
163

5.1. What will this chapter tell me? �

Like many young boys in the UK my first career choice was to become a soccer star. My grand-
dad (Harry) had been something of a local soccer hero in his day, and I wanted nothing more 
than to be like him. Harry had a huge influence on me: he had been a goalkeeper, and conse-
quently I became a goalkeeper too. This decision, as it turned out, wasn’t a great one because I 
was a bit short for my age, which meant that I never got picked to play in goal for my school. 
Instead, a taller boy was always chosen. I was technically a better goalkeeper than the other 
boy, but the trouble was that the opposition could just lob the ball over my head (so, technique 
aside, I was a worse goalkeeper). Instead, I typically got played at left back (‘left back in the 
changing room’ as the joke used to go) because, despite being right footed, I could kick with 
my left one too. The trouble was, having spent years trying to emulate my granddad’s goal-
keeping skills, I didn’t really have a clue what a left back was supposed to do.1 Consequently, 

1 In the 1970s at primary school, no one actually bothered to teach you anything about how to play soccer; they 
just shoved 11 boys onto a pitch and hoped for the best.

FIGURE 5.1

My first failed 
career choice 
was a soccer 
star
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I didn’t exactly shine in the role, and that put an end for many years to my belief that I could 
play soccer. This example shows that a highly influential thing (like your granddad) can bias 
the conclusions you come to and that this can lead to quite dramatic consequences. The same 
thing happens in data analysis: sources of influence and bias lurk within the data, and unless 
we identify and correct for them we’ll end up becoming goalkeepers despite being too short. 
Or something like that.

5.2. What is bias? �

You will all be familiar with the term ‘bias’. For example, if you’ve ever watched a sports 
game you’ll probably have accused a referee of being ‘biased’ at some point, or perhaps 
you’ve watched a TV show like The X Factor and felt that one of the judges was ‘biased’ 
towards the acts that they mentored. In these contexts, bias means that someone isn’t 
evaluating the evidence (e.g., someone’s singing) in an objective way: there are other things 
affecting their conclusions. Similarly, when we analyse data there can be things that lead us 
to the wrong conclusions.

A bit of revision. We saw in Chapter 2 that, having collected data, we usually fit a model 
that represents the hypothesis that we want to test. This model is usually a linear model, 
which takes the form of equation (2.4). To remind you, it looks like this:

� �� � � � ��1 1 2 2outcome errori i i n ni ib X b X b X

Therefore, we predict an outcome variable from some kind of model. That model is 
described by one or more predictor variables (the Xs in the equation) and parameters (the 
bs in the equation) that tell us something about the relationship between the predictor and 
the outcome variable. Finally, the model will not predict the outcome perfectly, so for each 
observation there will be some error.

When we fit a model to the data, we estimate the parameters and we usually use the 
method of least squares (Section 2.4.3). We’re not interested in our sample so much as 
a more general population to which we don’t have access, so we use the sample data to 
estimate the value of the parameters in the population (that’s why we call them estimates 
rather than values). When we estimate a parameter we also compute an estimate of how 
well it represents the population such as a standard error (Section 2.5.1) or confidence 
interval (Section 2.5.2). We also can test hypotheses about these parameters by computing 
test statistics and their associated probabilities (p-values, Section 2.6.1). Therefore, when 
we think about bias, we need to think about it within three contexts:

1 things that bias the parameter estimates (including effect sizes);

2 things that bias standard errors and confidence intervals;

3 things that bias test statistics and p-values.

These situations are related: firstly, if the standard error is biased then the confidence 
interval will be too because it is based on the standard error; secondly, test statistics are 
usually based on the standard error (or something related to it), so if the standard error is 
biased test statistics will be too; and thirdly, if the test statistic is biased then so too will its 
p-value. It is important that we identify and eliminate anything that might affect the infor-
mation that we use to draw conclusions about the world: if our test statistic is inaccurate 
(or biased) then our conclusions will be too.
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What are
assumptions?

Sources of bias come in the form of a two-headed, fire-breathing, green-scaled beast 
that jumps out from behind a mound of blood-soaked moss to try to eat us alive. One of its 
heads goes by the name of unusual scores, or ‘outliers’, while the other is called ‘violations 
of assumptions’. These are probably names that led to it being teased at school, but then it 
could breath fire from both heads so it could handle that. Onward into battle …

5.2.1.  Assumptions �

Most of our potential sources of bias come in the form of violations of assump-
tions, and you will often hear or read about ‘assumptions’ of statistical tests. An 
assumption is a condition that ensures that what you’re attempting to do works. 
For example, when we assess a model using a test statistic, we have usually made 
some assumptions, and if these assumptions are true then we know that we can 
take the test statistic (and, therefore, p-value) associated with a model at face value 
and interpret it accordingly. Conversely, if any of the assumptions are not true 
(usually referred to as a violation) then the test statistic and p-value will be inaccu-
rate and could lead us to the wrong conclusion if we interpret them at face value.

Assumptions are often presented so that it seems like different statistical procedures 
have their own unique set of assumptions. However, because we’re usually fitting varia-
tions of the linear model to our data (see Section 2.4), all of the tests in this book basically 
have the same assumptions. These assumptions relate to the quality of the model itself, and 
the test statistics used to assess it (which are usually parametric tests based on the normal 
distribution). The main assumptions that we’ll look at are:

 � additivity and linearity;

 � normality of something or other;

 � homoscedasticity/homogeneity of variance;

 � independence.

5.2.2.  Outliers �

I mentioned that the first head of the beast of bias is called ‘outliers’. An outlier is a score 
very different from the rest of the data. Let’s look at an example. When I published my 
first book (the first edition of this book), I was very excited and I wanted everyone in the 
world to love my new creation and me. Consequently, I obsessively checked the book’s rat-
ings on amazon.co.uk. Customer ratings can range from 1 to 5 stars, where 5 is the best. 
Back in 2002, my first book had seven ratings (in the order given) of 2, 5, 4, 5, 5, 5, and 
5. All but one of these ratings are fairly similar (mainly 5 and 4) but the first rating was 
quite different from the rest – it was a rating of 2 (a mean and horrible rating). Figure 5.2 
plots seven reviewers on the horizontal axis and their ratings on the vertical axis. There 
is also a horizontal line that represents the mean rating (4.43, as it happens). It should be 
clear that all of the scores except one lie close to this line. The score of 2 is very differ-
ent and lies some way below the mean. This score is an example of an outlier – a weird 
and unusual person (I mean, score) that deviates from the rest of humanity (I mean, data 
set). The dashed horizontal line represents the mean of the scores when the outlier is not 
included (4.83). This line is higher than the original mean, indicating that by ignoring this 
score the mean increases (it increases by 0.4). This example shows how a single score, from 
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FIGURE 5.2

The first seven 
customer 
ratings of 
this book on 
www.amazon.
co.uk (in about 
2002). The first 
score biases 
the mean

some mean-spirited badger turd, can bias a parameter such as the mean: the first rating of 
2 drags the average down. Based on this biased estimate, new customers might erroneously 
conclude that my book is worse than the population actually thinks it is. Although I am 
consumed with bitterness about this whole affair, it has at least given me a great example 
of an outlier.

The example illustrates that outliers can bias a parameter estimate, but it has an even 
greater influence on the error associated with that estimate. Back in Section 2.4.1 we 
looked at example of the number of friends that 5 statistics lecturers had. The data 
were 1, 3, 4, 3, 2, the mean was 2.6 and the sum of squared error was 5.2. Let’s replace 
one of the scores with an outlier by changing the 4 to a 10. The data are now: 1, 3, 
10, 3, and 2.

SELF-TEST  Compute the mean and sum of squared error for 
the new data set.

If you did the self-test, you should find that the mean of the data set with the outlier is 
3.8 and the sum of squared error is 50.8. Figure 5.3 shows these values; like Figure 2.7 it 
shows the sum of squared error (y-axis) associated with different potential values of the 
mean (the parameter we’re estimating, b). For both the original data set and the one with 
the outlier the estimate for the mean is the optimal estimate: it is the one with the least 
error, which you can tell by the fact the curve converges on the values of the mean (2.6 and 
3.8). The presence of the outlier, however, pushes the curve to the right (i.e., it makes the 
mean higher) and pushes it upwards too (i.e., it makes the sum of squared error larger). By 
comparing how far the curves shift horizontally compared to vertically you should (I hope) 
get a clear sense that the outlier affects the sum of squared error more dramatically than 
it affects the parameter estimate itself. This is because we use squared errors, so any bias 
created by the outlier is magnified by the fact that deviations are squared.2

2 In this example, the difference between the outlier and the mean (the deviance) is 10 – 3.8 � 6.2. The deviance squared 
is 6.22 � 38.44. Therefore, of the 50.8 units of error that we have, a whopping 38.44 are attributable to the outlier.
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The effect of 
an outlier on 
a parameter 
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associated 
estimate of error 
(the sum of 
squared errors)

We have seen that outliers can bias estimates of parameters (such as the mean), and also 
dramatically affect the sum of squared errors. This latter point is important because the 
sum of squared errors is used compute the standard deviation, which in turn is used to 
estimate the standard error, which itself is used to calculate confidence intervals around 
the parameter estimate. Therefore, if the sum of squared errors is biased, so are the stand-
ard error and the confidence intervals associated with the parameter estimate. In addition, 
most test statistics are based on sums of squares so these will be biased too by outliers.

5.2.3.  Additivity and linearity �

The second head of the beast of bias is called ‘violation of assumptions’. The first assump-
tion we’ll look at is additivity and linearity. The vast majority of statistical models in this 
book are based on the linear model, which takes this form:

� �1 1 2 2outcome errori i i n ni ib X b X b X� � � � ��

The assumption of additivity and linearity means that the outcome variable is, in reality, 
linearly related to any predictors (i.e., their relationship can be summed up by a straight 
line – think back to Jane Superbrain Box 2.1), and that if you have several predictors then 
their combined effect is best described by adding their effects together. In other words, it 
means that the process we’re trying to model can be accurately described as:

1 1 2 2� � ��i i n nib X b X b X
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This assumption is the most important because if it is not true then even if all other assump-
tions are met, your model is invalid because you have described it incorrectly. It’s a bit like call-
ing your pet cat a dog: you can try to get it to go in a kennel, or to fetch sticks, or to sit when 
you tell it to, but don’t be surprised when its behaviour isn’t what you expect because even 
though you’ve a called it a dog, it is in fact a cat. Similarly, if you have described your statisti-
cal model inaccurately it won’t behave itself and there’s no point in interpreting its parameter 
estimates or worrying about significance tests of confidence intervals: the model is wrong.

5.2.4.  Normally distributed something or other �

The second assumption relates to the normal distribution, which we encountered in 
Chapter 1 and so we know what it looks like and we (hopefully) understand it. The normal 
distribution is relevant to many of the things we want to do when we fit models to data 
and assess them:

 � Parameter estimates: The mean is a parameter, and we saw in the previous section 
(the Amazon ratings) that extreme scores can bias it. This illustrates that estimates 
of parameters are affected by non-normal distributions (such as those with outliers). 
Parameter estimates differ in how much they are biased in a non-normal distribution: 
the median, for example, is less biased by skewed distributions than the mean.

� Confidence intervals: We use values of the standard normal distribution to compute 
the confidence interval (Section 2.5.2.1) around a parameter estimate (e.g., the mean, 
or a b in equation (2.4)). Using values of the standard normal distribution makes 
sense only if the parameter estimates actually come from one.

 � Null hypothesis significance testing: If we want to test a hypothesis about a model 
(and, therefore, the parameter estimates within it) using the framework described in 
Section 2.6.1 then we assume that the parameter estimates have a normal distribu-
tion. We assume this because the test statistics that we use (which we will learn about 
in due course) have distributions related to the normal distribution (such as the t, F 
and chi-square distributions), so if our parameter estimate is normally distributed 
then these test statistics and p-values will be accurate.

 � Errors: We’ve seen that any model we fit will include some error (it won’t predict the 
outcome variable perfectly). We also saw that we could calculate the error for each 
case of data (called the deviance or residual). If these residuals are normally distrib-
uted in the population then using the method of least squares to estimate the param-
eters (the bs in equation (2.4)) will produce better estimates than other methods.

5.2.4.1. The assumption of normality �

Many people take the ‘assumption of normality’ to mean that your data need to be nor-
mally distributed. However, that isn’t what it means. In fact, there is an awful lot of con-
fusion about what it does mean. We have just looked at ways in which normality might 
introduce bias, and this list hints that the ‘assumption of normality’ might mean different 
things in different contexts:

1 For confidence intervals around a parameter estimate (e.g., the mean, or a b in equa-
tion (2.4)) to be accurate, that estimate must come from a normal distribution.

2 For significance tests of models (and the parameter estimates that define them) 
to be accurate the sampling distribution of what’s being tested must be normal. 
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For example, if testing whether two means are different, the data do not need to 
be normally distributed, but the sampling distribution of means (or differences 
between means) does. Similarly, if looking at relationships between variables, the 
significance tests of the parameter estimates that define those relationships (the bs 
in equation (2.4)) will be accurate only when the sampling distribution of the esti-
mate is normal.

