Forbes
 AMERICA'S BEST execurive RECRUITING FIRMS 2020

POWERED BY STATISTA

The Burtch Works Study Salarjes of Data Scientists \&

 Dredicetive Analytics Professionals agust 2020Linda Burtch Managing Director

Burtch Works
Executive Recruiting

Table of

Contents
Defining Data Science \& Predictive Analytics Professionals 4
Foreword: Disrupting the Way We Work 5
2020 Salary \& Demographic Trends 5
C OVID-19 Impacts to the Hiring Market: Our Latest Research 7
Looking Forward: Hiring Market Trends and Other Insights 13
About Burtch Works 15
Section 2: Compensation Changes 16
The Sample 17
How Changes in Compensation Were Measured 17
Changes in Base Salaries 18
Data Scientists vs. Others in Predictive Analytics 23
Section 3: Demographic Profile 25
Education 26
Residency Status 30
Region 35
Industry 38
Gender 42
Years of Experience 45
Section 4: Appendix A/ Study Objective \& Design 46
Study Objective 47
Why The Burtch Works Studies Are Unique 47
The Sample 47
How Changes in Compensation Were Measured 48
Identifying Data Science \& Predictive Analytic s Professionals 48
Completeness \& Age of Data 50
Data Science \& Prec ditive Analytics Segmentation 51
Section 5: Appendix B/Glossary 53
Glossary of Terms 54

Burtch Works Exec utive Rec ruiting
1560 Sherman Avenue, Suite 1005, Evanston, IL 60201
847-440-8555 | www.burtchworks.com | info@burtchworks.com
© 2020, Burtch Works ШC. Unauthorized reproduction is stric tly prohibited. No part of this publication may be reproduced or distributed in any form without the prior written permission of the publisher. For requests for quotation, write to the email address listed above. Opinions reflect judgment at time of public ation and are subject to change.

Defining Data Science \& Predictive Analytics Professionals

We have historically defined predictive analytics professionals (PAPs) as those who can "apply sophistic ated quantitative skills to data describing transactions, interactions, or other behaviors to derive insights and prescribe actions".

PAPs are distinguished from business intelligence professionals or traditional fina nc ial analysts by the enomous quantity of data with which they work, well beyond what can be managed in Excel. This definition also encompasses data scientists, who are examined separately from PAPs in this study bec ause of their distinguishing a bility to work with unstructured data, which results in different compensation.

Data scientists, as we define them, are a subset of PAPs who have the computer science skills necessary to a cquire and clean or transform unstructured or continuously streaming data, regard less of its format, size, or source. Unstructured data may include: video strea ms, audio data, social media web scrapes, sensordata, raw log files, or long blocks of written language.

This report focuses on both PAPs and the Data Scientist subset, showing compensation and demographic infomation forboth groupsseparately and in comparison. Formore information on how we identified predictive analytics professionals and data scientists, see Appendix A on page 48.

Foreword: Disrupting the Way We Work

2020 has been a year of massive distuption all across the US workforce. A global pandemic, a mass soc ial justic e movement, a nd a presidentia lelection year, a mong otherforces, are all having an inc redible impact on our country, our lives, and the way we work.

Although we're releasing this report in August, our data collection period ended in April, which meant it was unlikely that these impacts would be apparent in ourstudy data quite yet. However, for the past few months, in addition to our data a nalysis for this annual report, we've been hard at work gathering data that is more immediate to the curent work environment as it continues to shift.

Since these two collections of data are separate, in the Trends from This Year's Data section we wanted to cover some of the trends we observed in this year's Burtch Works Study data, and in the COVID-19 Impac ts to the Hiring Market section we'll be sharing additional data and insights we've been gathering specifically on COVID-19's impact to the data science \& analytics hiring market, even though they are not technically reflected in the rest of this report.

2020 Salary \& Demographic Trends

Compensation and demographic data of 1,742 PAPs and 503 data scientists are shared in this report, an update to our J une 2019 release of The Burtch Works Study: Salaries of Data Scientists and Predictive Analytics Professionals. The data shared here were collected during the months following the collection periods of last years' studies and ending April 2020.

Our salary studies report base salary variations of PAPs and data scientists, both individual contributors and managers. We also report how base salaries have changed since last year's study. Finally, the report explains how salaries of PAPs and data scientists vary based on several characteristic sincluding job level, industry, region, education, residency status, and gender.

For detailed analysis on this year's compensation trends, see Section 2 starting on page 16. For demographic trends and insights, see Section 3 starting on page 25.

1. Salaries Remained Mostly Steady, With Some Modest Increases

Across all job levels for both data scientists and predictive analytics professionals (PAPs), salary medians remained within a few percentage points of what we reported in 2019. While the median for data scientists at individual contributor level 3 decreased by 1%, all other levels either showed no change or increased from 1-3\%. For additional details about how salaries vary from last year, see Section 2. For complete information about how salaries vary by demographic characteristics, see Section 3.

Predictive Analytics Professionals

The median base salary of individual c ontributors at level 1 is $\$ 80,000$ a nd increases, based on job level, up to $\$ 135,000$ for those at level 3. PAPs in management roles eam higher base salariesthan individual contributors (see Figure 3 on page 21). Managers at level 1 eam a median base salary of $\$ 132,000$, which increases to $\$ 250,000$ for managers at level 3 (see Figure 5 on page 22).

When compared to 2019 data, salaries remained fairly steady, either showing no change or increasing slightly. The largest change wasfor individual contributors at level 2 where there wasa
3% inc rease from 2019 (see Figure 3 on page 21 and Figure 5 on page 22).

Data Scientists

Fordata scientists, median base sala ries for individual contributors range from $\$ 95,500$ at level 1 to $\$ 165,000$ at level 3 (see Figure 4 on page 21). For managers, median base salaries ranged from $\$ 150,750$ at level 1 to $\$ 250,000$ at level 3 (see Figure 6 on page 22).

In comparison to 2019 data, median base salaries for 2020 have either remained steady or risen slightly at most levels (see Figure 2 on page 20). The largest change was for managers at levels 1 and 2 where median base salaries increased by 3\% compared to 2019 (see Figure 2 on page 20).

2. Data Scientists Continue to Eam Higher Salaries at Most Levels

In keeping with previous years, data scientists continue to eam higher salaries than other predictive analytics professionals at comparable job levels, and the differences are the most evident for individual contributors where data scientists eam from $19-30 \%$ more than PAPs (see Figure 7 on page 24).

This can be due to several factors including a higher prevalence of PhDs among data scientists, highly specialized skillsets required to analyze unstructured and/or streaming data, and smaller talent pool that can all drive up salaries. This salary premium decreasesformanagers and median salaries are equal for both data scientists and PAPs at MG-3, which is likely due to the fact that in leadership positions, management skills tend to be more critical than educational background and heavy technic al expertise.

3. Early Career Professionals Continue to Fock to Data Science \& Analytics

This year, the median years of experience for both sampleswas 6.0 years. A large percentage of professionals in both predictive analytics and data science have 10 or feweryears of experience: 64% for PAPs and 72% fordata scientists (see Figure 30 on page 45). The inc reased visibility of both careers in recent years has led to a surge of interest from both students entering the market and career changers a like, which has caused both samples to skew further towards the early career levels.

4. Percentage of Women at Early Career Level is Rising

When exa mining the gendercomposition of different job levels in our predic tive analytic sample over time, we're able to see a noticeable increase in the percentage of women individual contributors at level 1 (IC-1). In 2015, our IC-1 sample (professionals with 0-3 years' experience) was 28%, whic h has risen to 36% in 2020.

5. Business Degrees Losing Favor Amongst Both Groups

Looking at the degree specialty for the highest degree eamed in both samples, there was a noticeable decline in the prevalence of Business degrees (which includes MBAs and Business Analytics degrees) for both groups. For PAPs, we noticed an increase in Math/Stats degrees, while in data science there was an increase in Engineering degrees. This may be due to candidates opting to strengthen their quantitative credentials for greater career opportunities over the more general MBA track.

COVID-19 Impacts to the Hiring Market: Our Latest Research

Back in March as lockdowns began to spread nationwide, we began several research initiatives to track the impact of the COVID-19 pandemic on the data science and analytics community, and to bring current, helpful information to the candidates, clients, students, and professors in our extended network.

