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How did I get interested in this topic?



• Hybrid Systems Computation and Control:

- convergence between control and automata theory.

• Hybrid Automata: an outcome of this convergence  

- modeling formalism for systems exhibiting both 

discrete and continuous behavior,

- successfully used to model and analyze embedded

and biological systems. 

Convergence of Theories



Lack of Common Foundation for HA

• Mode dynamics:

- Linear system (LS)

• Mode switching:

- Finite automaton (FA)

• Different techniques:

- LS reduction

- FA minimization
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• LS & FA taught separately:  No common foundation!



• Finite automata can be conveniently regarded as 

time invariant linear systems over semimodules:

- linear systems techniques generalize to automata

• Examples of such techniques include:

- linear transformations of automata,

- minimization and determinization of automata as 

observability and reachability reductions 

- Z-transform of automata to compute associated 

regular expression through Gaussian elimination. 

Main Conjecture



Minimal DFA are Not Minimal NFA
(Arnold, Dicky and Nivat’s Example)
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Minimal NFA: How are they Related?
(Arnold, Dicky and Nivat’s Example)

L = ab+ac + ba+bc + ca+cb

No homomorphism of either automaton onto the other.
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Minimal NFA: How are they Related?
(Arnold, Dicky and Nivat’s Example)

Carrez’s solution: Take both in a terminal NFA.

Is this the best one can do? 

No! One can use use linear (similarity) transformations.



Observability Reduction HSCC’09
(Arnold, Dicky and Nivat’s Example)
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Reachability Reduction HSCC’09
(Arnold, Dicky and Nivat’s Example)

  

Define linear transformation  x t  = x tT:
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Observability and minimization



Finite Automata as Linear Systems 

  

 Consider a finite automaton M = (X,,,S,F) with:

    - finite set of states X, finite input alphabet ,

    - transition relation   X    X,

    - starting and final sets of states S,F  X 



Finite Automata as Linear Systems 

  

 Consider a finite automaton M = (X,,,S,F) with:

    - finite set of states X, finite input alphabet ,

    - transition relation   X    X,

    - starting and final sets of states S,F  X 

 Let X denote row and column indices. Then:

    -  defines a matrix A,

    - S and F define corresponding vectors



Finite Automata as Linear Systems 

 

 Now define the linear system L
M

= [S,A,C]:

     
x
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Semimodule of Languages 

  

 (
*
) is an idempotent semiring (quantale):

     - ((
*
),+,0) is a commutative idempotent monoid (union),

     - ((
*
),,1) is a monoid (concatenation),

     - multiplication distributes over addition,

     - 0 is an annihilator: 0  a = 0

 ((
*
))

n  is a semimodule over scalars in (
*
):

     - r(x+y) = rx + ry,   (r+s)x = rx + sx,   (rs)x   = r(sx),         

     - 1x       = x,                 0x  = 0  

 Note: No additive and multiplicative inverses!
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Observability 

  

 Let L = [S,A,C]. Observe its output upto n-1:

       [y(0) y(1) ... y(n-1)] = x
0

t
[C AC ... A

n-1
C] = x

0

t
O     (1)

 If L operates on a vector space:

    - L is observable if: x
0
 is uniquely determined by (1),

    - Observability matrix O: has rank n,

    - n-outputs suffice: A
n
C = s

1
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 If L operates on a semimodule:

    - L is observable if: x
0
 is uniquely determined by (1)
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The Cayley-Hamilton Theorem

  
( An = s
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An-1 + s
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 Permutations are bijections of {1,...,n}:

     - Example:   = {(1,2),(2,3),(3,4),(4,1),(5,7),(6,6),(7,5)}

 The graph G() of a permutation :         

     - G() decomposes into: elementary cycles,

 The sign of a permutation: 

     - Pos/Neg: even/odd number of even length cycles,

     - P
n


/ P

n


:    all positive/negative permutations.
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Eigenvalues in Vector Spaces 

  

 The eigenvalues of a square matrix A:

     - Eigenvector equation: x
t
A = x

t
s

 The characteristic equation of A:

     - The characteristic polynomial: cp
A
(s) = |sI-A|

     - The characteristic equation:     cp
A
(s) = 0

 The determinant of A:

     - The determinant: |A| = (A)
Pn

 - (A)
Pn

 ,

     - Permutation application: (A) = A(i,(i))
i1

n
     

eigenvalueeigenvector
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 A satisfies its characteristic equation: cp
A
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CHT in Commutative Semirings
(Straubing’s Proof) 

 

 Lift original semiring to the semiring of paths:
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[ O

  L is observable if x  is uniquely determin
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1).
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A C

0 1 1 1 0 0 1  O =
1 1 0 1 0 0 0

1 0 1 0
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x 0 0 1

ty matrix of O L  is:

x3 x2x1

a

ab

b

L1


