
THE BENEFITS OF 

PERFORMING A 

GEOMETRIC 

NONLINEAR 

ANALYSIS FOR 

CURVED BRIDGES 

DURING 

ERECTION 
 

 
PAUL BIJU-DUVAL 

 

 

 

BIOGRAPHY 

Paul Biju-Duval is a structural 

engineer from France with four 

years of professional experience 

in Dubai, Paris and Lima. Paul 

just completed his PhD studies 

at the University of Texas at 

Austin under the direction of 

Dr. Todd Helwig, where he 

specialized on curved bridges 

and developed UT Bridge, 

which is a finite element 

program to analyze those 

structures during erection and 

deck placement.  

SUMMARY 

Curved bridges during erection 

are flexible structures that 

exhibit large pre-buckling 

deformations, making an 

eigenvalue buckling analysis 

irrelevant. This paper shows the 

benefits of performing a 

geometric nonlinear analysis to 

estimate the bridge behavior and 

stability. Several case studies 

are presented, and general 

guidelines are provided on the 

type of analysis that should 

ideally be conducted by bridge 

engineers for the erection phase. 
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THE BENEFITS OF PERFORMING A GEOMETRIC 

NONLINEAR ANALYSIS FOR CURVED BRIDGES DURING 

ERECTION 

 
Introduction 

Due to large unbraced lengths and open section 

geometries, steel bridges are flexible structures 

during the erection and construction phase. This 

flexibility can potentially lead to instability issues 

and failure modes such as lateral-torsional buckling 

or global lateral buckling. In particular, curved 

bridges have a natural tendency to rotate in order to 

reach a state of minimal potential energy. The 

prevention of such a rigid body movement at pin or 

roller supports implies that those systems are 

subjected both to bending and torsion, which 

complicates their analysis. For straight bridges 

without skew subjected to gravity loads, an 

eigenvalue buckling analysis (where the first 

eigenvalue is a multiplier on the external applied 

load that would cause buckling of the structure) is 

appropriate, as they are subject to bending only. As 

the vertical load applied to straight girders increases, 

the lateral deflection remains equal to zero, until the 

structure suddenly buckles. Once the bifurcation 

point is reached, the structure loses all of its lateral 

stiffness (Figure 1). An eigenvalue buckling analysis 

is able to capture that critical load and is therefore 

quite suitable to evaluate the stability of straight 

systems without skew. Admittedly, straight bridges 

are sensitive to initial imperfections, but those 

imperfections are generally small so that the pre-

buckling deformations remain limited.  

However, due to torsion, curved bridges, and to 

some extent, straight bridges with skewed support 

lines, show significant lateral deflections, even for 

small vertical load levels. This is particularly true for 

plate girder systems, as their open section provides 

them with little torsional stiffness, but is also valid 

for curved tub girder systems. As the load increases, 

their stiffness gradually decreases. In other words, 

they do not show a bifurcation type behavior. The 

critical load obtained by an eigenvalue buckling 

analysis will yield an upper bound value that may be 

quite far off the true critical load (Figure 1). In 

practice, bridge engineers still conduct an eigenvalue 

buckling analysis to evaluate the stability of curved 

bridges. The safety of the erection process, however, 

would improve if engineers conducted a geometric 

nonlinear analysis instead. 

 

Figure 1: First-order analysis, geometric nonlinear, 

and eigenvalue buckling analyses 

The geometric nonlinear analysis captures geometric 

nonlinearities, or second-order effects. It differs 

from the more straightforward first-order linear 

elastic analysis in that the equilibrium of the 

structure is calculated in its deformed configuration. 