What follows is a summary of some of the data we were able to collect and share, but additional information about all of these projects are tagged on ourblog:
https://www.burtc hworks.com/category/covid-19

1. Measuring the Impact of COVID-19 to the Analytics Community: March-May 2020

When it became apparent that the effects of COVID-19 on a nalytics teams were likely to be substantial, we collaborated with the Intemational Institute for Analytics (IIA) to field a joint survey over the course of several months to determine how many teams were being impacted, as well as the most common effects to workload, staffing \& hiring, and use of a nalytics to address the crisis.

Staffing \& Hiring Impacts

By the end of May, the number of companies with staffing impacts had nearly tripled over the prior two months to 53.4%. It is also perhaps not surprising that large companies are thus far weathering the storm a bit better than small companies.

When we asked what types of staffing actions have been taken in cases where there has been action, by farthe most prevalent action is some form of salary cuts, with nearly 80% of impacted analytics and data science organizations experiencing salary cuts. Furloughs (16\%) and layoffs (32\%) are less common, which is encouraging since those actions are more extreme.

Impact to Analytics Workload \& Use of Analytics to Address the Crisis

Another high point is that while nearly 75% of organizations have been pulled into crisis-oriented analytics, there remain very few in a pure panic mode where everything is focused on the crisis (1.1\%) a nd that number is a pproac hing zero.

While 18.2% of organizations reported that decisions are being forced so quickly that there is no opportunity to use proper analytics to address them, the fact that 45% of organizations are keeping analytics front and center could be part of the reason why layoffs and furloughs are still the exception for analytics teams. Being critical to navigating the crisis may be helping to insulate a nalytics teams. We're seeing many data scientists and analytics professionals being pulled into projects related to COVID-19 since their skills are well suited to tracking and predicting trends related to the pandemic's increasing impact.

Figure A Impacts to a nalytics projects and workload in response to the COVID-19 crisis

Figure B Use of analytics related to business decisions made in reaction to the COVID-19 c risis

2. Measuring Ongoing Hiring Impacts, WFH Strategies, and Employee Sentiment J uly 2020

As the results from our initial survey seemed to indic ate that the worst impacts may be behind us, we decided to launch ourAnalytics Impact Survey 2.0 with new questions to adjust to shifts in the market, and to address the topics we continued to be asked about the most: hiring/layoffs, job/business sec unity, a nd work from home timelines.

Status of Hiring/Staffing Impacts - Figure C

When asked to give an update on what best desc ribes their tea m's current status regarding their hiring, we found that 7.6% of data scientists and analytics professionals reported their team actually increased hiring due to the COVID-19 crisis. While 42.1% reported no impact in terms of salary cuts, hiring freezes, layoffs, or furloughs, 35.7% of respondents said their team had been impacted by at least one of these options, and 14.5% said there were still rumors or plans of additional cuts on the way.

Figure C COVID-19's current impact on data science/a nalytic steam hiring/staffing activity

Work from Home Stategies - Figure D

When we'd surveyed ourdatabase in May, we discovered that nearly everyone at that point was working from home. By July, as more data science \& a nalyticsteams were looking to address the question of if or when to reopen the office, and how to do so, we felt this would be an interesting topic to ask about in our new survey.

We found that 15.4% of respondents were already working from home before the crisis, with an additional 3.7% that have now been moved to permanently working from home. While a small percentage (3.7\%) reported already being back in the office, 19.7% said they were planning to retum at some point before the end of the year. Just over a quarter (25.4%) reported that they
were planning to retum sometime in 2021, while the largest portion (28.2%) said that plans were still undecided.

Figure D Current retum to office/work from home plans related to COVID-19

Employee Sentiment Personal vs. Business Stability - Figures E \& F

Our last question aimed to determine whether employees felt generally positive, negative, or neutral, both about their personal job stability and their company's business stability. The results lined up relatively closely - employees generally felt the same sentiment about both aspects rather than a mix. We found 67.7% of respondents feeling positive about their personal situation, and 64.4% feeling positive about their company's business situation. In terms of negative sentiment, 17.6% of respondents reported feeling negative about theirpersonal stability and 18.2% felt negatively about their company's sta bility.

Figure F Current sentiment about company's business stability

3. COVID-19 Leaves Students \& Grads with Cancelled Intemships, Rescinded J ob Offers, and More

Among the many cascading effects of the ongoing COVID-19 pandemic has been how data science \& analytics students and graduates are seeing their intemships and job search plans derailed.

While some have seen intemships outright cancelled, the majority of companies moved forward with their intemship programs online or remote, which is not without its challenges.
We spoke to students and professors from about 30 different data science \& a nalytic sprograms across the US, and they reported many challenges impacting student intemships this year including:

1. Some companies are moving forward with intemships but shortening the length of their program.
2. Logistical issues providing students with technology to partic ipate (such as laptops).
3. Programsmay not be able to accommodate intemational students who have already left the country.
4. Uncertainty about whether intemships will be able to translate to full-time opportunities.

We also found that the vast majority of programs - 90% - had at least some of their job seeking students impacted in some way by COVID-19. The most common impact was disruption of interviews, which is not surprising consid ering how many compa nies ha ve been freezing theirhiring or even going through layoffs. Unfortunately, 37% of schools we talked to knew of students who had secured job offers which ended up being rescinded.

At this stage, there are many questions a mong students, educators, and recent graduates about what lasting effects this crisis might have on their career prospects moving forward. Schools are grappling with the decision of whether to reopen their campuses, visa policy affecting intemational students (of which there are many in analytics and data science) has been in flux, and some graduates are having to navigate their first job in a remote-only environment with less or no access to the collaboration and networking found in the in-person office environment.

Looking Forward: Hiring Market Trends and Other Insights

With so much disruption in 2020 already, we wanted to also look ahead to next yearand beyond, and share some insights about how some of today's hiring market trends may impact our work lives for years to come.

1. Potential Impacts to $\mathbf{2 0 2 1}$ Overall Salary Data:

Widespread Salary Cuts May Decrease Median Salaries

Due to the prevalence of salary cutsimpacting data science \& a nalyticsteamsthis year, we may see downward pressure on salaries impacting next year's data. Bonuses are also likely to be negatively impacted.

Layoffs and Furloughs May Impact J ob Offers \& Candidate Negotiation Power

At the moment, we are not seeing any evidence of job offers being lowerthan expected as a result of the current crisis. From what we've seen, larger companies at least are currently staying within their presc ribed salary bands. However, as this crisis continues it is possible that will change, which could have an effect on 2021 salaries. With the prevalence of layoffs and furloughs disfupting the career plans of many candidates, this may also have an impact on their ability to negotiate higher salaries, which has the potential to flatten salary inc reases at least temporarily.

Full Impact of Industry Disruption is Likely Yet to Come
Many industries and companies are being hugely disupted as a result of COVID-19, and the market will likely continue to shift as some organizations that were more "downstream" from the immediate impact of the crisis are now starting to lay off their staff, including some consulting firms, ad agencies, industrial, software, financial services, etc.

Childcare \& School Closings Inc reasing Requests for Modified Schedules

With disruption to childcare and school closings, we've been hearing from some managers that they're seeing an increase in requestsforreduced ormodified schedules, which could in tum have an impact on salaries.

2. Interview Proc ess Has Bec ome Faster \& More Fexible

For those companies that are hiring, we are seeing a much faster interview process because it's easier to schedule. With vacations and travel mostly on hold and many candidates still working from home, there is more flexibility, espec ially since back-to-back on-site interview schedulescan now potentially be more spread out to accommodate different schedules.

3. Start Times Speed Up Due to Remote Work

Because of the current prevalence of remote work, this has quickened start time forcandidates that would have typically taken 5 weeks to relocate. Employers have been shipping computers to get talent on board faster to tackle data projects immediately, and in many cases relocation has been postponed due to safety concems.
4. Technic al Assessments Prioritized to Evaluate Technical Skills Sooner in Hiring Process

Given that the interview process has largely shifted to be entirely virtual, we are seeing more of an emphasis to evaluate a candidate's technic al skills earlier in the process, often even before a scheduled interview with a hiring manager. This could include technical screenings along with case study presentations.

5. Impact to Industry Demographics

While some industries and companies are find ing themselves in an advantageous position if they have products or servicesthat have increased in demand as a result of the COVID-19 crisis, some have found themselves struggling to adapt their business models with travel restrictions, lockdowns, and rapid shifts in demand. Industries such as retail, travel, or hospitality may lose jobs, or areas like tech may increase, so we'll be keeping a close eye on industry demographic data to see whether we can identify any such changes in our 2021 report.

