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Abstract

Many astrophysically relevant systems have been studied, in the re-
cent years, by means of the conformal flatness condition (CFC) yielding
very satisfactory results as far as the quality of CFC is concerned. How-
ever, this does not nullify the need for constant evaluation of the CFC
approximation in various different systems. In this work, we study the
quality of CFC for the case of single, differentially rotating, relativistic
stars. In addition, we verify its excellent performance for the case of
uniform rotation. We use the numerical scheme KEH, as it is imple-
mented in the computational code RNS. Necessary changes are made
to the code, in order to allow for calculations in the CFC approxima-
tion. Our results are very encouraging, as even for the fastest rotating
models, deviation from full general relativity is around 5%.

1 Introduction

Evaluation of the conformal flatness condition (CFC) approximation in
various physical systems is crucial in order to better understand the limits
within which it can be applied, as well as the magnitude of the error one is
making by choosing to apply the CFC approximation in a physical problem
instead of full general relativity. Cook, Shapiro and Teukolsky (CST) [3, 5, 4]
tested the scheme developed by Komatsu, Eriguchi and Hachisu (KEH) [8, 9]
and used it in order to test the CFC approximation for the case of single,

∗This work is a short summary of the thesis for the M.Sc. in Computational Physics
completed in August 2011 under the supervision of professor Nikolaos Stergioulas.

1

piosif@auth.gr


uniformly rotating, relativistic stars yielding very encouraging results [6]. In
this work, we study the quality of CFC for the case of differential rotation and
we verify its excellent performance for the case of uniform rotation.

Following KEH the line element for a stationary, rotating, axisymmetric
star in equilibrium is given by

ds2 = −eγ+ρdt2 + eγ−ρr2 sin2 θ(dφ− ωdt)2 + e2µ(dr2 + r2dθ2) , (1)

where γ, ρ, ω and µ are metric potentials depending only on r and θ. We
assume that the stellar matter behaves as a perfect fluid and that the equation
of state obeys the polytropic relation

p = Kρ1+
1

N , (2)

where ρ is the rest mass density, K the polytropic constant and N the poly-
tropic index. For the case of differential rotation we adopt the same rotation
law as in KEH, namely

F (Ω) = A2(Ωc − Ω) , (3)

where, A is a positive constant that determines the length scale over which the
angular velocity changes within the star and Ωc is the angular velocity at the
center of the configuration.

2 Method – Basic equations

Beginning from the line element expression in the 3 + 1 formalism [1, 2,
7] and using the basic assumption of the CFC approximation, γab = ψ4nab,
together with the fact that for an axisymmetric star in spherical coordinates
βφ is the only non-zero component of the shift vector βα, the line element in
the CFC approximation is written as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) ⇒

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2) + ψ4r2 sin2 θ(dφ+ βφdt)2 . (4)

Comparing the above expression to the form of the line element in the KEH
scheme, i.e relation (1), we get

α = e(γ+ρ)/2 , ψ = eµ/2 = e(γ−ρ)/4 , βφ = −ω .

From the second relation above we obtain

µ =
γ − ρ

2
. (5)

Using the above relation in the standard KEH scheme instead of the differential
equation for µ, we impose the CFC on our solution.
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Various physical quantities are calculated for each model both in CFC and
in full GR. As a diagnostic of the quality of the CFC we use the quantity

∆c =
µfull GR − µCFC

µCFC

=
µ− γ−ρ

2

µ
. (6)

In addition, relative differences between CFC and full GR are calculated for
every physical quantity. The above procedure is applied in the sequences of
models that appear in Table I of [10], which is reproduced here in Tables 1
and 2 for convenience.

Sequences A and B consist of differentially rotating models, whereas se-
quences AU and BU of uniformly rotating models. Configurations in sequences
A and AU have constant rest mass of M0 = 1.506M⊙ and configurations in
sequences B and BU have constant central mass density of ρc = 1.28×10−3 or
equivalently constant central energy density of ǫc = 1.444×10−3. In all models
a polytropic equation of state has been assumed with N = 1 and K = 100. We
note that in addition to the models provided by [10], we located two additional
models that rotate even faster, namely model A12 with a polar to equatorial
radius ratio of 0.25 and model B13 with rp/re = 0.34.

