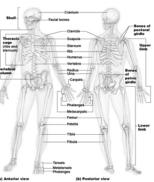
The Skeleton


- Consists of bones, cartilage, joints, and ligaments
- Composed of 206 named bones grouped into two divisions
 - Axial skeleton (80 bones)
 - Appendicular skeleton (126 bones)

Bone Markings

- Bone markings may be:
 - Elevations and Projections
 - Processes that provide attachment for tendons and ligaments
 - Processes that help form joints (articulations)
 - Depressions and openings for passage of nerves and blood vessels

The Axial Skeleton

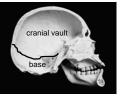
- Formed from 80 named bones
- Consists of skull, vertebral column, and bony thorax

The Skull

- Formed by cranial and facial bones
 - The cranium serves to: Enclose brain

 - Provide attachment sites for some head and neck muscles
 - Facial bones serve to:
 - Form framework of the face
 - Form ratifiework of the face
 Form cavities for the sense organs of sight, taste, and smell
 Provide openings for the passage of air and food

- Hold the teeth
- Anchor muscles of the face



- **Overview of Skull Geography**
- The skull contains approximately 85 named openings
 - Foramina, canals, and fissures
 - Provide openings for important structures
 - Spinal cord
 - Blood vessels serving the brain
 - 12 pairs of cranial nerves

Overview of Skull Geography

- Facial bones form anterior aspect
- Cranium is divided into cranial vault and the base
- Internally, prominent bony ridges divide skull into distinct fossae

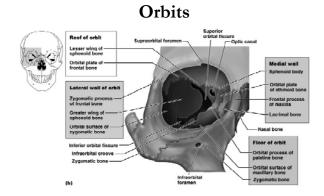
Overview of Skull Geography

- The skull contains smaller cavities
 - Middle and inner ear cavities in lateral aspect of cranial base
 - Nasal cavity lies in and posterior to the nose
 - Orbits house the eyeballs
 - Air-filled sinuses occur in several bones around the nasal cavity

Cranial Bones

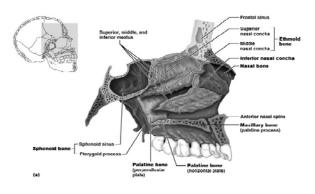
- Formed from eight large bones
 - Paired bones include
 - Temporal bones
 - Parietal bones
 - Unpaired bones include
 - Frontal bone
 - Occipital bone
 - Sphenoid bone
 - Ethmoid bone

Sutures

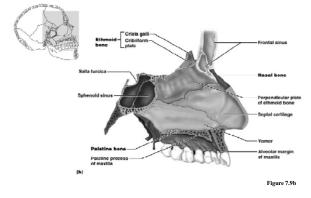

- Four sutures of the cranium
 - Coronal suture runs in the coronal plane
 Located where parietal bones meet the frontal bone
 - Squamous suture occurs where each parietal bone meets a temporal bone inferiorly
 - Sagittal suture occurs where right and left parietal bones meet superiorly
 - Lambdoid suture occurs where the parietal bones meet the occipital bone posteriorly

Facial Bones

- Unpaired bones
 - Mandible and vomer
- Paired bones
 - Maxillae, zygomatics, nasals, lacrimals, palatines, and inferior nasal conchae


Special Parts of the Skull


- Orbits
- Nasal cavity
- Paranasal sinuses
- Hyoid bone


4

Nasal Cavity

Nasal Septum

Paranasal Sinuses

- Air-filled sinuses are located within
 - Frontal bone
 - Ethmoid bone
 - Sphenoid bone
 - Maxillary bones
- Lined with mucous membrane
- Serve to lighten the skull

Paranasal Sinuses

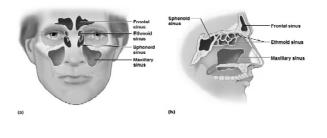


Figure 7.11a, b

The Hyoid Bone

- Lies inferior to the mandible
- The only bone with no direct articulation with any other bone
- Acts as a movable base for the tongue

