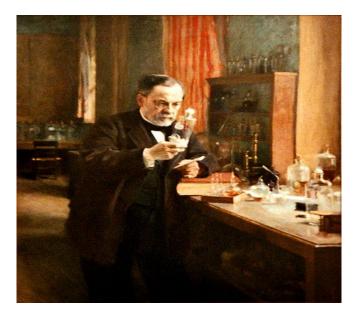


The Case for Personalized Vaccinology in the 21st Century

Gregory A. Poland, MD Distinguished Investigator of the Mayo Clinic Director, Mayo Vaccine Research Group Mayo Clinic College of Medicine Rochester, MN Editor-in-Chief, VACCINE



- Risk-averse towards vaccines extremely high levels of safety required
- The one-size-fits-all approach to vaccination ignores the complexity and diversity of the human immune system and host genome
- Increasingly large immunocompromised and elderly populations
- The promise of vaccinomics and related paradigms is to identify specific immune response profiles, immunosignatures, and biomarkers that predict vaccine safety and/or efficacy, leads to new vaccine candidates, and allows delivery of the right vaccine, to the right person, at the right dose, at the right time...in other words personalized vaccinology

Vaccinology 1.0

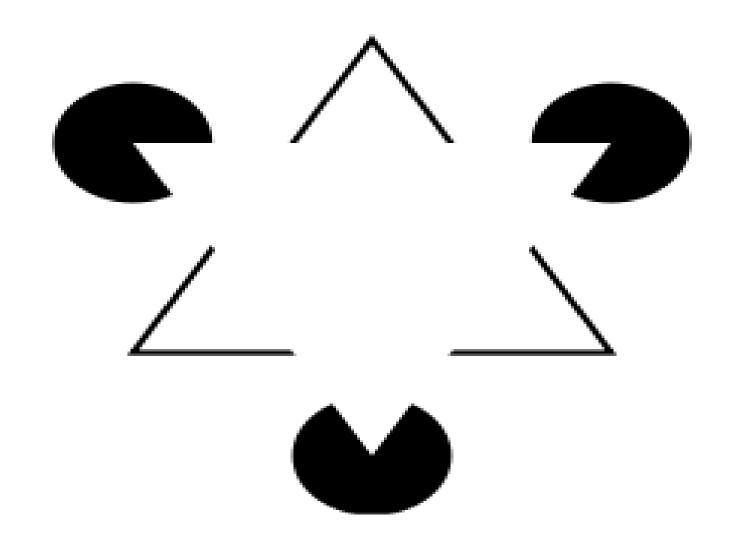
Isolate → Inactivate/Attenuate → Inject

Smallpox Rabies Diphtheria Tetanus Anthrax Cholera Typhoid Others

- Subunit vaccines
- Recombinant technology introduced
- Newer, but undirected adjuvants
- Everyone gets every vaccine, same number of doses and dose amount
- Still focused on childhood vaccines, few adult vaccines developed

<u>1940's - 2000's</u>

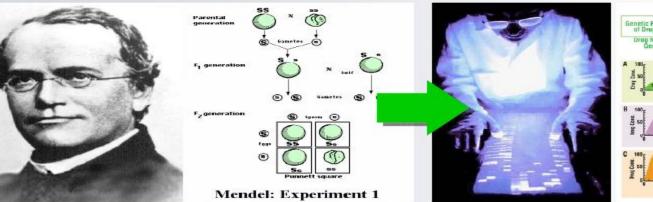
- One "size" fits all approach
- Everybody at risk for everything so give everyone everything
- Prophylactic only
- Childhood vaccines >>>> Adult vaccines
- Parenteral vaccines dominate (except FluMist and oral typhoid)
- Very few licensed adjuvants
- Predicated on a population-level, public health approach


A Vaccine Paradox

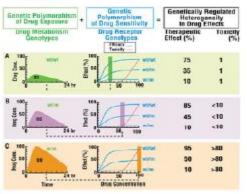
- The goal is to induce protective immune responses in (ideally) 100% of the population who receive a vaccine
- We fail at this because of:
 - Pathogen variability
 - Host (human immune system) variability
 - Lack of variability in how we deliver vaccines to the population, i.e. a "one size fits all" population approach, and limited paradigms for vaccine discovery

