
The Bees and the Trees
The Beekeeper Model of Commercial Open Source Software

James Dixon
Chief Geek / CTO, Pentaho

The Beekeeper is a brilliant analogy for the architecture of participation that is at the root of
the success of open source. This paper elegantly explains how it can be possible that
everybody wins when many contribute rather than pay, and some pay rather than contribute -
Marten Mickos, CEO, MySQL

This is part one. Part two and discussion forums
can be found at http://www.pentaho.org/beekeeper

Email: beekeeper@pentaho.org

Distributed under the Free Art License

Free Art License 2007-2009 Pentaho Corporation. Redistribution permitted. All trademarks are the

property of their respective owners.

For the latest information, please visit our web site at www.pentaho.org

http://www.pentaho.org/beekeeper
http://www.pentaho.org/beekeeper
http://www.pentaho.org/
http://www.pentaho.org/

Introduction
In 2004 I co-founded Pentaho to provide Business Intelligence (BI) under a commercial open source software

business model. After spending a few years immersed in commercial open source software I created the Beekeeper

model as a way to share my thoughts about the workings of this business model. Two years have gone by and I have

expanded the model based on the encouraging feedback I got from many people.

There are various kinds of commercial open source business models and various companies using variations of those

models. The first version of the Beekeeper model only addressed commercial open source companies using a ‘single

vendor’ or ‘open core’ model. This version includes models for companies using a service/support model. It also

includes analogous models for proprietary software companies and pure/organic open source projects.

Companies using the single-vendor or open-core commercial open source models include MySQL, Ingres, Compiere,

Open Bravo, Liferay, SugarCRM, Mule, Alfresco, JBoss, Digium, and Zimbra. In this document I will refer to this

collection of business models and the ‘single-vendor’ model to indicate that the direction and development of the

software is funded by a single company.

Companies using the support or services commercial open source model include Optarus, Sourcesense, OpenLogic,

and SpikeSource, Open For Buisiness (OFBiz).

Why Commercial Open Source Software?
Open source is a model of software development that has been growing since the 1970's. It is a very effective model

at producing high quality software. As the number of open source projects grew, along with the scope of what could

be done with it, it attracted the attention of IT organizations, systems integrators, software vendors and other

commercial consumers. These organizations identified a number of barriers that make it hard, and in many cases

impossible, for them to adopt open source. The primary barriers are:

1. Lack of formal support and services.

2. Velocity of change.

3. Lack of roadmap.

4. Functional gaps.

5. License types.

6. Lack of endorsements by independent software vendors (ISVs).

These barriers are real, rational, and with the exception of 'Feature Gaps', they are all risk-related.

If you take Geoffrey Moore’s definition of a ‘whole product’ from his groundbreaking ‘Crossing the Chasm’ book you

can see that the barriers above exist because open source projects generate software, they do not generate ‘whole

product’. If you were to create a ‘whole product’ around open source software you would eliminate these barriers and

gain mainstream adoption. Commercial open source exists to do just that.

The Principles of Open Source
In order to understand commercial open source software companies there certain facts about open source that need

to be understood.

Free as in 'Freedom' Not 'Zero Cost'
Open source is not free. In 1998 the term 'open source' was coined to replace the term 'free software' because many

people assumed 'free' to mean 'zero cost' whereas it was always intended to mean 'freedom'. If you consider the

barriers to adoption of open source listed above it becomes clear that the notion of 'free stuff' is false. It is true that

The Bees and the Trees 2

an organization could use open source software and support itself by hiring technical staff with the necessary skills

to:

 Evaluate and select the most suitable open source software or software distribution.

 Integrate and embed the open source software into internal systems.

 Fix any critical defects that are found.

 Decide which patches and releases to migrate to and ensure migrations between versions are free from

problems.

 Participate in the communities to ensure the direction that the software is taking suits the organization.

 Train any users or new technical staff.

Organizations have the freedom to do all these things but they should not consider fulfilling these needs to be of zero

cost.

If you accept that open source software is not a zero cost solution you must then accept that these costs can occur

in the form of time (internal man hours) or money (given to some external organization) or both.

In addition to the costs above there are also risks to be managed. In fact if you look at the commonly listed barriers

to the adoption of open source software you will find that most of them are related to some kind of risk and not to

any kind of cost. It is difficult for most organizations to manage all of these risks themselves: the number of people

and the range of skills required to do so is prohibitive. For small organizations or low-risk projects these risks can be

tolerated but for larger projects risk management is a significant issue.

This leads to the basic rational of commercial open source software: to provide organizations with an alternative to

'going it alone' with open source.