3 Results

The outcome of our tests for the different models constructed is very en-
couraging. Concerning the physical quantities that we calculated, the relative
differences between CFC and full GR (Figures 1, 2, 3 and 4) were around or
well below 10−2 in most cases. We also present the quantity ∆c as a function
of the CST variable s (Figures 5a, 5b, 6a and 6b) and also in the x− z plane
(Figures 7a, 7b, 8a and 8b) for the fastest rotating models of each sequence.
We note that the CST variable s was introduced [3] as an improvement upon
the original KEH method via the transformation

r = re
s

1− s
, (7)

in order to map radial infinity to s = 1. In the above expression, re is the
coordinate equatorial radius. This choice improves accuracy in calculations
of radial integrals and the boundary conditions are satisfied exactly. The
polar to equatorial radius ratio, rp/re, is used to indicate how fast a certain
configuration is rotating. The most extreme case is the model B13 but even
in that case the maximum value of ∆c is around 6%.

4 Conclusions

The CFC approximation appears to be a robust method to study systems
that exhibit differential rotation if the demands for accuracy are not particu-
larly strict, i.e if one can cope with a maximum error of around 5%. In most
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Table 1: Sequences A and AU: Differentially and uniformly rotating equilib-
rium models, of constant rest mass M0 = 1.506M⊙.

Model ǫc rp/re M T/|W | Ωc Ωe Re

(×10−3) (×10−1) (×10−2) (×10−2)

A0 1.444 1.0 1.40013 0.0000 0.000 0.000 9.58505

A1 1.300 0.930 1.40439 0.1770 2.012 0.756 10.0107

A2 1.187 0.875 1.40726 0.3264 2.575 0.975 10.3969

A3 1.074 0.820 1.40934 0.4853 2.940 1.124 10.8403

A4 0.961 0.762 1.41359 0.6639 3.193 1.233 11.3714

A5 0.848 0.703 1.41775 0.8580 3.337 1.302 12.0047

A6 0.735 0.643 1.42087 1.0692 3.381 1.336 12.7723

A7 0.622 0.579 1.42758 1.3111 3.340 1.337 13.7516

A8 0.509 0.513 1.43343 1.5801 3.199 1.301 15.0115

A9 0.396 0.444 1.43822 1.8842 2.952 1.223 16.6970

A10 0.283 0.370 1.44913 2.2362 2.605 1.101 19.0370

A11 0.170 0.294 1.45891 2.5966 2.187 0.945 21.9181

A12 0.110 0.250 1.45743 2.7431 1.965 0.859 23.3215

AU0 1.444 1.0 1.40013 0.0000 0.000 0.000 9.58505

AU1 1.300 0.919 1.40431 0.1963 1.296 1.296 10.1924

AU2 1.187 0.852 1.40756 0.3653 1.656 1.656 10.7895

AU3 1.074 0.780 1.41115 0.5502 1.888 1.888 11.5566

AU4 0.961 0.698 1.41523 0.7548 2.028 2.028 12.6441

AU5 0.863 0.575 1.41997 0.9542 2.084 2.084 14.9350
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Table 2: Sequences B and BU: Differentially and uniformly rotating equi-
librium models, of constant central rest mass density ρc = 1.28 × 10−3 or
equivalently constant central enrgy density ǫc.