As the deflected shape of the structure is itself 

unknown during the calculation process, it requires 

the implementation of a Newton-Raphson algorithm 

of some type. Arc-length methods are another way 

to implement a geometric nonlinear analysis and are 

able to capture post-buckling behavior. For curved 

bridges during erection, however, buckling is the 

typical failure mode, and traditional Newton-

Raphson algorithms are sufficient to capture pre-

buckling deformations. It should be recalled that the 

geometric nonlinear analysis captures one type of 

nonlinearities only. It does not consider material 

nonlinearity, but for curved bridges during erection, 

this is typically a valid assumption as buckling 

occurs at low-stress levels, well under the steel yield 

point. It does not consider contact nonlinearities 

either, but again, this is a valid assumption as uplift 

issues may arise during concrete placement but are 

not usually encountered during the erection of the 

steel superstructure. 
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UT Bridge 

It is widely accepted that the three-dimensional 

finite element analysis is the most accurate method 

to analyze curved bridges, particularly during the 

erection and construction phase (Zureick and Naqib 

1999, White et al. 2012). Through an explicit 

modeling of a complex structure, three-dimensional 

finite element models are indeed able to capture both 

global and local behavior, torsion and bending, 

cross-frame forces, etc. Three-dimensional finite 

element analysis differs from two-dimensional grid 

methods, which are approximate analysis methods. 

Grid methods are accurate enough to analyze curved 

bridges during the service phase only, once the steel 

structure acts compositely with the concrete deck, 

but were shown to be inaccurate for severely curved 

or skewed systems, although other researchers have 

tried to mitigate this (Sanchez and White 2017). 

Over the past four years, a three-dimensional finite 

element analysis software targeted at curved plate 

girder and tub girder bridges during erection and 

construction has been developed at the University of 

Texas at Austin. Known as UT Bridge, it has been 

used by bridge engineers across the United States, 

and provides a fast yet accurate alternative to 

expensive, commercial programs. UT Bridge 

produces three-dimensional models using 

isoparametric quadratic curved general shell 

elements for all steel plates, with eight nodes per 

element and five degrees of freedom per node (the 

“drilling” degree of freedom is not considered). 

Curved, complex systems can be modeled within 

less than an hour. The software capabilities were 

presented at the previous World Steel Bridge 

Symposium in Orlando (Biju-Duval and Helwig 

2016), as well as the last North American Steel 

Construction Conference in San Antonio (Biju-

Duval and Helwig 2017). However, a major 

breakthrough from the previous years is that UT 

Bridge is now available to perform a geometric 

nonlinear analysis.  

UT Bridge has been validated using extensive 

validation studies using Abaqus, which is a state-of-

the-art general-purpose finite element software. UT 

Bridge can also conduct a first-order linear elastic 

analysis, as well as an eigenvalue buckling analysis 

and a modal dynamic analysis. Another significant 

improvement has also been the ability to model 

curved tub girder geometries in addition to curved 

plate girder bridges. A variety of loads are available, 

from self-weight to point loads, wind loads and 

thermal loads. Similarly, different brace types can be 

modeled, such as X-frames, K-frames, lateral trusses 

and diaphragms (for tub girders). 

The approach that was selected to implement the 

geometric nonlinear analysis in UT Bridge is the 

modified Newton-Raphson method. At each load 

increment, the program derives the tangent stiffness 

matrix based on the bridge deflected shape. Large 

displacements and rotations are considered, but 

small strains only, which is a reasonable assumption 

for buckling problems (Bathe 1982). The program 

assumes that loads are deformation-independent, 

meaning that the direction of the loads does not 

change as the structure gradually deforms. An 

updated Lagrangian formulation is considered, 

meaning that all static and kinematic variables are 

referred to the last computed configuration (Bathe 

1982). In particular, the selection of the formulation 

means that the “true” stresses are calculated at each 

load increment, unlike other formulations, such as 

the total Lagrangian method. At each load 

increment, an algorithm calculates the residual load 

vector, defined as the difference between the 

external load vector (𝑅) and the vector of nodal 

point forces (𝐹) corresponding to the internal 

stresses at that load increment (Bathe 1982). 

Convergence of the modified Newton-Raphson 

solver is considered to be reached when the norm of 

that residual load vector is less than a tolerance 

value (𝜖) (Equation 1). For more detailed 

information on the calculation of the residual load 

vector and on the algorithmic implementation of the 

geometric nonlinear analysis into the program, one 

can refer to the author’s dissertation (Biju-Duval 

2017). 