- Smallpox vaccine dangerous, too revolutionary, simply not possible
- Too hard/expensive to make QIV
- Not possible to make a Mening B vaccine
- One dose of measles vaccine is sufficient
- Rubella vaccine only needed for females
- HPV vaccine only needed for females
- Not possible to make 23-valent Pneum vaccines
- Not possible to give so many vaccines to infants
- Too dangerous to give vaccines to pregnant women
- Many, many others...

WECANNOTSOLVEOUR PROBLEMS WITH THE SAMETHINKING WEUSEDWHENWE CREATED THEM -Albert Einstein


Tomorrow – More Clever?

- Personalized approach
- Tiered risk and vaccination approach
- Prophylactic and therapeutic
- Adult vaccines >>>> Childhood vaccines
- Oral, transcutaneous, depot, and mucosal vaccine delivery
- Multiple highly specific adjuvants
- Directed vaccine development using systems biology and computational approaches
- Private, public and academic partnerships



MAYO CLINIC

Vaccinology 3.0

Vaccinology 3.0

- Vaccinomics/system biology approaches
- Advanced adjuvants/antigen packaging (nanoparticles)
- New vaccines for specific subgroups

 Personalized vaccinology – Precision vaccinology

Discover \rightarrow Validate \rightarrow Characterize \rightarrow Apply

Poland GA, et al. Seminars in Immunology 2013

Personalized Vaccinology

- Individual (e.g. cancer vaccines)
- Gender
 - Why do females develop arthritis after rubella vaccine, but not males?
 - Why, for all vaccines studied, do females have better humoral immune responses than males?
- Race/Ethnic groups
- Sub-populations with specific genetic polymorphisms
- Sub-populations with specific diseases or immune states

Poland, et al. Clin Pharmacol Ther. 2007 Dec;82(6):653-64

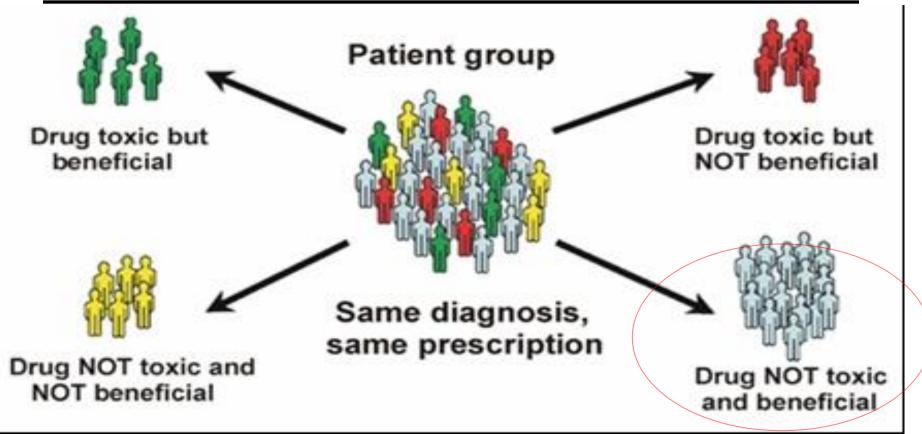
"It is not necessary to change. Survival is not mandatory."

- Edward Deming

"The human understanding resembles not a dry light, but admits a tincture of the will and passion, which generate their own system accordingly; for *a man always believes more readily that which he prefers.* He, therefore, rejects difficulties for want of patience in investigation...; the light of experiment because of arrogance and pride....paradoxes from a fear of other men's opinions...; in short, *his feelings imbue* and corrupt his understanding in innumerable and sometimes imperceptible ways."