3 For the estimates of the parameters that define a model (the bs in equation (2.4)) to 
be optimal (have the least possible error given the data) the residuals (the errori in 
equation 2.4) in the population must be normally distributed. This is true mainly if 
we use the method of least squares (Section 2.4.3), which we often do.

The misconception that people often have about the data themselves needing to be 
normally distributed probably stems from the fact that if the data are normally distributed 
then it’s reasonable to assume that the errors in the model and the sampling distribution are 
too (and remember, we don’t have direct access to the sampling distribution, so we have to 
make educated guesses about its shape). Therefore, the assumption of normality tends to 
get translated as ‘your data need to be normally distributed’, even though that’s not really 
what it means (see Jane Superbrain Box 5.1 for some more information).

5.2.4.2. The central limit theorem revisited �

To understand when and if we need to worry about the assumption of normality we need 
to revisit the central limit theorem,3 which we encountered in Section 2.5.1. Imagine 

3 The ‘central’ in the name refers to the theorem being important and far-reaching and has nothing to do with 
centres of distributions.

Muppets, you will know that muppets live among us. 
Imagine you predicted that muppets are happier than 
humans (on TV they seem to be). You collect happiness 
scores in some muppets and some humans and plot 
the frequency distribution. You get the graph on the left 
of Figure 5.4 and decide that your data are not normal: 
you think that you have violated the assumption of nor-
mality. However, you haven’t because you predicted that 
humans and muppets will differ in happiness; in other 
words, you predict that they come from different popu-
lations. If we plot separate frequency distributions for 
humans and muppets (right of Figure 5.4) you’ll notice 
that within each group the distribution of scores is very 
normal. The data are as you predicted: muppets are hap-
pier than humans and so the centre of their distribution 
is higher than that of humans. When you combine all of 
the scores this gives you a bimodal distribution (i.e., two 
humps). This example illustrates that it is not the normal-
ity of the outcome (or residuals) overall that matters, but 
normality at each unique level of the predictor variable.

Although it is often the shape of the sampling distribution 
that matters, researchers tend to look at the scores on 
the outcome variable (or the residuals) when assessing 
normality. An important thing to remember is that when 
you have a categorical predictor variable (such as peo-
ple falling into different groups) you wouldn’t expect the 
overall distribution of the outcome (or residuals) to be 
normal. For example, if you have seen the movie The 

JANE SUPERBRAIN 5.1

The assumption of normality with  
categorical predictors  �
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FIGURE 5.4 A distribution that looks non-normal (left) could be made up of different groups of normally distributed scores

we have a population of scores that is not normally distributed. Figure 5.5 shows such 
a population containing scores of how many friends statistics lecturers have: it is very 
skewed, with most lecturers having only one friend, and the frequencies declining as the 
number of friends increases to the maximum score of 7 friends. I’m not tricking you; this 
population is as far removed from the bell-shaped normal curve as it looks. Imagine that I 
took samples of 5 scores from this population and in each sample I estimated a parameter 
(let’s say I computed the mean) and then replaced the scores. In fact, I took 5000 samples, 
and consequently I have 5000 values of the parameter estimate (each one from a different 
sample). Let’s look what happens when we plot these 5000 values in a frequency distribu-
tion. The frequency distribution of the 5000 parameter estimates from the 5000 samples 
is on the far left of Figure 5.5. This is the sampling distribution of the parameter estimate. 
Note that it is quite skewed, but not as skewed as the population. Imagine now that I 
repeated the sampling process, but this time my samples each contained 30 scores instead 
of only 5. The resulting distribution of the 5000 parameter estimates is in the centre of 
Figure 5.5. There is still skew in this sampling distribution but it is a lot more normal 
than when the samples were based on only 5 scores. Finally, I repeated the whole process 
but this time took samples of 100 scores rather than 30. The resulting distribution of the 
5000 parameter estimates is basically normal (right of Figure 5.5). As our sample sizes got 
bigger the sampling distributions became more normal, up to point at which the sample is 
big enough that the sampling distribution is normal – despite the fact that the population 
of scores was very non-normal indeed. This is the central limit theorem: regardless of the 
shape of the population, parameter estimates of that population will have a normal distri-
bution provided the samples are ‘big enough’ (see Jane Superbrain Box 5.2).

5.2.4.3. When does the assumption of normality matter? �

The central limit theorem means that there are a variety of situations in which we can 
assume normality regardless of the shape of our sample data (Lumley, Diehr, Emerson, & 
Chen, 2002). Let’s think back to the things affected by normality:
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FIGURE 5.5 Parameter estimates sampled from a non-normal population. As the sample size increases, the distribution of 
those parameters becomes increasingly normal

‘I, Oditi, believe that the central limit theorem is key to unlocking the 
hidden truths that the cult strives to find. The true wonder of the CLT 
cannot be understood by a static diagram and the ramblings of a 
damaged mind. Only by staring into my lantern can you see the CLT 
at work in all its glory. Go forth and look into the abyss.’

ODITI’S LANTERN

The central limit 
theorem

1 For confidence intervals around a parameter estimate (e.g., the mean, 
or a b in equation (2.4)) to be accurate, that estimate must come from 
a normal distribution. The central limit theorem tells us that in large 
samples the estimate will have come from a normal distribution regard-
less of what the sample or population data look like. Therefore, if we 
are interested in computing confidence intervals then we don’t need to 
worry about the assumption of normality if our sample is large enough.

2 For significance tests of models to be accurate the sampling distribution 
of what’s being tested must be normal. Again, the central limit theorem 

Does normality
matter?
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tells us that in large samples this will be true no matter what the shape of the popula-
tion. Therefore, the shape of our data shouldn’t affect significance tests provided our 
sample is large enough. However, the extent to which test statistics perform as they 
should do in large samples varies across different test statistics, and we will deal with 
these idiosyncratic issues in the appropriate chapter.

3 For the estimates of model parameters (the bs in equation (2.4)) to be optimal (using 
the method of least squares) the residuals in the population must be normally dis-
tributed. The method of least squares will always give you an estimate of the model 
parameters that minimizes error, so in that sense you don’t need to assume normality 
of anything to fit a linear model and estimate the parameters that define it (Gelman 
& Hill, 2007). However, there are other methods for estimating model parameters, 
and if you happen to have normally distributed errors then the estimates that you 
obtained using the method of least squares will have less error than the estimates you 
would have got using any of these other methods.

To sum up then, if all you want to do is estimate the parameters of your model then 
normality doesn’t really matter. If you want to construct confidence intervals around 
those parameters, or compute significance tests relating to those parameters, then the 
assumption of normality matters in small samples, but because of the central limit theo-
rem we don’t really need to worry about this assumption in larger samples (but see Jane 
Superbrain Box 5.2). In practical terms, as long as your sample is fairly large, outliers are 
a more pressing concern than normality. Although we tend to think of outliers as isolated 
very extreme cases, you can have outliers that are less extreme but are not isolated cases. 
These outliers can dramatically reduce the power of significance tests (Jane Superbrain 
Box 5.3).

5.2.5.  Homoscedasticity/homogeneity of variance �

The second assumption we’ll explore relates to variance (Section 1.6.3), which can affect 
the two main things that we might do when we fit models to data:

this size we started to get a sampling distribution that 
approximated normal. However, we also saw that with 
samples of 100 we got a better approximation of nor-
mal. As with most things in statistics, there isn’t a simple 
answer: how big is ‘big enough’ depends on the dis-
tribution of the population. In light-tailed distributions 
(where outliers are rare) an N as small as 20 can be 
‘large enough’, but in heavy-tailed distributions (where 
outliers are common) then up to 100 or even 160 might 
be necessary. If the distribution has a lot of skew and 
kurtosis you might need a very large sample indeed for 
the central limit theorem to work. It also depends on the 
parameter that you’re trying to estimate (Wilcox, 2010, 
discusses this issue in detail).

How big is ‘big enough’ for the central limit theorem 
to kick in? The widely accepted value is a sample size 
of 30, and we saw in Figure 5.4 that with samples of 

JANE SUPERBRAIN 5.2

Size really does matter  �
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humans, but 10% are from muppets (we saw in Jane 
Superbrain Box 5.1 that they live among us). Figure 5.6 
(right) reproduces this overall distribution (the blue one), 
but also shows the unique distributions for the humans 
(red) and muppets (Kermit-coloured green) that contrib-
ute to it.

The human distribution is a perfect normal distribution, 
but the curve for the muppets is flatter and heavier in the 
tails, showing that muppets are more likely than humans 
to be extremely happy (like Kermit) or extremely miser-
able (like Statler and Waldorf). When these populations 
combine, the muppets contaminate the perfectly normal 
distribution of humans: the combined distribution (blue) 
has slightly more scores in the extremes than a per-
fect normal distribution (red). The muppet scores have 
affected the overall distribution even though (1) they 
make up only 10% of the scores; and (2) their scores 
are more frequent at the extremes of ‘normal’ and not 
radically different like you might expect an outlier to be. 
These extreme scores inflate estimates of the population 
variance (think back to Jane Superbrain Box 1.5). Mixed 
normal distributions are very common and they reduce 
the power of significance tests – see Wilcox (2010) for a 
thorough account of the problems associated with these 
distributions.

Although we often think of outliers as one or two very 
extreme scores, sometimes they soak themselves in 
radar-absorbent paint and contort themselves into 
strange shapes so as to avoid detection. These ‘stealth 
outliers’ (that’s my name for them; no one else calls them 
that) hide undetected in data sets, radically affecting 
analyses. Imagine you collected happiness scores, and 
when you plotted the frequency distribution it looked like 
Figure 5.6 (left). You might decide that this distribution 
is normal, because it has the characteristic bell-shaped 
curve. However, it is not: it is a mixed normal distribu-
tion or contaminated normal distribution (Tukey, 1960). 
The happiness scores on the left of Figure 5.6 are made 
up of two distinct populations: 90% of scores are from 

JANE SUPERBRAIN 5.3

Stealth outliers  �

FIGURE 5.6  An apparently normal distribution (left), which is actually a ‘mixed normal’ distribution made up of two  
populations (right)
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 � Parameters: If we use the method of least squares (Section 2.4.3) to estimate the 
parameters in the model, then this will give us optimal estimates if the variance of the 
outcome variable is equal across different values of the predictor variable.

 � Null hypothesis significance testing: Test statistics often assume that the variance of 
the outcome variable is equal across different values of the predictor variable. If this 
is not the case then these test statistics will be inaccurate.

Therefore, to make sure our estimates of the parameters that define our model and signifi-
cance tests are accurate we have to assume homoscedasticity (also known as homogeneity 
of variance).

5.2.5.1. What is homoscedasticity/homogeneity of 

variance? �

In designs in which you test several groups of participants this assumption means that each 
of these samples comes from populations with the same variance. In correlational designs, 
this assumption means that the variance of the outcome variable should be stable at all lev-
els of the predictor variable. In other words, as you go through levels of the predictor vari-
able, the variance of the outcome variable should not change. Let’s illustrate this idea with 
an example. An audiologist was interested in the effects of loud concerts on people’s hear-
ing. She sent 10 people on tour with the loudest band she could find, Motörhead. These 
people went to concerts in Brixton (London), Brighton, Bristol, Edinburgh, Newcastle, 
Cardiff and Dublin, and the audiologist measured for how many hours after the concert 
these people had ringing in their ears.

The top of Figure 5.7 shows the number of hours that each person (represented by 
a circle) had ringing in his or her ears after each concert. The squares show the average 
number of hours of ringing in the ears after each concert. A line connects these means so 
that we can see the general trend. For each concert, the circles are the scores from which 
the mean is calculated. We can see in both graphs that the means increase as the people 
go to more concerts: there is a cumulative effect of the concerts on ringing in the ears. 
The graphs don’t differ with respect to the means (which are roughly the same), but do 
differ in the spread of scores around the mean. The bottom of Figure 5.7 removes the data 
and replaces it with a bar that shows the range of the scores displayed in the top figure. 
In the left-hand graphs, the green bars are roughly the same length, which tells us that 
the spread of scores around the mean was roughly the same at each concert. This is what 
we mean by homogeneity of variance or homoscedasticity:4 the spread of scores for hearing 
loss is the same at each level of the concert variable (i.e., the spread of scores is the same 
at Brixton, Brighton, Bristol, Edinburgh, Newcastle, Cardiff and Dublin). The right-hand 
side of Figure 5.7 shows a different scenario: the scores after the Brixton concert (which 
are again displayed by the green lines in the bottom part of the figure) are quite tightly 
packed around the mean (the vertical distance from the lowest score to the highest score is 
small), but after the Dublin show (for example) the scores are very spread out around the 
mean (the vertical distance from the lowest score to the highest score is large). In general, 
the green bars on the right differ in length, showing that the spread of scores was different 
at each concert. This scenario is an example of heterogeneity of variance or heteroscedastic-
ity: at some levels of the concert variable the variance of scores is different than at other 
levels (graphically, the vertical distance from the lowest to highest score is different after 
different concerts).