‖
𝑅− 𝐹

𝑅
‖ < 𝜖           (Equation 1) 

Case study 

A case study is conducted to illustrate the program 

capabilities and to show how more suitable the 

geometric nonlinear analysis can be to evaluate the 

stability of curved bridges compared to the 

eigenvalue buckling analysis. The structure 

considered is a five-girder plate girder bridge, with a 

radius of curvature of 290-ft. for the interior girder, 

which is a pretty severe curvature. Girder spacing is 
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uniform and equal to 9.67-ft. The cross-frame 

configuration is radial, with an unbraced length for 

the interior bay approximately equal to 14-ft. Two 

different cross-sections are modeled along the 

bridge, with a uniform web depth of 60-in. In 

addition, the far-end support line is skewed. Overall, 

the girder length varies from 152-ft. for the interior 

girder to 142-ft. for the exterior girder (Figure 2). 

 

Figure 2: Bridge initial geometry 

In a first analysis, however, only half the cross-

frames are turned on, which results in an unbraced 

length approximately equal to 28-ft., which is rather 

large given the severe curvature (Figure 2). A 2-ft. 

uniform longitudinal mesh size is specified, resulting 

in a number of 58,244 unrestrained degrees of 

freedom. The following figures describe the bridge 

behavior produced by a first-order linear elastic 

analysis, with the self-weight of the structure acting 

as the only external load: deflected shape (Figure 3), 

longitudinal stress envelope (Figure 4), moment 

diagram (Figure 5), shear diagram (Figure 6), torsion 

diagram (Figure 7).  

From the figures 3 to 7 it can be observed how the 

exterior girder displays higher levels of 

displacements and stresses, and how the longitudinal 

stress distribution is not uniform across the width of 

the flanges because of the torsion-induced warping 

longitudinal stresses. Overall, those figures show 

how effective UT Bridge can be for modeling 

complex curved plate girder geometries, although 

this example remains rather simple, as it is a simply-

supported structure only and the cross-frame 

configuration is radial. Any support or cross-frame 

configuration can however be modeled with UT 

Bridge. For the case study presented in this 

paragraph, modeling of the structure took only about 

twenty minutes, and finite element calculation about 

thirty seconds. Important quantities are directly 

available to the bridge engineer, such as shear, 

moment and torsion diagrams. Bi-moment diagrams 

directly related to the warping longitudinal stresses 

are also available, although they are not presented in 

this paper. The shear diagram, for example, can be 

directly used to estimate support reactions. In 

addition to the longitudinal stresses, UT Bridge can 

also display the Von Mises stresses as well as the in-

plane shearing stress components. UT Bridge can 

also display any of the three components of the 

displacement vector, as well as support reactions and 

cross-frame forces. Post-treatment of the 

displacements and the stresses is performed 

automatically, which saves plenty of time for bridge 

engineers. 

 

Figure 3:  Deflected shape (first-order analysis) 

 

Figure 4:  Longitudinal stress envelope 
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Figure 5:  Moment diagram

 

Figure 6:  Shear diagram 

 

Figure 7:  Torsion diagram 

Finally, Figures 8 and 9 show some charts that UT 

Bridge can automatically display to understand the 

bridge behavior. Figure 8 shows the vertical 

displacement of the girders, while Figure 9 shows 

the torsional layovers, meaning the lateral relative 

displacement between the top and the bottom 

flanges. The layover diagram gives an indication of 

the torsional deformation of the structure. 

 
Figure 8:  Vertical deflections 

 
Figure 9:  Layovers 

In this example, the unbraced length was specified 

as 28-ft. to have the structure reach a buckling mode 

for an eigenvalue close to a value of 5, which is a 

recommended value under which a geometric 

nonlinear analysis should be conducted (White et al. 