> Francis Bacon Aphorism XLIX *Novum Organum.*

Why New Paradigms Come Slowly


AYO CLINIC

- Error, myth, superstition cloud our ability to "see" the data
- We wrongly believe scientific progress is a process of linear accretion of knowledge
- Science is predicated on the belief that the scientific community understands what the world is like
- We suppress or resist "fundamental novelties" because they are seen as subversive to our firmly held beliefs of what the world is like

Thomas Kuhn. The Structure of Scientific Revolutions

Individualized Medicine

MAYO CLINIC

For nearly all vaccines studied, females have superior humoral immune responses compared to males – why? They also have AE rates significantly higher than males – why?

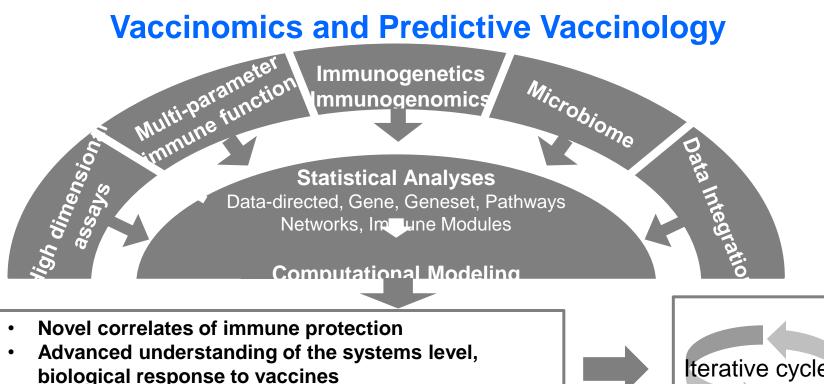
Immune Response Network Theory

AYO CLINIC

 "The response to a vaccine is the cumulative result of *non-random* interactions with host genes, epigenetic phenomena, metagenomics and the microbiome, gene dominance, complementarity, epistasis, co-infections, and other factors occurring *within the system as a* whole."

 In other words, a systems-level, rather than reductionist, approach

Poland et al. Clin Pharmacol Ther. 2007 Dec;82(6):653-64


Vaccinomics

Vaccinomics is the integration of a systems biology approach with the immune response network theory, immunogenomics, *immune profiling and functional studie*s in order to understand and predict vaccine– induced immune responses; and uses this information to engineer vaccine candidates and to drive *individualized vaccinology*.

- 1. Poland et. al. Vaccinomics and a new paradigm for the development of preventive vaccines against viral infections. <u>OMICS: A Journal of Integrative Biology</u>, 2011;15(9):625-36.
- 2. Poland et. al. Systems biology approaches to new vaccine development. <u>Current Opinion in</u> <u>Immunology</u> 2011;23(3):436-443.
- 3. Poland et al. Vaccinomics and personalized vaccinology: Is science leading us toward a new path of directed vaccine development and discovery? <u>PLoS Pathogens</u>. 2011, 7(12):e1002344.
- 4. Poland GA, et al. Seminars in Immunology 2013.

Recent Theories/Approaches in Vaccinology

Theory/Model	Description	Tools used	
Reverse Vaccinology	The use of genomic data and in silico analyses to rapidly identify antigens for vaccine use.	Transcriptomics, proteomics, epitope prediction algorithms, immune monitoring	
Immune Response Network Theory	Describes immunity as the predictable result of sequential activation/interaction of genes and gene pathways.	Transcriptomics, proteomics, pathway analysis	
Vaccinomics	A comprehensive study of immune responses to vaccination such that vaccine-induced immunity can be understood and predicted and then applied to the rationale and directed development of vaccines.	Transcriptomics, proteomics, epigenomics, Immunogenetics/immunogenomics, computational modeling, immune monitoring	
Systems Vaccinology	The application of systems biology methods to understanding and predicting vaccine-induced immune responses.	Transcriptomics, proteomics, epigenomics, computational modeling	
Structural Vaccinology	The use of structural biology studies to facilitate the selection of vaccine epitopes.	Proteomics, NMR, X-ray crystallography, immune monitoring	
Vaccine Informatics	The use of bioinformatics approaches to facilitate vaccine development, production, testing, and licensure.	Computational modeling, epitope prediction algorithms, HLA-binding algorithms, data mining and integration, mathematical simulations of immune response	