4 My explanation is a bit simplified because usually we’re making the assumption about the errors in the model 
and not the data themselves, but the two things are related.
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5.2.5.2. When does homoscedasticity/homogeneity  

of variance matter? �

In terms of estimating the parameters within a linear model, if we assume 
equality of variance then the estimates we get using the method of least squares 
will be optimal. If variances for the outcome variable differ along the predictor 
variable then the estimates of the parameters within the model will not be opti-
mal. The method of least squares will produce ‘unbiased’ estimates of parame-
ters even when homogeneity of variance can’t be assumed, but better estimates 
can be achieved using different methods, for example, by using weighted least 
squares in which each case is weighted by a function of its variance. Therefore, 
if all you care about is estimating the parameters of the model in your sample then you 
don’t need to worry about homogeneity of variance in most cases: the method of least 
squares will produce unbiased estimates (Hayes & Cai, 2007).

However, unequal variances/heteroscedasticity creates a bias and inconsistency in the 
estimate of the standard error associated with the parameter estimates in your model 
(Hayes & Cai, 2007). As such, your confidence intervals and significance tests for the 
parameter estimates will be biased, because they are computed using the standard error. 
Confidence intervals can be ‘extremely inaccurate’ when homogeneity of variance/homo-
scedasticity cannot be assumed (Wilcox, 2010). Therefore, if you want to look at the con-
fidence intervals around your model parameter estimates or to test the significance of the 
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model or its parameter estimates then homogeneity of variance matters. Some test statistics 
are designed to be accurate even when this assumption is violated, and we’ll discuss these 
in the appropriate chapters.

5.2.6.  Independence �

This assumption means that the errors in your model (the errori in equation (2.4)) are not 
related to each other. Imagine Paul and Julie were participants in an experiment where 
they had to indicate whether they remembered having seen particular photos. If Paul and 
Julie were to confer about whether they’d seen certain photos then their answers would 
not be independent: Julie’s response to a given question would depend on Paul’s answer. 
We know already that if we estimate a model to predict their responses, there will be error 
in those predictions and because Paul and Julie’s scores are not independent the errors 
associated with these predicted values will also not be independent. If Paul and Julie were 
unable to confer (if they were locked in different rooms) then the error terms should be 
independent (unless they’re telepathic): the error in predicting Paul’s response should not 
be influenced by the error in predicting Julie’s response.

The equation that we use to estimate the standard error (equation (2.8)) is valid only 
if observations are independent. Remember that we use the standard error to compute 
confidence intervals and significance tests, so if we violate the assumption of independence 
then our confidence intervals and significance tests will be invalid. If we use the method of 
least squares, then model parameter estimates will still be valid but not optimal (we could 
get better estimates using a different method). In general, if this assumption is violated, we 
should apply the techniques covered in Chapter 20, so it is important to identify whether 
the assumption is violated.

5.3. Spotting bias �

5.3.1.  Spotting outliers �

When they are isolated, extreme cases and outliers are fairly easy to spot using graphs 
such as histograms and boxplots; it is considerably trickier when outliers are more subtle 
(using z-scores may be useful – Jane Superbrain Box 5.4). Let’s look at an example. A 
biologist was worried about the potential health effects of music festivals. She went to 
the Download Music Festival5 (those of you outside the UK can pretend it is Roskilde 
Festival, Ozzfest, Lollopalooza, Wacken or something) and measured the hygiene of 810 
concert-goers over the three days of the festival. She tried to measure every person on 
every day but, because it was difficult to track people down, there were missing data 
on days 2 and 3. Hygiene was measured using a standardized technique (don’t worry, it 
wasn’t licking the person’s armpit) that results in a score ranging between 0 (you smell 
like you’ve bathed in sewage) and 4 (you smell of sweet roses on a fresh spring day). 
I know from bitter experience that sanitation is not always great at these places (the 
Reading Festival seems particularly bad) and so the biologist predicted that personal 
hygiene would go down dramatically over the three days of the festival. The data can be 
found in DownloadFestival.sav.

5 http://www.downloadfestival.co.uk
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SELF-TEST  Using what you learnt in Section 4.4, plot  
a histogram of the hygiene scores on day 1 of  
the festival.

The resulting histogram is shown in Figure 5.8. The first thing that should leap out at 
you is that there is one case that is very different from the others. All of the scores appear 
to be squashed up at one end of the distribution because they are all less than 5 (yielding a 
very pointy distribution) except for one, which has a value of 20. This score is an obvious 
outlier because it is above the top of our scale (remember our hygiene scale ranged only 
from 0 to 4). It must be a mistake. However, with 810 cases, how on earth do we find out 
which case it was? You could just look through the data, but that would certainly give you 
a headache, and so instead we can use a boxplot (see Section 4.5), which is another very 
useful way to spot outliers.

SELF-TEST  Using what you learnt in Section 4.5, plot a 
boxplot of the hygiene scores on day 1 of the festival.

The resulting boxplot is shown in Figure 5.9. The outlier that we detected in the 
histogram has shown up as an extreme score (*) on the boxplot. SPSS helpfully tells 
us the number of the case (611) that’s producing this outlier. If we go to the data edi-
tor (data view), we can locate this case quickly by clicking on  and typing 611 in 
the dialog box that appears. That takes us straight to case 611. Looking at this case 
reveals a score of 20.02, which is probably a mistyping of 2.02. We’d have to go back 
to the raw data and check. We’ll assume we’ve checked the raw data and this score 
should be 2.02, so replace the value 20.02 with the value 2.02 before we continue 
this example.

FIGURE 5.8

Histogram of the 
day 1 Download 
Festival hygiene 
scores
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SELF-TEST  Now we have removed the outlier in the data, 
re-plot the histogram and boxplot.

Figure 5.10 shows the histogram and boxplot for the data after the extreme case has 
been corrected. The distribution looks amazingly normal: it is nicely symmetrical and 
doesn’t seem too pointy or flat. Neither plot indicates any particularly extreme scores: the 
boxplot suggests that case 574 is a mild outlier, but the histogram doesn’t seem to show any 
cases as being particularly out of the ordinary.

SELF-TEST  Produce boxplots for the day 2 and day 3 
hygiene scores and interpret them. 

SELF-TEST  Re-plot theses scores but splitting by Gender 
along the x-axis. Are there differences between men and women?

�

FIGURE 5.9

Boxplot of 
hygiene scores 
on day 1 of 
the Download 
Festival

FIGURE 5.10

Histogram (left) 
and boxplot 
(right) of 
hygiene scores 
on day 1 of 
the Download 
Festival after 
removing the 
extreme score

05-Field 4e-SPSS-Ch-05.indd   178 07/11/2012   6:22:11 PM



179CHAPTER 5   THE BEAST  OF  B IAS

the z-score is positive or negative (called the ‘absolute 
value’), then in a normal distribution we’d expect about 
5% to be greater than 1.96 (we often use 2 for conve-
nience), 1% to have absolute values greater than 2.58, 
and none to be greater than about 3.29. To get SPSS 
to do the counting for you, use the syntax file Outliers 
(Percentage of Z-scores).sps (on the companion web-
site), which will produce a table for day 2 of the Download 
Festival hygiene data. Load this file and run the syntax 
(see Section 3.9). It uses the following commands:

DESCRIPTIVES
VARIABLES� day2/SAVE.
COMPUTE zday2� abs(zday2).
EXECUTE.

These commands use the descriptives function on the vari-
able day2 to save the z-scores in the data editor (as a vari-
able called zday2). We then use the compute command to 
change zday2 so that it contains the absolute values.

RECODE
zday2 (3.29 thru highest � 1)(2.58 thru highest � 2)

(1.96 thru highest � 3)(Lowest thru 1.95 � 4).
EXECUTE.

These commands recode the variable zday2 so that if a 
value is greater than 3.29 it’s assigned a code of 1, if it’s 
greater than 2.58 it’s assigned a code of 2, if it’s greater 
than 1.96 it’s assigned a code of 3, and if it’s less than 
1.95 it gets a code of 4.

VALUE LABELS zday2
4 ‘Normal range’ 3 ‘Potential Outliers (z � 1.96)’ 2 

‘Probable Outliers (z � 2.58)’ 1 ‘Extreme (z-score � 3.29)’.

This syntax assigns appropriate labels to the codes we 
defined above.

FREQUENCIES
VARIABLES� zday2
/ORDER�ANALYSIS.

We saw in Section 1.6.4 that z-scores express scores in 
terms of a distribution with a mean of 0 and a standard 
deviation of 1. By converting our data to z-scores we 
can use benchmarks that we can apply to any data set 
(regardless of what its original mean and standard devi-
ation were) to search for outliers. We can get SPSS to do 
this conversion using the 

 dialog box. Select the variable(s) to convert 
(such as day 2 of the hygiene data as in the diagram) 
and tick the Save standardized values as variables option 
(Figure 5.11). SPSS will create a new variable in the data 
editor (with the same name prefixed with the letter z).

To look for outliers we can count how many z-scores 
fall within certain important limits. If we ignore whether 

JANE SUPERBRAIN 5.4

Using z-scores to find outliers �

�

FIGURE 5.11 Saving z-scores

5.3.2.  Spotting normality �

5.3.2.1. Using graphs to spot normality �

Frequency distributions are not only good for spotting outliers; they are the natural choice 
for looking at the shape of the distribution as a whole. We have already plotted a histogram 
of the day 1 scores (Figure 5.10). The P-P plot (probability–probability plot) is another use-
ful graph for checking normality; it plots the cumulative probability of a variable against 
the cumulative probability of a particular distribution (in this case we would specify a 
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scores on day 2: 0.8% of cases were above 3.29 (extreme 
cases), 2.3% (compared to the 1% we’d expect) had values 
greater than 2.58, and 6.8% (compared to the 5% we would 
expect) had values greater than 1.96. The remaining cases 
(which, if you look at the Valid Percent, constitute 93.2%) 
were in the normal range. All in all these percentages are 
broadly consistent with what we’d expect in a normal distri-
bution (around 95% were in the normal range).

Finally, this syntax uses the frequencies command to pro-
duce a table (Output 5.1) telling us the percentage of 1s, 2s, 
3s and 4s found in the variable zday2. Thinking about what 
we know about the absolute values of z-scores, we would 
expect to see only 5% (or less) with an values greater than 
1.96, 1% (or less) with values greater than 2.58, and very few 
cases above 3.29. The column labelled Cumulative Percent 
tells us the corresponding percentages for the hygiene 

OUTPUT 5.1

normal distribution). The data are ranked and sorted, then for each rank the corresponding
z-score is calculated to create an ‘expected value’ that the score should have in a normal 
distribution. Next, the score itself is converted to a z-score (see Section 1.6.4). The actual
z-score is plotted against the expected z-score. If the data are normally distributed then 
the actual z-score will be the same as the expected z-score and you’ll get a lovely straight 
diagonal line. This ideal scenario is helpfully plotted on the graph and your job is to com-
pare the data points to this line. If values fall on the diagonal of the plot then the variable is 
normally distributed; however, when the data sag consistently above or below the diagonal 
then this shows that the kurtosis differs from a normal distribution, and when the data 
points are S-shaped, the problem is skewness.

To get a P-P plot use  to access the dialog box in 
Figure 5.12.6 There’s not a lot to say about this dialog box because the default options will 
compare any variables selected to a normal distribution, which is what we want (although 
note that there is a drop-down list of different distributions against which you could com-
pare your data). Select the three hygiene score variables in the variable list (click on the day 
1 variable, then hold down Shift and select the day 3 variable and the day 2 scores will be 
selected as well). Transfer the selected variables to the box labelled Variables by clicking on 

. Click on  to draw the graphs.

SELF-TEST  Using what you leant in Section 4.4, plot 
histograms for the hygiene scores for days 2 and 3 of the 
Download Festival.

Figure 5.13 shows the histograms (from the self-test tasks) and the corresponding P-P 
plots. We’ve looked at the day 1 scores in the previous section and concluded that they 

6 You’ll notice in the same menu something called a Q-Q plot, which is very similar and which we’ll discuss later.
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FIGURE 5.12

Dialog box for 
obtaining P-P 
plots

looked quite normal. The P-P plot echoes this view because the data points all fall very 
close to the ‘ideal’ diagonal line. However, the distributions for days 2 and 3 are not nearly 
as symmetrical as day 1: they both look positively skewed. Again, this can be seen in the 
P-P plots by the data points deviating away from the diagonal. In general, this seems to sug-
gest that by days 2 and 3, hygiene scores were much more clustered around the low end of 
the scale. Remember that the lower the score, the less hygienic the person is, so generally 
people became smellier as the festival progressed. The skew occurs because a substantial 
minority insisted on upholding their levels of hygiene (against all odds) over the course of 
the festival (baby wet-wipes are indispensable, I find).