Principle of 'Openness'
Accepting feedback through a web page and providing mechanisms for people to report defects is one thing. Allowing

everyone else to see that feedback and all those defects is another, much more uncomfortable, step. Allowing

everyone to see the source code so they can review it and try it is also an act of faith. Providing a public forum where

people can openly criticize and contribute to the design and implementation of the software is another act of faith.

These are difficult behaviors for a proprietary organization to accept but open source projects rely on them. If the

project administrators do not provide mechanisms for people to communicate openly amongst themselves there can

be no community.

The availability of the design documents and source code enables the community to provide peer reviews and to use

the software for their purposes and provide feedback on the quality.

Principle of 'Transparency'
Transparency is the ability of the community to see what's going on. This involves:

 A published road map so they know where the administrators plan to take the project.

 A public defect tracking system so they can report and review defects.

 Published design documentation.

 Communication about schedules and hurdles.

Without transparency it is hard to grow a community.

The Bees and the Trees 3

Transparency and openness are not the same thing. A glass door is transparent but whether it is open or not is a

different matter. Transparency is the ability to witness the inner workings, openness is the letting outsiders 'in' so

they can participate.

Principle of 'Early and Often'
This is the philosophy of making information available in its earliest drafts and updating it often. This includes, but is

not limited to, the source code of the software. Zipped archives of the source code are available for every open

source project. Many projects go further and have a public repository where the current code is always available. As

the developers change the source code and check it in, it is available to anyone who wants to review it or use it.

The principles of open source compound and combine together. Each one is a leap of faith.

In order to be successful all the principles must be observed: merely letting someone view source code, or giving

someone a free evaluation license does not have the same disruptive power of the open source model. The tendency

of the open source model to resolve design defects early in the software development cycle only occurs if all three

principles are applied.

Expectation of 'Community'
Every generation grows up with a new set of expectations. For example my parents had the expectation that they

needed to buy encyclopedias if they wanted access to reference knowledge at home. I grew up with the expectation

that I could get Encarta(tm) on a CD and later that I could search the Internet. My son is growing up in the Web 2.0

era where he can participate by submitting Wikipedia entries.

When it comes to open source the web site, source code, roadmap, defect tracking system, and forums are the

'project' and the community participates in the project. The fact that the source code and roadmap are available is a

result of 'openness'. The fact that the defect tracking system and forums are available is a result of transparency. The

fact that the design and initial code is available is a result of 'early and often'. It is these principles and the results of

using them that ultimately attract and retain the community.

The community is a byproduct of the project. The project is a byproduct of the open source principles.

Participants in open source have an expectation of a community and the development model and commercial open

source software company relies on it.

The Models
There are four software development models described below. In each case there is an analogous model that helps

to describe and compare the models in easy to understand terms. These model are:

 The Wild Hive Model for Open Source Projects

 The Maple Syrup Farm Model for Proprietary Software Companies

 The Beekeeper Model for Single-Vendor Commercial Open Source

 The Honey Gatherer Model for Services/Support commercial Open Source

The Bees and the Trees 4

The Wild Hive Model for Open Source Projects
Consider a beehive in the wild:

Contributions

‘Organic’ or
‘Wild’ Hive

Hives and
Honeycombs

James Dixon, Pentaho, 2007, Free Art License

Honeycombs

Bees
Contributions

Queen Bees

The hive is started by a queen bee. The hive grows over time in terms of the number of bees, the size of the hive,

and the amount of honeycomb in the hive. Each bee performs a function within the hive and collectively they all

benefit, but (at least theoretically) any bee is free to fly away to another hive, as is the queen.

An open source project can be described in a similar way:

Contributions

Open Source
Project

Roadmap
Design

Software

James Dixon, Pentaho, 2007, Free Art License

Use Cases
Peer Review

Testing
Documentation

Translations
Features

Forum Help
Bug Fixes
Scalability

Configuration Diversity
Quotes & News

Community
Contributions

Core Developers

 The core developers are often the founders of the project. Typically they do much of the development and

design and also set the project roadmap. They act like like queen bees.

 The community participates in many roles and tasks involved in designing, implementing, and testing the

software. The community benefit from the project and the project benefits from the community. The

community are like bees.

 There is no 'Go To Market' process in an open source project. This is why the barriers to the adoption of

open source listed above exist. Open source projects create software, they do not create ‘whole product’.

 There is no specific marketing role in this model so open source projects gain mind-share and attract

community members through technical articles, blogs, and word-of-mouth.

The Bees and the Trees 5

A few people have a negative reaction to the open source concept because they think it is in some way socialist or

communist. This is not the case: open source is effective because the motivations of all participants are naturally

aligned (rather than artificially aligned with financial reward as a 'pseudo-motivation').