- Predictive biomarkers of vaccine response
- Early immunosignatures of adverse events
- Directed vaccine design, development, testing, licensure

Iterative cycle of discovery, replication, validation, and application

Vaccinomics: The Future

We predict a new era of personalized "*Predictive Vaccinology*" whereby we:

- Abandon a "one size and dose fits all vaccine approach"
- Predict whether to give a vaccine based on likelihood of response (and perhaps need)
- Predict the likelihood of a significant adverse event to a vaccine
- Predict the number of doses likely to be needed to induce a protective response to a vaccine (HBV, HPV, measles examples)
- Design/develop new vaccines

Blaise Pascal

"The majority opinion is the best way because it can be seen and is strong enough to command obedience; <u>but it</u> is the opinion of the least clever."

What Would Kuhn Say?

- We make the mistake of requiring new theories to explain *all* the facts with which it can be confronted – and reject those that don't
- New advances require attracting adherents away from current dogma and other competing theories

Thomas Kuhn, The Structure of Scientific Revolutions, 1962

Personalized Vaccinology

SCIENTIFIC AMERICAN[™]

SEARCH

Log In or Register

Log In to SA Digital

Energy & Sustainability - Evolution - Health - Mind & Brain - Space - Technology - More Scie

Home » Features »

Features | Health

Vaccinomics: Scientists Are Devising Your Personal Vaccine

A new breed of vaccine is being developed that will make possible immunizations tailored to your genetic profile. But how long will it be until your personalized booster shots are ready?

<u>Gregory Poland</u>, the head of the Mayo Clinic's <u>Vaccine Research Group</u>, has been working to unite the fields of genomics and vaccinology—what he calls "vaccinomics"—

ONE-OFF SHOT: Although truly personalized vaccine regimes might seem a far-off dream, some researchers are looking to genomics to usher in an era of vaccinomics.

Acceptance of Vaccinomics

- "...one of the most innovative scientific concepts of the decade" (*Vaccinomics: Scientists are Devising Your Personal Vaccine.* Scientific American)
- "...one of the hottest "omics" fields" (*Thinking Outside the Genome.* The Scientist)

Vaccinology 3.0

• Vaccinology 3.0

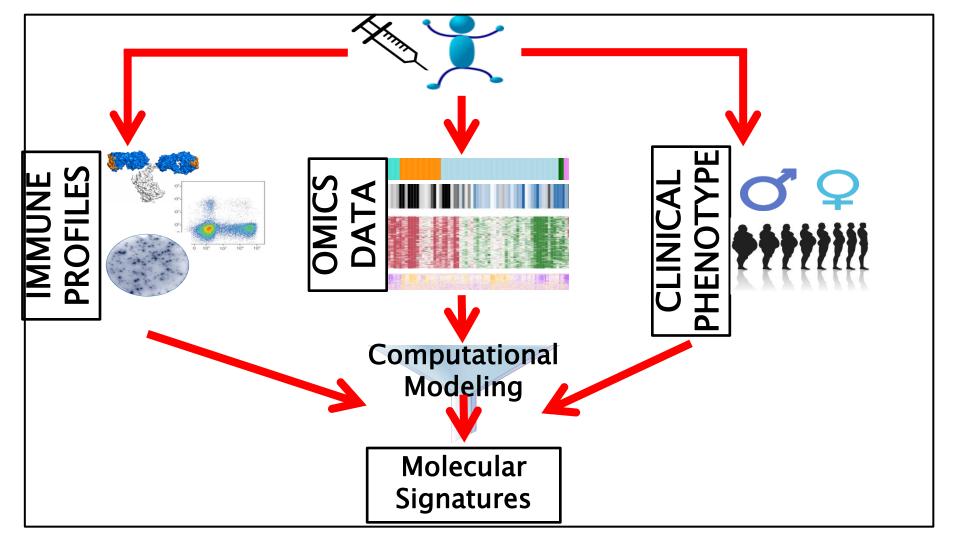
- Vaccinomics/system biology approaches
- Advanced adjuvants/antigen packaging (nanoparticles)
- New vaccines for specific subgroups
- Personalized vaccinology Precision vaccinology