2012). For this particular structure, the first buckling 

mode is a lateral-torsional buckling mode, and the 

corresponding buckling eigenvalue is calculated 

equal to 5.5 (Figure 10). It should be recalled here 

that UT Bridge is selecting FEAST for its 

eigensolver, which is a powerful eigensolver that 

was developed at the University of Massachusetts at 

Amherst (Polizzi 2009) and differs from the 

traditional Krylov subspace-iteration-based 

techniques more commonly implemented in 

structural analysis commercial programs. 
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Figure 10: First buckling mode (λ = 5.5) 

A geometric nonlinear analysis is then performed, 

using a number of 25 uniformly spaced load 

increments, which is the default assumption 

implemented by the program. This time, the analysis 

is more computationally expensive, but it is still 

completed within ten minutes. The deflected shape 

obtained using a geometric nonlinear analysis is 

shown in Figure 11. It can be observed that the 

deformation is slightly amplified from a first-order 

linear elastic analysis. The maximum deflection is 

indeed increased from 3.85-in. to 3.93-in. This 

amplification may seem small, but bridge engineers 

should not only figure by how much the maximum 

deflection is amplified. Complex models involve 

tens of thousands of unrestrained degrees of 

freedom, and the structural behavior may be severely 

overlooked if the only result discussed is that 

maximum displacement.  

 

 

Figure 11:  Deflected shape (geometric nonlinear 

analysis) 

After initially moving in a certain direction at low 

load levels, some points even start moving in the 

reverse direction at higher load increments. This 

phenomenon can be observed in Figure 12, which 

shows the load versus displacement curve of two 

different displacement degrees of freedom. The blue 

curve shows the lateral displacement of the top 

flange node at midspan of the exterior girder. The 

red curve applies to the same degree of freedom, but 

this time at the bottom flange node. From the blue 

curve, it can be observed how the structure gradually 

loses stiffness. When 100% of the external load is 

applied, the lateral stiffness at the top flange node 

has lost about 70% of its original value. As 

mentioned in the introduction, curved bridges do not 

exhibit a bifurcation type behavior, and the 

computed buckling eigenvalue of 5.5 is in this case a 

very upper bound on the critical load. An eigenvalue 

buckling analysis is therefore not suitable to evaluate 

the bridge structural stability. On the other hand, the 

bottom flange, after initially moving toward the 

center of curvature of the bridge, then deflects 

outward (Figure 12), which may seem counter-

intuitive at first. At a load ratio close to 0.5, the 

bottom flange lateral displacement even presents a 

tangent stiffness close to infinity. This occurs when 

the bridge lateral movement and the cross-sectional 

rotation perfectly balance each other. 

 

Figure 12:  Load vs. deflection curves (geometric 

nonlinear analysis) 

The combination of an unbraced length of 28-ft. 

together with a radius of curvature of 290-ft. not 

surprisingly resulted in a flexible structure prone to 

instability issues, although the buckling eigenvalue 

was calculated equal to 5.5. In order to assess the 

performance of a geometric nonlinear analysis on 
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stiffer structures, the unbraced length is now reduced 

by 50% and is therefore equal to roughly 14-ft. An 

eigenvalue buckling analysis yields a first global 

buckling model equal to 17.8 (Figure 13). 

 

 
Figure 13: First buckling mode (λ = 17.8) 

As expected, reducing the unbraced length 

significantly increased the structural stability. 

Although second-order effects are expected to be 

small, a geometric nonlinear analysis is conducted to 

assess them. The deflected shape obtained using a 

geometric nonlinear analysis is barely amplified and 

is therefore not shown in this paper. However, there 

are some differences in the value of the cross-frame 

forces, whether they are evaluated using a first-order 

linear elastic analysis or a geometric nonlinear 

analysis. For example, the axial forces in the sixth 

cross-frame from the left support in the exterior bay 

are shown in Figures 14 and 15 (axial forces for all 

members are shown in Figures 16 and 17). This 

cross-frame is selected because it is close to midspan 

of the exterior girder, where displacements and 

stresses are maximal. Although the geometric 

nonlinear analysis does not show any substantial 

deflection amplification, it does have an impact on 

the magnitude of those forces. Cross-frame forces 

evaluated using a geometric nonlinear analysis are 

symmetric: top and bottom chords, as well as left 

and right diagonals, have opposite values. A first-

order linear elastic analysis does not yield such a 

symmetry: the tension forces seem to be slight 

overestimated, and the compression forces, slightly 

underestimated. Although cross-frames are usually 

sized for higher loads such as truck loads, a 

parametric study is conducted to estimate the 

influence of the curvature on those axial forces. 