The Maple Syrup Farm Model for Proprietary Software Companies
In a proprietary software company the raw material, software, is the same as with an open source project but the

process by which it is created is very different so we need a different model. We use the Maple Syrup Farm model.

Whole Product

Maple Syrup Farm

James Dixon, Pentaho, 2007, Free Art License

Go To Market
Sales, Marketing

Processing,
Packing,

Distribution

Resources
Syrup

MoneyCustomers
Partners
OEMs

Farmers,
Maple Trees

In the Maple Syrup Farm Model the source of the syrup, the trees, are fixed assets with no active involvement in the

process. As noted above bees have free-will, they participate because they choose to. The maple trees have no free

will and no choice.

The Maple Syrup Farm model compares nicely to the proprietary software model:

Whole Product

Proprietary
Software Company

James Dixon, Pentaho, 2007, Free Art License

Go To Market
Sales, Marketing
Support, Services

Product Mgmt.

Resources
Software

MoneyCustomers
Partners
OEMs

Software
Development
Engineering,

Product Mgmt.

In the proprietary model:
 Engineering has two roles in this model: first to create software, and secondly to participate in the 'Go To

Market' program.

The Bees and the Trees 6

 Product Management 'owns' the product roadmap and has the responsibility of creating it by collating the

requirements of Sales, Marketing and customers. They also act as a buffer between Engineering and these

groups. This is done for two reasons: to keep engineers focused on writing software, and to control the flow

of information from engineers to customers. Product Managers also describe how the features are to be

turned into 'whole product'.
 Note that the roles of the Sales, Marketing, Support, and Services departments are focused on delivering the

‘whole product’ to the customers.
 It is the 'Go To Market' program that creates the 'whole' product that mainstream customers require.

Engineering does not run the 'Go To Market' they are (usually reluctant) participants.
 The customer is not very involved in the process of creating the software.

The open source and proprietary models are clearly very different from each other. The first has a community but

produces only raw material (software), the second has no community but produces ‘whole product’ from the raw

software. The Wild Hive and the Maple Syrup Farm models can be compared in a similar way: the raw material is a

sugary, stick substance in both cases but the creation process and outputs are very different.

The Bees and the Trees 7

Beekeeper Model for Single-Vendor Commercial Open Source
Now lets turn to the Beekeeper Model:

Whole Product

Contributions

Bee Farm Land
Hives

Flowers

James Dixon, Pentaho, 2007, Free Art License

Honeycombs

Bees

Go To Market
Sales, Marketing

Processing,
Packing,

Distribution

Resources
Honeycombs

Contributions

Money

Customers

Beekeepers

The Beekeeper creates an environment that is attractive for bees: accommodation and a natural, food-rich habitat.

The bees do what they do naturally and make honeycombs. The honeycombs are processed and the resulting

products, honey and bees-wax, are sold to customers the money then used to grow the bee farm. Notice that there

are multiple roles that need to be filled within this model and that some of those roles are focused on the bees,

whereas some are focused on getting the honey and wax into the hands of customers.

Notice also that there is no interaction between the customers and the bees.

The single-vendor commercial open source model looks very similar:

Whole Product

Contributions

Commercial Open
Source Company

Community Adv.
Roadmap

Design
Software

Tools

James Dixon, Pentaho, 2007, Free Art License

Community

Go To Market
Sales, Marketing
Support, Services

Product Mgmt.

Resources
Software

Contributions

MoneyCustomers
Partners
OEMs

Software
Development
Engineering,

Product Mgmt.
Community Adv.

Use Cases
Peer Review

Testing
Documentation

Translations
Features

Forum Help
Bug Fixes
Scalability

Configuration Diversity
Quotes & News

Single-Vendor Commercial Open Source software companies exist as an exchange system between two sets of

consumers: an open source community (motivated by mutual contribution) and a mainstream market (motivated by

economic rewards). Organizations in need of support, services, and training etc contribute financially for those

The Bees and the Trees 8

services as paying customers. That money is used by the company to pay for full-time resources (engineers, product

managers etc.) whose efforts (the majority, if not all of it) end up as open source software, freely available to an

open source community. The open source community contributes to the software by helping improve the design,

functionality, quality, translations, and documentation of the software. The improved software attracts more

customers and the cycle continues, hopefully perpetually. In this model all three parties gain:

 The community gains open source software they can use for their own purposes. This software has more

functionality and more resources than a 'pure' open source project could provide. In this way the community

profits directly from the company and its customers.

 The customers gain higher quality software at a better price. The customers profit from the open source

community's ability to produce high quality software.