Model ǫc rp/re M T/|W | Ωc Ωe Re

(×10−3) (×10−1) (×10−2) (×10−2)

B0 1.444 1.0 1.40013 0.0000 0.000 0.000 9.58505

B1 1.444 0.950 1.43676 0.1249 1.800 0.666 9.74695

B2 1.444 0.900 1.47789 0.2573 2.574 0.994 9.92100

B3 1.444 0.849 1.52572 0.4004 3.200 1.163 10.1127

B4 1.444 0.800 1.57840 0.5462 3.728 1.342 10.3113

B5 1.444 0.750 1.64041 0.7041 4.227 1.504 10.5290

B6 1.444 0.700 1.71268 0.8718 4.707 1.651 10.7617

B7 1.444 0.650 1.79773 1.0500 5.186 1.789 11.0071

B8 1.444 0.600 1.89887 1.2393 5.684 1.921 11.2590

B9 1.444 0.550 2.02030 1.4396 6.233 2.052 11.5026

B10 1.444 0.500 2.16685 1.6497 6.890 2.192 11.7049

B11 1.444 0.450 2.33646 1.8673 7.780 2.359 11.7834

B12 1.444 0.400 2.53257 2.0721 9.119 2.584 11.6435

B13 1.444 0.340 2.71188 2.2769 11.93 3.010 10.9479

BU0 1.444 1.0 1.40013 0.0000 0.000 0.000 9.58505

BU1 1.444 0.95 1.43191 0.1199 1.075 1.075 9.82995

BU2 1.444 0.90 1.46626 0.2437 1.508 1.508 10.1049

BU3 1.444 0.85 1.50354 0.3701 1.829 1.829 10.4171

BU4 1.444 0.80 1.54353 0.4975 2.084 2.084 10.7760

BU5 1.444 0.75 1.58545 0.6232 2.290 2.290 11.1947

BU6 1.444 0.70 1.62754 0.7419 2.452 2.452 11.6926

BU7 1.444 0.65 1.66575 0.8439 2.569 2.569 12.2998

BU8 1.444 0.60 1.69174 0.9104 2.633 2.633 13.0664

BU9 1.444 0.58 1.69550 0.9198 2.642 2.642 13.4354
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Figure 1: Sequence A: Relative differences between full GR and CFC approx-
imation for all physical quantities.
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Figure 2: Sequence AU: Relative differences between full GR and CFC ap-
proximation for all physical quantities.
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Figure 3: Sequence B: Relative differences between full GR and CFC approx-
imation for all physical quantities.
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Figure 4: Sequence BU: Relative differences between full GR and CFC ap-
proximation for all physical quantities.
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Figure 5: Relative difference ∆c calculated on the equatorial plane for the
fastest rotating model of each sequence.
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Figure 6: Relative difference ∆c calculated on the equatorial plane for the
fastest rotating model of each sequence.
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Figure 7: Relative difference ∆c on the x − z plane for the fastest rotating
model of each sequence.
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Figure 8: Relative difference ∆c on the x − z plane for the fastest rotating
model of each sequence.
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cases the errors encountered are significantly lower and one should examine
the fastest rotating models to observe the maximum error mentioned above.
In sequence A, all the relative differences calculated are below 1% and ∆c for
the fastest rotating model of the sequence remains below 2%. In sequence B
larger deviations are observed, however only the relative differences for the
angular velocities approach the maximum value of 6%. The diagnostic ∆c for
the fastest rotating model of sequence B indicates that the maximum deviation
from full GR is only around 6%. This result should provide added confidence
in choosing the CFC approximation as a possible candidate to tackle an astro-
physically relevant problem that involves differential rotation.

As far as the case of uniform rotation is concerned, we verified that the
CFC approximation works particularly well. For every physical quantity that
was evaluated, the corresponding relative difference between CFC and full GR
never exceeded 1%, staying mainly in the 10−4 to 10−3 range. In addition, the
diagnostic ∆c for the fastest uniformly rotating models remained under 2%.

Future directions for this project include the calculation of the Bach tensor
for every configuration in order to add another diagnostic in our study of
the CFC approximation. If the CFC approximation is a valid method for
studying systems that rotate differentially, then the Bach tensor should vanish
or otherwise be close to zero. We expect that the calculation of the Bach
tensor will not alter significantly the already produced results but will further
strengthen CFC as a satisfactory approximation of full GR.
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