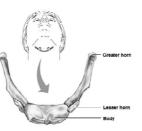
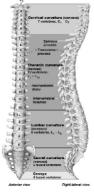
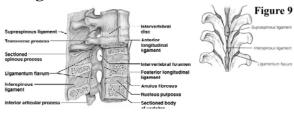



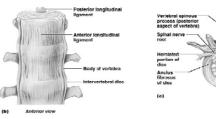
Figure 7.12

The Vertebral Column

- Formed from 26 bones in the adult
- Transmits weight of trunk to the lower
- limbsSurrounds and protects the spinal cord
- Surrounds and protects the spinal con
 With vertebral curves, acts as shock
- absorberServes as attachment sites for muscles
- of the neck and back
- Held in place by ligaments
 - Anterior and posterior longitudinal ligaments
 - Ligamentum flavum
 - Supraspinus and interspinous ligaments


Intervertebral Discs

- Cushion-like pads between vertebrae
- Act as shock absorbers
- Compose about 25% of height of vertebral column
- Composed of nucleus pulposus and annulus fibrosis


Intervertebral Discs

- Nucleus pulposus
 - The gelatinous inner sphere of intervertebral disc
 - Enables spine to absorb compressive stresses
- Annulus fibrosis
 - An outer collar of ligaments and fibrocartilage
 - Contains the nucleus pulposus
 - Functions to bind vertebrae together, resist tension on the spine, and absorb compressive forces

Ligaments and Intervertebral Discs

Ligaments and Intervertebral Discs

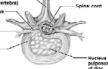
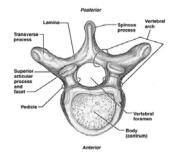


Figure 7.14b, c

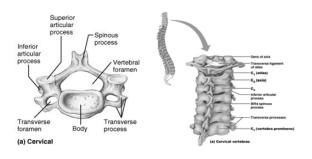
Regions and Normal Curvatures


- Vertebral column is about 70 cm (28 inches)
- Vertebral column is divided into five major regions
 - Cervical vertebrae 7 vertebrae of the neck region
 - Thoracic vertebrae 12 vertebrae of the thoracic region
 - Lumbar vertebrae 5 vertebrae of the lower back
 - Sacrum inferior to lumbar vertebrae articulates with coxal bones
 - Coccyx most inferior region of the vertebral column

Regions and Normal Curvatures

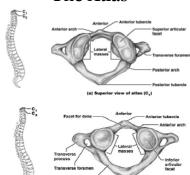
- Four distinct curvatures give vertebral column an S-shape
 - Cervical and lumbar curvatures– concave posteriorly
 - Thoracic and sacral curvatures convex posteriorly
- Curvatures increase the resilience of the spine

General Structure of Vertebrae


Regions Vertebral Characteristics

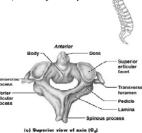
- Specific regions of the spine perform specific functions
- Types of movement that occur between vertebrae
 - Flexion and extension
 - Lateral flexion
 - Rotation in the long axis

Cervical Vertebrae


- Seven cervical vertebrae (C₁ C₇) smallest and lightest vertebrae
- $C_3 C_7$ are typical cervical vertebrae
 - Body is wider laterally
 - Spinous processes are short and bifid (except C₇)
 - Vertebral foramen are large and triangular
 - Transverse processes contain transverse foramina
 - Superior articular facets face superoposteriorly

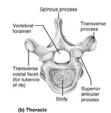
Cervical Vertebrae

The Atlas


- C_1 is termed the atlas
- Lacks a body and spinous process
- Supports the skull
 - Superior articular facets receive the occipital condyles
- Allows flexion and extension of neck
 - Nodding the head "yes"