 The company gains by growing and increasing its valuation as a result of keeping both sets of consumers

content.

The Beekeeper and Maple Syrup Farm models work well because the end products (honey and maple syrup) are very

similar and are distributed, packaged, and purchased in very similar ways. You do not need to know how honey or

maple syrup is made in order to buy either of them. Not only are the processed products similar but the raw material,

honey or syrup, are also similar to each other. It is obvious that it is the big difference is the way the raw materials

are created. In the beekeeper model the raw material is generated by a mutually beneficial partnership between the

beekeeper and the bees.

In addition:
 The closest ties between the company and the community are through the engineering (includes

development and quality assurance) and product management (PM) groups. These roles are 'honey-

focused'. There are interactions between other departments of the company and the community but they do

not happen on the daily and hourly basis as with engineering and product management.

 In this model the roles of Engineering and product management become much closer aligned to each other

because between them they are sharing the role of the project administrators of the open source model.

 There is no buffer zone between engineering and the consumers of the software. In fact the engineers have

more routine contact with the community than anyone else in the organization. The roles of engineering and

product management are significantly different compared to the proprietary model. In the single-vendor

commercial open source model the engineers have continual, direct communication with the community

(open source consumers). In the proprietary model direct contact between engineers and the consumers is

not a major part of the model (an understatement). In fact contact between engineers and consumers is

usually kept to an minimum.

 The Sales, Marketing, Support, and Services departments are market-focused. Their roles are oriented

towards the customers and are involved in an ongoing program of creating a 'whole product' around the

software and getting it to market.

 There is usually a community liaison role within the single-vendor commercial open source company whose

job it is to focus on community growth and satisfaction, and to assist with incoming contributions. Open

source projects typically do not have this role.

 Engineering and product management are involved in both aspects of the model. Their roles in the 'Go To

Market' program are not significantly different from the corresponding roles within a proprietary

organization.

The Bees and the Trees 9

 The Go To Market program is highly inefficient if it has to react to the contents of the software after it is

done. That is to say the participants in the Go To Market program need to involved (if only passively) in the

creation of the software to avoid significant delays in creating the 'whole product'.

As you can see there are numerous similarities between the Beekeeper and single-vendor commercial open source

models:

 Bees can fly and so have the opportunity to leave the bee farm if they decide to. So the Beekeeper must

tend to his bees. The Beekeeper has very little control over his bees and has no ability to direct them to do

his bidding. Likewise the community can desert, or even worse fork, an open source project if they so desire

(see the Wikipedia entry on Fork). So the company must keep their community happy. The company cannot

rely on the community to follow any directive or schedule it might have.

 Bees can sting. Community members can publicly object or criticize the company on its own or other web

sites.

 The growth of the bee farm depends on how much honey and wax the Beekeeper can sell to direct

customers (passers by), channel partners (the grocery store), and OEM's (the candle maker). How much he

can sell depends partly on his business skills and partly on how much honey and wax he has. How much

honey and wax he has depends on how many bees he has. How many bees he has depends on how much

honey and wax he let the bees keep for themselves. In order to achieve maximum growth the Beekeeper

must grow both his bee population and his customer base at the same time. Likewise a single-vendor

commercial open source company must perform a balancing act and grow the community and customer

base together.

 The bees and honey came first. There is no chicken-and-egg dilemma here. The Beekeeper invested time

and effort in his beehives before he had anything to sell to his first customer. The longer he spends building

his bee population before he starts selling products the quicker it will grow. Likewise the single-vendor

commercial open source company must build a community that helps create the software before they can

engage in the commercial world. The longer the company can focus on adoption before having to worry

about revenue the better it will be.

 Each bee hive has a queen. In order to start a new hive the Beekeeper needs to attract a queen and

enough of her bees to make the hive viable. Likewise open source projects often have a single founder or

administrator that is the main leader of the project. Open source projects can be 'acquired' or 'merged' if the

project leader and prime contributors are convinced that the move is beneficial to the project.

 The customers don't want to deal with the bees. A single bee or even a swarm of bees cannot directly meet

the needs of any of the Beekeeper's customers. It is the work of the Beekeeper that turns the efforts of the

bees into products that the customers desire. The honey in the jar is the same honey that was in the hive,

but the customers will only pay for it in the jar. Likewise the commercial customers don't want to deal with

open source. They want 'whole product'.

 The customer's cash is no good to the bees. A crisp bank note or a pile of coins is of no use to a bee but the

Beekeeper can use that money to buy hives, bee feed, or bee medication (those varroa and tracheal mites

can be problem). Likewise the company's customers do not directly help the open source community. Its

only when the company uses that money to pay for engineering resources to improve the open source

software that the community benefits.