 
Figure 14: Cross-frame forces (exterior bay, sixth 

cross-frame from the left support, first-order linear 

elastic analysis) 

 
Figure 15: Cross-frame forces (exterior bay, sixth 

cross-frame from the left support, geometric 

nonlinear analysis) 

Parametric study 

The case study described in the previous paragraph 

has shown how the type of analysis, whether first-

order linear elastic or geometric nonlinear, affects 

the magnitude of the cross-frame forces. Even for 

large buckling eigenvalues, there may be sizeable 

difference between results obtained from both 

analyses. In this paragraph, a parametric study 

describing the influence of the curvature on the 

cross-frame forces is presented. The structure 

considered is a curved, simply-supported three-

girder plate girder bridge. It is adapted from a study 

by Davidson and Yoo (1996). Girder spacing is 

equal to 9-ft. The exterior girder has an overall 

length of 100-ft (Figure 18).  



 Page 7 of 10  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Cross-frame forces (first-order linear elastic analysis) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Cross-frame forces (geometric nonlinear analysis) 
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Cross-sectional dimensions are 12-in.x1-in. for the 

flanges and 58-in.x0.5-in. for the web. A radial 

cross-frame configuration is applied. A uniform 

surface load equal to 1.0k/ft
2
 for the interior and 

exterior girders, and 1.2k/ft
2
 for the intermediate 

girder is applied (Figure 18). This load represents 

the self-weight of the steel superstructure, as well as 

an 8-in. thick wet concrete deck. A fine mesh is 

specified, with eight shell elements through the web 

depth, and a longitudinal mesh size of 9-in, resulting 

in an overall number of 80,976 unrestrained degrees 

of freedom. Several values for the radius of 

curvature of the exterior girder are considered: 200-

ft., 500-ft., 700-ft., 1,000-ft. and 2,000-ft. The length 

of the first two interior girders is modified 

accordingly to keep a uniform girder spacing. A 

straight bridge is also modeled in order to model a 

radius of curvature close to infinity. The axial forces 

in the third cross-frame from the left support on the 

right bay are investigated. As shown in the previous 

paragraph, deflections and stresses are indeed 

maximal at midspan of the exterior girder.  

 

 

Figure 18: Bridge initial geometry and loading (R = 

100-ft.) 

The influence of the subtended angle L/R, where L 

is equal to the length of the exterior girder (100-ft.), 

and R is equal to the radius of curvature of the 

exterior girder, is shown in Figure 19. Several 

observations can be made. First, as expected, cross-

frame forces are small for straight and mildly curved 

bridges. But as the subtended angles gradually 

increases, cross-frame forces increase dramatically, 

which justifies why cross-frames are considered as 

primary structural components for severely curved 

bridges. Second, the discrepancy between the first-

order and the geometric nonlinear analysis increases 

with the subtended angle. As expected, second-order 

effects are negligible for straight systems under 

gravity loads. On the other hand, second-order 

effects become significant for more severe 

curvatures. Interestingly, although the discrepancy 

steadily increases, it does not affect tension and 

compression components in the same manner. At 

least for this particular cross-frame, tension forces 

are overestimated using a first-order linear elastic 

analysis, while compression forces are 

underestimated using a first-order linear elastic 

analysis. This statement shows how unconservative 

a first-order linear elastic analysis may be for 

severely curved bridges. Compression forces may be 

significantly underestimated, resulting in undersized 

braces potentially leading to buckling failures. Third, 

Figure 19 shows that diagonal forces increase 

linearly with curvature, while top and bottom chord 

forces increase more rapidly. Last but not least, and 

similarly to the case study presented in the previous 

paragraph, a geometric nonlinear analysis yields a 

symmetric distribution of the cross-frame forces: top 

and bottom chords show opposite forces of equal 

magnitude, and the same applies to the left and right 

diagonals. A first-order linear elastic analysis does 

not produce such a symmetric distribution. 