5.3.2.2. Using numbers to spot normality �

Graphs are particularly useful for looking at normality in big samples; however, in smaller 
samples it can be useful to explore the distribution of the variables using the frequencies 
command ( ). The main dialog box is shown in Figure 
5.14. The variables in the data editor are listed on the left-hand side, and they can be trans-
ferred to the box labelled Variable(s) by clicking on a variable (or highlighting several with 
the mouse) and then clicking on . If a variable listed in the Variable(s) box is selected, it 
can be transferred back to the variable list by clicking on the arrow button (which should 
now be pointing in the opposite direction). By default, SPSS produces a frequency distri-
bution of all scores in table form. However, there are two other dialog boxes that can be 
selected that provide other options. The Statistics dialog box is accessed by clicking on 

, and the Charts dialog box is accessed by clicking on .
The Statistics dialog box allows you to select ways to describe a distribution, such as 

measures of central tendency (mean, mode, median), measures of variability (range, stan-
dard deviation, variance, quartile splits), measures of shape (kurtosis and skewness). Select 
the mean, mode, median, standard deviation, variance and range. To check that a distribu-
tion of scores is normal, we can look at the values of kurtosis and skewness (see Section 
1.6.1). The Charts option provides a simple way to plot the frequency distribution of 
scores (as a bar chart, a pie chart or a histogram). We’ve already plotted histograms of our 
data so we don’t need to select these options, but you could use these options in future 
analyses. When you have selected the appropriate options, return to the main dialog box 
by clicking on . Once in the main dialog box, click on  to run the analysis.
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FIGURE 5.13

Histograms 
(left) and P-P 
plots (right) 
of the hygiene 
scores over the 
three days of 
the Download 
Festival

Output 5.2 shows the table of descriptive statistics for the three variables in this exam-
ple. On average, hygiene scores were 1.77 (out of 5) on day 1 of the festival, but went 
down to 0.96 and 0.98 on days 2 and 3, respectively. The other important measures for 
our purposes are the skewness and the kurtosis (see Section 1.6.1), both of which have an 
associated standard error.

There are different ways to calculate skewness and kurtosis, but SPSS uses methods that 
give values of zero in a normal distribution. Positive values of skewness indicate a pile-up 
of scores on the left of the distribution, whereas negative values indicate a pile-up on the 
right. Positive values of kurtosis indicate a pointy and heavy-tailed distribution, whereas 
negative values indicate a flat and light-tailed distribution. The further the value is from 
zero, the more likely it is that the data are not normally distributed. For day 1 the skew 
value is very close to zero (which is good) and kurtosis is a little negative. For days 2 and 
3, though, there is a skewness of around 1 (positive skew).
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We can convert these values to z-scores (Section 1.6.4), which enables us to (1) compare 
skew and kurtosis values in different samples that used different measures, and (2) calculate 
a p-value that tells us if the values are significantly different from 0 (i.e., normal). Although 
there are good reasons not to do this (see Jane Superbrain Box 5.5), if you want to you can 
do it by subtracting the mean of the distribution (in this case zero) from the score and then 
dividing by the standard error of the distribution.

skewness
skewness

0S
z

SE
�

�
  

kurtosis
kurtosis

0K
z

SE
�

�

In the above equations, the values of S (skewness) and K (kurtosis) and their respective 
standard errors are produced by SPSS. These z-scores can be compared against values that 
you would expect to get if skew and kurtosis were not different from 0 (see Section 1.6.4). 

FIGURE 5.14

Dialog boxes for 
the frequencies 
command

OUTPUT 5.2
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Did someone
say Smirnov? Great,

I need a drink after all
this data analysis!

So, an absolute value greater than 1.96 is significant at p �	.05, above 2.58 is significant at 
p �	.01 and above 3.29 is significant at p �	.001. However, you really should use these cri-
teria only in small samples: in larger samples examine the shape of the distribution visually, 
interpret the value of the skewness and kurtosis statistics, and possibly don’t even worry 
about normality at all (Jane Superbrain Box 5.5).

For the hygiene scores, the z-score of skewness is −0.004/0.086 � 0.047 on day 1, 
1.095/0.150 � 7.300 on day 2 and 1.033/0.218 � 4.739 on day 3. It is pretty clear then 
that although on day 1 scores are not at all skewed, on days 2 and 3 there is a very 
significant positive skew (as was evident from the histogram). The kurtosis z-scores are: 
−0.410/0.172 � −2.38 on day 1, 0.822/0.299 � 2.75 on day 2 and 0.732/0.433 � 1.69 on 
day 3. These values indicate significant problems with skew, kurtosis or both (at p �.05) 
for all three days; however, because of the large sample, this isn’t surprising and so we can 
take comfort from the central limit theorem.

Another way of looking at the problem is to see whether the distribution 
of scores deviates from a comparable normal distribution. The Kolmogorov–
Smirnov test and Shapiro–Wilk test do this: they compare the scores in the sam-
ple to a normally distributed set of scores with the same mean and standard 
deviation. If the test is non-significant (p �	.05) it tells us that the distribution 
of the sample is not significantly different from a normal distribution (i.e., it 
is probably normal). If, however, the test is significant (p �	.05) then the dis-
tribution in question is significantly different from a normal distribution (i.e., 
it is non-normal). These tests seem great: in one easy procedure they tell us 
whether our scores are normally distributed (nice!). However, Jane Superbrain 
Box 5.5 explains some really good reasons not to use them. If you insist on 

using them, bear Jane’s advice in mind and always plot your data as well and try to make 
an informed decision about the extent of non-normality based on converging evidence.

they can be significant even for small and unimportant 
effects, and (2) in small samples they will lack power to 
detect violations of assumptions (Section 2.6.1.10).

We have also seen in this chapter that the central 
limit theorem means that as sample sizes get larger, 
the assumption of normality matters less because the 
sampling distribution will be normal regardless of what 
our population (or indeed sample) data look like. So, the 
problem is that in large samples, where we don’t need 
to worry about normality, a test of normality is more likely 
to be significant, and therefore likely to make us worry 
about and correct for something that doesn’t need to be 
corrected or worried about. Conversely, in small sam-
ples, where we might want to worry about normality, a 
significance test won’t have the power to detect non-nor-
mality and so is likely to encourage us not to worry about 
something that we probably ought to. Therefore, the best 
advice is that if your sample is large then don’t use sig-
nificance tests of normality; in fact, don’t worry too much 
about normality at all. In small samples pay attention if 
your significance tests are significant but resist being 
lulled into a false sense of security if they are not.

Throughout this section we will look at various signifi-
cance tests that have been devised to look at whether 
assumptions are violated. These include tests of whether 
a distribution is normal (the Kolmogorov–Smirnoff and 
Shapiro–Wilk tests), tests of homogeneity of variances 
(Levene’s test), and tests of significance of skew and 
kurtosis. Although I cover these tests because people 
expect to see these sorts of things in introductory sta-
tistics books, there is a fundamental problem with using 
them. They are all based on null hypothesis signifi-
cance testing, and this means that (1) in large samples 

JANE SUPERBRAIN 5.5

Significance tests and assumptions  �
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The Kolmogorov–Smirnov (K-S; Figure 5.15) test is accessed through the 
explore command ( ). Figure 5.16 shows 
the dialog boxes for this command. First, enter any variables of interest in the 
box labelled Dependent List by highlighting them on the left-hand side and 
transferring them by clicking on . For this example, select the hygiene scores 
for the three days. If you click on  a dialog box appears, but the default 
option is fine (it will produce means, standard deviations and so on). The more 
interesting option for our current purposes is accessed by clicking on . In 
this dialog box select the option , and this will produce both 
the K-S test and some normal quantile–quantile (Q-Q) plots. A Q-Q plot is very similar to 
the P-P plot that we encountered in Section 5.3.2 except that it plots the quantiles (Section 
1.6.3) of the data instead of every individual score in the data. The expected quantiles are a 
straight diagonal line, whereas the observed quantiles are plotted as individual points. The 
Q-Q plot can be interpreted in the same way as a P-P plot: any deviation of the dots from 
the diagonal line represents a deviation from normality. Kurtosis is shown up by the dots 
sagging above or below the line, whereas skew is shown up by the dots snaking around the 
line in an ‘S’ shape. If you have a lot of scores, Q-Q plots can be easier to interpret than P-P 
plots because they will display fewer values.

By default, SPSS will produce boxplots (split according to group if a factor has been speci-
fied) and stem-and-leaf diagrams as well. We also need to click on  to tell SPSS how to 
deal with missing values. This is important because although we start off with 810 scores on 

            CRAMMING SAM’S TIPS     Skewness and kurtosis


 To check that the distribution of scores is approximately normal, we need to look at the values of skewness and kurtosis 
in the output.


 Positive values of skewness indicate too many low scores in the distribution, whereas negative values indicate a build-up 
of high scores.


 Positive values of kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values indicate a flat and light-
tailed distribution.


 The further the value is from zero, the more likely it is that the data are not normally distributed.

 You can convert these scores to z-scores by dividing by their standard error. If the resulting score (when you ignore the 

minus sign) is greater than 1.96 then it is significant (p �.05).

 Significance tests of skew and kurtosis should not be used in large samples (because they are likely to be significant 

even when skew and kurtosis are not too different from normal).

In your output you will also see tabulated frequency distributions  
of each variable. This table is reproduced in the additional online 
material along with a description.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
frequencies?

Is it possible to test
whether I am normal?
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FIGURE 5.16

Dialog boxes 
for the explore 
command

FIGURE 5.15

Andrei 
Kolmogorov, 
wishing he had a 
Smirnov
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          SPSS T IP  5 .1       Pairwise or listwise? �

Many of the analyses in this book have additional options that can be accessed by clicking on . Often 
the resulting Options dialog box will ask you if you want to exclude cases ‘pairwise’, ‘analysis by analysis’ or 
‘listwise’. Let’s imagine we wanted to use our hygiene scores to compare mean scores on days 1 and 2, days 1 
and 3, and days 2 and 3. First, we can exclude cases listwise, which means that if a case has a missing value for 
any variable, then they are excluded from the whole analysis. So, for example, if we had the hygiene score for a 
person (let’s call her Melody) at the festival on days 1 and 2, but not day 3, then Melody’s data will be excluded 
for all of the comparisons mentioned above. Even though we have her data for days 1 and 2, we won’t use them 
for that comparison – they would be completely excluded from the analysis. Another option is to excluded cases 
on a pairwise (a.k.a. analysis-by-analysis or test-by-test) basis, which means that Melody’s data will be excluded 
only for analyses for which she has missing data: so her data would be used to compare days 1 and 2, but 
would be excluded for the other comparisons (because we don’t have her score on day 3).

day 1, by day 2 we have only 264 and by day 3 only 123. By default, SPSS will use only cases 
for which there are valid scores on all of the selected variables. This would mean that for day 
1, even though we have 810 scores, it will use only the 123 cases for which there are scores 
on all three days. This is known as excluding cases listwise. However, we want it to use all of 
the scores it has on a given day, which is known as pairwise. There’s more information on these 
two methods in SPSS Tip 5.1. Once you have clicked on , select Exclude cases pairwise, 
then click on  to return to the main dialog box and click on  to run the analysis.

SPSS will produce a table of descriptive statistics (mean, etc.) that should have the same 
values as the tables obtained using the frequencies procedure. The important table is that of 
the K-S test (Output 5.3). This table includes the test statistic itself, the degrees of freedom 
(which should equal the sample size) and the significance value of this test. Remember that 
a significant value (Sig. less than .05) indicates a deviation from normality. For day 1 the 
K-S test is just about non-significant (p �	.097), which is surprisingly close to significant 
given how normal the day 1 scores looked in the histogram (Figure 5.13). However, the 
sample size on day 1 is very large (N � 810) and the significance of the K-S test for these 
data shows how in large samples even small and unimportant deviations from normality 
might be deemed significant by this test (Jane Superbrain Box 5.5). For days 2 and 3 the 
test is highly significant, indicating that these distributions are not normal, which is likely 
to reflect the skew seen in the histograms for these data (Figure 5.13).

OUTPUT 5.3
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            CRAMMING SAM’S TIPS     Normality tests


 The K-S test can be used to see if a distribution of scores significantly differs from a normal distribution.

 If the K-S test is significant (Sig. in the SPSS table is less than .05) then the scores are significantly different from a 

normal distribution.

 Otherwise, scores are approximately normally distributed.

 The Shapiro–Wilk test does much the same thing, but it has more power to detect differences from normality (so this test 

might be significant when the K-S test is not).

 Warning: In large samples these tests can be significant even when the scores are only slightly different from a normal 

distribution. Therefore, I don’t particularly recommend them and they should always be interpreted in conjunction with 
histograms, P-P or Q-Q plots, and the values of skew and kurtosis.

5.3.2.3. Reporting the K-S test �

The test statistic for the K-S test is denoted by D, and we should report the degrees of free-
dom (df) from the table in brackets after the D. We can report the results in Output 5.3 in 
the following way:

� The hygiene scores on day 1, D(810) � 0.029, p �	.097, did not deviate significantly 
from normal; however, day 2, D(264) � 0.121, p �	.001, and day 3, D(123) � 0.140, 
p �	.001, scores were both significantly non-normal. 

‘There is another test reported in the table (the Shapiro–Wilk test)’, 
whispers Oliver as he creeps up behind you, knife in hand, ‘and a 
footnote saying that the “‘Lilliefors significance correction” has been 
applied. What the hell is going on?’ (If you do the K-S test through the 
Nonparametric Tests menu rather than the Explore menu this correc-
tion is not applied.) Well, Oliver, all will be revealed in the additional 
material for this chapter on the companion website: you can find out 
more about the K-S test, and information about the Lilliefors correction 
and Shapiro–Wilk test. What are you waiting for?

OLIVER TWISTED

Please, Sir, can I have 
some more … normality 
tests?

