Surviving antennas "mate" to produce offspring
- Some offspring "mutate"
- The process repeats for many "generations"
- Result (not guaranteed): a solution that satisfies the specified fitness criteria

Summary of some invention automation techniques

- Population-based
 - Evolutionary algorithms, Creativity Machine
- Top-down substitution
 - Hardware description languages
 - Traditional computer programming
- Bottom-up combination
 - Musikalisches Würfelspiel (music-writing software)
- These and others can be combined with each other

Interlude: The Fear of Automation (automatophobia?)

- Common reactions to examples above:
 - Computers are replacing humans
 - Humans will become obsolete

"I have created a machine in the image of a man, that never tires or makes a mistake. Now we have no further use for living workers."

-- Rotwang, in Fritz Lang's Metropolis

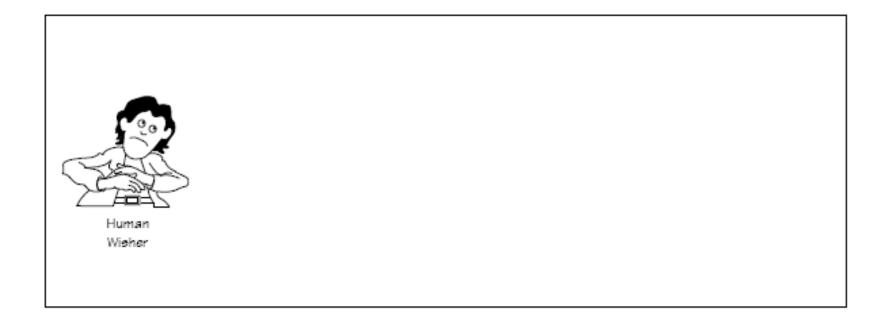
Interlude: The Fear of Automation

- Automatophobia is not unreasonable.
 Sometimes it is borne out.
- The fallacy of automatophobia, however, is that it assumes that automation, by its very nature, automates a process *completely*.

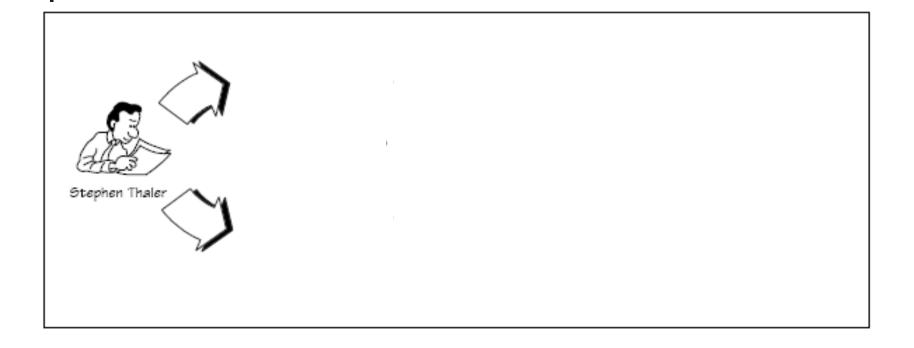
Automation is partial in practice

- Consider a process that consists of three manual steps A, B, and C.
 - A: crack egg
 - B: scramble egg
 - C: fry egg
- If only step B is automated, then steps A and C may continue to be performed manually by a human.
- If steps A, B, and C are automated, there is always some larger process that contains the process A, B, C as a sub-process, e.g.:
 - 1: Obtain egg (manual)
 - 2 (A, B, C): Crack, scramble and fry egg (automated0
 - 3: Season, present, and serve egg (manual)
- The larger process continues to require human involvement. A cure for automatophobia is in sight...

Partial Automation: Always a Place for Humans

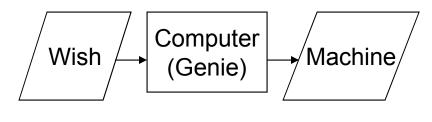

Interpolate

- Computer automates step B of process A, B, C:
 - A: Manual
 - B: Automatic
 - C: Manual
- Result:
 - Human performs A & C
 - Computer performs B


ExtrapolateComputer automates

- steps A, B, C of process A, B, C:
 - 1: Manual
 - 2 (A, B, C): Automatic
 - 3: Manual
- Process A, B, C is always part of a larger process:
- Result:
 - Human performs 1 & 3
 - Computer performs 2

