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Some Greek Mythology

 Queen Dido of Tyre
– Fled Tyre after the death of her husband

– Arrived at what is present day Libya

 Iarbas’ (King of Libya) offer
– “Tell them, that this their Queen of theirs may 

have as much land as she can cover with the hide 
of an ox.”

 What does this have to do with the Calculus 
of Variations?



What is the Calculus of Variations

 “Calculus of variations seeks to find the path, 

curve, surface, etc., for which a given 

function has a stationary value (which, in 

physical problems, is usually a minimum or 

maximum).” (MathWorld Website) 

 Variational calculus had its beginnings in 

1696  with John Bernoulli

 Applicable in Physics



Calculus of Variations

 Understanding of a Functional

 Euler-Lagrange Equation
– Fundamental to the Calculus of Variations

 Proving the Shortest Distance Between Two Points
– In Euclidean Space

 The Brachistochrone Problem
– In an Inverse Square Field

 Some Other Applications

 Conclusion of Queen Dido’s Story



What is a Functional?

 The quantity z is called a functional of f(x) in 
the interval [a,b] if it depends on all the 
values of f(x) in [a,b].

 Notation

– Example
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Functionals

 The functionals dealt with in the calculus of 
variations are of the form

 The goal is to find a y(x) that minimizes Г,  or 
maximizes it.

 Used in deriving the Euler-Lagrange 
equation
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Deriving the Euler-Lagrange Equation

 I set forth the following equation:
     y x y x g x  

Where yα(x) is all the possibilities of y(x) that 

extremize a functional, y(x) is the answer, α is a 

constant, and g(x) is a random function.
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Deriving the Euler-Lagrange Equation

 Recalling

 It can now be said that:

 At the extremum yα = y0

= y and

 The derivative of the 

functional with respect 

to α must be evaluated 

and equated to zero 
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Deriving the Euler-Lagrange Equation

 The mathematics 

involved

– Recalling

 So, we can say

     y x y x g x  
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Deriving the Euler-Lagrange Equation

 Integrate the first part by parts and get

 So

 Since we stated earlier that the derivative of Г with respect to α equals 
zero at α=0, the extremum, we can equate the integral to zero
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Deriving the Euler-Lagrange Equation

 So

 We have said that y0 = y, y 
being the extremizing 
function, therefore

 Since g(x) is an arbitrary 
function, the quantity in the 
brackets must equal zero
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The Euler-Lagrange Equation

 We now have the Euler-Lagrange Equation

 When                  , where x is not included, 

the modified equation is  
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The Shortest Distance Between Two 
Points on a Euclidean Plane

 What function describes the shortest 

distance between two points?

– Most would say it is a straight line

 Logically, this is true

 Mathematically, can it be proven?

 The Euler-Lagrange equation can be used to 

prove this



Proving The Shortest Distance 
Between Two Points

 Define the distance to be s, so

 Therefore
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Proving The Shortest Distance 
Between Two Points

 Factoring a dx2 inside the square root and 
taking its square root we obtain

 Now we can let

 so
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Proving The Shortest Distance 
Between Two Points

 Since

 And we have said that

 we see that 

 therefore
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Proving The Shortest Distance 
Between Two Points

 Recalling the Euler-Lagrange 
equation

 Knowing that

 A substitution can be made

 Therefore the term in brackets 
must be a constant, since its 
derivative is 0.
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Proving The Shortest Distance 
Between Two Points

 More math to reach the solution
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Proving The Shortest Distance 
Between Two Points

 Since

We see that the derivative or slope of the 

minimum path between two points is a 

constant, M in this case.

The solution therefore is:
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The Brachistochrone Problem

 Brachistochrone

– Derived from two Greek words

 brachistos meaning shortest

 chronos meaning time

 The problem

– Find the curve that will allow a particle to fall under the 

action of gravity in minimum time.

 Led to the field of variational calculus

 First posed by John Bernoulli in 1696

– Solved by him and others



The Brachistochrone Problem

 The Problem restated

– Find the curve that will allow a particle to fall under the 

action of gravity in minimum time.

 The Solution

– A cycloid

– Represented by the parametric equations

 Cycloid.nb
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The Brachistochrone Problem In an 
Inverse Square Force Field

 The Problem

– Find the curve that will 

allow a particle to fall 

under the action of an 

inverse square force field 

defined by k/r2 in 

minimum time.

– Mathematically, the force 

is defined as
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The Brachistochrone Problem In an 
Inverse Square Force Field

 Since the minimum time is 

being considered, an 

expression for time must be 

determined

 An expression for the  

velocity v must found and 

this can be done using the 

fact that KE + PE = E 
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The Brachistochrone Problem In an 
Inverse Square Force Field

 The initial position r0 is 

known, so the total energy E

is given to be –k/r0, so

An expression can be found 

for velocity and the desired 

expression for time is found
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The Brachistochrone Problem In an 
Inverse Square Force Field

r + dr

rdΘ
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The Brachistochrone Problem In an 
Inverse Square Force Field

 We continue using a 

polar coordinate system

 An expression can be 

determined for ds to put 

into the time expression
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The Brachistochrone Problem In an 
Inverse Square Force Field

 Here is the term for 

time t

 The function F is the 

term in the integral
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The Brachistochrone Problem In an 
Inverse Square Force Field

 Using the modified 

Euler-Lagrange 

equation
F
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The Brachistochrone Problem In an 
Inverse Square Force Field

 More math involved in finding an integral to 

be solved
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The Brachistochrone Problem In an 
Inverse Square Force Field

 Reaching the integral

 Solving the integral for r(Θ)

finds the equation for the 

path that minimizes the time.
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The Brachistochrone Problem In an 
Inverse Square Force Field

 Challenging Integral to Solve

– Brachistochrone.nb

 Where to then?

– Use numerical methods to solve the integral

– Consider using elliptical coordinates

 Why Solve this?

– Might apply to a cable stretched out into space to 

transport supplies

Brachistochrone.nb


Some Other Applications

 The Catenary Problem
– Derived from Greek for 

“chain”

– A chain or cable 
supported at its end to 
hang freely in a uniform 
gravitational field

– Turns out to be a 
hyperbolic cosine curve

 Derivation of Snell’s 
Law 1 2 2sin sinin n 



Conclusion of Queen Dido’s Story

 Her problem was to find the figure bounded by a line 
which has the maximum area for a given perimeter

 Cut ox hide into infinitesimally small strips
– Used to enclose an area

– Shape unknown

– City of Carthage

 Isoperimetric Problem
– Find a closed plane curve of a given perimeter which 

encloses the greatest area 

– Solution turns out to be a semicircle or circle
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