5.3.2.4. Normality within groups and the split file command �

We saw earlier that when predictor variables are formed of categories, if you decide that 
you need to check the assumption of normality then you need to do it within each group 
separately (Jane Superbrain Box 5.1). For example, for the hygiene scores we have data for 
males and females (in the variable Gender). If we made some prediction about there being 
differences in hygiene between males and females at a music festival then we should look 
at normality within males and females separately. There are several ways to produce basic 
descriptive statistics for separate groups. First, I will introduce you to the split file function. 
This function allows you to specify a grouping variable (remember, these variables are used 
to specify categories of cases). Any subsequent procedure in SPSS is then carried out on 
each category of cases separately.
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If we want to obtain separate descriptive statistics for males and females in 
our festival hygiene scores, we can split the file, and then proceed using the 
frequencies command described in the previous section. To split the file, select 

 or click on . In the resulting dialog box (Figure 5.17) select the 
option Organize output by groups. Once this option is selected, the Groups 
Based on box will activate. Select the variable containing the group codes by 
which you wish to repeat the analysis (in this example select Gender), and drag 
it to the box or click on . By default, SPSS will sort the file by these groups 
(i.e., it will list one category followed by the other in the data editor). Once 
you have split the file, use the frequencies command (see the previous section). 
Let’s request statistics for all three days as in Figure 5.14.

Output 5.4 shows the results, which have been split into two tables: 
the results for males and the results for females. Males scored lower then 
females on all three days of the festival (i.e., they were smellier). The values of skew 
and kurtosis are similar for males and females on days 2 and 3, but differ a little on day 
1: as already indicated, males show a very slight positive skew (0.200) but for females 
the skew is slightly negative (�0.176). In both cases the skew on day 1 is very small. 
Figure 5.18 shows the histograms of hygiene scores split according to the gender of the 

Can I analyse
groups of data?
Can I analyse

groups of data?

�

FIGURE 5.17

Split File dialog 
box

OUTPUT 5.4

05-Field 4e-SPSS-Ch-05.indd   189 07/11/2012   6:22:17 PM



190 D ISCOVER ING STAT IST ICS  US ING SPSS

����� �������FIGURE 5.18

Distributions of 
hygiene scores 
for males (left) 
and females 
(right) over 
three days (top 
to bottom) of a 
music festival

festival-goer. Male and female scores have similar distributions. On day 1 they are fairly 
normal (although females perhaps show a very slight negative skew, which indicates a 
higher proportion of them were at the higher end of hygiene scores than males). On days 
2 and 3 both males and females show the characteristic positive skew that we saw in the 
sample as a whole. It looks as though proportionally more females are in the skewed end 
of the distribution (i.e., at the hygienic end).
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�

OUTPUT 5.5

We can also do K-S tests within the different groups by repeating the analysis we did earlier 
(Figure 5.16); because the split file command is switched on, we’d get the K-S test performed 
on males and females separately. An alterative method is to split the analysis by group from 
within the explore command itself. First, switch split file off by clicking on  (or click 
on ) to activate the dialog box in Figure 5.17. Select Analyze all cases, do not create groups 
and click on . The split file function is now off and analyses will be conducted on the data 
as whole. Next, activate the explore command just as we did before: 

. We can ask for separate tests for males and females by placing Gender in the box 
labelled Factor List as in Figure 5.21 and selecting the same options as described earlier. Let’s 
do this for the day 1 hygiene scores. You should see the table in Output 5.5, which shows that 
the distribution of hygiene scores was normal for males (the value of Sig. is greater than .05) 
but not for females (the value of Sig. is smaller than .05).

���� ������

FIGURE 5.19 Normal Q-Q plots of hygiene scores for day 1 of the music festival

SPSS also produces a normal Q-Q plot (see Figure 5.19). Despite the K-S having completely 
different outcomes for males and females, the Q-Q plots are remarkably similar: there is no 
sign of a major problem with kurtosis (the dots do not particularly sag above or below the line) 
and there is some slight skew (the female graph in particular has a slight S-shape). However, 
both graphs show that the quantiles fall very close to the diagonal line, which, let’s not forget, 
represents a perfect normal distribution. For the females the graph is at odds with the signifi-
cant K-S test, and this illustrates my earlier point that if you have a large sample then tests like 
K-S will lead you to conclude that even very minor deviations from normality are ‘significant’.

SELF-TEST  Compute and interpret a K-S test and Q-Q plots 
for males and females for days 2 and 3 of the music festival.
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FIGURE 5.20

Plots of 
standardized 
residuals 
against 
predicted 
(fitted) values

5.3.3.   Spotting linearity and heteroscedasticity/heterogeneity  
of variance �

5.3.3.1. Using graphs to spot problems with linearity or 

homoscedasticity �

It might seem odd that I have chosen to look at the assumption of linearity and homosce-
dasticity together. However, there is a graph that shows up problems with both of these 
assumptions. These assumptions both relate to the errors (a.k.a. residuals) in the model we 
fit to the data. We can create a scatterplot of the values of the residuals against the values 
of the outcome predicted by our model. In doing so we’re looking at whether there is a 
systematic relationship between what comes out of the model (the predicted values) and 
the errors in the model. Normally we convert the predicted values and errors to z-scores,7 
so this plot is sometimes referred to as zpred vs. zresid. If linearity and homoscedasticity 
hold true then there should be no systematic relationship between the errors in the model 
and what the model predicts. Looking at this graph can, therefore, kill two birds with one 
stone. If this graph funnels out, then the chances are that there is heteroscedasticity in the 
data. If there is any sort of curve in this graph then the chances are that the data have bro-
ken the assumption of linearity.

Figure 5.20 shows several examples of the plot of standardized residuals against standard-
ized predicted values. The top left panel shows a situation in which the assumptions of linear-
ity and homoscedasticity have been met. The top right panel shows a similar plot for a data 

7 Theses standardized errors are called standardized residuals, which we’ll discuss in Chapter 8.
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set that violates the assumption of homoscedasticity. Note that the points form a funnel: they 
become more spread out across the graph. This funnel shape is typical of heteroscedasticity and 
indicates increasing variance across the residuals. The bottom left panel shows a plot of some 
data in which there is a non-linear relationship between the outcome and the predictor: there 
is a clear curve in the residuals. Finally, the bottom right panel illustrates data that not only 
have a non-linear relationship, but also show heteroscedasticity. Note first the curved trend in 
the residuals, and then also note that at one end of the plot the points are very close together 
whereas at the other end they are widely dispersed. When these assumptions have been violated 
you will not see these exact patterns, but hopefully these plots will help you to understand the 
general anomalies you should look out for. We’ll look at an example of how this graph is used 
in Chapter 8, but for the time being just be aware of the patterns to look out for.

5.3.3.2. Spotting heteroscedasticity/heterogeneity of  

variance using numbers �

Remember that homoscedasticity/homogeneity of variance means that as you go through 
levels of one variable, the variance of the other should not change. If you’ve collected 
groups of data then this means that the variance of your outcome variable or variables 
should be the same in each of these groups. You’ll sometimes come across Levene’s test 
(Levene, 1960), which tests the null hypothesis that the variances in different groups are 
equal. It’s a very simple and elegant test that works by doing a one-way ANOVA (see 
Chapter 11) on the deviation scores; that is, the absolute difference between each score 
and the mean of the group from which it came (see Glass, 1966, for a very readable 
explanation).8 For now, all you need to know is that if Levene’s test is significant at p£.05 
then you conclude that the null hypothesis is incorrect and that the variances are signifi-
cantly different – therefore, the assumption of homogeneity of variances has been violated. 
If, however, Levene’s test is non-significant (i.e., p �	.05) then the variances are roughly 
equal and the assumption is tenable. Although Levene’s test can be selected as an option in 
many of the statistical tests that require it, it’s best to look at it when you’re exploring data 
because it informs the model you fit. As with the K-S test (and other tests of normality), 
when the sample size is large, small differences in group variances can produce a Levene’s 
test that is significant (Jane Superbrain Box 5.5). There are also other very strong argu-
ments for not using it (Jane Superbrain Box 5.6).

Some people also look at Hartley’s Fmax, also known as the variance ratio (Pearson & 
Hartley, 1954). This is the ratio of the variances between the group with the biggest vari-
ance and the group with the smallest variance. This ratio was compared to critical values in 
a table published by Hartley. Although this ratio isn’t used very often, if you want the criti-
cal values (for a .05 level of significance) see Oliver Twisted. The critical values depend on 
the number of cases per group, and the number of variances being compared. For example, 
with sample sizes (n) of 10 per group, an Fmax of less than 10 is more or less always going to 
be non-significant, with 15–20 per group the ratio needs to be less than about 5, and with 
samples of 30–60 the ratio should be below about 2 or 3.

5.3.3.3. If you still decide to do Levene’s test �

We can get Levene’s test using the Explore menu that we used in the previous section. 
Sticking with the hygiene scores, we’ll compare the variances of males and females on day 1 

8 We haven’t covered ANOVA yet, so this explanation won’t make much sense to you now, but in Chapter 11 we 
will look in more detail at how Levene’s test works.
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Oliver thinks that it’s stupid to talk about the variance ratio without the 
critical values. ‘No critical values?’ he laughed. ‘That’s the most stupid 
thing I’ve seen since I was at Sussex Uni and I saw my statistics lec-
turer, Andy Fie…’. Well, go choke on your gruel, you Dickensian bubo, 
because the full table of critical values is in the additional material for 
this chapter on the companion website.

OLIVER TWISTED

Please, Sir, can I have 
some more … Hartley’s 
Fmax?

of the festival. Use  to open the dialog box in Figure 5.21. 
Transfer the day1 variable from the list on the left-hand side to the box labelled Dependent 
List by clicking on the  next to this box; because we want to split the output by the 
grouping variable to compare the variances, select the variable Gender and transfer it to the 
box labelled Factor List by clicking on the appropriate . Then click on  to open the 
other dialog box in Figure 5.21. To get Levene’s test we need to select one of the options 
where it says Spread vs. level with Levene test. If you select , Levene’s test is 
carried out on the raw data (a good place to start). When you’ve finished with this dialog 
box click on  to return to the main Explore dialog box and then click on  to run 
the analysis.

Output 5.6 shows the table for Levene’s test. The test can be based on differences 
between scores and the mean, and between scores and the median. The median is slightly 
preferable (because it is less biased by outliers). When using both the mean (p �	.030) and 
the median (p �	.037) the significance values are less than .05, indicating a significant dif-
ference between the male and female variances. To calculate the variance ratio, we need to 
divide the largest variance by the smallest. You should find the variances in your output, but 
if not, we obtained these values in Output 5.4. The male variance was 0.413 and the female 
one 0.496; the variance ratio is, therefore, 0.496/0.413 � 1.2. In essence the variances are 
practically equal. So, why does Levene’s test tell us they are significantly different? The 
answer is because the sample sizes are so large: we had 315 males and 495 females, so 

you don’t have unequal group sizes, this assumption 
is pretty much irrelevant, and can be ignored. Second, 
the tests of homogeneity of variance like Levene’s tend 
to work very well when you have equal group sizes and 
large samples (when it doesn’t matter as much if you 
have violated the assumption) and don’t work as well 
with unequal group sizes and smaller samples (which is 
exactly when it does matter). Plus, there are adjustments 
to correct for violations of this assumption that can often 
be applied (as we shall see) which would be a right nui-
sance if you had to do them by hand, but are very easy 
to do if you have a computer. In most cases, if you have 
violated the assumption then a correction is made – and 
if you haven’t violated the assumption, a correction is 
not made. So, you might as well always do the adjust-
ment and forget about the assumption. If you’re really 
interested in this, I like the article by Zimmerman (2004).

Statisticians used to recommend testing for homogene-
ity of variance using Levene’s test and, if the assump-
tion was violated, using an adjustment to correct for it. 
However, people have stopped using this approach for 
two reasons. First, when you have violated this assump-
tion it only matters if you have unequal group sizes: if 

JANE SUPERBRAIN 5.6

Is Levene’s test worth the effort?  �
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FIGURE 5.21

Exploring 
groups of data 
and obtaining 
Levene’s test

even this very small difference in variances is shown up as significant by Levene’s test (Jane 
Superbrain Box 5.5). Hopefully this example convinces you to treat these tests cautiously.

5.3.3.4. Reporting Levene’s test �

Levene’s test can be denoted by the letter F and there are two different degrees of freedom. 
As such you can report it, in general form, as F(df1, df2) � value, p � p-value. So, for the 
results in Output 5.6 we could say:

 � For the hygiene scores on day 1 of the festival, the variances were unequal for for 
males and females, F(1, 808) = 4.74, p = .03.

OUTPUT 5.6

            CRAMMING SAM’S TIPS     Homogeneity of variance


 Homogeneity of variance/homoscedasticity is the assumption that the spread of outcome scores is roughly equal at 
different points on the predictor variable.


 This can be tested by looking at a plot of the standardized predicted values from your model against the standardized 
residuals (zpred vs. zresid).


 When comparing groups, this assumption can be tested with Levene’s test and the variance ratio (Hartley’s Fmax).

� If Levene’s test is significant (Sig. in the SPSS table is less than .05) then the variances are significantly different in 
different groups.