6. Location Shifts: Candidates Leaving the West Coast, Advantage to Suburban Offices?

With the increase in startups going under and some companies announcing permanent WFH strategies, it is likely that the movement of candidates out of the West Coast will accelerate. This is partic ularly affecting areaslike the Bay Area and Seattle, whic h wasalready underway in recent years asa result of the high cost of living and lack of affordable housing. This could impact sala ries if professionals move to lowercost of living areas and asa result receive lowersalaries. It is also yet to be seen whether lockdown restrictions and avoidance of public transit coupled with a more favorable remote work environment could favor suburban offic es.

7. With More Talent Open to Change, It's an Advantageous Time to Hire

Forsome teams, the crisis hashad a positive impact on theirhiring. Talent that potential employers would not otherwise have access to may be available if they find themselves laid off, furloughed, or otherwise open to make a change because of industry uncertainty. We're already seeing an increase in private equity groups, in the interest of accurately timing business decisions, who have been picking up additional analytics talent throughout the crisis.

8. With Increased Remote Work, Transition to the Cloud is Speeding Up

Due to the increase in remote work, more companies are speeding up theirtransition to the cloud for their data needs. As a result, experience with cloud computing will be more critical for candidatesto stay marketable.

9. Ongoing Competition for Data Science $\&$ Analytics Talent

Despite recent job market disnuption, we're still seeing fierce competition for top tier talent, with many in-demand candidates rec eiving multiple offers quic kly.

About Burtch Works

Burtch Works Executive Recruiting is the leading resource forquantitative talent, job opportunities, and information about hiring and compensation trends in this industry. Ourteam has decades of experience in theirquantitative spec ialties, which include predictive a nalytics, data science, data engineering, quantitative business analytics, web analytics, credit/risk analytics, marketing research, and many more. Each recruiter is well-versed in the subtle nuances of their area of expertise, allowing them to closely follow the talent movement and hiring trends unique to each area, and find individua Is perfectly suited to each role.

As data-driven practices have become a necessary strategy to remain competitive, the quantitative fields continue to experience incredible growth. Burtch Works has built a diverse network of tens of thousands of professionals to address the growing number of quantitative positions nationwide, and this network is the foundation of a business built on long-standing relationshipswith both candidatesand clients. Linda Burtch, Burtch Works' Founderand Managing Direc tor, emphasizes that the most rewarding aspect of her career is creating the perfect match, and she has established a dedicated team of recruiters who share this vision for Burtch Works.

Over her 35+ years of recruiting in quantitative disciplines, Linda Burtch has developed an especially comprehensive understanding of the a nalytics fields. She often writes on topics of interest to the quantita tive community, and has maintained a blog on hiring trends for over 10 years, keeping her finger on the pulse of current trends. She has been interviewed for her insights on the data science and a nalyticstalent market by The New York Times, The Wall Street J oumal, CNBC, Mashable, Forbes, The Chicago Tribune, The Economist, Bloomberg, Analytics Magazine, InformationWeek, Hunt Scanlon, and many more. This year Burtch Works is proud to once again have been recognized by Forbes as one of America's Best Recruiting Firms for the third year running.

This year, Burtch Works expanded its research and involvement in the data science and analytics community in response to the COVID-19 pandemic. The joint surveys Burtch Works produces in partnership with the Intemational Institute forAnalytics (IIA) have been an invaluable resource for a nalytics teams na vigating the still evolving "new nomal" of 2020. In addition, Burtch Works has published other studies and research on current hiring trends, the job market, and how teams are adapting to shifts in the quantitative landscape.

By ma intaining such strong relationships with candidates and clients, Burtch Works has the unique opportunity to examine hiring and compensation trends over time, and publishes several highlyanticipated studies each year that investigate demographic and compensation data for predictive analytics, marketing research, and data science professionals. The Burtch Works Studies provide an exceptional vantage point on compensation for these professionals across the country, and contain critic al information both for individuals mapping their career strategy, and for hining managers hoping to recruit and retain outstanding personnel to their teams.

SECTION 2
 Data Science \& Predictive Analytics Professionals: Compensation Changes

The Sample

This sa mple contains 1,742 predictive analytics professionals (PAPs) and 503 data scientists of the nearly 40,000 quantitative professionals with whom Burtch Works ma inta ins contact. Burtch Works collected the data for this study during interviews conducted over the months immediately following the period of interviews for the 2019 study, with data collection ending in April 2020. Professionals were included in the sample only if (1) they satisfied Burtch Works' criteria for PAPs and data scientists, and (2) Burtch Works obtained complete information about that individual's compensation, demographic, and job characteristics.

For more details on how Burtch Works distinguishes between PAPs and the data scientist subset, see Identifying Data Science \& Predictive Analytics Professionals on page 48.

How Changes in Compensation Were Measured

While some of the 1,742 PAPs and 503 data scientists in this sample were also in the samples for our previous studies (published annually since 2013), others were not. Therefore, changes in compensation were not measured by differencing current compensation and compensation reported for the previous study and then taking medians (and other percentiles) of the differences. Instead, changes were measured by comparing medians (and other percentiles) of current compensation to those reported in last year'sstudy.

Changes in Base Salaries

Predic tive Analytics Professionals

- For individual contributors at level 1, the median base salary remained steady compared to 2019 while those at levels 2 and 3 inc reased slightly (see Figure 1 on page 19).
- Median sala ries for managers held fairly steady this year, with the largest inc rease at level 1(2\%) (see Figure 1 on page 19).

Data Scientists

- Median base salaries for data scientists held steady or increased slightly (by 1-3\%) across most levels (see Figure 2 on page 20). good The greatest increase in median base salary was for managers at levels 1 and 2 (3\%). good Median salaries for individual contributors at level 3 decrea sed slightly (-1\%).
- The increase in median base salaries for managers at levels 1 and 2 (3\% increase at both levels) may be influenced by the need for more professional experience in a disc ipline that is still relatively young.
- Median base salaries for individual contributors at level 1 has remained fairly steady over the last few yearsasthe supply of incoming graduates is not asscarce as it once was.

Figure 3 Change in Base Salaries of Predictive Analytics Ind ividual Contributors by J ob Level

Job Level	Year	$\mathbf{2 5 \%}$	Median	Mean	$\mathbf{7 5 \%}$	\mathbf{N}
Individual Contributor	2020	$\$ 70,000$	$\$ 80,000$	$\$ 79,210$	$\$ 85,000$	429
	2019	$\$ 70,000$	$\$ 80,000$	$\$ 81,607$	$\$ 90,000$	308
	C hange	0%	0%	-3%	-6%	
Individual Contributor	2020	$\$ 90,000$	$\$ 100,000$	$\$ 103,913$	$\$ 115,000$	383
	2019	$\$ 88,400$	$\$ 97,000$	$\$ 100,532$	$\$ 114,000$	345
	Change	$+2 \%$	$+3 \%$	$+3 \%$	$+1 \%$	
Individual Contributor	2020	$\$ 119,000$	$\$ 135,000$	$\$ 137,184$	$\$ 150,000$	230
	2019	$\$ 120,000$	$\$ 132,000$	$\$ 140,032$	$\$ 153,000$	297
	Change	-1%	$+2 \%$	-2%	-2%	

Figure 4 Change in Base Salaries of Data Science Individual Contributors by J ob Level

Job Level	Year	$\mathbf{2 5 \%}$	Median	Mean	$\mathbf{7 5 \%}$	\mathbf{N}
Individual Contributor	2020	$\$ 85,000$	$\$ 95,500$	$\$ 97,394$	$\$ 110,000$	124
	2019	$\$ 85,000$	$\$ 95,000$	$\$ 97,749$	$\$ 110,000$	73
	Change	0%	$+1 \%$	$-<1 \% \%$	0%	
Individual Contributor	2020	$\$ 120,000$	$\$ 130,000$	$\$ 130,750$	$\$ 140,000$	132
	2019	$\$ 115,000$	$\$ 130,000$	$\$ 133,324$	$\$ 150,000$	104
	Change	$+4 \%$	0%	-2%	-7%	
Individual Contributor	2020	$\$ 148,000$	$\$ 165,000$	$\$ 172,309$	$\$ 185,000$	55
	2019	$\$ 147,000$	$\$ 167,000$	$\$ 171,755$	$\$ 200,000$	55
	Change	$+1 \%$	-1%	$+<1 \%$	-8%	

