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THE CALCULUS OF THE MIXING ROTATING DEVICES 
SHAFTS BASED ON THE ENERGONICS METHOD  

Iuliana – Marlena PRODEA1 

Lucrarea prezintă un studiu cu privire la metodologia de calcul de rezistenţă 
a arborelui dispozitivelor rotative de amestecare, în condiţii de funcţionare 
normale. Scopul acestei lucrări este de a face o comparaţie între metoda de calcul 
clasică şi metoda Energonicii (elaborată pe baza principiului energiei critice), 
evidenţiind avantajele celei de a doua metode. Este analizat cazul unui arbore fara 
discontinuităţi de structură (defecte de material). 

The paper presents a study concerning the methodology of the strength 
calculation of the mixing rotating devices shaft in normal operating conditions.              
The aim of this work is to make a comparison between the classical calculation 
method and Energonics method (developed on the principle of critical energy), 
showing the advantages of the second method. The case of a shaft without material 
defects (structural discontinuities) is analyzed.   

Keywords: mixing rotating device shaft; strength calculation; principle of critical 
energy. 

1. Introduction 

The mechanical design of the mixing rotating devices which operate in 
liquid medium depends on the exact determination of the mechanical and 
hydrodynamic loadings of the mixing device (shaft and mixer). These loadings are 
difficult to evaluate during the mixing process, especially in conditions of 
unsteady flow. Therefore, in the current design activity one operates with 
simplified loading models of mixing devices. 

Based on the adopted models, different mechanical calculation methods 
were developed, which, in principle, solve the following problems [1-3]: the 
driving system design of the mixing device; the strength calculation of the shaft 
and of the mixers mounted on it; the rigidity calculation of the shaft; the selection 
and the calculation of the shaft seal; the design of the shaft bearings.  

This paper provides a study of the strength calculation methodology of the 
mixing rotating devices shaft in normal operating conditions. Two different 
methods can be used to solve these problems: the classical calculation method, 
which is currently more commonly applied, and the Energonics method – 
developed on the principle of critical energy [4-6]. 
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It is known that the classical method uses the concept of equivalent stress 
[1-3, 7] for the strength calculation of the shaft.   

Unlike the classical calculation method, the Energonics method applies the 
concept of the participation of the specific energy due to the shaft loadings                 
(non-dimensional concept) [4; 5].   

 In this work, the attention is focused on the use of the Energonics method 
in the case of a flawless shaft, emphasizing its advantages compared with the 
classical calculation method.  

 
2. Calculation of the mixing device shaft loadings 
 
One starts from the following hypotheses: the mixing device is multi-

staged ( 0n  mixers are mounted on the same central shaft, arranged in parallel 
planes and perpendicular to the longitudinal axis of the shaft); the mixing device 
shaft is supported on two roller bearings; the mixing device is driven in by a 
rotating electric motor (with the installed power instN ), via a cylindrical gear 
drive or belt drive; the drive is provided with a safety overload system and the 
engine starting is done with the aid of a start-up device; the working medium 
(liquid) does not have large variations in viscosity and does not adhere to the 
walls to form crusts; during mixing it does not produce precipitation and there is 
no danger of accidentally decreasing of the liquid level in the vessel. 

For the calculations of the mechanical strength in the two cases analyzed 
below (shaft with and without cracks), one chooses a general model of loading of 
the shafts, taking the following loadings into consideration (fig.1):  

a) statically applied loads; b) dynamically applied loads; c) torque tM . 

 
Fig.1. Principle sketch of a statically and dynamically loaded shaft  

(O – corresponds to the shaft’s end, where a driving wheel is placed; 
R1, R2 – bearings; n – rotational speed) 

a) Statically applied loads 
Statically applied loads are the following: 

 iyF ,  – in the xOy plan (which produces bending moment yb,M );  

 izF ,  – in the xOz plan (which produces bending moment zb,M ). 
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On each mixer i ( ni ,1 0= ) mounted on the shaft, a bending radial force acts either 
in the xOy plan (being noted iyF , ), or in the xOz plan (being noted izF , ), 
depending on the mixer blades orientation as function of the chosen coordinate 
system. This force is calculated as a resultant of the two following forces: 

iRF , (the resistance hydrodynamic force of the working fluid, corresponding to 
the i mixer); icF , (the centrifugal force caused by the dynamic residual imbalance 
of the i mixer). 
For a i mixer, the two components of the bending radial force have the following 
mathematical expression [8]: 
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where: iad , - the i mixer diameter (mixer span); iam , - the i mixer weight;                  

iRc ,  -the hydrodynamic driving coefficient corresponding to the i mixer (depends 
on mixer geometry); idr , - the dynamic residual imbalance of the i mixer;                 

lρ - the working fluid density; n – rotational speed of the shaft; ω  - the shaft 

angular speed (velocity of rotation), 
30
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According to [8], one uses the following relationship, in order to calculate idr , : 
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where: ie - eccentricity of the i mixer mass center; be - allowable shaft deflection 
(usually mmeb 1≤ ); 1p  - basic proper angular frequency of the shaft. 