 Each individual bee makes a small contribution to the system. It takes a large number of bees for a

successful outcome. Likewise the contribution of the community are vital to the model but the individual

contribution of most community members is small.

The Bees and the Trees 10

http://en.wikipedia.org/wiki/Fork_(software_development)
http://en.wikipedia.org/wiki/Fork_(software_development)

 Customers are not bees, bees are not customers, and you cannot convert one to another. It is impossible for

a bee to pay for a product and for a customer to make honey. I call this the Consumer Dichotomy. It seems

that this might not apply to the commercial open source model and so is limitation of the analogy but it is

not. The customer in the Beekeeper analogy equates to the organization that is paying for the 'whole

product' from the commercial open source company. The bees equates to the community of individual

employees and enthusiasts. Consider:

 The company often knows a community member for a long time before finding out who they work for.

Sometimes they never find out. Community members often remain part of the community as they move

from employer to employer.

 For business software the sales contract is between an organization (customer) and the single-vendor

commercial open source company. If an employee in a role that is a touch point between the customer

and the company leaves their employer, a new individual is nominated to fill the role, and the old

employee is no longer a part of the relationship but the organization still is.

Customers are corporations, the community are people. They have very different needs.

This distinction between customers and community is important when it comes to attempting to turn members of the

community into customers. The sales and marketing groups need to be aware that, in most cases, it is not possible

to convert a community member into a customer. However is it possible to convert the employer of a community

member into a customer. Slamming community members with a marketing pitch is unlikely to achieve this.

Note that, at high level, the roles of the Sales, Marketing, Support, and Services departments are very similar

between the single-vendor commercial open source and proprietary models. This is because they are focused on the

'whole product' aspect of the model. A prospective customer should not have to learn about open source in order to

become a customer. The sales and marketing materials should neither hide their open source model nor require

understanding of it by the market. Although the role of marketing is not fundamentally different in this model the

strategies, tactics, and techniques used to market the software are different primarily because:

 A mass marketing approach is used instead of a high-touch, expensive enterprise approach

 A prospective customer's transition from the marketing domain to the sales team occurs significantly later in

their experience.

Community members have the potential to persuade their employer to become a customer. The members themselves

typically have no budget or no control over how the budget is spent. A commercial open source company needs to

educate its community members on the services that are available and the long term advantages to everyone if those

services are used. The company needs to find a way of presenting this and enabling members to present it to their

employer without de-valuing the capabilities of the community member.

When we compare the open source project model and the single-vendor commercial open source model we notice

that the commercial model contains all of the people, processes, and items of the open source model. There are no

elements missing. The difference is that the single-vendor commercial open source model includes a Go To Market

program produces and a ‘whole product’. The same differences exist between the Wild Hive and Beekeeper models.

When we compare the proprietary model and the single-vendor commercial open source model we see that the

single-vendor commercial open source model contains all of the people, processes, and items of the proprietary

model. Again there are no elements missing. The difference is that the single-vendor commercial open source model

includes a community and all of the contributions that the community make. The same differences exist between the

Maple Syrup Fame and Beekeeper models.

The single-vendor commercial open source is a perfect (in mathematical terms) combination of an open source

project and a proprietary software company: it has all of the elements of the other models within nothing added and

nothing lost.

The Bees and the Trees 11

The Honey-Gatherer Model for Service/Support Commercial Open
Source
The first version of this paper did not include a model to describe companies that use a services or support

commercial open source business model. After it was released Matthew Aslett of the 451 Group wrote a blog about

extending the Beekeeper Model to include these companies.

http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-

projects/

He suggested that these companies can be likened to honey gatherers that collect their raw material from wild or

organic hives.

Contributions?

James Dixon, Pentaho, 2009, Free Art License

Honeycombs

Wild Honey
Gatherer

Customers

Maybe,
maybe not

Go To Market
Sales, Marketing
Support, Services

Resources
Whole Product

Contributions

‘Organic’ or
‘Wild’ Hive

Hives and
Honeycombs

Honeycombs

Bees
Contributions

Queen Bees

These honey gatherers produce the same products as the Bee Farm but their involvement with, and contribution to,

the bee community is different. Notice that there is no bee farm in this model.

In diagram form the workings of a services / support commercial open source model is similar.

Contributions?