Figure 5 Change in Base Salaries of Predictive Analytics Managers by Job Level

Job Level	Year	$\mathbf{2 5 \%}$	Median	Mean	$\mathbf{7 5 \%}$	\mathbf{N}
Manager	2020	$\$ 119,000$	$\$ 132,000$	$\$ 132,591$	$\$ 150,000$	252
Level 1	2019	$\$ 120,000$	$\$ 130,000$	$\$ 133,742$	$\$ 148,800$	282
	Change	-1%	$+2 \%$	-1%	$+1 \%$	
Manager	2020	$\$ 160,000$	$\$ 180,000$	$\$ 181,291$	$\$ 200,000$	300
	2019	$\$ 160,000$	$\$ 180,000$	$\$ 180,605$	$\$ 200,000$	432
	Change	0%	0%	$+<1 \%$	0%	
Manager	2020	$\$ 220,000$	$\$ 250,000$	$\$ 258,432$	$\$ 285,000$	148
	2019	$\$ 220,000$	$\$ 248,000$	$\$ 257,591$	$\$ 285,000$	176
	Change	0%	$+<1 \%$	0%	0%	

Figure 6 Change in Base Salaries of Data Science Managers by J ob Level

Job Level	Year	$\mathbf{2 5 \%}$	Median	Mean	$\mathbf{7 5 \%}$	\mathbf{N}
Manager	2020	$\$ 132,000$	$\$ 150,750$	$\$ 149,268$	$\$ 164,000$	42
Level 1	2019	$\$ 130,000$	$\$ 146,000$	$\$ 146,475$	$\$ 157,750$	68
	Change	$+2 \%$	$+3 \%$	$+2 \%$	$+4 \%$	
Manager	2020	$\$ 180,000$	$\$ 195,000$	$\$ 193,141$	$\$ 210,000$	109
	2019	$\$ 175,000$	$\$ 190,000$	$\$ 191,831$	$\$ 215,000$	77
	Change	$+3 \%$	$+3 \%$	$+1 \%$	-2%	
Manager	2019	$\$ 210,000$	$\$ 250,000$	$\$ 250,927$	$\$ 275,000$	41
	2019	$\$ 230,000$	$\$ 250,000$	$\$ 257,443$	$\$ 276,400$	44
	Change	-9%	0%	-3%	-1%	

Compensation | Data Science vs. Others in Predictive Analytics

Burtch Works differentiates data scientists from other predictive analytics professionals (see Identifying Data Scientists \& Predictive Analytics Professionals on page 48), and reports their respective salaries in this study. Historic ally, data science salaries are quite different than those seen in predictive analytics, and even though there are some indications of the two groups blending, the compensation trend continues this year.

- In every job category except level 3 managers, higher median base salaries continue to be seen among data scientists when compared to other predictive analytics professionals.
- The difference in base salaries is largest among individual contributors, where data scientists eam from 19% to 30% more than other predictive analytics professionals (see Figure 7 on page 20). Level 1 individual contributors, for instance, eam a median base salary of $\$ 95,500$ in data science and $\$ 80,000$ in other predictive a nalytics roles (see Figures 3 and 4 on page 21).
- Formanagers, the difference in median base salaries is less pronounced likely because emphasis shifts more toward leadership than technic al skills, especially in more senior management roles. However, data science mana gersstill eam more tha n others within predictive analytics except at the most senior levels. Depending on the job level, managers within data science have median base salaries that are up to 14% higher than others within predictive a nalytics (see Figure 7 on page 24).

There are several factors which impact this pay difference:

- Data scientists possess more specialized data skills that allow them to work with large, unstructured or streaming datasets (see Identifying Data Scientists \& Predictive Analytics Professionals on page 48).
- Nearly triple the percentage of data scientists hold a PhD compared to those in predictive analytics: 43% vs. 15% (see Figure 8 on page 27). Since professionals with a PhD tend to eam more, this is a contributing factor in higher compensation for data scientists.
- There continues to be considerable attention on the data science profession and high demand for these professionals, leading to increased competition for talent and high salaries in comparison to PAPs.

How We Define Data Scientists vs. Others in Predictive Analytics

Burtch Works considers a data scientist to be a specific type of predictive analytics professional. Both groups analyze data to glean insights and prescribe action, but data scientists focus on cleaning and a nalyzing unstructured orstreaming data, using sophistic ated computerscience and programming skills that are not typically seen in the profiles of other predictive analytics professionals. In short, the two groups' skillsets and experience focus on the following:

Data Scientists:

- Quantitative skills
- Structured and unstructured, streaming data
- Computer science/coding

Other Pred ic tive Analytics Professio na ls:

- Quantita tive skills
- Structured data

See page 48 formore information on how we identify data scientists and predictive analytics professionals.

SECTION 3
 Data Science \& Predictive Analytics Professionals: Demographic Profile

Demographics \& Compensation | Education

Predictive Analytics Professionals

- 83\% of PAPs sampled hold an advanced degree. 68\%hold a Master's degree and a nother 15\%hold a PhD (see Figure 8 on page 27).
- At most job levels, PAPs eam a higher base salary when they hold an advanced degree, and PAPs with a PhD outeam those with a Masters at all levels except manager level 3 where leadership skills are emphasized more than educational background (See Figure 10 on page 28 and Figure 12 on page 29).
- Over time, the proportion of professionals holding a Bachelors degree versus a graduate degree has inc reased. In 2015, 14\% of PAPs held a Bachelors as their highest degree eamed while in 2020, 17\% of PAPs ea med a Bachelors as their highest degree.
- Math/Statistic s continue to be the most common a rea of study for PAPs with 40% of this year's sample falling into that category. In fact, this has risen since 2019 when 34\% of the sample held a Math/Statistic sdegree.

Data Scientists

- Data scientists are even more likely to hold an advanced degree (see Figure 8 on page 29), with 94% of those sampled having a Master's or PhD (50\%hold a Master's and a nother 43% hold a PhD as their highest degree. 1% of the sample were classified as having all but dissertation completed of their PhD work).
- PhD data scientists eam higher median base salaries than those with a Master's as their highest degree at every level except level 2 and level 3 managers, where in some cases, work experience and mana gement skills may play a larger role than education (see Figure 11 on page 28 and Figure 13 on page 29).
- Data scientists differ from PAPs in the a reas of study (based on highest degree) that they come from. While for both groups mathematics/statistics was the la rgest percentage, data scientists were farmore likely than PAPs to come from a computer science, engineering, or natural science educational background (see Figure 9 on page 27).
- A smallerpercentage of data scientists are coming out of business-focused programs and a larger percentage are coming from engineering backgrounds. This may indicate that incoming data scientists are questioning the long-term value of an MBA versusa more quantitatively focused degree.

Figure 9 Distribution of Data Science \& Predictive Analytics Professiona Is by Area of Study

Figure 10 Distribution of Base Sala ries of Predic tive Analytics Individual C ontributors by J ob Level \& Education

Job Level	Education	Base Salary			
		25\%	Median	Mean	75\%
Individual Contributor Level 1	Bachelor's	\$65,000	\$75,000	\$76,728	\$85,000
	Master's	\$70,000	\$80,000	\$79,063	\$85,000
	PhD	\$85,000	\$90,000	\$92,857	\$95,000
Individual Contributor Level 2	Bachelor's	\$85,000	\$97,000	\$99,880	\$110,000
	Master's	\$90,000	\$98,000	\$102,291	\$115,000
	PhD	\$100,750	\$110,000	\$112,300	\$122,450
Individual Contributor Level 3	Bachelor's	\$108,750	\$125,500	\$127,625	\$143,500
	Master's	\$115,000	\$130,000	\$135,482	\$155,000
	PhD	\$127,500	\$145,000	\$146,510	\$160,000

Figure 11 Distribution of Base Salaries of Data Science Individual C ontributors by Job Level \& Education

Job Level	Educ ation	Base Salary			
		$\mathbf{2 5 \%}$	Median	Mean	75\%
Individual		$\$ 85,000$	$\$ 95,000$	$\$ 94,895$	$\$ 105,000$
Contributor	PhD	$\$ 90,000$	$\$ 105,000$	$\$ 102,205$	$\$ 115,000$
Level 1	Individual	Master's	$\$ 115,000$	$\$ 125,000$	$\$ 129,164$
Contributor	PhD	$\$ 125,000$	$\$ 130,000$	$\$ 132,123$	$\$ 145,000$
Level 2	$\$ 144,250$	$\$ 155,000$	$\$ 163,938$	$\$ 180,000$	
Individual	Master's	$\$ 160,000$	$\$ 173,000$	$\$ 183,227$	$\$ 198,750$