The most disadvantageous variant is that in which iRF ,  and icF ,  act in the 
same direction and sense. Their resultant module is obtained by algebraic 
summation: iciR FF ,, + . 

 
b) Dynamically applied loads (fatigue loading) 
Dynamically applied loads produce bending moment noted ( )d

bM .  
In the category of the dynamically applied loads there are: 
- the radial force dF  (fig.1). dF  is either the force resulting from the gears 

meshing, or the force introduced by the transmission belt, depending on the type 
of mechanical transmission which is part of the driving system of the shaft); 
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- the own weight of the shaft and the weights of the elements disposed on it 
(these are taken into consideration only in case of a horizontal shaft).  

c) Torque tM  
Torque tM is transmitted along the shaft through the mixing device driving 

system. In design activity, usually one uses calculating torque (noted ctM , ), 
considered higher than the torque tM  ( tct MM >, ). 

ω
ηtrinst

ct
N

M
⋅

=,  ,                                                                                   (4) 

where trη  is the overall efficiency of mechanical transmission used.   

3. Calculation of the stresses caused by loads acting on the mixing 
device shaft    

Shafts sizing includes identifying dangerous shaft sections and calculating 
the required minimum diameter in these shaft sections. 

The torque transmitted to each j cross-section of the shaft is determined by 
the relationship:   

ω
j

jt
N

M =, ,                                                                                             (5) 

where jN  is the necessary mixing power in j cross-section of the shaft (fig.2).   

 
Fig.2. Distribution of the necessary mixing power N along a mixing device shaft provided with 

sealing device (noted DE), and four mixers mounted in the sections 1, 2, 3 and 4. 
DEfN ,  - the power loss in the sealing device as a result of the friction;   

21−ΔN , 32−ΔN , 43−ΔN - the required power increases from a mixer to another.  

In any j cross-section of the shaft, the resulting bending moment jbM ,  

due to the statically applied loads iyF , , izF ,  has the expression:  
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where each of the components jybM ,,  and jzbM ,,  is the algebraic sum of the 
bending moments determined in j section by all the statically applied forces acting 
in the plane xOy, xOz, respectively, on one side of the current j section.  
 The diagram of the bending moments due to the dynamically applied loads 
differs depending on the operating position of the mixing device shaft (vertical or 
horizontal). For a vertical shaft, for example, in accordance with the loading 
model presented before, only the force dF  has dynamic effect. In this case, the 

bending moment ( )d
jbM ,  produced in any j cross-section is calculated with the 

relationship:  

dd
d

jb lFM ⋅=)(
, ,                                                                                         (7) 

where dl  is the moment arm. The maximum value )(
max,

d
bM  is obtained in the 

cross-section corresponding to the support R1. 
For a shaft without material defects, in any of its j cross-section, the 

normal stresses jb,σ  (produced by static bending) and )(
,
d

jbσ  (produced by 

dynamic bending), and also the tangential stress jt,τ  (produced by the torsion) 
are calculated by the relations: 
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where W - the modulus of resistance of the shaft cross-section; pW - the polar 
modulus of resistance of the shaft cross-section. 

4. Strength calculation of the mixing device shaft   

The strength calculation of the shaft is made for the torsion and bending 
using both classical and Energonics method.  

The classical calculating method comprises two successive stages [1-3]: 
- sizing of the shaft subjected to torsion; 
- verification of the shaft strength under combined bending and torsion.   

The working principle of this method is based on the concept of equivalent 
stress, whose expression depends on the applied strength theory.  

The Energonics method is based on the principle of critical energy and the 
equivalence of processes and phenomena [5, 9]. It has a high level of generality, 
offering the following advantages: enables to solve the cases in which loads may 



112                                          Iuliana – Marlena Prodea 

be applied both statically and dynamically; enables to take into account the             
non-linear elastic behaviour of the shaft material in the conditions of the 
considered loading.  

The non-linear elastic behaviour of the shaft material is described by the 
power-law function [5]: 

k
τ

k
σ γMτεMσ ⋅=⋅= ; ,                                                                    (9)  

where τMσM ;  and k are constants of material; τσ;  – normal stress and shear 
stress, respectively;  ε  – strain; γ  – shear strain.  