� Otherwise, homogeneity of variance can be assumed.
� The variance ratio is the largest group variance divided by the smallest. This value needs to be smaller than the critical 

values in the additional material.


 Warning: There are good reasons not to use tests like Levene’s test. In large samples Levene’s test can be significant 
even when group variances are not very different. Therefore, it should be interpreted in conjunction with the variance ratio.
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5.4. Reducing bias �

Having looked at potential sources of bias, the next issue is how to reduce the impact of 
bias. Essentially there are four methods for correcting problems with the data, which can 
be remembered with the handy acronym of TWAT (or WATT, if you prefer):

 � Trim the data: Delete a certain amount of scores from the extremes.

 � Winsorizing: Substitute outliers with the highest value that isn’t an outlier.

 � Analyse with robust methods: This typically involves a technique known as 
bootstrapping.

 � Transform the data: This involves applying a mathematical function to scores to try 
to correct any problems with them.

Probably the best of these choices is to use robust tests, which is a term applied to a family 
of procedures to estimate statistics that are reliable even when the normal assumptions of 
the statistic are not met (Section 5.4.3). Let’s look at each technique in more detail.

5.4.1.  Trimming the data �

Trimming the data means deleting some scores from the extremes, and it takes many forms. 
In its simplest form it could be deleting the data from the person who contributed the out-
lier. However, this should be done only if you have good reason to believe that this case is 
not from the population that you intended to sample. For example, if you were investigat-
ing factors that affected how much cats purr and one cat didn’t purr at all, this would likely 
be an outlier (all cats purr). Upon inspection, if you discovered that this cat was actually a 
dog wearing a cat costume, then you’d have grounds to exclude this case because it comes 
from a different population (dogs who like to dress as cats) than your target population 
(cats).

More often, trimming involves removing extreme scores using one of two rules: (1) a 
percentage based rule; and (2) a standard deviation based rule. A percentage based rule 
would be, for example, deleting the 10% of highest and lowest scores. Let’s look at an 
example. Meston and Frohlich (2003) report a study showing that heterosexual people 
rate a picture of someone of the opposite sex as more attractive after riding a roller coaster 
compared to before. Imagine we took 20 people as they came off of the Rockit roller-
coaster at Universal Studios in Orlando9 and asked them to rate the attractiveness of some-
one in a photograph on a scale of 0 (looks like Jabba the Hutt) to 10 (my eyes have just 
exploded because they weren’t designed to gaze upon such beauty). Figure 5.22 shows 
these scores. As you can see, most people gave ratings above the mid-point of the scale: 
they were pretty positive in their ratings. However, there were two people who gave zeros. 
If we were to trim 5% of the data from either end, this would mean deleting one score at 
each extreme (there are 20 scores and 5% of 20 is 1). Figure 5.22 shows that this involves 
deleting a 0 and an 8. We could compute a 5% trimmed mean by working out the mean for 
this trimmed data set. Similarly, Figure 5.22 shows that with 20 scores, a 10% trim would 
mean deleting two scores from each extreme, and a 20% trim would entail deleting four 
scores from each extreme. If you take trimming to its extreme then you get the median, 
which is the value left when you have trimmed all but the middle score. If we calculate the 

9 I have a video of my wife and me on this rollercoaster during our honeymoon. I swear quite a lot on it, but I 
might stick it on my YouTube channel so you can laugh at what a cissy I am.
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mean in a sample that has been trimmed in this way, it is called (unsurprisingly) a trimmed 
mean. A similar robust measure of location is the M-estimator, which differs from a trimmed 
mean in that the amount of trimming is determined empirically. In other words, rather than 
the researcher deciding before the analysis how much of the data to trim, an M-estimator 
determines the optimal amount of trimming necessary to give a robust estimate of, say, 
the mean. This has the obvious advantage that you never over- or under-trim your data. 
However, the disadvantage is that it is not always possible to reach a solution.

SELF-TEST  Compute the mean and variance of the 
attractiveness ratings. Now compute them for the 5%, 10% and 
20% trimmed data.

If you do the self-test you should find that the mean rating was 6 with a variance of 5.37. 
The 5% trimmed mean is 6.22, the 10% trimmed mean is 6.50, and the 20% trimmed 
mean is 6.58. The means get higher in this case because the trimming is reducing the impact 
of the few scores that were very small (two miserable people who gave ratings of 0). What 
happens to the variances? For the overall sample it is 5.37, but for the 5%, 10%, and 20% 
trimmed data you get 3.59, 1.20 and 0.45, respectively. The variances get smaller (and 
more stable) because, again, the outliers have less impact. We saw earlier that the accuracy 
of the mean and variance depends on a symmetrical distribution, but a trimmed mean (and 
variance) will be relatively accurate even when the distribution is not symmetrical, because 
by trimming the ends of the distribution we remove outliers and skew that bias the mean. 
Some robust methods work by taking advantage of the properties of the trimmed mean.

Standard deviation based rules involve calculating the mean and standard deviation of 
a set of scores, and then removing values that are a certain number of standard deviations 
greater than the mean. For example, when analysing reaction time data (which is notori-
ously messy) it is very common to remove any reaction times greater than (or below) 2.5 
standard deviations above the mean (Ratcliff, 1993). For the roller coaster data the standard 
deviation is 2.32, so 2.5 times the standard deviation is 5.8. The mean was 6, therefore, we 
would delete scores greater than 6 � 5.8 � 11.8, of which there were none (it was only a 
10-point scale); we would also delete scores less than 6 – 5.8 � 0.2, which means deleting 
the two scores of zero because they are the only scores less than 0.2. If we recalculate the 
mean excluding these two zeros we get 6.67 and a variance of 1.29. Again, you can see that 
this method reduces the impact of extreme scores. However, there is one fundamental prob-
lem with standard deviation based trimming, which is that the mean and standard deviation 
are both highly influenced by outliers (see Section 5.2.2); therefore, if you have outliers in 
the data the criterion you use to reduce their impact has already been biased by them.
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Illustration of 
trimmed data
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‘I, Oditi, believe that those who would try to prevent our cult from dis-
covering the truths behind the numbers have placed dead herrings 
within the data. These rotting numerical fish permeate our models 
and infect the nostrils of understanding with their putrid stench. We 
must banish them; we mush select only the good data, the pure 
data, the data uncontaminated by piscene putrefaction. You, the 
trooper of truth, must stare into my lantern to discover how to select 
cases using SPSS.’

ODITI’S LANTERN

Select Cases

When it comes to implementing these methods in SPSS, there isn’t a simple way to do it. 
Although SPSS will calculate a 5% trimmed mean for you if you use the explore command 
(Figure 5.16), it won’t remove the actual cases from the data set, so to do tests based on 
a trimmed sample you would need to manually trim the data (or do it using syntax com-
mands) or use the select cases command (see Oditi’s Lantern).

5.4.2.  Winsorizing �

Winsorizing the data involves replacing outliers with the next highest score that is not an 
outlier. It’s perfectly natural to feel uncomfortable at the idea of changing the scores you 
collected to different values. It feels a bit like cheating. However, you need to bear in mind 
that if the score you’re changing is very unrepresentative of the sample as a whole and 
biases your statistical model then it’s not cheating at all; it’s improving your accuracy.10 
What is cheating is not dealing with extreme cases that bias the results in favour of your 
hypothesis, or changing scores in a systematic way other than to reduce bias (again, per-
haps to support your hypothesis).

There are some subtle variations on winsorizing, such as replacing extreme scores with 
a score 3 standard deviations from the mean. A z-score of 3.29 constitutes an outlier (see 
5.3.1) so we can calculate what score would give rise to a z-score of 3.29 (or perhaps 3) 
by rearranging the z-score equation, which gives us X = (z � s) + X–. All we’re doing is 
calculating the mean (X–) and standard deviation (s) of the data and, knowing that z is 3 (or 
3.29 if you want to be exact), adding three times the standard deviation to the mean and 
replacing our outliers with that score. As with trimming, this is something you would need 
to do manually in SPSS or use the select cases command (see Oditi’s Lantern).

5.4.3.  Robust methods �

By far the best option if you have irksome data (other than throwing your hands in the 
air and having a good scream) is to use a test that is robust to violations of assumptions 
and outliers. In other words, tests that are relatively unaffected by irksome data. The first 
set of tests are ones that do not rely on the assumption of normally distributed data (see 

10 It is worth making the point that having outliers is interesting in itself, and if you don’t think they represent the 
population then you need to ask yourself why they are different. The answer to the question might be a fruitful 
topic of more research.
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Chapter 6).11 One thing that you will quickly discover about non-parametric 
tests is that they have been developed for only a fairly limited range of situa-
tions. So, happy days if you want to compare two means, but sad and lonely 
days listening to Joy Division if you have a complex experimental design.

A much more promising approach is to use robust methods, which I men-
tioned earlier. These tests have developed as computers have got more sophis-
ticated (doing these tests without computers would be only marginally less 
painful than ripping off your skin and diving into a bath of salt). How these 
tests work is beyond the scope of this book (and my brain), but two simple con-
cepts will give you the general idea. The first we have already looked at: robust measures 
of the centre of the distribution such as the trimmed mean and M-estimators. The second 
is the bootstrap (Efron & Tibshirani, 1993), which is a very simple and elegant idea. The 
problem that we have is that we don’t know the shape of the sampling distribution, but 
normality in our data allows us to infer that the sampling distribution is normal (and hence 
we can know the probability of a particular test statistic occurring). Lack of normality 
prevents us from knowing the shape of the sampling distribution unless we have big sam-
ples. Bootstrapping gets around this problem by estimating the properties of the sampling 
distribution from the sample data. Figure 5.23 illustrates the process: in effect, the sample 
data are treated as a population from which smaller samples (called bootstrap samples) are 
taken (putting each score back before a new one is drawn from the sample). The parameter 
of interest (e.g., the mean) is calculated in each bootstrap sample. This process is repeated 
perhaps 2000 times. The end result is that we have 2000 parameter estimates, one from 
each bootstrap sample. There are two things we can do with these estimates: the first is to 
order them and work out the limits within which 95% of them fall. For example, in Figure 
5.23, 95% of bootstrap sample means fall between 2 and 9. We can use these values as an 
estimate of the limits of the 95% confidence interval of the parameter. The result is known 
as a percentile bootstrap confidence interval (because it is based on the values between 
which 95% of bootstrap sample estimates fall). The second thing we can do is to calculate 
the standard deviation of the parameter estimates from the bootstrap samples and use it as 
the standard error of parameter estimates. Therefore, when we use bootstrapping, we’re 
effectively getting the computer to use our sample data to mimic the sampling process 
described in Section 2.5. An important point to remember is that because bootstrapping is 
based on taking random samples from the data you’ve collected, the estimates you get will 
be slightly different every time. This is nothing to worry about. For a fairly gentle introduc-
tion to the concept of bootstrapping, see Wright, London, and Field (2011).

SPSS implements bootstrapping in some contexts, which we’ll encounter as we go 
through various chapters. Some procedures have a bootstrap option, which can be accessed 
by clicking on 

p
 to activate the dialog box in Figure 5.24 (see Oditi’s Lantern). Select 

 to activate bootstrapping for the procedure you’re currently doing. In 
terms of the options, SPSS will compute a 95% percentile confidence interval ( ), 
but you can change the method to a slightly more accurate one (Efron & Tibshirani, 1993) 
called a bias corrected and accelerated confidence interval ( ). 
You can also change the confidence level by typing a number other than 95 in the box 
labelled Level(%). By default, SPSS uses 1000 bootstrap samples, which is a reasonable 
number, and you certainly wouldn’t need to use more than 2000.

There are versions of common procedures such as ANOVA, ANCOVA, correlation and 
multiple regression based on trimmed means and bootstrapping that enable you to ignore 

11 For convenience a lot of textbooks refer to these tests as non-parametric tests or assumption-free tests and stick 
them in a separate chapter. Actually neither of these terms is particularly accurate (none of these tests is assump-
tion-free), but in keeping with tradition I’ve put them in Chapter 6, on their own, feeling lonely and ostracized 
from their ‘parametric’ counterparts.

What are robust
methods?
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everything we have discussed about bias in this chapter. That’s a happy story, but one with 
a tragic ending because you can’t implement them directly in SPSS. The definitive guide to 
these tests is Wilcox’s (2012) outstanding book. Thanks to Wilcox, these tests can be imple-
mented using a free statistics program called R (www.r-project.org). There is a plug-in for 
SPSS that enables you to use R via the SPSS interface, but it’s fiddly to get working and 
once it is working all it really does is allow you to type the commands that you would type 
into R. Therefore, I find it much easier just to use R. If you want to go down that route, 
then I have written a version of this textbook for R that covers these robust tests in some 
detail (Field, Miles, & Field, 2012). (Sorry, that was a shameless plug.)
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FIGURE 5.23

Illustration of 
the percentile 
bootstrap
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5.4.4.  Transforming data �

The final thing that you can do to combat problems with normality and linearity 
is to transform your data. The idea behind transformations is that you do some-
thing to every score to correct for distributional problems, outliers, lack of linear-
ity or unequal variances. Although some students often (understandably) think 
that transforming data sounds dodgy (the phrase ‘fudging your results’ springs 
to some people’s minds!), in fact it isn’t because you do the same thing to all of 
your scores. As such, transforming the data changes the form of the relationships 
between variables but the relative differences between people for a given vari-
able stay the same, so we can still quantify those relationships. However, it does 
change the differences between different variables (because it changes the units of measure-
ment). Therefore, if you are looking at relationships between variables (e.g., regression) just 
transform the problematic variable, but if you are looking at differences between variables 
(e.g., change in a variable over time) then you need to transform all of those variables.