Figure 12 Distribution of Base Salaries of Predic tive Analytics Managers by Job Level \& Educ ation

Job Level	Education	Base Salary			
		25\%	Median	Mean	75\%
Manager Level 1	Bachelor's	\$120,000	\$130,000	\$130,037	\$145,000
	Master's	\$115,000	\$132,000	\$131,162	\$150,000
	PhD	\$125,000	\$135,000	\$138,897	\$145,000
Manager Level 2	Bachelor's	\$163,750	\$175,000	\$177,708	\$196,250
	Master's	\$154,500	\$175,000	\$179,616	\$200,000
	PhD	\$167,500	\$185,000	\$187,664	\$202,000
Manager Level 3	Bachelor's	\$225,000	\$250,000	\$259,304	\$285,000
	Master's	\$215,500	\$250,000	\$254,685	\$280,000
	PhD	\$227,500	\$250,000	\$267,139	\$300,000

Figure 13 Distribution of Base Salaries of Data Science Managers by Job Level \& Education

Job Level	Education	$\mathbf{2 5 \%}$	Median	Mean	75\%
		$\$ 133,000$	$\$ 152,750$	$\$ 151,228$	$\$ 169,500$
Manager		$\$ 132,500$	$\$ 150,000$	$\$ 149,200$	$\$ 160,000$
Level 1		$\$ 169,500$	$\$ 190,000$	$\$ 188,708$	$\$ 200,250$
Manager	Master's	$\$ 184,000$	$\$ 200,000$	$\$ 196,444$	$\$ 216,500$
Level 2	PhD	$\$ 200,000$	$\$ 250,000$	$\$ 236,647$	$\$ 265,000$
Manager	Master's	$\$ 231,250$	$\$ 257,500$	$\$ 256,591$	$\$ 296,250$

Demographics | Residency Status

Predic tive Analytics Professionals

- 32% of PAPs sampled are non-U.S. citizens with permanent residency or an F-1/OPT, H1B, or a nother visa which allows them to work in the U.S. (see Figure 14 on page 31).
- Among level 1 individual contributors, 37% of PAPs sampled have a visa or permanent residency. At the senior mana gement level (mana ger level 3), this decreasesto 16% (see Figure 15 on page 32).

Data Scientists

- 39\% of Data Scientists sampled a re non-U.S. citizens with permanent residency or an F-1/OPT, H-1B, or a nother visa which allows them to work in the U.S. (see Figure 14 on page 31).
- For Data Scientists, 51% of level 1 individual contributors sa mpled have a visa or pemanent residency. This percentage decreases to 20% for level 3 ma na gers (see Figure 16 on page 32).

Figure 15 Distribution of Predictive Analytics Professionals by Residency Status \& J ob Level

Figure 16 Distribution of Data Scientists by Residency Status \& J ob Level

Job Level	Residency	Base Salary	
		Median	Difference from Citizen
Individual Contributor Level 1	Citizen	\$75,000	-
	Perm. Resident	\$80,000	+7\%
	H-1B	\$80,000	+7\%
	F-1/OPT	\$80,000	+7\%
Individual Contributor Level 2	Citizen	\$100,000	-
	Perm. Resident	\$110,000	+10\%
	H-1B	\$100,000	0\%
	F-1/OPT	\$90,000	-10\%
Individual Contributor Level 3	Citizen	\$137,500	-
	Perm. Resident	\$130,000	-5\%
	H-1B	\$125,000	-9\%
	F-1/OPT	-	-
Manager Level 1	Citizen	\$130,000	-
	Perm. Resident	\$140,000	+8\%
	H-1B	\$130,000	0\%
Manager Level 2	Citizen	\$180,000	-
	Perm. Resident	\$180,000	0\%
	H-1B	\$170,000	-6\%
Manager Level 3	Citizen	\$250,000	-
	Perm. Resident	\$270,000	+8\%

Job Level	Residency	Base Salary	
		Median	Difference from Citizen
Individual Contributor Level 1	Citizen	\$95,000	-
	Perm. Resident	\$100,500	+6\%
	H-1B	\$100,000	+5\%
	F-1/OPT	\$95,000	0\%
Individual Contributor Level 2	Citizen	\$130,000	-
	Perm. Resident	\$130,000	0\%
	H-1B	\$126,000	-3\%
Individual Contributor Level 3	Citizen	\$165,000	-
	Perm. Resident	\$175,000	+6\%
	H-1B	\$177,500	+8\%
Manager Level 1	Citizen	\$151,375	-
	Perm. Resident	\$155,000	+2\%
Manager Level 2	Citizen	\$195,000	-
	Perm. Resident	\$200,000	+3\%
Manager Level 3	Citizen	\$250,000	-
	Perm. Resident	\$262,500	+5\%

Demographics \& Compensation | Region

Predic tive Analytics Professionals

- Salaries vary by geographic region. In general, PAPs employed on the West Coast or the Northeast eam the highest median base salaries (see Figure 19 on page 36 and Figure 21 on page 37).

Data Scientists

- Data scientists employed on the West Coast eamed the highest median base salaries a cross all levels reported. Those in the Northeast also tended to eam higher salaries than data scientists in the middle regions of the U.S. (see Figure 20 on page 36 and Figure 22 on page 37).

Figure 19 Distribution of Base Salaries of Predictive Analytics Individual C ontributors by J ob Level \& Region

Job Level	Region	Base Salary			
		$\mathbf{2 5 \%}$	Median	Mean	75\%
Individual		$\$ 71,000$	$\$ 80,000$	$\$ 78,996$	$\$ 86,000$
		$\$ 75,000$	$\$ 85,000$	$\$ 82,979$	$\$ 90,000$
	Midwest	$\$ 68,000$	$\$ 75,000$	$\$ 74,891$	$\$ 82,250$
	Mounta in	$\$ 72,000$	$\$ 80,000$	$\$ 79,869$	$\$ 85,000$
	West Coast	$\$ 78,000$	$\$ 85,000$	$\$ 88,615$	$\$ 95,000$
	Northeast	$\$ 95,000$	$\$ 100,000$	$\$ 106,489$	$\$ 120,000$
Individual	Southeast	$\$ 85,000$	$\$ 95,000$	$\$ 92,363$	$\$ 100,000$
Contributor	Midwest	$\$ 85,500$	$\$ 95,000$	$\$ 100,284$	$\$ 110,000$
Level 2	Mounta in	$\$ 95,000$	$\$ 100,250$	$\$ 103,394$	$\$ 115,000$
	West Coast	$\$ 100,000$	$\$ 115,000$	$\$ 115,855$	$\$ 130,000$
	Northeast	$\$ 124,500$	$\$ 135,000$	$\$ 137,951$	$\$ 150,000$
	Individual	Southeast	$\$ 102,250$	$\$ 119,000$	$\$ 128,328$
Contributor	Midwest	$\$ 105,000$	$\$ 129,000$	$\$ 133,519$	$\$ 157,778$
Level 3	Mounta in	$\$ 123,750$	$\$ 140,000$	$\$ 143,111$	$\$ 165,000$
	West Coast	$\$ 121,500$	$\$ 140,000$	$\$ 142,472$	$\$ 156,250$

Figure 20 Distribution of Base Salaries of Data Science Individual C ontributors by Job Level \& Region

Job Level	Region	Base Salary			
		25\%	Median	Mean	75\%
Individual Contributor Level 1	Northeast	\$90,000	\$100,000	\$101,062	\$115,000
	Middle U.S.	\$85,000	\$92,000	\$94,052	\$105,000
	West Coast	\$83,750	\$102,500	\$100,400	\$111,250
Individual Contributor Level 2	Northeast	\$120,000	\$130,000	\$131,368	\$140,000
	Middle U.S.	\$115,250	\$125,500	\$126,685	\$139,000
	West Coast	\$120,000	\$130,000	\$139,524	\$150,000
Individual Contributor Level 3	Northeast	\$145,000	\$175,000	\$166,609	\$180,000
	Middle U.S.	\$145,000	\$165,000	\$167,053	\$182,500
	West Coast	\$155,000	\$190,000	\$190,077	\$200,000

Figure 21 Distribution of Base Salaries of Predic tive Analytics Managers by Job Level \& Region