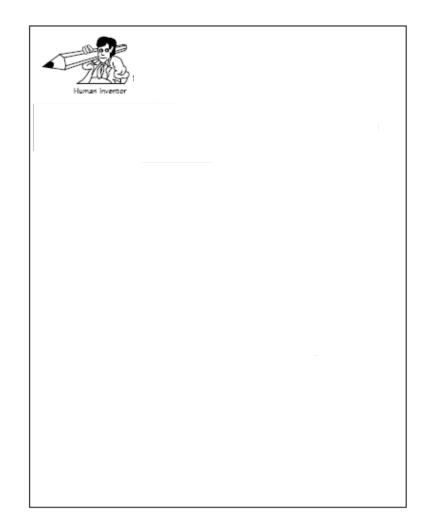
How invention automation technology is like a genie



How Invention Automation Technology is Like a Genie

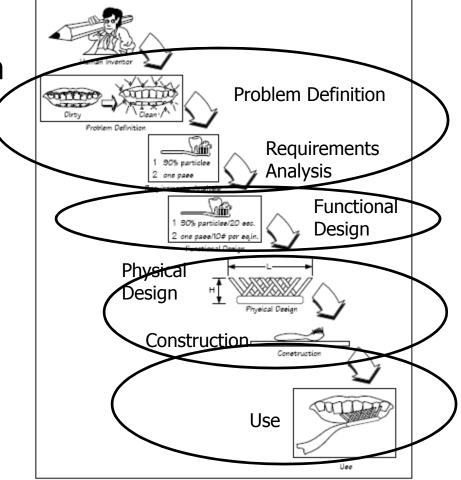
Computers as Genies

- Human writes wish
- Computer grants wish by producing



- design for a machine; or
- an actual machine
- that solves the problem described by the wish.
- Wish is:
 - an abstract description of the machine; or
 - a set of instructions for creating the machine.

What's New Here?


- What was "automated" in these examples?
 - Transformation of problem description into problem solution
- We can be more precise than that . . .

The Waterfall Model

Swimming Up the Waterfall

- Critical (last required manual) step in design process:
 - Stone age: use/construction
 - Industrial age: construction/physical design
 - Information age: functional design
 - Artificial Invention age: requirements analysis/problem definition

Old Skills, New Skills

- When a waterfall tier is automated, critical skill needed to be an inventor shifts up one tier in the waterfall
 - Industrial Age: physical design
 - Information Age: functional design
 - Artificial Invention Age: problem definition

Inventors as wish writers

- Inventors in the Artificial Invention Age will need to be skilled wish writers
 - Necessary: ability to describe the problem to be solved in a language that a computer can understand
 - Not necessary: physical design skills
- Necessary:
 - abstract mathematics
 - physics
 - computer programming
- Existing inventors' skills shift higher
 - Note: abstract ≠ vague
- May make it possible for non-inventors to become inventors

Humans and computers: inventive partners

- Recall NASA antenna example:
 - Genetic algorithm produced potential designs
 - Engineers noticed varying signal strengths
 - Engineers modified fitness criteria to favor smooth signal strengths
 - Re-ran algorithm: results were better than initial run.
- Example of collaborative inventing.
 - Really? Yes . . .

Collaborative inventing

- Two types of computer-facilitated collaboration:
 - between humans; and
 - between human and computer.

Human-computer collaboration

- NASA antenna: human-computer collaboration
 - Why?
 - Interaction between human engineers and software resembles that between human collaborators:
 - Software: generated, evaluated, and refined potential designs
 - Humans: defined problem, reviewed designs, gave feedback to software
 - Feedback loop involving both collaborators

Human-computer collaboration: product package design

- Affinnova
 - IDEA: Interactive Design by Evolutionary Algorithms
 - Designed product packaging for 7-Up Plus
 - Decomposed design into components: images, color, materials, text
 - Software presented millions of designs to consumers online
 - Consumers selected their preferred elements
 - Software evolved designs in response
 - Cadbury picked one design from six best

Human-computer collaboration: features

- Like any team, human-computer collaboration is most successful when human and computer each contributes what it does best:
 - Human: formulating problem, making aesthetic judgments
 - Computer: generating, simulating, and evaluating large numbers of potential solutions quickly
- End products can be better than could have been produced by either partner acting alone

Human-human collaboration: examples

- Open source software
 - Open source programmers often volunteer
- Companies are now using same model for profit:
 - "Crowdsourcing"
 - InnoCentive: online innovation marketplace
 - Companies post technical problems online with a bounty
 - Anyone, anywhere can try to solve the problem to win bounty
 - Result: return of the garage inventor
- No more "Not Invented Here" syndrome
- Paraphrasing Raymond: with enough eyeballs, all technical problems are shallow
- Open innovation and crowdsourcing examples:
 - Louis von Ahn GWAPs: www.gwap.com
 - Paid crowdsourcing platform: www.humangrid.eu
 - LEGO factory: factory.lego.com
 - Large list of examples: tinyurl.com/3vc3mh