For example, our festival hygiene data were not normal on days 2 and 3 of the festival. 
Now, we might want to look at how hygiene levels changed across the three days (i.e., 

FIGURE 5.24

Dialog box for 
the standard 
bootstrap

‘I, Oditi, believe that R is so-called because it makes you shout 
“Arrghhh!!?” You, my followers, are precious to me and I would 
not want you to place your sensitive body parts into that guillotine. 
Instead, stare into my lantern to see how we can use bootstrapping 
within SPSS.’

ODITI’S LANTERN

Bootstrapping

What is a data
transformation?
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that their conclusion was incorrect, which Levine and 
Dunlap (1983) contested in a response to the response. 
Finally, in a response to the response to the response, 
Games (1984) pointed out several important issues:

1 As we’ve seen, the central limit theorem (Section 
5.2.4.2) tells us that in large samples the sampling 
distribution will be normal regardless. Lots of early 
research did show that with samples of 40 the 
sampling distribution was, as predicted, normal. 
However, this research focused on distributions with 
light tails, and with heavy-tailed distributions larger 
samples would be necessary to invoke the cen-
tral limit theorem (Wilcox, 2012). Transformations 
might be useful for such distributions.

2 By transforming the data you change the hypoth-
esis being tested (when using a log transformation 
and comparing means you change from compar-
ing arithmetic means to comparing geometric 
means). Transformation also means that you’re 
now addressing a different construct to the one 
originally measured, and this has obvious implica-
tions for interpreting that data (Grayson, 2004).

3 In small samples it is tricky to determine normality 
one way or another (see Jane Superbrain Box 5.5).

4 The consequences for the statistical model of 
applying the ‘wrong’ transformation could be worse 
than the consequences of analysing the untrans-
formed scores.

Given these issues, unless you’re correcting for a lack of 
linearity I would use robust procedures, where possible, 
in preference to transforming the data.

Not everyone thinks that transforming data is a good idea: 
Glass, Peckham, and Sanders (1972) commented in a 
review that ‘the payoff of normalizing transformations in 
terms of more valid probability statements is low, and they 
are seldom considered to be worth the effort’ (p. 241). The 
issue is quite complicated (especially for this early in the 
book), but essentially we need to know whether the statisti-
cal models we apply perform better on transformed data 
than they do when applied to data that violate the assump-
tion that the transformation corrects. The question of 
whether to transform is linked to what test you are perform-
ing on your data and whether it is robust (see Section 5.4).

A good case in point is the F-test in ANOVA (see 
Chapter 11), which is often claimed to be robust (Glass 
et al., 1972). Early findings suggested that F performed 
as it should in skewed distributions and that transform-
ing the data helped as often as it hindered the accu-
racy of F (Games & Lucas, 1966). However, in a lively 
but informative exchange, Levine and Dunlap (1982) 
showed that transformations of skew did improve the 
performance of F. In response, Games (1983) argued 

JANE SUPERBRAIN 5.7

To transform or not to transform,  
that is the question  �

compare the mean on day 1 to the means on days 2 and 3 to see if people got smellier). 
The data for days 2 and 3 were skewed and need to be transformed, but because we might 
later compare the data to scores on day 1, we would also have to transform the day 1 data 
(even though scores were not skewed). If we don’t change the day 1 data as well, then any 
differences in hygiene scores we find from day 1 to day 2 or 3 will be due to us transform-
ing one variable and not the others. However, if we were going to look at the relationship 
between day 1 and day 2 scores (not the difference between them) we could transform only 
the day 2 scores and leave the day 1 scores alone.

5.4.4.1. Choosing a transformation �

There are various transformations that you can do to the data that are helpful in correct-
ing various problems. However, whether these transformations are necessary or useful is 
quite a complex issue (see Jane Superbrain Box 5.7).12 Nevertheless, because they are used, 

12 Although there aren’t statistical consequences of transforming data, there may be empirical or scientific implica-
tions that outweigh the statistical benefits (see Jane Superbrain Box 5.7).
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Table 5.1 shows some common transformations and their uses.13 The way to decide which 
transformation to use is by good old fashioned trial and error: try one out, see if it helps 
and if it doesn’t then try a different one.

Trying out different transformations can be quite time-consuming. However, if het-
erogeneity of variance is your issue then we can see the effect of a transformation quite 
quickly. In Section 5.3.3.3 we saw how to use the explore function to get Levene’s test. In 

13 You’ll notice in this section that I keep writing Xi. We saw in Chapter 1 that this refers to the observed score 
for the ith person (so the i could be replaced with the name of a particular person, thus for Graham, Xi � XGraham 
is Graham’s score, and for Carol, Xi � XCarol is Carol’s score).

TABLE 5.1 Data transformations and their uses

Data Transformation Can Correct For

Log transformation (log(Xi)): Taking the logarithm of a set of numbers 
squashes the right tail of the distribution. As such it’s a good way to reduce 
positive skew. This transformation is also very useful if you have problems with 
linearity (it can sometimes make a curvilinear relationship linear). However, you 
can’t get a log value of zero or negative numbers, so if your data tend to zero or 
produce negative numbers you need to add a constant to all of the data before 
you do the transformation. For example, if you have zeros in the data then do 
log(Xi � 1), or if you have negative numbers add whatever value makes the 
smallest number in the data set positive.

Positive skew, positive 
kurtosis, unequal variances, 
lack of linearity

Square root transformation (√Xi): Taking the square root of large values has 
more of an effect than taking the square root of small values. Consequently, 
taking the square root of each of your scores will bring any large scores closer 
to the centre – rather like the log transformation. As such, this can be a useful 
way to reduce positive skew; however, you still have the same problem with 
negative numbers (negative numbers don’t have a square root).

Positive skew, positive 
kurtosis, unequal variances,  
lack of linearity

Reciprocal transformation (1/Xi): Dividing 1 by each score also reduces 
the impact of large scores. The transformed variable will have a lower limit of 
0 (very large numbers will become close to 0). One thing to bear in mind with 
this transformation is that it reverses the scores: scores that were originally 
large in the data set become small (close to zero) after the transformation, 
but scores that were originally small become large after the transformation. 
For example, imagine two scores of 1 and 10; after the transformation they 
become 1/1 � 1, and 1/10 � 0.1: the small score becomes larger than the 
large score after the transformation. However, you can avoid this by reversing 
the scores before the transformation, by finding the highest score and 
changing each score to the highest score minus the score you’re looking 
at. So, you do a transformation 1/(XHighest − Xi). Like the log transformation, 
you can’t take the reciprocal of 0 (because 1/0 � infinity) so if you have 
zeros in the data you need to add a constant to all scores before doing the 
transformation.

Positive skew, positive 
kurtosis, unequal variances

Reverse score transformations: Any one of the above transformations can 
be used to correct negatively skewed data, but first you have to reverse the 
scores. To do this, subtract each score from the highest score obtained, or the 
highest score � 1 (depending on whether you want your lowest score to be 0 
or 1). If you do this, don’t forget to reverse the scores back afterwards, or to 
remember that the interpretation of the variable is reversed: large scores have 
become small and small scores have become large.

Negative skew
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Command area

Categories of 
functions

Functions 
within the 
selected 
category

Use this dialog box to 
select certain cases

in the data

Variable list

Description of
selected function

FIGURE 5.25

Compute 
Variable dialog 
box command

that section we ran the analysis selecting the raw scores ( ). However, if the 
variances turn out to be unequal, as they did in our example, you can use the same dialog 
box (Figure 5.21) but select . When you do this you should notice a drop-down 
list that becomes active and if you click on this you’ll notice that it lists several transforma-
tions including the ones that I have just described. If you select a transformation from this 
list (Natural log perhaps or Square root) then SPSS will calculate what Levene’s test would 
be if you were to transform the data using this method. This can save you a lot of time try-
ing out different transformations.

5.4.4.2. The compute function �

To do transformations on SPSS we use the compute command, which enables us to carry 
out functions (such as adding or multiplying) on columns of data in the data editor. To 
access the Compute Variable dialog box, select  . Figure 5.25 shows 
the main dialog box; it has a list of functions on the right-hand side, a calculator-like key-
board in the centre and a blank space that I’ve labelled the command area. You type a name 
for a new variable in the area labelled Target Variable and then you write some kind of 

05-Field 4e-SPSS-Ch-05.indd   204 07/11/2012   6:22:30 PM



205CHAPTER 5   THE BEAST  OF  B IAS

command in the command area to tell SPSS how to create this new variable. You use a com-
bination of existing variables selected from the list on the left, and numeric expressions. 
So, for example, you could use it like a calculator to add variables (i.e., add two columns 
in the data editor to make a third). However, you can also use it to generate data without 
using existing variables too. There are hundreds of built-in functions that SPSS has grouped 
together. In the dialog box these groups are listed in the area labelled Function group; upon 
selecting a function group, a list of available functions within that group will appear in the 
box labelled Functions and Special Variables. If you select a function, then a description 
of that function appears in the white box indicated in Figure 5.25. You can enter variable 
names into the command area by selecting the variable required from the variables list and 
then clicking on . Likewise, you can select a certain function from the list of available 
functions and enter it into the command area by clicking on .

First type a variable name in the box labelled Target Variable, then click on  and 
another dialog box appears, where you can give the variable a descriptive label and specify 
whether it is a numeric or string variable (see Section 3.5.2). When you have written your 
command for SPSS to execute, click on  to run the command and create the new vari-
able. If you type in a variable name that already exists in the data editor then SPSS will tell 
you and ask you whether you want to replace this existing variable. If you respond with Yes 
then SPSS will replace the data in the existing column with the result of the compute com-
mand; if you respond with No then nothing will happen and you will need to rename the 
target variable. If you’re computing a lot of new variables it can be quicker to use syntax 
(see SPSS Tip 5.2).

Let’s first look at some of the simple functions:

Addition: This button places a plus sign in the command area. For example, with our 
hygiene data, ‘day1 + day2’ creates a column in which each row contains the hygiene 
score from the column labelled day1 added to the score from the column labelled day2 
(e.g., for participant 1: 2.65 + 1.35 = 4).

Subtraction: This button places a minus sign in the command area. For example, 
if we wanted to calculate the change in hygiene from day 1 to day 2 we could type 
‘day2 − day1’. This creates a column in which each row contains the score from the 
column labelled day1 subtracted from the score from the column labelled day2 (e.g., for 
participant 1: 2.65 − 1.35 = 1.30).

Multiply: This button places a multiplication sign in the command area. For example, 
‘day1*day2’ creates a column that contains the score from the column labelled day1 multiplied 
by the score from the column labelled day2 (e.g., for participant 1: 2.65 � 1.35 = 3.58). 

Divide: This button places a division sign in the command area. For example, ‘day1/
day2’ creates a column that contains the score from the column labelled day1 divided 
by the score from the column labelled day2 (e.g., for participant 1: 2.65/1.35 = 1.96).

Exponentiation: This button raises the preceding term to the power of the succeeding 
term. So, ‘day1**2’ creates a column that contains the scores in the day1 column raised 
to the power of 2 (i.e., the square of each number in the day1 column: for participant 1, 
2.652 =7.02). Likewise, ‘day1**3’ creates a column with values of day1 cubed.

Less than: This operation is usually used for ‘include case’ functions. If you click on the 
 button, a dialog box appears that allows you to select certain cases on which to carry 

out the operation. So, if you typed ‘day1 < 1’, then SPSS would carry out the compute 
function only for those participants whose hygiene score on day 1 of the festival was less 
than 1 (i.e., if day1 was 0.99 or less). So, we might use this if we wanted to look only at 
the people who were already smelly on the first day of the festival.
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Less than or equal to: This operation is the same as above except that in the example 
above, cases that are exactly 1 would be included as well. 

More than: This operation is used to include cases above a certain value. So, if you 
clicked on  and then typed ‘day1 > 1’ then SPSS will carry out any analysis only on 
cases for which hygiene scores on day 1 of the festival were greater than 1 (i.e., 1.01 
and above). This could be used to exclude people who were already smelly at the start 
of the festival. We might want to exclude them because these people will contaminate 
the data (not to mention our nostrils) because they reek of putrefaction to begin with so 
the festival cannot further affect their hygiene.

More than or equal to: This operation is the same as above but will include cases that 
are exactly 1 as well.

Equal to: You can use this operation to include cases for which participants have a 
specific value. So, if you clicked on  and typed ‘day1 = 1’ then only cases that have 
a value of exactly 1 for the day1 variable are included. This is most useful when you 
have a coding variable and you want to look at only one of the groups. For example, 
if we wanted to look only at females at the festival we could type ‘gender = 1’,  
and then the analysis would be carried out on only females (who are coded as 1 in  
the data).

