Chapter 2: The Chemical Basis of Life

To understand A&P it is essential to have a basic knowledge of chemistry...Why??

Chemicals compose the structures of the body & interactions of chemicals with 1 another are responsible for the fxns of the body!

Chapter 2 Outline

I. Basic Chemistry

- A. Matter, Mass, and Weight
- B. Elements & atoms
- C. Electrons and Chemical Bonding
- D. Molecules & Compounds
- E. Intermolecular Forces

II. Chemical Rxns and E⁺

- A. Synthesis rxns
- B. Decomposition rxns
- C. Reversible rxns
- D. Oxidation-Reduction rxns
- E. Energy
- F. Speed of Chemical rxns

III. Inorganic Chemistry

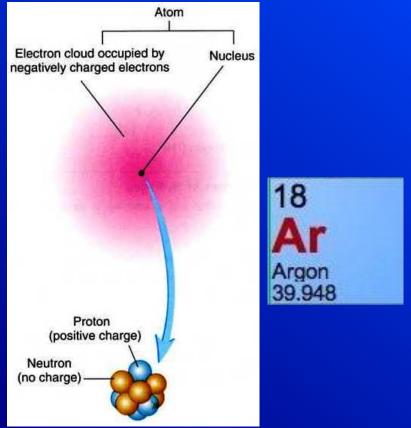
- A. Water
- B. Solution []'s
- C. Acids and Bases
- $\mathsf{D}. \quad \mathsf{O}_2 \& \mathsf{CO}_2$
- IV. Organic Chemistry
 - A. Carbohydrates
 - B. Lipids
 - C. Proteins
 - D. Nucleic Acids
 - E. Adenosine Triphosphate

- A. Matter, Mass and Weight
- B. Elements & atoms
- C. Electrons & Chemical Bonding
- D. Molecules & Compounds
- E. Intermolecular Forces

Basic Chemistry Matter, Mass, & Weight

- All living and non-living things are composed of <u>matter.</u>
 - Matter: anything that occupies space & has Mass
 - Mass: the amount of matter in an object
 - International units for mass kilograms (kg)
- Weight: gravitational force acting on an object of a given mass
 - Difference in weight between earth & space
 - It can Δ riding in a plane to being on the ground

Basic Chemistry Elements and Atoms


- <u>Element</u>: the simplest type of matter w/unique chemical properties (multiple atoms of the same kind)
 - Most common in the human body:
 - O, C, H, N
 - Usually represented by a "symbol" (letter)
 - Ex/ Oxygen = O
 - Ex/ Sodium = Na???? B/c in Latin it is called <u>na</u>trium
- Atom: smallest particle of an element that still has the chemical characteristics of that element.

Periodic Table of Elements

	1 IA		С	Solid		M	etalloids	Other	Nonmeta									18 VIIIA	
	1 H	2 IIA	Hg	Liquid				nonm		lalogens	Noble gases		13	14	15	16	17	2 He	
	lydrogen .00794				ſ			M	Metals				IIIA	IVA	VA	VIA	VIIA	Helium 4.002602	
	3	4	Η	Gas		kali Al	kaline ear	th Lanth	anoids T	Transition metals	Post- transition metals		5	6	7	8	9	10	
2	_ithium	Be Beryllium	Rf	Unknow			etals	Actino	100 BB				Boron	C Carbon	N Nitrogen	O Oxygen	F Fluorine	Ne Neon	
	5.941 1 1	9.012182 12									motaio		10.811 13	12.0107 14	14.0067 15	15.9994 16	18.9984032 17	20.1797 18	
3	Na	М́д	3	4	5	6	7	8	9	10	11	12	Ă	Si	P	S	ĊI	År	
	Sodium	Magnesium 24.3050	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	Aluminium 26.9815386	Silicon 28.0855	Phosphorus 30.973762	Sulfur 32.065	Chlorine 35.453	Argon 39.948	
	19		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
	otassium	Ca Calcium	Sc Scandium	Titanium	V Vanadium	Cr Chromium	Mn Manganese	Fe	Co	Ni Nickel	Cu Copper 63.546	Zn	Gallium	Ge Germanium	As Arsenic	Se Selenium	Br Bromine	Krypton 83.798	
	9.0983 3 7	40.078 38	44.955912 39	47.867 40	50.9415 41	51.9961 42	54.938045 43	55.845 44	58.933195 45	58.6934 46	63.546 47	65.38 48	69.723 49	72.64 50	74.92160 51	78.96 52	79.904 53	83.798 54	
	Rb	Sr	Ŷ	Žr	Nb	Мо	Tc	Ru	Rh	Pd	Åg	Čd	În	Sn	Sb	Те	Ĭ	Xe	
	Rubidium 35.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.96	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82 Db	83	84 D	85	86	
	CS Caesium	Ba Barium	Lanthanum	Hf Hafnium	Ta Tantalum	W Tungsten	Re	Os Osmium	Iridium	Pt Platinum	Gold	Hg	TI	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon	
	32.9054519 3 7	137.327 88	138.90547 89	178.49 104	180.94788 105	183.84 106	186.207 107	190.23 108	192.217 109	195.084 110	196.966569 111	200.59	204.3833 113	207.2 114	208.98040 115	(209)	(210) 117	(222) 118	
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo	
	Francium 223)	Radium (226)	Actinium (227)	Rutherfordium (267)	Dubnium (268)	Seaborgium (271)	Bohrium (272)	Hassium (270)	Meitnerium (276)	Darmstadtium (281)		Copernicium (285)	Ununtrium (284)	Flerovium (289)	Ununpentium (288)	Livermorium (293)	Ununseptium (294)	Ununoctium (294)	
				For el	For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses														
			4		: Table D	esign and	I Interface	Copyrig	ht © 1997	7 Michael	Dayah. h	ttp://www	.ptable.co	m Last u	pdated De	ec. 10, 20)11*		
	Key Atomic # Symbol Name Atomic Mass				59 D=	60	61	62	63	64	65	66 Di c	67	68	69 T	70	71		
			58-71	Ce Cerium	Pr Praseodymiun	Nd Neodymium	Pm Promethium	Sm Samarium	Europium	Gd Gadolinium	Tb Terbium	Dy Dysprosium	Ho Holmium	Erbium	Tm Thulium	Yb Ytterbium	Lutetium		
			V	140.116 90	140.90765 91	144.242 92	(145) 93	150.36 94	151.964 95	157.25 96	158.92535 97	162.500 98	164.93032 99	167.259 100	168.93421 101	173.054 102	174.9668 103		
			90-103		Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				Thorium 232.03806	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)		
			*Edited	by Dr. C	asagrar	nde													