Open innovation

- These are examples of "open innovation" (Henry Chesbrough)
- Two effects:
 - enabling existing innovators to innovate more efficiently
 - enabling non-innovators to join the game
- Examples of latter:
 - iRobot "Robot Development Kit"
 - MIT Media Lab "scratch"
 - Customer innovations documented by Eric von Hippel
 - http://web.mit.edu/evhippel/www.books.htm

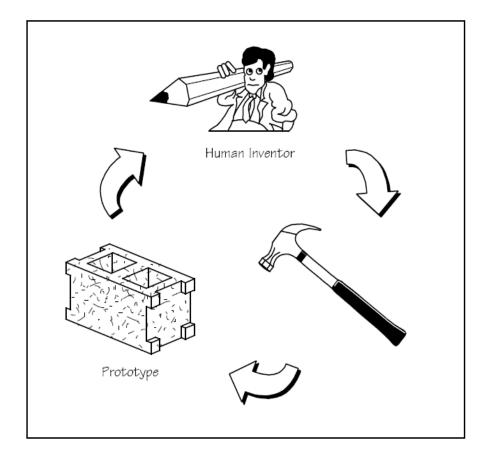
Distributed inventing

- Most examples above are distributed
 - Collaborators are geographically dispersed
- Facilitated by fast, high-quality, low-cost networking technology

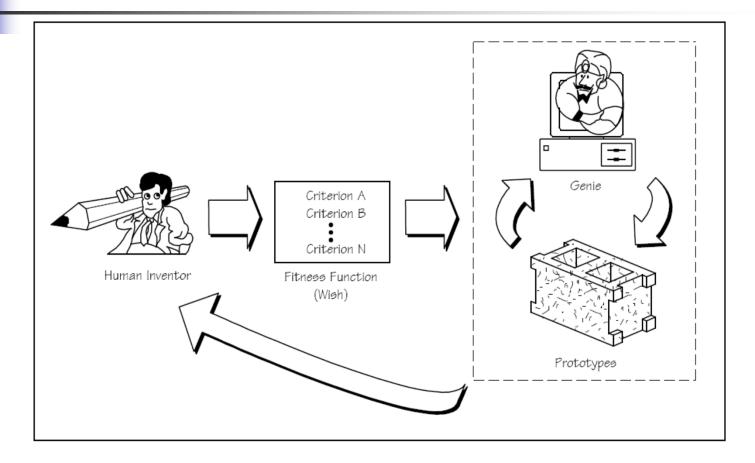
Technology Facilitating Distributed Inventing

- Not just networks!
- Improved CAD and simulators
 - Reduce time/cost of prototyping/testing
 - Autodesk "Inventor"
 - Spread of "design by coding"
 - E.g., HDLs for processor design
 - Nanotech and biotech?

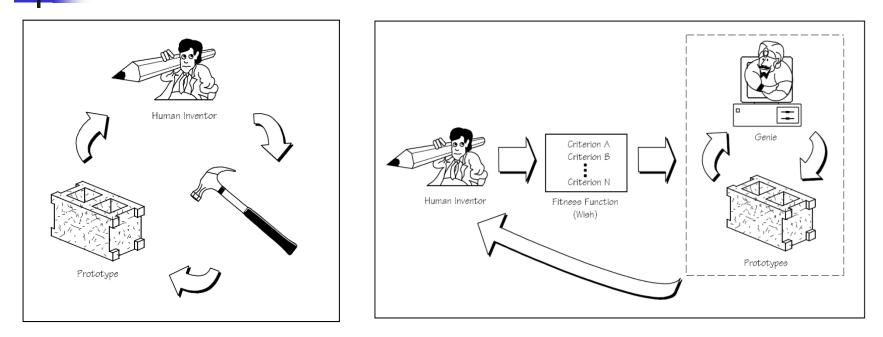
Automating manufacturing


- What good is a design if you can't build it?
 - Recent advances in "personal fabrication"
 - Read Fab by Media Lab Professor Neil Gershenfeld
- New business models