The Atlas

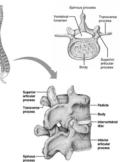
The Axis


- Has a body and spinous process
- Dens (odontoid process) projects superiorly
 - Formed from fusion of the body of the atlas with the axis
 - Acts as a pivot for rotation of the atlas and skull
 - Participates in rotating the head from side to side
 - Shaking the head to indicate "no"

5-C;

Thoracic Vertebrae $(T_1 - T_{12})$

- All articulate with ribs
- Have heart-shaped bodies from the superior view
- Each side of the body bears demifacts for articulation with ribs
 - T_1 has a full facet for the first rib
 - $T_{10} T_{12}$ only have a single facet



Thoracic Vertebrae

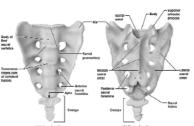
- Spinous processes are long and point inferiorly
- Vertebral foramen are circular
- Transverse processes articulate with tubercles of ribs
- Superior articular facets point posteriorly
- Inferior articular processes point anteriorly
 - Allows rotation and prevents flexion and extension

Lumbar Vertebrae $(L_1 - L_5)$

- Bodies are thick and robust
- Transverse processes are thin and tapered
- Spinous processes are thick, blunt, and point posteriorly
- Vertebral foramina are triangular
- Superior and inferior articular facets directly medially
- Allows flexion and extension – rotation prevented

Sacrum $(S_1 - S_5)$

- Shapes the posterior wall of pelvis
- Formed from 5 fused vertebrae
- Superior surface articulates with L₅
- Inferiorly articulates with coccyx
- Sacral promontory where the first sacral vertebrae bulges into pelvic cavity
- Center of gravity is 1 cm posterior to sacral promontory

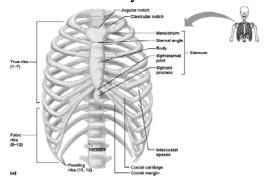

Sacrum

Sacral foramina

- Ventral foramina

 passage for ventral rami of sacral spinal nerves
- Dorsal foramina

 passage for
 dorsal rami of
 sacral spinal
 nerves


Coccyx

- Is the "tailbone"
- Formed from 3-5 fused vertebrae
- Offers only slight support to pelvic organs

Bony Thorax

- Forms the framework of the chest
- Components of the bony thorax
 - Thoracic vertebrae posteriorly
 - \blacksquare Ribs laterally
 - Sternum and costal cartilage anteriorly
- Protects thoracic organs
- Supports shoulder girdle and upper limbs
- Provides attachment sites for muscles

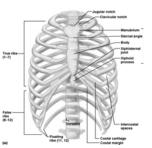
The Bony Thorax

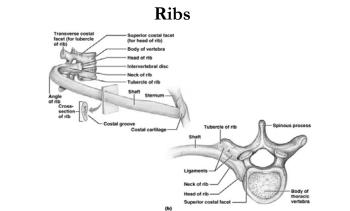
The Bony Thorax



Figure 7.19b

Sternum

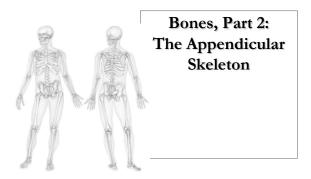

- Formed from 3 sections
 - Manubrium superior section
 - Articulates with medial end of clavicles
 - Body bulk of sternum
 - Sides are notched at articulations for costal cartilage of ribs 2-7
 - Xiphoid process inferior end of sternum
 - Ossifies around age 40


Sternum

- Anatomical landmarks
 - Jugular notch central indentation at superior border of the manubrium
 - Sternal angle a horizontal ridge where the manubrium joins the body

Ribs

- All ribs attach to vertebral column posteriorly
- True ribs superior seven pairs of ribs
 - True because? They attach to sternum by their own costal cartilage
- False ribs inferior five pairs of ribs
 - False because? They attach via inferior true rib costal cartilage, or not at all.... As in
- Floating ribs... no attachment anteriorly



