The Basics of Permanent Magnet Motor Operations

By George Holling

Introduction

- Introduction
- The physics of permanent magnets
- Basic PM motor operating principles
- Basic motor parameters
- Motor construction

 a typical magnetization curve for a PM magnet is shown here

- the outmost outline of the magnetization curve is for a single cycle of a fully magnetized magnet
- as the operating point of the magnetic circuit's permeance P line intersects with the demagnetization curve the magnet "weakens"
- the magnetization is not a single curve, but a family of curves

 the permeance P of the magnetic circuit determines the operating point of the permanent magnet

$$P = \frac{F \cdot m}{\Re \cdot g}$$

- F: magnetic flux leakage
- *m*: magnet thickness parallel the direction of flux in inches
- \Re : magnetic reluctance factor typically 1.1 1.5
- g: air gap thickness parallel the direction of flux in inches

- plotting the permeance into the magnetization curve yields the operating point of the magnetic circuit
 - idealistic assumption
 - no saturated steel
 - µ_r>>1
 - ignores the effects of demagnatization
 - internal field from windings
 - demagnetization curve
 - magnet temperature
 - ignores the effect of the magnet's temperature

- the magnet's flux changes with temperature
 - reversible
 - irreversible

 the magnet's linear, reversible flux change as a function of temperature is:

 $B(T) = B(T_0)[1 - \beta(T - T_0)]$

- B(T): air gap flux density at temperature T
- $B(T_0)$: air gap flux density at temperature T_0
- β : linear coefficient of demagnetization
- *T* : magnet temperature ($^{\circ}$ C)

 irreversible changes can occur in the magnet well below its Curie temperature

AtME.

- the motor's conductors can cause irreversible damage to its magnet
- the flux generated by an inductor in the magnet is:

$$H = \frac{Z \cdot i}{3 \cdot P \cdot (m+g)}$$

- Z: total number of conductors
- i: the winding current
- P: the permeance of the magnetic circuit
- m: magnet thickness parallel the direction of flux in inches
- g: air gap thickness parallel the direction of flux in inches

- each PM motor therefore has
 - a thermal current rating due to wire constraints
 - an absolute peak current rating due to magnet constraints

- most PM motors use one of the following PM magnet materials
 - Alnico: Aluminum Nickel Cobalt
 - Fe₃O₄: Ceramic/Ferrite
 - SmCo: Samarium Cobalt
 - NeFeBo: Neodymium Iron Boron
- none is generally "better" or "worse"

a comparison of different magnet materials

Magnet Material	Price \$ per lb.	B _r - Max (gauss)	Coercivity (oersted)	Typical P	Curie Temp (°C)	β · (1/°C)
Alnico 5-7	\$40	12.500	650	50-75	850	0.0001
Ferrite	\$7	4,000	3,600	10-20	450	0.002
NdFeB	\$100	11,000	10.000	2-5	320	0.001
SmCo	\$180	8.000	7,500	4-8	800	0.00045

 PM motors operate on the principle that a force is generated when current flows in an inductor that is placed in a magnetic field

force generated in a conductor in a magnetic field

 $\overline{F_m} = i \cdot \overline{l} \otimes \overline{B}$

- F_m : mechanical force vector
- *i* : current flowing in the conductor
- *l*: length of the conductor (perpendicular to magnetic flux)
- \overline{B} : magnetic flux vector

this force generates torque in a rotary motor

 $T = B \cdot r \cdot l \cdot Z \cdot i$

- T: rotor torque
- *B* : magnetic flux
- *r*: average winding radius
- *l*: effective conductor length (stack length)
- Z: number of conductors
- *i* : current flowing in the conductor

 a conductor that moves in a magnetic field generates a voltage

$$V = \int_{0}^{l} \overline{v_{y}} \otimes \overline{B_{x}} \cdot \overline{dz} = -B \cdot l \cdot v$$

- *V* : induced voltage
- $\overline{v_{v}}$: velocity of inductor perpendicular to the magnetic field
- $\overline{B_x}$: magnetic flux vector

a rotary motor produces the back-EMF (Lenz's Law)

 $V = -B \cdot r \cdot l \cdot Z \cdot \omega$

- V: induced voltage
- B: magnetic flux vector
- r: radius
- *l* : effective conductor length (stack length)
- Z: number of condutors
- ω : angular velocity

inductor loop in a magnetic field

- adding a mechanical commutator yields a brush PMDC motor
- adding two or more mechanically offset windings yields a PM DLDC or PM BLAC motor

• the torque constant K_t

$$T = K_t \cdot \omega \qquad (\mathbf{N} \cdot \mathbf{m})$$

$$K_t = B \cdot r \cdot l \cdot Z \quad (N \cdot m / A)$$

the back-EMF (voltage) constant K_e

$$V = K_E \cdot \omega \quad \text{(volt)}$$

$$K_E = B \cdot r \cdot l \cdot Z$$
 (volt/rad/sec)