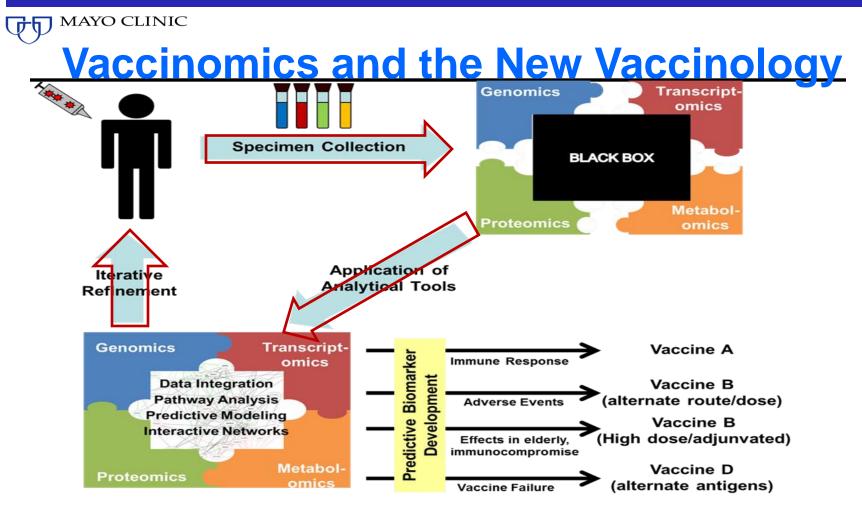
Discover \rightarrow Validate \rightarrow Characterize \rightarrow Apply

Poland GA, et al. Seminars in Immunology 2013

Discover: Keys to the Black Box

Proteomics Quantitative MS 2D gel electrophoresis Yeast-2 hybrids NMRMetabolomics Quantitative MS X-ray crystallography Mag. Res. Spectroscopy Pos. Emission TomographyBioinformatics tools Support vector machines Replication and validationDatabases Machine learning algorithms Data reductionEpigenomics ChIP-Seq MDIP-Seq MRE-Seq MethylC-SeqImmune Profiles Epitope prediction algorithms Multi-color flow cytometry CyTOF Pathogen protein arrayFalse discovery rate Level of significance Principal components ClusteringLinear discriminant analysis Support vector machines Random forests	S C C	Genetics/Genomics SNP typing Copy Number Variation Gene sequence data niRNA/siRNA profiles	<u>Transcriptomics</u> mRNA-Seq SAGE Microarray	В.	Stochastic models Mechanistic models Predictive models Predictive algorithms Neural networks	Network Models Pathways Genesets Interactions Data integration
ChIP-SeqEpitope prediction algorithmsLevel of significanceSupport vector machinesMDIP-SeqMulti-color flow cytometryPrincipal componentsRandom forestsMRE-SeqCyTOFClusteringClustering	2 Y	Quantitative MS 2D gel electrophoresis ⁄east-2 hybrids	Quantitative MS X-ray crystallography Mag. Res. Spectroscopy		Support vector machines	Machine learning algorithms
	C M M	ChIP-Seq MDIP-Seq MRE-Seq	Epitope prediction algorithms Multi-color flow cytometry CyTOF		Level of significance Principal components	Support vector machines


A. High dimensional approaches to assess response to vaccination


MAYO CLINIC

Shotgun metagenomics

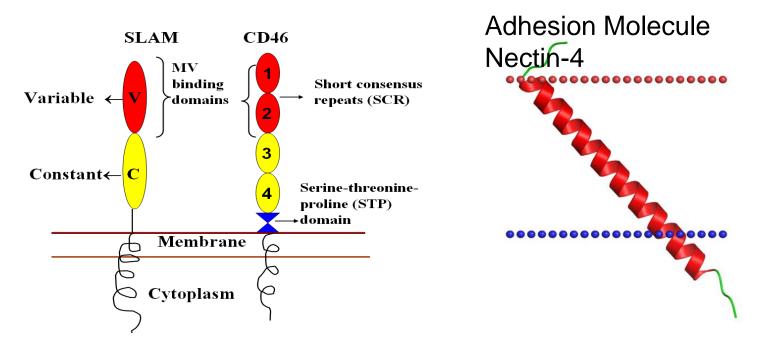
T-RFLP

B. Bioinformatics approaches to interpreting the data from "A"

Poland GA, et al. Seminars in Immunology 2013.