Job Level	Region	Base Salary			
		25\%	Median	Mean	75\%
Manager Level 1	Northeast	\$120,000	\$140,000	\$137,007	\$156,000
	Southeast	\$113,500	\$130,000	\$125,652	\$140,000
	Midwest	\$120,000	\$131,000	\$131,220	\$145,000
	Mounta in	\$115,000	\$128,000	\$130,382	\$145,000
	West Coast	\$129,500	\$147,500	\$147,083	\$156,250
Manager Level 2	Northeast	\$175,000	\$190,000	\$191,276	\$200,000
	Southeast	\$150,000	\$165,000	\$169,431	\$185,000
	Midwest	\$151,000	\$175,000	\$179,410	\$200,000
	Mounta in	\$145,000	\$160,000	\$161,150	\$175,000
	West Coast	\$170,000	\$188,000	\$193,969	\$220,000
Manager Level 3	Northeast	\$230,000	\$260,000	\$260,208	\$290,000
	Southeast	\$225,000	\$249,000	\$250,417	\$266,250
	Midwest	\$207,500	\$248,000	\$246,404	\$267,500
	Mounta in	\$226,250	\$256,000	\$263,286	\$307,500
	West Coast	\$242,500	\$255,000	\$281,136	\$300,000

Figure 22 Distribution of Base Salaries of Data Science Managers by Job Level \& Region

J ob Level	Region	Base Salary			
		25\%	Median	Mean	75\%
Manager Level 1	Northeast	\$140,000	\$160,500	\$156,727	\$171,500
	Middle U.S.	\$130,000	\$143,500	\$141,359	\$154,313
	West Coast*	-	-	-	-
Manager Level 2	Northeast	\$175,000	\$198,000	\$186,375	\$200,000
	Middle U.S.	\$175,000	\$194,000	\$193,187	\$210,000
	West Coast	\$192,750	\$200,000	\$206,500	\$221,250
Manager Level 3	Northeast	\$238,750	\$250,000	\$249,500	\$271,250
	Middle U.S.	\$210,000	\$250,000	\$249,100	\$275,000
	West Coast	\$215,500	\$260,000	\$255,545	\$292,500

Demographics \& Compensation | Industry

Predic tive Analytics Professionals

- The largest segment of PAPs are employed in the advertising and marketing services industry (18\%) followed by financial services (16\%). (See Figure 23 on page 39.)
- The Corporate-Other category made up 18% of this year's sample. This category includes hospitality (such as hotels), travel (such as a irlines), a nd resta urants.
- While fina ncial services and advertising/marketing services are still the top two industry categories (comprising a total of 34% of the sample), these companies continue to comprise a smaller percentage of the market compared to previous years (in 2015, the combined percentage forthese groups was 57% and the number has dec reased every year since). This shows a continued industry diversific ation in a nalytics.
- Figures 24 and 25 (on pages 40 and 41 respectively) show how salaries for predictive a nalytic s professiona ls vary by industry.

Data Scientists

- The tech industry continues as the largest segment of the data science market with over a quarter (26\%) of data scientists employed in tech/telecom/gaming (see Figure 23 on page 40).
- Industry variations between data scientists and other predictive a nalytics professionals show a cleardemographic difference among the two groups.
- The Corporate-Other cataegory comprised 21% of this year's sample. Ma nufac turing and energy companies are included in this category. These companies are more likely to employ data scientists than other predic tive a nalytics professionals.
- Salaries by industry were not analyzed for the data science segment as sample sizes for industries outside of tech were too small at most job levels.

Figure 23 Distribution of Data Sc ience \& Predictive Analytics Professiona Is by Industry

Figure 24 Distribution of Base Salaries of Predictive Analytics Individual C ontributors by J ob Level \& Industry

Job Level	Industry*	Base Salary			
		25\%	Median	Mean	75\%
Individual Contributor Level 1	Advertising/ M a rketing	\$70,000	\$75,000	\$76,240	\$85,000
	Consulting	\$65,150	\$80,000	\$78,275	\$87,125
	Financial Services	\$77,000	\$85,000	\$84,111	\$90,000
	Healthcare/Pharma	\$75,000	\$78,000	\$79,297	\$85,000
	Retail \& CPG	\$72,250	\$77,500	\$78,652	\$85,000
	Tech/Telecom/Gaming	\$73,750	\$83,500	\$83,969	\$90,250
	Other Comorate	\$70,000	\$75,500	\$78,703	\$85,000
Individual Contributor Level 2	Advertising/ M a rketing	\$87,000	\$97,000	\$99,822	\$110,000
	Consulting	\$95,000	\$102,500	\$107,071	\$120,000
	Financial Services	\$93,500	\$100,500	\$104,291	\$120,000
	Healthcare/Pharma	\$91,500	\$100,000	\$107,510	\$119,000
	Retail \& CPG	\$95,000	\$97,000	\$102,920	\$110,000
	Tech/Telecom/Gaming	\$90,000	\$98,000	\$106,196	\$120,000
	Other Comorate	\$90,000	\$100,000	\$102,789	\$110,000
Individual Contributor Level 3	Advertising/ M a rketing	\$115,000	\$132,500	\$137,500	\$155,000
	Consulting	\$108,500	\$128,000	\$139,800	\$162,500
	Financial Services	\$110,000	\$140,000	\$136,333	\$153,000
	Healthcare/Pharma	\$119,000	\$130,000	\$134,880	\$150,000
	Retail \& CPG	\$104,500	\$130,000	\$129,000	\$150,000
	Tech/Telecom/Gaming	\$125,000	\$139,000	\$143,978	\$164,500
	Other Comorate	\$110,000	\$135,000	\$135,091	\$155,000

Figure 25 Distribution of Ba se Sala ries of Predic tive Analytics Ma na gers by J ob Level \& Ind ustry

Job Level	Industry*	- - - - - .			
		25\%	Median	Mean	75\%
Manager Level 1	Advertising/ Marketing	\$110,000	\$121,000	\$125,158	\$144,250
	Consulting	\$113,500	\$135,000	\$134,769	\$159,000
	Financial Services	\$120,000	\$140,000	\$135,893	\$150,000
	Healthc are/Pharma	\$120,000	\$130,000	\$134,111	\$150,000
	Retail \& CPG	\$118,750	\$131,500	\$130,875	\$150,000
	Tech/Telecom/Gaming	\$116,500	\$135,000	\$132,875	\$145,000
	Other Comorate	\$120,000	\$131,500	\$133,779	\$150,000
Manager Level 2	Advertising/ Marketing	\$151,500	\$172,000	\$174,381	\$189,500
	Consulting	\$170,000	\$190,000	\$194,571	\$212,500
	Financial Services	\$150,500	\$170,000	\$174,994	\$200,000
	Healthcare/Pharma	\$165,000	\$186,000	\$184,654	\$204,500
	Retail \& CPG	\$160,500	\$179,000	\$182,067	\$207,000
	Tech/Telecom/Gaming	\$170,500	\$186,000	\$188,158	\$203750
	Other Comorate	\$166,250	\$177,500	\$183,333	\$200,000
Manager Level 3	Advertising/ Ma rketing	\$205,000	\$250,000	\$252,600	\$295,000
	Consulting	\$250,000	\$257,500	\$268,389	\$295,000
	Financial Services	\$207,500	\$235,000	\$239,923	\$259,500
	Healthc are/Phama	\$250,000	\$267,500	\$280,143	\$311,250
	Retail \& CPG	\$208,750	\$250,000	\$259,111	\$301,250
	Tech/Telecom/Gaming	\$225,000	\$250,000	\$263,933	\$300,000
	Other Comorate	\$220,000	\$250,000	\$275,000	\$270,000

*Academia/Govemment salaries not reported due to insuffic ient sample size.

Demographics | Gender

Predic tive Analytics Professionals

- For predictive a nalytics professionals, this year's sample was 72\% men and 28\% women (see Figure 26 below) showing an increase in women from 2018 where 24% of the sample was women and 2019 where 26% of the sample were women.
- While at most levels women had lowermedian base salaries than men at the same level, the differences remain small (see Figure 29 on page 44).

Data Scientists

- For data scientists, this year's sample was 82% men and 18% women (see Figure 26 below) showing an inc rease from 2019 (17\%) and 2018 (15\%). Women continue to make gradual inroads into data science, but more male candidates are also attracted to the disc ipline so demographic shifts are gradual.
- Similarly to predic tive a nalytics, level 1 individual contributors showed the largest percentage of women in data science at 29% (see Figure 28 on page 43).
- Sample sizes of women in data science were too small to exa mine sala ries at the different job levels.