- armature resistance R_a (Ohm)
- armature inductance L_a (Henry)
- electrical time constant τ_e (sec)
- rotor inertia J_r (Kg · m²)
- damping constant D_m (N · m / rad / sec)
- mechanical time constant τ_m (sec)
- thermal resistance R_{\odot} (°C / Watt)
- thermal capacitance C_{Θ} (Joules / °C)
- thermal time constant τ_{therm} (sec)

example of a typical speed/torque curve of a PM motor

ATME

- the "Safe Continuous Operating Area" SCOA
 - the motor can safely be operated continuously anywhere in this region
- the "Safe Intermittent Operating Area" SIOA
 - the motor may be operated in this region for short periods of time (typically < 1 min)

the electrical equation for the PM DC machine is:

$$V = L_a \cdot \frac{dI}{dt} + R_a \cdot I + K_E \cdot \omega$$

 the electrical equation for a single phase of the PM BLDC/BLAC machine with sinusoidal phase current is:

$$V(\mathcal{G}) = L_a \cdot \frac{2 \cdot \pi}{360} \cdot \cos(\frac{2 \cdot \pi \cdot \mathcal{G}}{360}) + R_a \cdot I \cdot \sin(\frac{2 \cdot \pi \cdot \mathcal{G}}{360}) + K_E \cdot \frac{2 \cdot \pi}{360} \cdot \sin(\frac{2 \cdot \pi \cdot \mathcal{G}}{360}) \cdot \frac{d}{d}$$

the power balance for the PM DC machine is:

$$P = \frac{d}{dt} \left(\frac{L \cdot I^2}{2}\right) + R \cdot I^2 + K_E \cdot \omega \cdot I$$

$$P = \frac{d}{dt}\left(\frac{L \cdot I^2}{2}\right) + R \cdot I^2 + \frac{d}{dt}\left(\frac{J \cdot \omega^2}{2}\right) + \left(D_M + D_L\right) \cdot \omega^2 + \left(T_m + T_L\right) \cdot \omega^2$$

the power analysis reveals that:

$$\frac{d}{dt}(\frac{L \cdot I^2}{2})$$
 : magnetization energy

 $R \cdot I^2$: electrical copper losses in the windings - > heat

 $\frac{d}{dt}(\frac{J\cdot\omega^2}{2})$: mechanical energy

 $(D_M + D_L) \cdot \omega^2$: damping losses

 $(T_m + T_L) \cdot \omega$: friction losses

the power supplied to the load is:

$$P_{mech} = K_E \cdot \omega \cdot I - D_M \cdot \omega^2 - T_m \cdot \omega$$

the maximum continuous current allowed is:

$$I_{\max_{\text{cont}}} = \sqrt{\frac{T_{rise} - T_{25^{\circ}C}}{R(T_{rise}) \cdot R_{\Theta}}} \quad (A)$$

the maximum continuous torque allowed is:

$$T_{\max_{\text{cont}}} = K_t(T_{rise}) \cdot \sqrt{\frac{T_{rise} - T_{25^{\circ}C}}{R(T_{rise}) \cdot R_{\Theta}}} \quad (N \cdot m)$$

- the field in the stator poles changes continuously, thus we must use laminated steel to reduce eddy current losses
- the backiron to support the PM flux is relatively constant and solid steel can be used

the eddy current losses are:

$$P_{\rm eddy} = \frac{\pi^2 f^2 \tau^2 B_P^2 V}{6\rho}$$

- f: electrical frequency of the motor (Hz)
- τ : thickness of the lamonations (m)
- B_P : peak AC flux density (T)
- *V* : lamination volume
- ρ : volume electrical resistivity (ohm / m³)

motor steel choices

AISI Designation	Allegheny Ludlum Designation	General Use	
M-6	Silectron 66	Lowest core loss at high induction for use in power & distribution transformers and large turbogenerators.	
M-14	Transformer AA	Low core loss transformer steel for high efficiency rotating machines and transformers	
M-15	Transformer A	Higher core loss than M-14 Used for distribution trans- formers & rotary machines	
M-17	Transformer B	Used occasionally for power transformers	
M-19	Transformer C	Most suitable for high performance servo motors	
M-22	Dynamo Special	Most suitable for high performance induction motors	
M-27	Dynamo	Popular grade for servo motors	
M-36	Electrical	Used especially for rotary machines. Popular grade for permanent magnet motors.	
M-43	Armature	Used for fractional horse- power motors and relays	
M-50	Field	Used for pole pieces and intermittent electric devices	

- motor windings are generally copper wire with insulation (magnet wire)
- magnet wire comes in different grades
 - temperature
 - B, F, H, C
 - insulation
 - double, triple
 - voltage rating

the resistance of the magnet wire changes with (the wire's) temperature

 $R(T) = R(T_0) \cdot [1 + \alpha \cdot (T - T_0)]$

- $R(T_0)$: resistance at reference temperature, typically 25°C (ohm)
- T: winding temperature (°C)
- α : thermal coefficient for copper wire the value is 0.0039/°C