The application of the critical energy principle consists in the calculation 
of the specific energy participation in the evolution of a process, with respect to 
the critical state defined for this analyzed process. One considers the energy 
accumulated in the material involved in that process, due to the external               
loadings/ actions.  

In the case of the mixing rotating device shaft, reaching the critical state 
corresponds to its fracture. One determines the total participation TP  with respect 
to the critical state, calculated as the sum of partial participations caused by each 
loading exerted on the shaft (i.e. the static and dynamic bending, and torque). The 
limit is reached when crT PP =  [5], where 1≤crP  ( crP  is the critical value of the 
participation corresponding to fracture). 

One uses the expression of the total participation *
TP  with respect to the 

allowable state for sizing the mixing device shaft [5]:  
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where α  exponent depends on the rate of load applying.                                 

k
1

=α , for static loading; =α 0, for shock loading (the time interval required to 

reach maximum load is less than half of the structure fundamental period); 

k2
1

=α , for rapid loading (the applied load is increased rapidly at a finite rate and 

the time interval required to reach maximum load is greater than the time required 
in the case of shock loading.  The allowable stresses are:  
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where crb,σ , ( )d
crb,σ  are the critical normal stresses under static and dynamic 

bending, respectively; crtτ , - critical tangential stress under the torsion; bc , ( )d
bc , 

tc  - safety coefficients of static bending, dynamic bending and torsion, 
respectively.   

From the relations (8) and (10) it yields: 
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In general, WβWp ⋅= , where β  depends on the cross-sectional shape of 
the shaft (for example, for a shaft with a circle cross-section, 2β =  [8]). 

In Energonics method, the condition for the shaft loading to be allowable 
is expressed by the relationship: 

adT PP ≤∗ ,                                                                                               (13)  
where 

)(1 tDPT
∗∗ −= .                                                                                        (14)  

)(tD∗  is the deterioration (function of time t) with respect to the allowable state 
produced in the shaft during loading application (for example, in the case of 
cracks propagation). 

If there are not cracks, then  
1=∗

TP .                                                                                                     (15)   
From the relations (12) and (15), one obtains the expression for the necessary 
modulus of resistance, jnecW , , corresponding to any section j of the shaft:  
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Expression (16) takes into account: the shaft material behavior                   
(non-linear elastic or linear elastic) under loading conditions; the influence of the 
type loading (static loading; fatigue loading under pulsating or symmetric 
alternating stress cycle etc.); the rate of loads application (static, rapid or shock 
loads). 
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The minimum required shaft diameter corresponding to the analysed j 
section (noted jnecd , ) is calculated depending on the value jnecW ,  (16), taking 
into account the geometry of the shaft cross-section. For shafts with full circular 
section is obtained:  
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 For linear elastic behavior of the shaft material corresponding to Hooke's 
law, εEσ ⋅=  and γτ ⋅=G , constant 1=k , so 1=α  [8]. Equation (16) becomes: 
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  Practically, the strength calculation of the mixing rotating device shaft in 
the conditions of the above mentioned hypotheses and of the previously 
determined loadings is done by applying the algorithms included in Table 1. 

Table 1  
Relations used for the strength calculation of the mixing devices rotating shaft   

Classical Method (equivalent stresses method) Energonics Method 
 Stage / Computation relations Stage / Computation relations 

1. Sizing the shaft under torque load /  
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(for full circular cross - section shaft). 
The dangerous section is established: 
where the calculated value of jnecd ,  

 
2. Sizing the shaft under combined bending 

and torsion / 
For each section j, possibly dangerous, there are  
calculated: 
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calculated value of jechbM )( ,  is maximum. In 

this section there will be determined: 
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If *dd ≤′ , a shaft with diameter *d  is chosen. 

Otherwise, it is adopted  dd ′≥′′ . 

is maximum. 
( ) cdd jnecarb 2max, += . 

It is adopted 

arbfinal dd ≥ . 

Note: The computation relations corresponding to the classical method included in the left column 
of the Table 1 have been developed according to references [1-3; 7]. 
 