Contributions

Open Source
Project

Roadmap
Design

Software

Use Cases
Peer Review

Testing
Documentation

Translations
Features

Forum Help
Bug Fixes
Scalability

Configuration Diversity
Quotes & News

Contributions

Core Developers
Software

Service Provider

Customers

Maybe,
maybe not

Go To Market
Sales, Marketing
Support, Services

Resources

Community

Whole Product

James Dixon, Pentaho, 2009, Free Art License

The Bees and the Trees 12

http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/

When compared with the Beekeeper Model it is obvious that the resources provided to the bees by the gatherer are

different. In the Beekeeper Model the bee farm provides land, hives, and flowers etc. In the Honey Gatherer Model

the gatherer goes into the ‘wild’ and finds existing hives from which to obtain raw materials. Likewise the single-

vendor commercial open source business provides resources to the community that a services/support business does

not. These resources include:
 Initial or ‘seed’ code. This can take millions of dollars to create.
 A sizable team of full-time engineers
 Product managers
 Graphic designers and usability experts
 Development tools such as continuous integration servers

It is clear that the single-vendor model is more costly to set up and operate than the services/support model. It is

logical that companies using the Beekeeper Model need to generate more revenue to recoup these costs than a

company using the Honey Gatherer Model. This explains the common practice of the Beekeeper companies to offer

some kind of ‘Enterprise Edition’ that includes features not available to the community. These are high-end features

that only larger organizations find of value.

Some people assume that all commercial open source models iare flawed because the company does not have direct

control over the direction of, and development of, the software:

 This is not true with the single-vendor model. The only resources that cannot directly be influenced are the

community who perform software-oriented roles for us at a scale and capacity that is orders of magnitude

better than any proprietary organization could do on its own. The core developers and product managers

are under the direct influence of the company.
 The services/support model does suffer from this. The company might pay for full-time developers to work

on some of the open source projects that it utilizes but it does not have the same level of influence that the

single-vendor model provides.

Summary
The deliberate simplification of the models and diagrams above shows something important. If you reduce the

workings of an open source project, a proprietary software company, and an single-vendor commercial open source

software company down to the fewest number of lines and bubbles there are fundamental differences between them.

By comparing the diagrams you see the single-vendor commercial open source model is a perfect combination of an

open source project and a proprietary software company: there is nothing left out and there is nothing added.

single-vendor commercial open source = open source software project + 'whole product' program

The single-Vendor commercial open source model is a robust combination of an open source project and a software

company backing that project, and a complete Go To Market program. Not only does the model benefit from the

advantages of each there are additional benefits for all participants:

 The open source community benefits directly from the full-time engineering staff that exist because of the

fee-paying customers.

 The customers benefit from the increased quality of the software, quality of design, and increased traction

enabled by the open source community.

 The Single-Vendor Commercial Open Source company benefits by increasing its valuation when it meets the

needs of both customers and open source community.

The model is powerful because the customers, partners, engineers, and open source communities are all self-

motivated to behave in ways that are beneficial to themselves and, as a side effect, beneficial to all the others.

The Bees and the Trees 13

To summarize the main points of the Beekeeper model in a comparison table:

As demonstrated by the Beekeeper diagrams and this table the Single-Vendor Commercial Open Source model, when

implemented well, is a ideal combination of the methodologies, principles, and roles from open source and

proprietary software development models. By combining these models carefully the advantages of each can also be

combined to produce a result that is powerful and compelling.

Open source has been described as the biggest paradigm shift in computing in the last 20 years. I hope that the

information I have presented here shows the disruptive nature of open source / commercial open source is due to

the profound and fundamental differences that exist between the proprietary software development model and the

open source / commercial open source models.

Commercial open source companies are a lot of fun to work at. I don't know of anyone working in a commercial open

source company today that wants to go back to a proprietary vendor. I know lots of people at proprietary vendors

who would like to move out.

The single-vendor commercial open source model is sufficiently open source to be disruptive, productive, and fun.

Much evidence indicates that it is commercial enough to be sustainable.

More Information
There is a discussion forum and part two of this model at: http://www.pentaho.org/beekeeper

email: beekeeper@pentaho.org

External References to the Beekeeper Model

The Beekeeper
Paul Ramsey, The Open Planning Project
http://theopenplanningproject.org/2009/03/the-beekeeper/

Open Source Business Models: the Beekeeper model
Roberto Galoppini
http://robertogaloppini.net/2007/05/23/open-source-business-models-the-beekeeper-model/