Disorders of the Axial Skeleton

- Abnormal spinal curvatures
 - Scoliosis an abnormal lateral curvature
 - Kyphosis an exaggerated thoracic curvature
 - Lordosis an accentuated lumbar curvature – "swayback"
- Stenosis of the lumbar spine – a narrowing of the vertebral canal

The Appendicular Skeleton

- Pectoral girdle attaches the upper limbs to the trunk (axial skeleton)
- Pelvic girdle attaches the lower limbs to the trunk (axial skeleton)
- Upper and lower limbs share the same structural plan, however function is different . . . sometimes

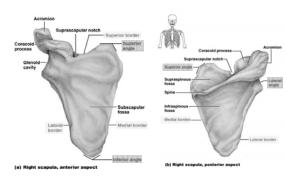
The Pectoral Girdle

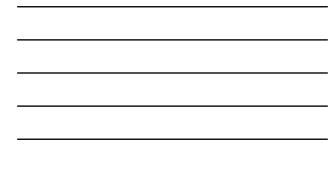
- Consists of the clavicle and the scapula
- Pectoral girdles do not quite encircle the body completely
 - The medial ends of the clavicles articulate with the manubrium and first rib
 - Laterally the ends of the clavicles join the scapulae
 - Scapulae do not join each other or the axial skeleton


The Pectoral Girdle

- Provides attachment for many muscles that move the upper limb
 Superficial musculature
- Girdle is very light and upper limbs are mobile
 - Only clavicle articulates with the axial skeleton
 - Socket of the shoulder joint (glenoid cavity) is shallow
 Good for flexibility – bad for stability

Clavicles


- Structurally:
 - Extend horizontally across the superior thorax
 - Sternal end articulates with the manubrium
 - Acromial end articulates with scapula
- Functionally:
 - Provide attachment for muscles
 - Hold the scapulae and arms laterally
 - Transmit compression forces from the upper limbs to the axial skeleton



Scapulae

- Lie on the dorsal surface of the rib cage
- Located between ribs 2-7
- Have three borders
 - Superior, medial (vertebral), and lateral (axillary)
- Have three angles
 - Lateral, superior, and inferior
- Has pronounced spine which divides the posterior surface into a
 - supraspinous fossa & an infraspinous fossa

Structures of the Scapula

Structures of the Scapula

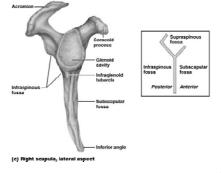
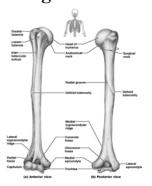


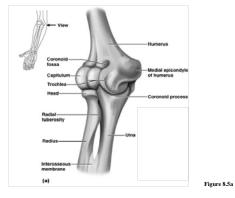
Figure 8.2c

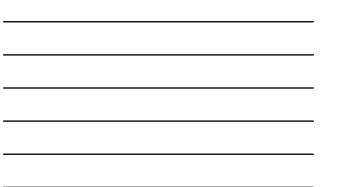

The Upper Limb

- 30 bones form each upper limb
- Grouped into bones of the:
 - <u>Arm</u>
 - Forearm
 - <u>Hand</u>

Arm

- Region of the upper limb between the shoulder and elbow
- Humerus the only bone of the arm
 - Longest and strongest bone of the upper limb
 - Articulates with the scapula at the shoulder
 - Articulates with the radius and ulna at the elbow


Structures of the Humerus of the Right Arm



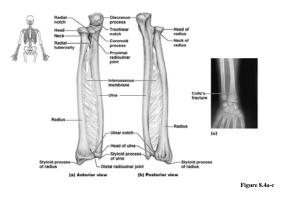
Forearm

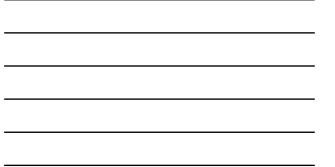
- Formed from the radius and ulna
- Proximal ends articulate with the humerus
- Distal ends articulate with carpals
- Radius and ulna articulate with each other
 - At the proximal and distal radioulnar joints
- Interconnected by a ligament the interosseous membrane
- In anatomical position, the radius is lateral and the ulna is medial