 

Figure 19: Effect of curvature on cross-frame forces 

(third cross-frame from the left support, exterior 

bay) 

Another way to evaluate of the benefit of performing 

a geometric nonlinear analysis can be obtained by 

comparing the maximal deflection produced by a 

first-order linear elastic analysis versus a geometric 

nonlinear analysis. The effect of curvature on both 

deflections is shown in Figure 20. For straight 

bridges under gravity loads, both analyses yield 

equivalent displacements (Figure 20). But as far 

curvature gradually increases, second-order magnify 
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the displacements, and the structural response is 

amplified (Figure 20). As shown in the case study 

though, second-order effects do not only mean a 

structural amplification. 

 

Figure 20: Effect of curvature on the maximal 

deflection 

Case of straight tub girder bridge 

The previous paragraphs have shown how 

conducting a geometric nonlinear analysis can lead 

to a better estimation of displacements and cross-

frame forces. It was also shown that an eigenvalue 

buckling analysis is not truly meaningful for curved 

structures, as they exhibit large pre-buckling 

deformations. The eigenvalue buckling analysis, 

however, is quite useful for straight systems during 

erection and deck placement to evaluate structural 

stability. For example, the Marcy Bridge collapse in 

the state of New York in 2002 could have been 

prevented if such an analysis had been conducted 

(Yura and Widianto 2005). In this paragraph, a 

similar failure is analyzed. The Y1504 Bridge in 

Sweden collapsed the same year as the Marcy 

Bridge, also during deck placement. It was a 

straight, 213-ft. long tub girder with three different 

profiles along its length, with eleven uniformly 

spaced diaphragms to prevent cross-sectional 

distortion (Ohlin 2016). The bridge is modeled in 

UT Bridge and loaded with its self-weight as well as 

a uniform pressure of 0.67k/ft
2
 on the first two 

interior panels to model the weight of the wet 

concrete (Ohlin 2016). A view of the model and the 

loading is given in Figure 21. An eigenvalue 

buckling analysis is conducted on the structure, 

leading to a first buckling eigenvalue equal to 1.0, 

which shows how sensitive to buckling the structure 

was (Figure 22). When a couple of lateral trusses are 

added at each end, the buckling eigenvalue increases 

to 2.7 (Figure 23). As expected, lateral trusses 

provide a warping restraint to the bridge, 

dramatically increasing its stability.  

 

Figure 21: Y1504 Bridge model and loading 

 

Figure 22: Y1504 Bridge buckled shape (λ = 1.0) 

 

Figure 23: Y1504 Bridge (with two lateral trusses 

added at each end) buckled shape (λ = 2.7) 
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Conclusions 

Although eigenvalue buckling analyses are 

conducted on a daily basis for curved bridges during 

erection, they are not truly suitable to evaluate the 

structural stability during erection, as curved 

systems gradually lose stiffness and do not exhibit a 

bifurcation type buckling behavior like straight 

bridges. It is highly recommended that bridge 

engineers perform a geometric nonlinear analysis 

when the computed buckling eigenvalue is less than 

5. Second-order effects result in an amplification of 

the deformations, but also in different cross-

sectional rotations, leading to different cross-frame 

forces. For buckling eigenvalues between 5 and 15, 

second-order effects are still sizeable but will not 

affect the bridge stability, therefore a geometric 

nonlinear analysis is not necessary, although it may 

be conducted to estimate the bridge displacements 

and cross-frame forces with increased accuracy. For 

buckling eigenvalues larger than 15, a geometric 

nonlinear analysis is not necessary: second-order 

effects are small and will only affect slightly the 

magnitude of the cross-frame forces. For non-

skewed straight bridges however, an eigenvalue 

buckling analysis is suitable to address any 

instability issues and should be conducted whenever 

necessary.  

As far as UT Bridge, next developments include the 

ability to model initial imperfections in order to 

conduct meaningful geometric nonlinear analyses 

even on straight systems. 
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