Not equal to: This operation will include all cases except those with a specific value. So, 
‘gender~= 1’ (as in Figure 5.25) will carry out the compute command only on the males 
and exclude females (because they have a 1 in the gender column).

Some of the most useful functions are listed in Table 5.2, which shows the standard form 
of the function, the name of the function, an example of how the function can be used and 
what SPSS would output if that example were used. There are several basic functions for 
calculating means, standard deviations and sums of columns. There are also functions such 
as the square root and logarithm that are useful for transforming data that are skewed, and 
we will use these functions now. For the interested reader, the SPSS help files have details 
of all of the functions available through the Compute Variable dialog box (click on  
when you’re in the dialog box).

5.4.4.3. The log transformation in SPSS �

Let’s use compute to transform our data. Open the main compute dialog box by selecting 
 . Enter the name logday1 into the box labelled Target Variable, 

click on  and give the variable a more descriptive name such as Log transformed 
hygiene scores for day 1 of Download festival. In the list box labelled Function group click 
on Arithmetic and then in the box labelled Functions and Special Variables click on Lg10 
(this is the log transformation to base 10; Ln is the natural log) and transfer it to the com-
mand area by clicking on . When the command is transferred, it appears in the command 
area as ‘LG10(?)’ and the question mark should be replaced with a variable name (which 
can be typed manually or transferred from the variables list). So replace the question mark 
with the variable day1 by either selecting the variable in the list and dragging it across, 
clicking on , or just typing ‘day1’ where the question mark is.

For the day 2 hygiene scores there is a value of 0 in the original data, and there is no 
logarithm of the value 0. To overcome the problem we add a constant to our original scores 
before we take the log of those scores. Any constant will do (although sometimes it can 
matter), provided that it makes all of the scores greater than 0. In this case our lowest score 
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is 0 in the data so we could add 1 to all of the scores to ensure that all scores are greater 
than zero. Even though this problem affects the day 2 scores, we need to be consistent 
and do the same to the day 1 scores as we will do with the day 2 scores. Therefore, make 
sure the cursor is still inside the brackets and click on  and then . The final dialog box 
should look like Figure 5.25. Note that the expression reads LG10(day1 � 1); that is, SPSS 
will add one to each of the day 1 scores and then take the log of the resulting values. Click 
on  to create a new variable logday1 containing the transformed values.

SELF-TEST  Have a go at creating similar variables logday2 
and logday3 for the day 2 and day 3 data. Plot histograms of 
the transformed scores for all three days.

5.4.4.4. The square root transformation on SPSS �

To do a square root transformation, we run through the same process, by using a name such 
as sqrtday1 in the box labelled Target Variable (and click on  to give the variable a 
more descriptive name). In the list box labelled Function group click on Arithmetic and then 
in the box labelled Functions and Special Variables click on Sqrt and drag it to the command 
area or click on . When the command is transferred, it appears in the command area as 
SQRT(?). Replace the question mark with the variable day1 by selecting the variable in the 
list and dragging it, clicking on , or just typing ‘day1’ where the question mark is. The 
final expression will read SQRT(day1). Click on  to create the variable.

TABLE 5.2 Some useful compute functions

Function Name Example Input Output

MEAN(?,?,..) Mean Mean(day1, day2, 
day3)

For each row, SPSS calculates the average hygiene 
score across the three days of the festival

SD(?,?,..) Standard deviation SD(day1, day2, 
day3)

Across each row, SPSS calculates the standard 
deviation of the values in the columns labelled 
day1, day2 and day3

SUM(?,?,..) Sum SUM(day1, day2) For each row, SPSS adds the values in the 
columns labelled day1 and day2

SQRT(?) Square root SQRT(day2) Produces a column containing the square root of 
each value in the column labelled day2

ABS(?) Absolute value ABS(day1) Produces a variable that contains the absolute 
value of the values in the column labelled day1 
(i.e., the signs are ignored, so −5 becomes �5 
and �5 stays as �5)

LG10(?) Base 10 logarithm LG10(day1) Produces a variable that contains the logarithmic 
values (to base 10) of the variable day1. 

RV.NORMAL 
(mean, 
stddev)

Normal random 
numbers

Normal(20, 5) Produces a variable of pseudo-random numbers 
from a normal distribution with a mean of 20 and a 
standard deviation of 5.

05-Field 4e-SPSS-Ch-05.indd   207 07/11/2012   6:22:31 PM



208 D ISCOVER ING STAT IST ICS  US ING SPSS

          SPSS T IP  5 .2       Using syntax to compute new variables �

If you’re computing a lot of new variables it can be quicker to use syntax. I’ve written the file Transformations.
sps to do all nine of the transformations that we’ve discussed. Open this file and you’ll see these commands in 
the syntax window (see Section 3.9):

COMPUTE logday1 � LG10(day1 � 1).

COMPUTE logday2 � LG10(day2 � 1).

COMPUTE logday3 � LG10(day3 � 1).

COMPUTE sqrtday1 � SQRT(day1).

COMPUTE sqrtday2 � SQRT(day2).

COMPUTE sqrtday3 � SQRT(day3).

COMPUTE recday1 � 1/(day1�1).

COMPUTE recday2 � 1/(day2�1).

COMPUTE recday3 � 1/(day3�1).

EXECUTE.

Each compute command above does the equivalent of what you’d do using the Compute Variable dialog box in 
Figure 5.25. So, the first three lines ask SPSS to create three new variables (logday1, logday2 and logday3), 
which are the log transformations of the variables day1, day2 and day3 plus 1. The next three lines create 
new variables called sqrtday1, sqrtday2 and sqrtday3 by using the SQRT function to take the square root 
of day1, day2 and day3, respectively. The next three lines do the reciprocal transformation in much the same 
way. The final line has the command execute without which none of the compute commands beforehand will be 
executed. Note also that every line ends with a full stop.

SELF-TEST  Repeat this process for day2 and day3 to create 
variables called sqrtday2 and sqrtday3. Plot histograms of the 
transformed scores for all three days.

5.4.4.5. The reciprocal transformation on SPSS �

To do a reciprocal transformation on the data from day 1, we could use a name such as 
recday1 in the box labelled Target Variable. Then we can simply click on  and then . 
Ordinarily you would select the variable name that you want to transform from the list and 
drag it across, click on  or just type the name of the variable. However, the day 2 data 
contain a zero value and if we try to divide 1 by 0 then we’ll get an error message (you can’t 
divide by 0). We need to add a constant to our variable just as we did for the log transforma-
tion. Any constant will do, but 1 is a convenient number for these data. So, instead of select-
ing the variable we want to transform, click on ; this places a pair of brackets into the box 
labelled Numeric Expression. Then make sure the cursor is between these two brackets and 
select the variable you want to transform from the list and transfer it across by clicking on 

 (or type the name of the variable manually). Now click on  and then  (or type ‘� 1’ 
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using your keyboard). The box labelled Numeric Expression should now contain the text 1/
(day1 � 1). Click on  to create a new variable containing the transformed values.

SELF-TEST  Repeat this process for day2 and day3. Plot 
histograms of the transformed scores for all three days.

5.4.4.6. The effect of transformations �

Figure 5.26 shows the distributions for days 1 and 2 of the festival after the three different 
transformations. Compare these to the untransformed distributions in Figure 5.13. Now, 
you can see that all three transformations have cleaned up the hygiene scores for day 2: 
the positive skew is reduced (the square root transformation in particular has been useful). 
However, because our hygiene scores on day 1 were more or less symmetrical to begin 

Day 1 Day 2

Log

Square 
root

1/x

FIGURE 5.26

Distributions of 
the hygiene data 
on day 1 and day 
2 after various 
transformations
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with, they have now become slightly negatively skewed for the log and square root trans-
formation, and positively skewed for the reciprocal transformation.14 If we’re using scores 
from day 2 alone or looking at the relationship between day 1 and day 2, then we could use 
the transformed scores; however, if we wanted to look at the change in scores then we’d 
have to weigh up whether the benefits of the transformation for the day 2 scores outweigh 
the problems it creates in the day 1 scores – data analysis can be frustrating sometimes.�

5.5. Brian’s attempt to woo Jane �

Non-normality: of residuals or 
the sampling distribution

Sources of 
bias

Reducing 
bias

Levene's test

Plot of predicted values vs 
errors (zpred vs zresid): If 

everything is OK, it should be a 
random array of dots Independence: residuals 

should be independent 

Heteroscedasticity/
eterogeneity of variance: 

variance of outcome unequal 
across predictors

K-S test

Robust tests: 
bootstrapping

Outliers: extreme scores

Not important in 
large samples: 

central limit 
theorem

Histograms

Trim the data: 
Percentage trim is 
better than SD trim

Additivity and linearity: if you 
fit a linear model then the 
outcome must be linearly 
related to the predictors

Transform the data: log, square 
root, reciprocal

P-P and Q-Q 
plots

Winzorizing: replace outliers 
with next highest score

Jane, have your 
a�ections for me 

No, they're 
negatively 
skewed

Use cautiously: 
don't use at all in 

large samples

Boxplots

5.6. What next? �

This chapter has taught us how to identify bias. Had I read this chapter I might have 
avoided being influenced by my idolization of my granddad15 and instead realized that I 

14 The reversal of the skew for the reciprocal transformation is because, as I mentioned earlier, the reciprocal has 
the effect of reversing the scores.

15 Oddly enough, despite absolutely worshipping the ground my granddad walked on, I ended up supporting a different 
team than him: he supported a certain north London team close to where we grew up and I support their local rivals.

FIGURE 5.27

What Brian 
learnt from this 
chapter
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could be a useful midfield player. From there a successful career in soccer would undoubt-
edly have unfolded in front of me. Or, as anyone who has seen me play will realize, perhaps 
not. Still, I sort of had the last laugh on the goalkeeping front. At the end of my time at 
primary school we had a five-a-side tournament between local schools so that kids from 
different schools could get to know each other before going to secondary school together. 
My goalkeeping nemesis was, of course, chosen to play and I was the substitute. In the 
first game he had a shocker, and I was called up to play in the second game during which I 
made a series of dramatic and acrobatic saves (at least that’s how I remember them). I did 
likewise in the next game, and my nemesis had to sit out the whole of the rest of the tour-
nament. Perhaps this should have encouraged me to pursue being goalkeeper at my new 
school. However, five-a-side goals are shorter than normal goals, so my height wasn’t an 
issue and that was my last time trying to get into the school football team – I just gave up. 
Years later when I started playing again, I regretted this decision: not because I could have 
been a professional soccer player, but just because I missed many years of enjoying playing. 
Instead, I read books and immersed myself in music. Unlike my cleverer older brother who 
was reading Albert Einstein’s papers (well, Isaac Asimov) as an embryo, my literary prefer-
ences were more in keeping with my intellect …

5.7. Key terms that I’ve discovered

Bootstrap
Contaminated normal 
  distribution 
Hartley’s Fmax

Heterogeneity of variance
Heteroscedasticity
Homogeneity of variance
Homoscedasticity

Independence
Kolmogorov–Smirnov test
Levene’s test
M-estimator
Mixed normal distribution
Normally distributed data
Outlier
P-P plot

Parametric test
Q-Q plot
Robust test
Shapiro–Wilk test
Transformation
Trimmed mean
Variance ratio
Weighted least squares

5.8. Smart Alex’s tasks

 � Task 1: Using the ChickFlick.sav data from Chapter 4, check the assumptions of 
normality and homogeneity of variance for the two films (ignore Gender): are the 
assumptions met? �

 � Task 2: The file SPSSExam.sav contains data regarding students’ performance on an 
SPSS exam. Four variables were measured: exam (first-year SPSS exam scores as a 
percentage), computer (measure of computer literacy in percent), lecture (percent-
age of SPSS lectures attended) and numeracy (a measure of numerical ability out of 
15). There is a variable called uni indicating whether the student attended Sussex 
University (where I work) or Duncetown University. Compute and interpret descrip-
tive statistics for exam, computer, lecture, and numeracy for the sample as a whole. �

 � Task 3: Calculate and interpret the z-scores for skewness for all variables. �

 � Task 4: Calculate and interpret the z-scores for kurtosis for all variables. �

 � Task 5: Use the split file command to look at and interpret the descriptive statistics 
for numeracy and exam. �

 � Task 6: Repeat Task 5 but for the computer literacy and percentage of lectures 
attended. �
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 � Task 7: Conduct and interpret a K-S test for numeracy and exam. �

 � Task 8: Conduct and interpret a Levene’s test for numeracy and exam. �

 � Task 9: Transform the numeracy scores (which are positively skewed) using one of 
the transformations described in this chapter. Do the data become normal? �

 � Task 10: Use the explore command to see what effect a natural log transformation 
would have on the four variables measured in SPSSExam.sav.

Answers can be found on the companion website.

5.9. Further reading

Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). Boston: Allyn & 
Bacon. (They have the definitive guide to screening data.)

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Burlington, 
MA: Elsevier. (Quite technical, but this is the definitive book on robust methods.)

Wilcox, R. R. (2010). Fundamentals of modern statistical methods: Substantially improving power 
and accuracy. New York: Springer-Verlag. (A fantastic book on bias in statistical methods that 
expands upon many of the points in this chapter and is written by someone who actually knows 
what he’s talking about.)
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