List of symbols used in Table 1 (excepting the symbols whose signification has already been 
mentioned in the paper): 
● corresponding to the classical method:  

necpW , - the necessary polar modulus of resistance corresponding to the shaft cross-section; 

adt,τ  - the allowable shear stress; in the case of shaft sizing under torque load, it is necessary to 

adopt a minimum covering value 2
, /40 mmNadt =τ  [3], taking into account the fact that a 

supplementary bending moment is acting (but it is not included in the calculation); 
necd - the required diameter of the shaft; c - the corrosion and/or erosion allowance in radial 

direction; d – the shaft diameter resulted from the calculus effected in the first stage; *d - the 
standard value adopted for the shaft diameter, in the first stage; 

jtotbM ,,  - the total bending moment in j cross-section;  

jechbM )( , - the equivalent bending moment in j cross-section; 

dα - the equivalence coefficient of a fatigue loading with a static loading; in case of the symmetric 
alternating  fatigue loading, we have: 
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where Iadb )( ,σ  - the allowable stress under static bending;  

IIIadb )( ,σ  - the allowable stress under symmetric alternating bending;  

cσ  - the shaft material yield limit; 1−σ  - the fatigue limit under symmetric alternating bending; 

bc  - the safety coefficient in static bending;  

IIIbc ,
 - the safety coefficient under symmetric alternating bending; 

necW  - the required modulus of resistance corresponding to the dangerous shaft cross-section; 

necd  - the minimum required diameter of the dangerous shaft section;  
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d ′ - the shaft diameter in the dangerous section resulted from the sizing, in the second stage; 

d ′′ - the standard value of the shaft diameter, adopted in the second stage in case ∗>′ dd ; 

● corresponding to the Energonics method: 
arbd  - the shaft diameter in the dangerous section; finald - the standard value adopted for the shaft 

diameter. 
Comparing the algorithms presented parallelly in Table 1, one observes 

that: in the case of the Energonics method, shaft sizing is made directly, using 
relation (18). This was obtained by customizing expression (16) which is derived 
on the basis of critical energy principle. In order to establish relation (16), both 
dynamic loading and allowable resistance to dynamic loading have been 
considered. That is why there is no need to effected an additional fatigue 
verification of the shaft.  

5. Numerical Example  

One considers a mixing rotating device as the one in fig.3. Its vertical shaft 
is provided with sealing device (noted DE), and three identical mixers mounted in 
the sections E, F and G, in perpendicular planes, successively.  

The following data are known (fig. 3 and 4):  

 
Fig. 3. The mixing rotating device with 

vertical shaft, provided with sealing 
device (noted DE), and three identical 

mixers mounted in the sections E, F, G. 
(C – corresponds to the shaft’s end, 

where a belt pulley is placed; 
A, B – bearings) 

  
Fig. 4. Distribution of the necessary mixing   

          power N , and of the torque tM , respectively, 
along the shaft  

mml 8001 = ; mml 10002 = ; mml 16603 = ; mml 5004 = ; mml 1405 = ;  
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the installed power of the driving electromotor, kWNinst 4= ; the overall 
efficiency of mechanical transmission, 75,0=trη ; the bearings friction couple 
efficiency, 99,0== BA ηη ; the rotational speed of the shaft, min/60 rotn = ; the 
radial force in the belts, NFd 4540= (the dynamically applied load); the bending 
radial forces, corresponding to each mixer, NFFF GFE 24≈≈≈  (the statically 
applied load); the power loss in the sealing device as a result of the friction, 

kWN ef 27,0, = ; EN , FN , GN - the necessary mixing power corresponding to each 
mixer, respectively; GF NN ⋅= 75,1 ; GE NN ⋅= 25,2 ; the working medium: liquid. 
The shaft is made from a single piece and it has the constant full circular cross-
section. The shaft material is a steel with the following mechanical characteristics: 

2/540 mmNr =σ ; 2/320 mmNc =σ ; 2
1 /240 mmN=−σ ; 2

0 /264 mmN=τ . In the 
conditions of the given loading, the shaft material has a linear-elastic behaviour.   

Let us solve the sizing problem of this mixing rotating device shaft!  

   
                                                a)                        b)                       c)                                     d) 

 
Fig. 5. a) The diagram of the bending moments, ybM , ,due to the statically applied loads acting 

in the plane xOy; b) The diagram of the bending moments, zbM , , due to the statically applied 

loads acting in the plane xOz; c) The diagram of the resulting bending moments, bM ,due to the 

static loading; d) The diagram of the bending moments, )(d
bM ,due to the dynamic loading. 

( yAR , , yBR , , zAR , , zBR , , )(d
AR , )(d

BR - the bearings reactions) 
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● The distribution of the necessary mixing power N, and of the torque tM , 
respectively, along the shaft, is shown in fig.4. 
● The diagram of the bending moments bM due to the static loading, and the 

diagram of the bending moments )(d
bM due to the dynamic loading, along the 

shaft, are presented in fig.5. 
● The necessary mixing power, torque and bending moments calculated in the 
main cross-sections of the shaft are registered in table 2. 
● The possible dangerous cross-sections of the shaft correspond to the two 
supports A and B. These are established based on the moments diagrams 
represented in fig. 4 and 5.  
● Shaft sizing is based on the algorithms previously described in Table 1. The 
results are included in Table 3. 
 