Basic Chemistry Elements and Atoms: Atomic Structure

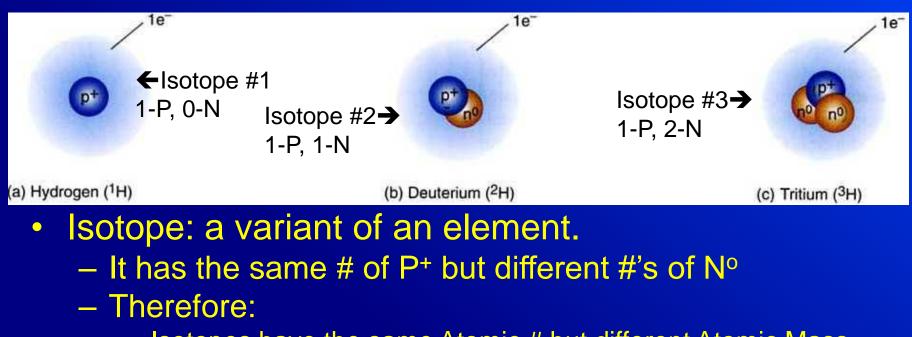
- Characteristics of matter result from structure, organization & behavior of atoms.
- Subatomic Particles:
 - A. Neutron(N°)
 - No electrical Charge
 - w/in the nucleus
 - B. Proton (P⁺)
 - 1 positive charge
 - > w/in the nucleus
 - C. Electron (E⁻)
 - 1 negative charge
 - In the e- cloud
 - 1-trillionth the volume of N° or P+
 - Most of the atom's vol is occupied by the E⁻ cloud
- **In a perfect world: $\#E^- = \#P^+ = \#N^0$

Basic Chemistry Elements and Atoms

Atomic Number

- The number of P⁺ in each atom.
- This is literally the identity of the Atom.
- If you know the P⁺ number you can tell me which element you have.

Mass Number

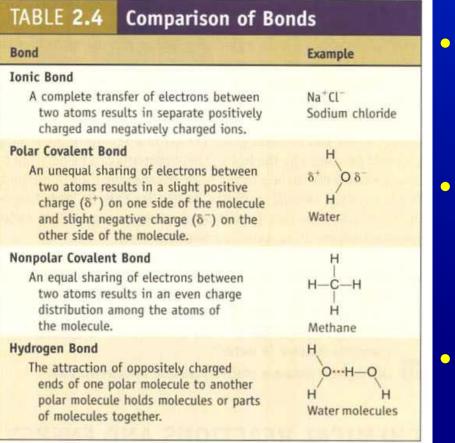

The Number of P⁺ plus the number of N^o inside of each atom.