Details of Arm and Forearm

Ulna

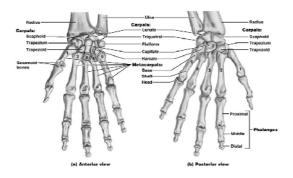
- Main bone responsible for forming the elbow joint with the humerus
- Hinge joint allows forearm to bend on arm
- Distal end is separated from carpals by fibrocartilage
- Plays little to no role in hand movement




Radius

- Superior surface of the head of the radius articulates with the capitulum
- Medially the head of the radius articulates with the radial notch of the ulna
- Contributes heavily to the wrist joint
 - Distal radius articulates with carpal bones
 - When radius moves, the hand moves with it

Radius and Ulna


Hand

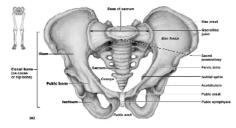
- Includes the following bones
 - Carpus wrist
 - Metacarpals palm
 - Phalanges fingers

Carpus

- Forms the true wrist the proximal region of the hand
- Gliding movements occur between carpals
- Composed of eight marble-sized bones
 - Carpal bones arranged in two irregular rows
 - Proximal row from lateral to medial
 Scaphoid, lunate, triquetral (triquetrium), and pisiform
 - Distal row from lateral to medial
 Trapezium, trapezoid, capitate, and hamate
 - Acronym: SLTPTTCH (Some Lovers Try Positions That They Can't Handle)

Bones of the Hand

Metacarpals & Phalanges


- Five metacarpals radiate distally from the wrist
- Metacarpals form the palm
 - Numbered 1–5, beginning with the pollex (thumb)
 - Articulate proximally with the distal row of carpals
 - Articulate distally with the proximal phalanges
- Phalanges
 - Numbered 1–5, beginning with the pollex (thumb)
 Except for the thumb, each finger has three phalanges
 - Proximal, middle, and distal

Pelvic Girdle

- Attaches lower limbs to the spine
- Supports visceral organs
- Attaches to the axial skeleton by strong ligaments
- Acetabulum is a deep cup that holds the head of the femur
 - Lower limbs have less freedom of movement
 Are more stable than the arm
- Consists of paired hip bones (coxal bones)
 - Hip bones unite anteriorly with each other
 - Articulates posteriorly with the sacrum

Bony Pelvis

- A deep, basin-like structure
- Formed by coxal bones, sacrum, and coccyx

Coxal Bones

- Consist of three separate bones in childhood
 - Ilium, ischium, and pubis
- Bones fuse retain separate names to regions of the coxal bones
- Acetabulum deep hemispherical socket on lateral pelvic surface

Lateral and Medial Views of the Hip Bone

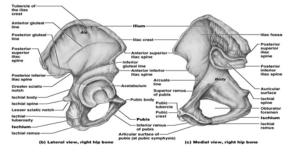
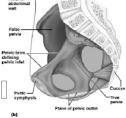
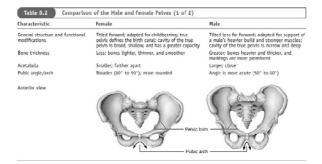



Figure 8.7b, c

True and False Pelves


- Bony pelvis is divided into two regions
 - False (greater) pelvis bounded by alae of the iliac bones
 - True (lesser) pelvis inferior to pelvic brim
 - Forms a bowl containing the pelvic organs

Female & Male Pelvis

- Major differences between the male and female pelvis
 - Female pelvis is adapted for childbearing
 - Pelvis is lighter, wider, and shallower than in the male
 - Provides more room in the true pelvis
 - Male pelvis is adapted for heavy load handling
 - Acetabulum are larger and wider
 - Coxae bones are thicker
 - Shape
 - Female pelvis is tilted forward to a greater degree than the male pelvis
 - Female pelvis has a round pelvic inlet, while the male pelvic inlet is more heartshaped