Table 2 
The necessary mixing power, torque and bending moments 

 calculated in the main cross-sections of the shaft 
The j cross-section  

of the shaft 
C A B DE E F G 

Power, jN [kW] 3 3 2,97 2,94 2,67 2,07 1,18 

The torque, 

ω
j

jt
N

M =,  [ mN ⋅ ] 

 
477,46 

 
477,46 

 
472,69 

 
467,96 

 
425,33 

 
330,81 

 
189,03 

The bending moment   
][,, mNM jyb ⋅  

 
---- 

 
0 

 
122,88 

 
---- 

 
43,2 

  
19,2 

 
0 

The bending moment   
][,, mNM jzb ⋅  

 
---- 

 
0 

 
63,84 

 
---- 

 
24 

 
0 

 
---- 

The resulting bending 
moment 
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138,47 

 
 

---- 

 
 

49,41 

 
 

19,2 
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The bending moment   
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635,6 
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---- 
 

---- 
 

---- 

 

Note: ω  - the shaft angular speed , 1,2
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Table 3 
The results of the shaft strength calculation  using both classical method and Energonics 

method 

Classical Method (equivalent stresses method)      Energonics Method 

                        Stage                Stage  

1. Sizing the shaft under torque load    
mNM ct ⋅= 46,477, ;  mmdnec 32,39= ;   

mmd 32,43= .   It is adopted   mmd 45* = . 

Sizing the shaft / 

For the sections A and B, possibly 
dangerous, there are  calculated: 

36
, 1042,5 mW Anec

−⋅= ; 

mmd Anec 07,38, = ; 

36
, 1029,1 mW Bnec

−⋅= ; 

mmd Bnec 59,23, = . 

The calculation demonstrates that A is 
the dangerous section.  

mmdarb 07,42= . 

It is adopted 

mmd final 45= . 

Therefore, a shaft with the diameter 
mmd final 45=   is chosen.   

2. Sizing the shaft under combined bending 
and torsion  

For the sections A and B, possibly dangerous, there 
are  calculated: 

mNM Atotb ⋅= 98,1302,, ; 

mNM Btotb ⋅= 47,138,, ; 

mNM Aechb ⋅= 01,1367)( , ; 

mNM Bechb ⋅= 14,432)( , . 
The calculation demonstrates that A is the dangerous 
section.      

36
, 1055,5 mW Anec

−⋅= ; mmd Anec 37,38, =
*4537,42 dmmmmd A =<=′ . 

 Therefore, a shaft with the diameter mmd 45* =  
is chosen.   

Note : The results of the shaft strength calculation have been  obtained taking into consideration 
the following supplementary data: mmc 2=  (the corrosion allowance in radial direction); 2=β  

(for full circular cross – section of the shaft);  2
, /15,246 mmNadb =σ ; 2)(

, /120 mmNd
adb =σ ; 

2
, /07,203 mmNadt =τ ( adb,σ , ( )d

adb,σ  - the allowable normal stresses under static and 

dynamic bending, respectively; adtτ , - the allowable tangential stress under the torsion); 

05,2)(
,

, == d
adb

adb
d

σ

σ
α  (the equivalence coefficient of a fatigue loading with a static loading). 
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6. Conclusions 

The analysis realised in this paper shows that the classical method of 
strength calculation of the shaft is more laborious compared to the Energonics 
method.  

Thus, as it was specified in this study, the classical calculation method is   
based on the concept of equivalent stress (but the calculation result depends on the 
choice of strength theory used).   

Unlike the classical procedure, the Energonics method, using the concept 
of the participation of the specific energy due to the shaft loadings, proves to be 
very simple to use. Sizing shafts is made by applying relationship (16), taking into 
account the dependance )(Wd , where d – the shaft diameter; W - the modulus of 
resistance corresponding to the shaft cross-section.  

The shaft sizing effected by the two methods (the classical one and the one 
based on the principle of critical energy) lead to almost identical final results. 
Moreover, the algorithm of the second method is much simpler, and consequently, 
the calculation time is much shorter.  

It is also important to note that, the Energonics method enables to solve 
the cases in which the classical method cannot be applied (non-linear behaviour of 
the shaft material; rapid or shock loading).  

Therefore, it is obvious that the calculation method based on the principle 
of critical energy is superior to the calculation classical method of the mixing 
rotating device shafts. 
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