The Bees and the Trees 14

Open Source Proprietary
Commercial
Open Source

Transparency of design & implementation Higher Lower Higher

Quality of software Higher Lower Higher

Reliability of support and training Lower Higher Higher

Reliability of roadmap Lower Higher Higher

Ownership of solution Higher Lower Higher

Availability of professional services Lower Higher Higher

Availability of references/case studies Lower Higher Higher

Ability to 'try before you buy' Higher Lower Higher

Cost of license or subscription None High Lower

Ability to customize software Higher Lower Higher

http://www.pentaho.org/beekeeper
http://www.pentaho.org/beekeeper
mailto:beekeeper@pentaho.org
mailto:beekeeper@pentaho.org
http://theopenplanningproject.org/2009/03/the-beekeeper/
http://theopenplanningproject.org/2009/03/the-beekeeper/
http://robertogaloppini.net/2007/05/23/open-source-business-models-the-beekeeper-model/
http://robertogaloppini.net/2007/05/23/open-source-business-models-the-beekeeper-model/

Applying the Bee Keeper model beyond captive open source projects
Matthew Aslett, 451 Group
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-
projects/

Overheard: The beekeeper model and open source software
Margaret Rouse, IT Knowledge Exchange
http://itknowledgeexchange.techtarget.com/overheard/overheard-the-beekeeper-model-and-open-source-software/

The Bee Keeper analogy as an explanation of professional FOSS
Martin Michlmayr, foss bazaar
https://fossbazaar.org/content/bee-keeper-analogy-explanation-professional-foss

Bee Keepers, the Chasm & Open Source
Michael Grove, CollabWorks
http://blog.collabworks.com/openit_blogs/2007/09/bee-keepers-the.html

Making Money With Open Source, Part 1: Turning Users Into Buyers
Dominic Sartorio and Bernard Golden, Linux Insider
http://www.linuxinsider.com/story/61083.html

Commercial Open Source Support
Recombinant – Healthcare Data Warehouse
http://www.recomdata.com/www/services_commercial.html

Take Care of Your Bees
Michael Grove, Open IT Works
http://opensolutionsalliance.org/osa/osaalert(nov07)-grove.html?command=Default&siteId=2&tabId=32&pageId=100

Penguins, Bees, Cathedrals and Wikis
Dick Selwood, Embedded Technology Journal
http://www.embeddedtechjournal.com/articles_2009/20090224_opensource.htm

Open Source is Not a Business Model
451 Group
http://download.microsoft.com/download/0/4/2/04246FB1-0BF6-44F4-BC44-4CCB220E1711/451_-_08_OCT_-
_CAOS_Report_9_Open_Source_is_Not_a_Business_Model.pdf

Martin, Open Source or Not?
http://opensourceornot.blogspot.com/2007/05/dancing-with-professional-open-source.html

FOSS GIS in Local Government
Nico Elma, GIS Global Image Ltd
http://www.globalimage.co.za/Documents/GIS%20Global%20Image%20presentation%20FOSS%20GIS%20in
%20Local%20Government%20FOSS4G%202008.pdf

RESILIENCE OF PROFESSIONAL OPEN SOURCE ECOSYSTEMS
Wynn (University of Dayton), et al
http://is2.lse.ac.uk/asp/aspecis/20080123.pdf

Government Open Source Software Resource Center
http://www.gossrc.org/articles

Open Source Week in Review
Mark Hinkle, Socialized Software
http://socializedsoftware.com/2008/06/22/links-open-source-week-in-review/

Commercial Open Source
Martin P, Inflection Technologies
http://inflection-technologies.com/PACSFerret/?p=12

Open Source Software Engineering
G. Sivakumar, ITT Bombay
http://oss-conference.in/userfiles/file/GShivakumar_IITBombay_CII_FOSS.pdf

Open Source
The IT Bureau
http://www.theitbureau.co.uk/index.php?option=com_content&task=view&id=268&Itemid=68