Figure 26 Distribution of Data Science \& Predictive Analytic s Professiona Is by Gender

Figure 27 Distribution of Predictive Analytics Professionals by Gender a nd J ob Level

Figure 28 Distribution of Data Scientists by Gender and Job Level

Figure 29 Median Base Salary by Job Category and Gender in Predictive Analytics

Demographics | Years of Experience

Predic tive Analytics Professionals

- Almost two thirds (64\%) of PAPs sampled have 10 or fewer years of experience (see Figure 30 below). The predictive a nalytic sprofession continues to skew younger, due to inc reased interest and the visibility of analytics as a career.

Data Scientists

- Data science continuesto be a young discipline with a median years of experience in this year's sample of 6 years.
- A large proportion (72\%) of data scientists sampled had 10 orfewer years of experience (see Figure 30 below). Data science is still a newer discipline so more experienced data scientists rema in scarce.
- While the median for both PAPs and Data Scientists was equal this year, the mean years of experience for Data Science was 8.2, (see Figure 30 below) showing that Data Science continues to skew even younger than PAPs though the gap may be closing as more people flock to quantitative disciplines a cross the board.

Figure 30 Distribution of Data Science \& Predictive Analytic s Professionals by Years of Experience DS 6-10 yrs bar should be at 30\%

Note: The recruiters at Burtch Works do not ask the age of the professionals with whom they work. However, they do ask them for their years of work experience, which is highly correlated with age, and shown above is the distribution of Data Scientists a nd PAPs by years of experience. However, salary information is not shown here, bec ause salaries are indirectly related to years of experience through job category.

SECTION 4

Appendix A:
 Study Objective \& Design

Study Objective

This report is a follow-up to last year's reports: The Burtch Works Study: Salaries of Data Sc ientists and The Burtch Works Study: Salaries of Predictive Analytic s Professionals, which were published in May 2018 and October 2018 respectively. Its goals are to show (1) c urrent compensation of PAPs and data scientists and how it varies, and (2) how their compensation has changed since last year's report. By continuing to interview large numbers of PAPs and data scientists a nnually, Burtch Works can show both short-term and long-term trends in the demographic attributes of quantitative professionals a nd their compensation. Additionally, a nalyzing data scientists a nd PAPs side-by-side highlights the distinctions between the groups that affect salary.

Why The Burtch Works Studies Are Unique

The Burtch Works Studies: Sala ries of Data Sc ientists \& Predic tive Analytic s Professio nals c ontain highly-antic ipated salary and demographic data for Data Scientists and other PAPs, and are unique because:

- Burtch Works' studies foc us solely on Data Scientists and PAPs - The study samples include only professionals who are curently data scientists or PAPs, and exclude professions that other salary reports may include, such as business intelligence, information technology, and consumer insights.
- Burtch Works' studies distinguish between Data Scientists and other PAPs - The study separates data scientists (who work with unstructured or streaming data) from other PAPs because of their more specialized skillset. By comparing the two groups, the study shows how this distinction affects salary.
- Burtch Works obtains this data by interviewing Data Scientists and PAPs- Instead of relying on data provided by human resourcesdepartments or from a self-reported online survey, Burtch Works interviews every professional ind ivid ua lly. An important advanta ge of the interview process is that Burtch Works recruiters are able to obta in information about these quantitative professionals that is not usually provided by human resources departments that may affect their compensation, such as educ ation and resid ency status. Additionally, because of their nuanced understanding of the profession, recruiters are able to obtain corrections or clanific ations when information provided does not seem credible.
- Burtich Works' salary studies show how compensation varies by job level, region, industry, gender, and education - The sample size is large enough to show compensation data, collected over the past year, at a granular level. Further longtem trends are illuminated with each consec utive report.

The Sample

This sample contains 1,742 PAPs and 503 Data Scientists of the over 40,000 quantitative professionals with whom Burtch Works ma intains contact. Burtch Works collected the data for this study during interviews conducted over the monthsimmediately following the period of interviews for the 2018 studies, ending in April 2019. Professionals were included in the sample only if (1) they satisfied Burtch Works' criteria for PAPs and Data Scientists, and (2) Burtch Works obtained

How Changes in Compensation Were Measured

While some of the 1,742 PAPs and 503 Data Scientists in this sample were also in the samples for our previous studies (published annually since 2013), others were not. Therefore, changes in compensation were not measured by differencing current compensation and compensation reported for the previous study and then taking medians (and other percentiles) of the differences. Instead, changes were measured by comparing medians (and other percentiles) of current compensation to those reported in last year'sstudy.

Identifying Data Science \& Predictive Analytics Professionals

PAPs apply sophisticated quantitative skills to very large sets of data describing transactions, interactions, or other behaviorsto discem pattems in those behaviors and to prescribe actionsfor their firms. What disting uishes them from other quantitative professionals, for instance traditional financial analysts or web analytics professionals, is the volume of data with which they work. PAPs include data scientists, but data scientists are analyzed separately in this report because they typically operate on very large sets of unstruc tured data, requiring additional computer science skills, while traditional/other PAPs work with more structured data. Burtch Works included the a nalysis of data scientist compensation side-by-side with other predictive analytic s professionals to highlight the distinction between the two groups.

To identify PAPs, Burtch Works uses these criteria:

1. Educational Background

Predictive Analytics Professionals typically have a degree - usually an advanced degree (a Master'sorPh.D.) - in a qua ntitative disc ipline such asApplied Mathematics, Statistics, Ec onomic s, or Operations Research. Some professionals with an MBA are also PAPs if their MBA program had a quantitative emphasis.

Data scientists are even more likely to have an advanced degree, such as a Master's or PhD, than other predictive a nalytics professionals. These degrees are typic ally in a quantitative discipline, such as Computer Science, Physics, Engineering, Applied Mathematics, Statistics, Economics, or Operations Research.

Note: New educational options include data science degree programs, MOOCs (massive open online courses), and bootcamps which continue to take hold in the quantitative community. Some professionals from related careers or fields of study have successfully pivoted into data science and analytics roles through premier bootcampsand mid-careerMaster's programs.

2. Skills

PAPsare proficient users of a nalytic toolsfordisc eming pattems in data. Also, they can use one ormore tools for operating on large data sets (see criterion 3), such as SAS, R and/or Python. They may also have some experience with other business and data science tools.

Data scientists have expert knowledge of statistical and machine leaming methods using tools such as Python and R, with predictive analytics still at the core of the discipline. Data scientists are usually proficient users of relational databases such as SQL, Big Data infrastructures like Hadoop and Spark, related tools like Pig and Hive, cloud computing platforms such as AWS, and languages such as Python, J ava, and Scala (among others). They may also use TensorFlow and deep leaming techniques, signal processing, and visual lization.

3. Dataset Size

PAPs: The size of the datasets that PAPs work with are measured in gigabytes or sometimes la rger. These datasets a re typic ally structured.

Data scientists typic ally work with datasets that are measured in gigabytes or larger increments, usually too large to be housed in local memory, and may work with continuously strea ming data. These data sets a re typic a lly unstruc tured.

4. Job Responsibilities

PAPS have job responsibilities in the following areas:
Analytic al Database Marketing - Studies existing customers using methods such as customer segmentation, campaign targeting and effectiveness, propensity modeling, and customer lifetime value a nalysis.

Credit Risk Analytics- Mea suresconsumer, enterprise, and market risk levels. Results of a nalyses might impact the price of product, such asthe interest rate for a credit card or its availability, as in the case of a loan.

Geospacial Analytics-Analyzes data and makes recommendations a round store locations or other physical location decisions.

Human Resources Analytics - Analyzes personnel-related business problems such as talent retention, attrition, compensation, etc .

Marketing Sc ience - Predic ts consumer beha vior using a na lytic ssuch asma rketing mix modeling. Analysis can use transaction-, store-, or market-level data.

Operations Research - the application of advanced analytical methods for complicated supply chain network design, transportation routing and scheduling, and maximizing revenue based upon a finite capacity, usually in the transportation and hospitality industries.

Survey Statistics - Analyzes the results of structured surveys, conducted using a sample of a given population, in order to extrapolate the population's characteristic s using desc riptive and inferential statistic al methodologies.

Data scientists: Data sc ience spec ia liza tionsmay include Natura I La nguage Proc essing (NLP), Computer Vision, Intemet of Things (IOT), Deep Leaming, or other areas where unstructured or streaming data is prevalent.

Although they may specia lize in a specific area, data scientists a re typically equipped to work on every stage of the a nalytics process which includes:

Data Acquisition - This may involve scraping data, interfacing with APIs, querying relational and non-relational databases, building ETL pipelines, ordefining strategy in relation to what data to pursue.