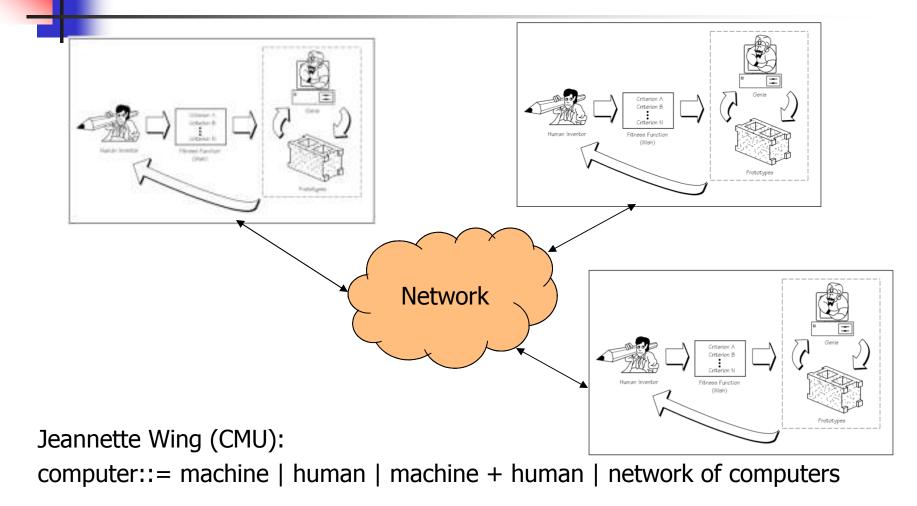
Ponoko: manufacturing on-demand


This file is licensed under the Creative Commons Attribution ShareAlike 3.0 License. In short: you are free to share and make derivative works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license identical to this one. Source: http://en.wikipedia.org/wiki/File:3D_scanning_and_printing.jpg.

Human-Machine Collaboration: Phase I


www.automatinginvention.com

Human-Machine Collaboration: Phase II


www.automatinginvention.com

Comparing Phase I to Phase II

- Control of tool by human: manual labor in Phase I, abstract instructions (wish) in Phase II
- Feedback loop: only in whole system in Phase I, in both system and within the tool in Phase II

Human-Machine Collaboration: Phase III

www.automatinginvention.com

The Future of Inventing

- Automation
 - Role of human inventor:
 - describe problem to be solved
 - provide subjective judgments
 - Role of computer:
 - generate, simulate, and evaluate potential inventions
 - Resulting inventions often:
 - are surprising
 - contradict conventional wisdom about good design
 - are not understandable, even by human experts
 - May enable:
 - Existing inventors to become better inventors
 - Current non-inventors to become inventors

Implications for Education

- What do we need to teach students so that they can take maximum advantage of automated inventing, and of automation more generally?
 - Simple answer: all of the skills listed above (e.g., abstract problem definition—the ability to write wishes)
 - Complex answer: ability to design solutions to problems within the framework of Phase III of human-machine collaboration

Teaching Human-Machine Collaboration

- When faced with a problem to be solved, ask: what configuration of a Phase III system is best-suited to solve this problem? E.g.:
 - Which parts are best solvable by people?
 - Which parts are best solvable by machines?
 - How can those people and machines best interact to solve the problem as part of a system?

Solving Problems in a Phase III World

- Skills required include ability to:
 - Decompose problem into modules
 - Identify skills possessed by available:
 - Humans (oneself and others)
 - Machines
 - Identify cost/risk/time associated with each of above
 - Assign best human and/or machine to each module

Phase III Problem Solving is Teachable

- All of this can be learned, but it takes time, practice, and a shift in mindset
- Part of the problem is that it contradicts tenets of traditional education
 - Requires team-building skills taught only in business or engineering schools, if anywhere
 - Traditional education focuses on teaching *each individual* to acquire all skills necessary to perform a task.
 - Inability or refusal to acquire all such skills is viewed as a personal failure of the student and is penalized
 - Attempts to delegate subtasks to others (whether humans or machines) is not only frowned upon but explicitly punished as "cheating"
- Focus must shift from teaching students to think:
 - "How can I solve this problem by myself?"
 - "How can I design a system, including some combination of people and/or machines, to solve this problem as efficiently and effectively as possible?", where the resulting system may not include the student himself or herself.
- This is a momentous challenge but well worth the effort due to the potential reward.

The Automation of Invention: Implications for Education

Robert Plotkin

Author, The Genie in the Machine (Stanford 2009)

rplotkin@automatinginvention.com

Center for Curriculum Redesign © 2012 Robert Plotkin

September 20, 2012