The Bees and the Trees 15

http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://blogs.the451group.com/opensource/2008/06/20/applying-the-bee-keeper-model-beyond-captive-open-source-projects/
http://itknowledgeexchange.techtarget.com/overheard/overheard-the-beekeeper-model-and-open-source-software/
http://itknowledgeexchange.techtarget.com/overheard/overheard-the-beekeeper-model-and-open-source-software/
https://fossbazaar.org/content/bee-keeper-analogy-explanation-professional-foss
https://fossbazaar.org/content/bee-keeper-analogy-explanation-professional-foss
http://blog.collabworks.com/openit_blogs/2007/09/bee-keepers-the.html
http://blog.collabworks.com/openit_blogs/2007/09/bee-keepers-the.html
http://www.linuxinsider.com/story/61083.html
http://www.linuxinsider.com/story/61083.html
http://www.recomdata.com/www/services_commercial.html
http://www.recomdata.com/www/services_commercial.html
http://opensolutionsalliance.org/osa/osaalert(nov07)-grove.html?command=Default&siteId=2&tabId=32&pageId=100
http://opensolutionsalliance.org/osa/osaalert(nov07)-grove.html?command=Default&siteId=2&tabId=32&pageId=100
http://www.embeddedtechjournal.com/articles_2009/20090224_opensource.htm
http://www.embeddedtechjournal.com/articles_2009/20090224_opensource.htm
http://download.microsoft.com/download/0/4/2/04246FB1-0BF6-44F4-BC44-4CCB220E1711/451_-_08_OCT_-_CAOS_Report_9_Open_Source_is_Not_a_Business_Model.pdf
http://download.microsoft.com/download/0/4/2/04246FB1-0BF6-44F4-BC44-4CCB220E1711/451_-_08_OCT_-_CAOS_Report_9_Open_Source_is_Not_a_Business_Model.pdf
http://download.microsoft.com/download/0/4/2/04246FB1-0BF6-44F4-BC44-4CCB220E1711/451_-_08_OCT_-_CAOS_Report_9_Open_Source_is_Not_a_Business_Model.pdf
http://download.microsoft.com/download/0/4/2/04246FB1-0BF6-44F4-BC44-4CCB220E1711/451_-_08_OCT_-_CAOS_Report_9_Open_Source_is_Not_a_Business_Model.pdf
http://opensourceornot.blogspot.com/2007/05/dancing-with-professional-open-source.html
http://opensourceornot.blogspot.com/2007/05/dancing-with-professional-open-source.html
http://www.globalimage.co.za/Documents/GIS%20Global%20Image%20presentation%20FOSS%20GIS%20in%20Local%20Government%20FOSS4G%202008.pdf
http://www.globalimage.co.za/Documents/GIS%20Global%20Image%20presentation%20FOSS%20GIS%20in%20Local%20Government%20FOSS4G%202008.pdf
http://www.globalimage.co.za/Documents/GIS%20Global%20Image%20presentation%20FOSS%20GIS%20in%20Local%20Government%20FOSS4G%202008.pdf
http://www.globalimage.co.za/Documents/GIS%20Global%20Image%20presentation%20FOSS%20GIS%20in%20Local%20Government%20FOSS4G%202008.pdf
http://is2.lse.ac.uk/asp/aspecis/20080123.pdf
http://is2.lse.ac.uk/asp/aspecis/20080123.pdf
http://www.gossrc.org/articles
http://www.gossrc.org/articles
http://socializedsoftware.com/2008/06/22/links-open-source-week-in-review/
http://socializedsoftware.com/2008/06/22/links-open-source-week-in-review/
http://inflection-technologies.com/PACSFerret/?p=12
http://inflection-technologies.com/PACSFerret/?p=12
http://oss-conference.in/userfiles/file/GShivakumar_IITBombay_CII_FOSS.pdf
http://oss-conference.in/userfiles/file/GShivakumar_IITBombay_CII_FOSS.pdf
http://www.theitbureau.co.uk/index.php?option=com_content&task=view&id=268&Itemid=68
http://www.theitbureau.co.uk/index.php?option=com_content&task=view&id=268&Itemid=68

The apiarist’s dilemma
Mattew Aslett, Linux.org
http://blogs.linux.org.bd/?p=7422

The Economics of Open Source
Chris Katz et al, Department of Computer Science, Tufts University, Massachusetts, USA
http://www.cs.tufts.edu/comp/180/teams/t3/documents/economics.ppt

Open Source Methodology: Software Engineering Principles
Dr Pretra Malik, School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, New
Zealand
http://www.mcs.vuw.ac.nz/courses/COMP301/2008T1/lectures/COMP301_FOSSM_2008.pdf

A Review of New Framework for Low Cost ERP System using Open Source Software
Baharum (Universiti Teknologi Malaysia.) et al
http://repository.gunadarma.ac.id:8000/iiWAS2007_527-533_1159.pdf

The Bees and the Trees 16

http://blogs.linux.org.bd/?p=7422
http://blogs.linux.org.bd/?p=7422
http://www.cs.tufts.edu/comp/180/teams/t3/documents/economics.ppt
http://www.cs.tufts.edu/comp/180/teams/t3/documents/economics.ppt
http://www.mcs.vuw.ac.nz/courses/COMP301/2008T1/lectures/COMP301_FOSSM_2008.pdf
http://www.mcs.vuw.ac.nz/courses/COMP301/2008T1/lectures/COMP301_FOSSM_2008.pdf
http://repository.gunadarma.ac.id:8000/iiWAS2007_527-533_1159.pdf
http://repository.gunadarma.ac.id:8000/iiWAS2007_527-533_1159.pdf