• Are findings from a discovery cohort able to be replicated in a validation cohort?

 Test replication and validation in subgroups of interest


MAYO CLINIC

Спатастегіze: Determine Polymorphism Effects

- Functional studies of well-characterized genetic variants
- Altered secretion patterns of cytokines
- Altered transcription of important genes (signaling molecules) and gene products
- Differential binding, processing, and expression/presentation of antigenic peptides
- Differential range of presented peptides (genetic restriction)
- Altered binding of virus/antigens by membrane-based receptors (TLR, other)
- Differential receptor function, expression, affinities

Measles Virus Receptors SLAM and CD46 and <u>Measles Virus Epithelial Cell Receptor Nectin-4</u>

Viral usage: SLAM (measles vaccine type strains, some wild type strains) CD46 (wild type measles virus strains, vaccine (Edmonston) strains)

SLAM SNP Associations

SNP ID	Location	Genotype	Median Ab (IU/mL)	P-value
rs3796504	Thr-Pro (Ex-7)	GG/GT/TT	1589/1066/497	0.01
rs164288	Thr-Thr (Ex-3)	GG/G <mark>A/AA</mark>	1602/1102/497	0.03
rs164283	Intronic	TT/TC/CC	1670/1265/1848	< 0.01
rs1503854	Intronic	AA/A <mark>G/GG</mark>	1619/1348/1863	0.01
rs12076998	5' UTR	TT/TC/CC	1467/1991/*	0.01
rs2025515	Intronic	GG/GT/TT	1477/1796/*	0.02
rs11265452	Intronic	AA/A <mark>G/GG</mark>	1553/1453/1924	0.04
rs11265449	Intronic	CC/CG/GG	1559/1445/1796	0.05
rs16832283	Intronic	TT/TC/CC	1553/1476/1924	0.05

A total of 21 SNPs were tested; only those found to be statistically significant ($p \le 0.05$) shown *No subject in that genotype N=339

Measles Immune Responses

Immune measure	SNP (Location)	Genotype	Median IgG antibody level (IU/ml)	P-value
Antibody	rs164288 (coding)	GG/GA/AA	1602/1102/497	0.03

Discovery study: Dhiman et al, J Allergy Clin Immunol 120:666-672, 2007 A total of 21 SNPs were examined in 339 subjects

Immune measure	SNP	Genotype	Median (SFC per 2 x 10 ⁵ PBMCs	P-value
IFNY Elispot	rs164288 (coding)	GG/GA/AA	29/10/	0.04

Replication study: *Ovsyannikova et al, Human Heredity, 2011;72(3):206-223.* A total of 55 SNPs were examined in 745 subjects; SFC – spot-forming cell -- No subject in that genotype

The result of our work to date is that we can explain and predict about 30% of the inter-individual variation in measles vaccine response

Apply: *"Predictive Vaccinology"*

- Predict whether to give a vaccine based on likelihood of response
 - HBV extended haplotype
 - HPV vaccine biomarker
- Design/develop new vaccines
 - Peptide vaccines (measles, smallpox, CHIK, ZIKA)
 - Measles vaccine based on genotype (SLAM, CD46)

			1
	1	FOR SI	- 1 - 2
6 4 6	- 3 _	FOR SINGLE USE	3 4
- +		E	- 5m

Benefits of Vaccinomics - Personalized Vaccinology

• Design of new vaccine candidates by:

- Understanding how immune responses are generated across age, gender, race, medical condition using a systems-level approach
- A directed, rather than empiric, approach
- Vaccine monitoring in clinical trials (gene signatures)

Adversomics

MAYO CLINIC

 Understanding genetic drivers of aberrant immune, auto-immune, or non-immune responses (vaccine failure) to a vaccine

Clinical practice – Individualized Vaccinology

 What vaccines, what doses, what type of vaccine, in what individual/group

Adversomics Studies

- JID 2006;194:444
 - Cytokine gene expression and fever after smallpox vaccine
- JID 2007;196:212
 - Smallpox vaccine and fever
 - IL-1A, IL-18 SNPs
- JID 2008;198:16
 - Smallpox vaccine and AE (fever, rash, enlarged LN)
 - MTHFR, IRF1, IL-4 SNPs and haplotypes
- J Biomed Sem 2012;20:18
 - Generic fever gene networks (TNFa)
- Nature Genetics 2014;46:1274
 - MMR and febrile seizure
 - IFI44L, CD46, SCN1A, 2A, TMEM16 (ANO3) SNPs

Ном Will We Get To Personalized Vaccinology?

- Demand by public and HCP's for safety and better value proposition
- \$100 genome
- Large genotype-phenotype databases
- Funding for vaccinomics/system biology vaccine studies (NIH-HIPC, others)
- Education of providers
- Different public health paradigm
 - Away from "one dose fits all" and "every vaccine for everyone" to "best vaccine for this individual if they are at risk for this disease"

- Are you really going to develop a unique vaccine for everyone?
 - No! (although that is one pathway cancer vaccines are pursuing)
 - Subgroups
 - Age
 - Gender
 - Genetic profile
 - Immune status/Disease

Too expensive!

 Not when HPV vaccine costs \$175 a dose - many respond after 1-2 doses, some have no response after 3 doses!

Isn't it far away?

- Already doing it with flu vaccine
- Already understanding adversomics public perceptions of safety may drive further use
- \$100 genome coming...soon!

• Just too difficult!

- A different paradigm of medical practice
- Already being done for certain chemotherapy drugs, resistant depression and hypertension, other drugs and disease states

Personalized Influenza Vaccines

- IIV3 and IIV4
- LAIV4 (2–49 yrs)
- HD-IIV3 [> 65 yrs]
- ID-IIV4) [18-64 yrs]
- MF59-adjuvanted IIV3
- RIV4 (> 18 yrs)
- IIV3 by jet injector (18–64 y/o)
- ccllV3 (> 18y/o)
- More coming...

The Future Has Already Started!

Personalized Vaccinology

- Disease Model
 - Different HBV doses for CRF
- Age Model (infant, child, adolescent, immunosenescent adults)
 - Smaller doses, 2 doses for infants
 - HDFlu or MF59Flu for elderly
- Vaccine Model
 - Influenza vaccines (9 different types!)
- Next up...Genetic Model
 - HLA types (SLAM, CD46, others)

"Knowing is not enough; we must apply,

Willing is not enough; we must do"

- Goethe

The Future

- Vaccinomics and Predictive Vaccinology
 - Abandon a "one size and dose fits all vaccine approach"
 - Predict whether to give a vaccine based on likelihood of response
 - Predict the likelihood of a significant adverse event to a vaccine
 - Predict the number of doses likely to be needed to induce a response to a vaccine (HBV and measles examples)
 - Design/develop new vaccines
 - Next apply vaccinology 3.0 to a new paradigm of personalized vaccinology...

 NIH/NIAID grants: AI-48793, AI-33144, AI-89859, AI-40065, NO1-AI40065, UO1-AI089859

Biostatistics & Bioinformatics

MAYO CLINIC

B. McKinney, PhD A. Oberg, PhD D. Schaid, PhD B. Larrabee, MS D, Grill, MS M. Zimmermann, PhD **Laboratory**

R. Kennedy, PhD

I. Ovsyannikova, PhD

Haralambieva, PhD

Emily Voight, PhD

N. Pinsky, BS

E. Swanson

W. Carter, BS

C. Vitse, BS