Female and Male Pelves

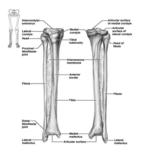
Spectral construction Spectral construction Christer Line Comparison or the Male and Female Pelvers (2 of 2) Christer Line Female Christer Line Female Christer Line Medre: storatic scarce curvature is accentuated Rise movable: staleliter Correct Construction Medre: storatic scarce curvature is accentuated Rise movable: staleliter Line Line Line Line Medre: storatic scarce Very restrict (brin) Pelvic rantel Rise movable: staleliter Medre: storatic rantel rantel Rise: movable: staleliter Pelvic rantel (brin) Pelvic rantel Rise: movable: staleliter Medre: morate frem sile for cite Rise: movable: staleliter and Rise: movable: staleliter Pelvic rantel (brin) Pelvic rantel Rise: movable: staleliter Medre: morate frem sile for cite Rise: movable: staleliter and Rise: movable: staleliter and Rise: movable: staleliter Pelvic rantel (brin) Pelvic rantel Rise: movable: staleliter Medre: morate frem sile for cite Rise: staleliter Pervic rantel (brin) Pelvic rantel Rise: staleliter Medre: morate frem sile for cite Rise: staleliter Pervic rantel (brin) Pelvic rantel Rise: staleliter Medre: morate frem sile for cite Rise: staleliter Pervic rantel (brin) Pelvic rantel Rise: staleliter Medre: morate for cite Rise: staleliter Pervic rantel (brin) Pervic rante Medre: staleliter

The Lower Limb

- Carries the entire weight of the erect body
- Bones of lower limb are thicker and stronger than those of upper limb
- Divided into three segments
 - Thigh femur
 - Leg tibia & fibula
 - Foot tarsals, metatarsals, phalanges

Thigh

- The region of the lower limb between the hip and the knee
- Femur the single bone of the thigh
 - Longest and strongest bone of the body
 - Ball-shaped head articulates with the acetabulum



Patella

- Triangular sesamoid bone
- Imbedded in the tendon that secures the quadriceps muscles
- Protects the knee anteriorly
- Improves leverage of the thigh muscles across the knee

Leg

- Refers to the region of the lower limb between the knee and the ankle
- Composed of the tibia and fibula
 - Tibia more massive medial bone of the leg
 Receives weight of the body from the femur
 - Fibula stick-like lateral bone of the leg
- Stabilizes the leg
 Interosseous membrane connects the tibia and fibula

The Foot

- Foot is composed of:
 - Tarsus, metatarsus, and the phalanges
- Important functions
 - Supports body weight
 - Acts as a lever to propel body forward when walking
 - Segmentation makes foot pliable and adapted to uneven ground

Tarsus

- Makes up the posterior half of the foot
- Contains seven bones called tarsals
 - Talus, Calcaneous, Navicular, Cuboid, First, Second and Third Cuneiform
 - Acronym: TCNCCCC
 The Crazy Nurse Can't Count Children Correctly
- Body weight is primarily borne by the talus and calcaneus

Metatarsus & Phalanges

- Consists of five small long bones called metatarsals
- Numbered 1–5 beginning with the hallux (great toe)
- First metatarsal supports body weight
- 14 phalanges of the toes
 - Smaller and less nimble than those of the fingers
 - Structure and arrangement are similar to phalanges of fingers
 - Except for the great toe, each toe has three phalanges
 - Proximal, middle, and distal

Arches of the Foot

- Foot has three important arches
 - Medial and lateral longitudinal arch
 - Transverse arch
- Arches are maintained by:
 Interlocking shapes of tarsals
 - Ligaments and tendons

Disorders of the Appendicular Skeleton

- Bone fractures
- Bone spurs
- Hip dysplasia head of the femur slips out of acetabulum
- Clubfoot soles of the feet turn medially