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The Black-Merton-Scholes-Merton (BMS) model

Black and Scholes (1973) and Merton (1973) derive option prices under the
following assumption on the stock price dynamics,

dSt = µStdt + σStdWt (explained later)

The binomial model: Discrete states and discrete time (The number of
possible stock prices and time steps are both finite).

The BMS model: Continuous states (stock price can be anything between 0
and ∞) and continuous time (time goes continuously).

Scholes and Merton won Nobel price. Black passed away.

BMS proposed the model for stock option pricing. Later, the model has
been extended/twisted to price currency options (Garman&Kohlhagen) and
options on futures (Black).

I treat all these variations as the same concept and call them
indiscriminately the BMS model (combine chapters 13&14).
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Primer on continuous time process

dSt = µStdt + σStdWt

The driver of the process is Wt , a Brownian motion, or a Wiener process.

The process Wt generates a random variable that is normally distributed
with mean 0 and variance t, φ(0, t). (Also referred to as Gaussian.)

The process is made of independent normal increments dWt ∼ φ(0, dt).

“d” is the continuous time limit of the discrete time difference (∆).
∆t denotes a finite time step (say, 3 months), dt denotes an extremely
thin slice of time (smaller than 1 milisecond).
It is so thin that it is often referred to as instantaneous.
Similarly, dWt = Wt+dt −Wt denotes the instantaneous increment
(change) of a Brownian motion.

By extension, increments over non-overlapping time periods are
independent: For (t1 > t2 > t3), (Wt3 −Wt2) ∼ φ(0, t3 − t2) is independent
of (Wt2 −Wt1) ∼ φ(0, t2 − t1).
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Properties of a normally distributed random variable

dSt = µStdt + σStdWt

If X ∼ φ(0, 1), then a + bX ∼ φ(a, b2).

If y ∼ φ(m,V ), then a + by ∼ φ(a + bm, b2V ).

Since dWt ∼ φ(0, dt), the instantaneous price change
dSt = µStdt + σStdWt ∼ φ(µStdt, σ

2S2
t dt).

The instantaneous return dS
S = µdt + σdWt ∼ φ(µdt, σ2dt).

Under the BMS model, µ is the annualized mean of the instantaneous
return — instantaneous mean return.
σ2 is the annualized variance of the instantaneous return —
instantaneous return variance.
σ is the annualized standard deviation of the instantaneous return —
instantaneous return volatility.
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Geometric Brownian motion

dSt/St = µdt + σdWt

The stock price is said to follow a geometric Brownian motion.

µ is often referred to as the drift, and σ the diffusion of the process.

Instantaneously, the stock price change is normally distributed,
φ(µStdt, σ

2S2
t dt).

Over longer horizons, the price change is lognormally distributed.

The log return (continuous compounded return) is normally distributed over
all horizons:
d lnSt =

(
µ− 1

2σ
2
)
dt + σdWt . (By Ito’s lemma)

d lnSt ∼ φ(µdt − 1
2σ

2dt, σ2dt).
lnSt ∼ φ(lnS0 + µt − 1

2σ
2t, σ2t).

lnST/St ∼ φ
((
µ− 1

2σ
2
)

(T − t), σ2(T − t)
)
.

Integral form: St = S0e
µt− 1

2σ
2t+σWt , lnSt = lnS0 + µt − 1

2σ
2t + σWt
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Simulate 100 stock price sample paths

dSt = µStdt + σStdWt , µ = 10%, σ = 20%,S0 = 100, t = 1.
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Stock with the return process: d lnSt = (µ− 1
2σ

2)dt + σdWt .

Discretize to daily intervals dt ≈ ∆t = 1/252.

Draw standard normal random variables ε(100× 252) ∼ φ(0, 1).

Convert them into daily log returns: Rd = (µ− 1
2σ

2)∆t + σ
√

∆tε.

Convert returns into stock price sample paths: St = S0e
∑252

d=1 Rd .
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The key idea behind BMS

The option price and the stock price depend on the same underlying source
of uncertainty.

The Brownian motion dynamics imply that if we slice the time thin enough
(dt), it behaves like a binominal tree.

Reversely, if we cut ∆t small enough and add enough time steps, the
binomial tree converges to the distribution behavior of the geometric
Brownian motion.

Under this thin slice of time interval, we can combine the option with
the stock to form a riskfree portfolio.
Recall our hedging argument: Choose ∆ such that f −∆S is riskfree.
The portfolio is riskless (under this thin slice of time interval) and must
earn the riskfree rate.
Magic: µ does not matter for this portfolio and hence does not matter
for the option valuation. Only σ matters.

We do not need to worry about risk and risk premium if we can hedge
away the risk completely.
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Partial differential equation

The hedging argument mathematically leads to the following partial
differential equation:

∂f

∂t
+ (r − q)S

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf

At nowhere do we see µ. The only free parameter is σ (as in the
binominal model).

Solving this PDE, subject to the terminal payoff condition of the derivative
(e.g., fT = (ST − K )+ for a European call option), BMS can derive
analytical formulas for call and put option value.

Similar formula had been derived before based on distributional
(normal return) argument, but µ (risk premium) was still in.
The realization that option valuation does not depend on µ is big.
Plus, it provides a way to hedge the option position.
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The BMS formulae

ct = Ste
−q(T−t)N(d1)− Ke−r(T−t)N(d2),

pt = −Ste−q(T−t)N(−d1) + Ke−r(T−t)N(−d2),

where

d1 =
ln(St/K)+(r−q)(T−t)+ 1

2σ
2(T−t)

σ
√
T−t ,

d2 =
ln(St/K)+(r−q)(T−t)− 1

2σ
2(T−t)

σ
√
T−t = d1 − σ

√
T − t.