Data Cleaning/Transformation - This may involve parsing and aggregating messy, incomplete, and unstructured data sourcesto produce data setsthat can be used in a na lytic sand/ or predictive modeling.

Analytics - This involves statistical and machine leaming-based modeling in order to understand, desc ribe, or predict pattems in the data.

Prescribing Actions - This involves interpreting a na lytic al results through the lens of business priorities and using data-driven insights to inform strategy.

Programming/Automation - In many cases, data scientists are also responsible for creating libraries and utilities to operationalize or simplify various stages of this process. Often, they will contribute production-level code for a firm's data products.

Professionals whose jobs are described as business intelligence, marketing research, and information technology are not considered PAPs, because they do not work with large datasets. Although data scientists are a subset of PAPs, they were a nalyzed separately from the PAPs sample because they have atypical computer science skills to manage unstructured data, resulting in higher compensation bands.

Completeness \& Age of Data

A predictive a nalytics professional or data scientist is included in the sample only if Burtch Works has complete data about their compensation, and demographic a nd job characteristics.

All of the 1,742 PAPs and 503 Data Scientists in the sample were interviewed over the months immediately following the period of interviews for the 2019 study, ending in April 2020. All were interviewed by Burtch Works recruiters while exec uting searches for c lients.

Data Science \& Predictive Analytics Segmentation

To examine how the compensation of data scientists and PAPs varies, Burtch Works used characteristics of their jobs (level, location of employer, industry) and demographic characteristics (gender, years of experience, residency status) to segment data scientists. Burtch Works developed the following job categories:

Individual Contributors

Level	Responsibility	Typicall Years of Experience
Level 1	Learning the job, ha nd s-on a nalytics and modeling	0-3 years
Level 2	Hands-on with data, working with more advanced problems and models, may help train a nalysts	4-8 years
Level 3	Considered an a nalytics Subject Matter Expert, mentors nd trains analysts	9+ years

Managers

Level	Responsibility	Typical No. of Reports
Level 1	Tactical mana ger who leads a small group within a function, responsible forexecuting limited projects or taskswithin a project	1-3 reports (direct or matrix)
Level 2	Managerwho leadsa function and managesa moderately sized team, responsible forexecuting strategy	4-9 reports (direct or matrix)
Level 3	Memberof senior management who detemines strategy and leads large teams, managesat the executive level	10+reports (direct or matrix)

Burtch Works divided the U.S. into these five regions:
Northeast
Southeast
Midwest
Mounta in
West Coast

Figure 31 U.S. Geographic Regions

The firms for whic h data scientists and PAPs work were divided into these eight industry categories:

Academia/Govemment
Advertising/Marketing Services
Consulting
Financial Services
Healthc are/Pharmac euticals
Each data scientist and PAP was assigned to one of these five residency status categories:
U.S. C itizen

Permanent Resident
H-1B
F-1/OPT
Other
Finally, each data scientist and PAP wasassigned to one of these three education categories (all of the professionals in this year's sample held a college degree):

Bachelor's degree
Master's degree
PhD

SECTION 5
 Appendix B: Glossary

Glossary of Terms

This section provid es definitions of terms used in this report.
Base Salary. An individual's gross annual wages, excluding variable or one-time compensation such as relocation assistance, sign-on bonuses, bonuses, a nd long-term incentive plan compensation.

Data Scientist A specialized predictive analytics professional who has both the programming proficiency required to make enomous sets of unstructured data accessible and also the analytical skills for deriving useful information from those data.

F-1/OPT. A residency status that allows a foreign undergraduate or graduate student who has a nonimmigrant F-1 student visa to work in the U.S. without obtaining an H-1B visa. The student is required to have either completed their degree or pursued it for at least nine months.

Geographic Region. One of five groups of states that together comprise the entire United States. These five groups of states- Northeast, Southeast, Midwest, Mountain, and West Coast - are shown in Figure 31 on page 52.

H-1B. A non-immigrant visa that allows a U.S. firm to temporarily employ a foreign worker in a specialty occupation for a period of three years, which is extendable to six and beyond. If a foreign worker with an H1B visa quits or loses their job with the sponsoring fim, the worker must eitherfind a new employer to sponsor an $\mathrm{H}-1 \mathrm{~B}$ visa, be granted a new non-immigra nt status, or leave the United States.

Individual Contributor. An employee who does not ma nage otheremployees. Individual c ontributors a mong the Data Scientists and PAPs in the Burtch Works sample have all been assigned to one of three levels:

Level 1: Responsible for leaming the job; hands-on with analytics and modeling; 0-3 years' experience

Level 2: Hands-on with data, working with more advanced problems and models; may help train a na lysts; 4-8 years of experience

Level 3: Considered an analytic subject Matter Expert; mentors a nd tra ins other a nalysts; 9+ years' experience

Industry. One of eight groups of firms employing most data professionals. These eight industry categories are Academia/Govemment, Advertising/Marketing Services, Consulting, Financial Services, Healthcare/Phamaceuticals, Retail \& Consumer Packaged Goods (CPG), Technology/Telecom/Gaming, and Other.

Academia/Govemment: Institutions whose purpose is the pursuit of education or academic research such as public universities, private colleges, and for-profit education companies; or organizations that are a part of the govemmental system, such as the Department of Defense and national research laboratories

Advertising/Marketing Services: An industry consisting of firms that provide servic es to other firms that include advertising, market research, media planning and buying, and marketing analysis.

Consulting: Industry that includes both large comorations and small "boutique" firms that provide professional advice to the mana gers of other fims.

Financial Services: Firms that provide money management, lending, or risk management services, including banks, insurance companies, and credit card organizations.

Healthc a re/Pha ma ceutic als: Fimsthat provide healthc a re services, such a shospitals, a nd firmsthat manufacture medicinal drugs.

Retail \& Consumer Packaged Goods (CPG): Organizations that purchase goods from a manufacturer to be sold for profit to the end-consumer, and companies whose products are sold quickly and at relatively low cost, including non-durable goods (e.g. groceries, toiletries) and lower quality consumer electronics.

Technology/Telecom/Gaming: Fims that create or distribute technology products or services, such as computer manufacturers and software publishers, and firms that provide telecommunications services.

Other. Companies whose industry falls outside of the categories described above, such as airline companies, distribution firms, media, a nd enterta inment.

Manager. An employee who manages the work of other employees. Managers among the Data Scientists and PAPs in the Burtch Works sample have all been assigned to one of three levels:

Level 1: Tactical manager who leads a small group within a function, responsible for executing limited-scale projects or tasks within a project; typically responsible for 1-3 direct reports or matrix individuals.

Level 2: Manager who leads a function and manages a moderately sized team; responsible for executing strategy; typic ally responsible for 4-9 direct reports or matrix individuals.

Level 3: Member of senior management who detemines strategy and leadslarge teams; manages at the executive level; typic a lly responsible for 10+ direct reports or matrix individuals.

Mean. Also known as the average, it is the sum of a set of values divided by the number of values. For example, the mean of N salaries is the sum of the salaries divided by N.

Median. The value obtained by ordering a set of numbers from smallest to largest and then taking the value in the middle, or, if there are an even number of values, by taking the mean of the two values in the middle. For example, the median of N salaries is the salary for which there are as many salaries that are smaller as there are salaries that are larger.
\mathbf{N}. The number of observations in a sample, sub-sample, or table cell.
OPT. See F-1/OPT.
Pemmanent Resident A residency status that allows a foreign national to permanently live a nd work in the United States. Those with this status have a United States Permanent Residence Card, which is known informally as a green card.

Predictive Analytics Professionals. Individuals who can apply sophisticated quantitative skills to data describing transactions, interactions, or other behaviors to derive insights and prescribe actions. They are distinguished from the "quants" of the past by the sheer quantity of data on which they operate, an a bundance made possible by new opportunitiesformeasuring behaviors a nd advances in technologies for the storage and retrieval of data.

Programming. The process of developing and implementing various sets of instructionsto enable a computer to do a certain task. For the puposes of this study, programming refers to the use of general pupose programming/scripting languages such as Python, J ava, C, C + , or others.

Salary Study. A study conducted to measure the salary distributions of those in specific occupations. Traditionally, these studies have been executed by obtaining salary data from the human resources departments of firms employing professionals in those occupations or through online surveys, rather than by interviewing those employees themselves.

Your source foranalytics \& data science opportunities, talent, and industry trends.
info @burtchworks.com | 847-440-8555 | www.burtchworks.com/study