Black derived a variant of the formula for futures (which I like better):

ct = e−r(T−t) [FtN(d1)− KN(d2)],

with d1,2 =
ln(Ft/K)± 1

2σ
2(T−t)

σ
√
T−t .

Recall: Ft = Ste
(r−q)(T−t). Use forward price Ft to accommodate various

carrying costs/benefits.

Once I know call value, I can obtain put value via put-call parity:
ct − pt = e−r(T−t) [Ft − Kt ].
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Cumulative normal distribution

ct = e−r(T−t) [FtN(d1)− KN(d2)] , d1,2 =
ln(Ft/K )± 1

2σ
2(T − t)

σ
√
T − t

N(x) denotes the cumulative normal distribution, which measures the
probability that a normally distributed variable with a mean of zero and a
standard deviation of 1 (φ(0, 1)) is less than x.

See tables at the end of the book for its values.

Most software packages (including excel) has efficient ways to computing
this function.

Properties of the BMS formula:

As St becomes very large or K becomes very small, ln(Ft/K ) ↑ ∞,
N(d1) = N(d2) = 1. ct = e−r(T−t) [Ft − K ] .
Similarly, as St becomes very small or K becomes very large,
ln(Ft/K ) ↑ −∞, N(−d1) = N(−d2) = 1. pt = e−r(T−t) [−Ft + K ].
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Options on what?

Why does it matter?

As long as we assume that the underlying security price follows a geometric
Brownian motion, we can use (some versions) of the BMS formula to price
European options.

Dividends, foreign interest rates, and other types of carrying costs may
complicate the pricing formula a little bit.

A simpler approach: Assume that the underlying futures/forwards price (of
the same maturity of course) process follows a geometric Brownian motion.

Then, as long as we observe the forward price (or we can derive the forward
price), we do not need to worry about dividends or foreign interest rates —
They are all accounted for in the forward pricing.

Know how to price a forward, and use the Black formula.
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Implied volatility

ct = e−r(T−t) [FtN(d1)− KN(d2)] , d1,2 =
ln(Ft/K )± 1

2σ
2(T − t)

σ
√
T − t

Since Ft (or St) is observable from the underlying stock or futures market,
(K , t,T ) are specified in the contract. The only unknown (and hence free)
parameter is σ.

We can estimate σ from time series return. (standard deviation calculation).

Alternatively, we can choose σ to match the observed option price —
implied volatility (IV).

There is a one-to-one, monotonic correspondence between prices and
implied volatilities.

As long as the option price does not allow arbitrage against cash, there
exists a solution for a positive implied volatility that can match the
price.

Traders and brokers often quote implied volatilities rather than dollar prices.

More stable; more informative; excludes arbitrage

The BMS model says that IV = σ. In reality, the implied volatility calculated
from different options (across strikes, maturities, dates) are usually different.
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Violations of BMS assumptions

The BMS model says that IV = σ. In reality, the implied volatility calculated
from different options (across strikes, maturities, dates) are usually different.

These difference indicates that in reality the security price dynamics differ
from the BMS assumptions:

Jumps: BMS assume that the security price moves by a small amount
(diffusion) over a short time interval. In reality, sometimes the market can
jump by a large amount in an instant.

With jumps, returns are no longer normally distributed, but tend to
have fatter tails, and sometimes can be asymmetric (skewed).

Implied volatility at different strikes will be different.

Stochastic volatility: The volatility σ of a security is not constant, but varies
randomly over time, and can be correlated with the return move.

Implied volatilities will change over time.

Stochastic volatility also induces return non-normality.

Return-volatility correlation induces return distribution asymmetry.

Other sources of variations such as credit risk for individual stock and
emerging market currency, crash risk for aggregate market index...
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Implied volatility smiles and skews
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Plots of option implied volatilities across different strikes at the same
maturity often show a smile or skew pattern, reflecting deviations from the
return normality assumption.

A smile implies that the probability of reaching the tails of the distribution is
higher than that from a normal distribution. ⇒ Fat tails, or (formally)
leptokurtosis.

A negative skew implies that the probability of downward movements is
higher than that from a normal distribution. ⇒ Negative skewness in the
distribution.
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Stochastic volatility on stock indexes and currencies
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SPX: Implied Volatility Level
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At the-money option implied volatilities vary strongly over time, higher during
crises and recessions.
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Stochastic skewness on stock indexes and currencies

Implied volatility spread between 80% and 120% strikes
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Return skewness also varies over time.
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Second-generation option pricing models

Second-generation option pricing models strive to add new features to
capture the observed implied volatility behaviors

Jumps: BMS uses Brownian motion to capture continuous price
movements, second-generation models use a more general class of
processes called Lévy process to capture both continuous and
discontinuous movements.
Stochastic volatility: MBS assumes constant volatility for the Brownian
motion, second-generation models allow the intensity of the Lévy
processes to vary stochastically over time

Use the concept of time change to capture the mapping between
calendar clock and business (activity) clock

The doctoral class provides guidance on how to design models based on
observed features and how to price options under newly designed models.
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Summary

Understand the basic properties of normally distributed random variables.

Map a stochastic process to a random variable.

Understand the link between BMS and the binomial model.

Memorize the BMS formula (any version).

Understand forward pricing and link option pricing to forward pricing.

Can go back and forth with the put-call parity conditions, lower and upper
bounds, either in forward or in spot notation.

Understand the general implications of the implied volatility plots.
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