Atomic Mass

- An average of mass because of isotopes
- **This changes because the numbers of N° can vary**
- This is a variation of an atom called an **Isotope**

•

Elements & Atoms: Isotopes & Atomic Mass

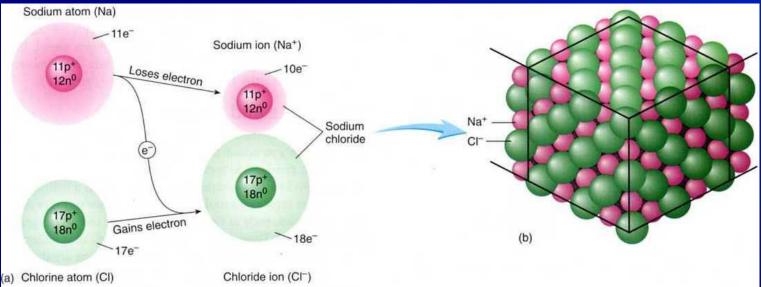

- Isotopes have the same Atomic # but different Atomic Mass
- Periodic Table:
 - The atomic mass listed is an average of the elements naturally occurring isotopes
 - Avogadro's Number 🥆

Rules for Atoms

- The atomic number in a perfect world will be equal to the number of protons, electrons and neutrons in that atoms.
- *Problem there are also rules that must be followed when it comes to the valence "shells" that the electrons occupy.
- Rules:
 - 1st shell
 - Must have 2 electrons to be full
 - 2nd & 3rd Shell (Octet rule)
 - Must each have 8 electrons in each shell to be full

Basic Chemistry Electrons and Chemical Bonding

- Outermost e- of an atom determine its chemical behavior.
- If these are transferred or shared btwn atoms it is called: **Chemical Bonding**

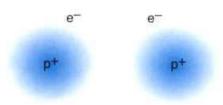


A. Ionic

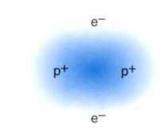
B. Covalent

Section Structure Structur

- Normally atoms are electrically neutral b/c P⁺=E⁻
- If an atom looses or gains an E- then P+≠E⁻ thus the particle becomes charged
- An Ion is a Charged Particle.
 - + Charged = Cation
 - - Charged = Anion
- <u>Ionic Bonding</u>: when ions of opposite charges attract each other and remain close together



Electrons & Chemical Bonding: Covalent Bonding

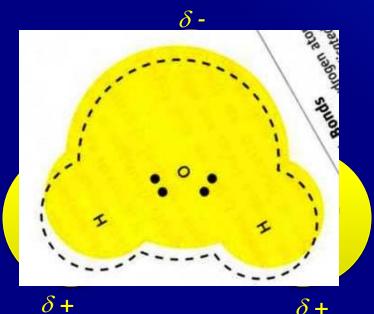

- <u>Covalent Bonding</u>: when atoms share 1 or more pairs of E⁻
- Molecules = pairing of atoms
- E⁻ occupy shells outside of the atom's nucleus
 - 1st shell hold 2 E⁻'s
 - 2nd & 3rd hold 8 E⁻'s
- These bonds can be
 - Single → 1 pair shared
 - Double
 2 pairs shared
 - Triple > 3 pairs shared
 - Quadruple
 4 pairs shared
- These Bonds can also be
 - Polar
 - Non-polar

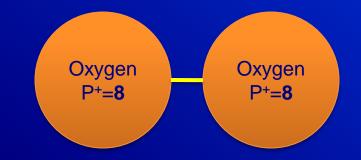
There is no interaction between the two hydrogen atoms because they are too far apart.

The positively charged nucleus of each hydrogen atom begins to attract the electron of the other.

A covalent bond is formed when the electrons are shared between the nuclei because the electrons are equally attracted to each nucleus.

Electrons & Chemical Bonding: Covalent Bonding


Polar Bonding vs. Non-polar Bonding


<u>Polar</u>

An unequal sharing of electrons because bound atoms have different numbers of protons This leads to partial charge within the same molecule δ

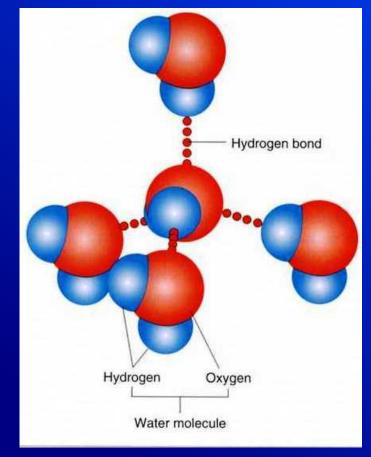
<u>Non-Polar</u>

An equal sharing of electrons because bound atoms have the same numbers of protons *This means that there is no charge in the particle*

Molecules

- 2 or more atoms chemically combine to form a structure that behaves as an independent unit
 - This can be a combination of the same atom or various atoms
 - H₂ or H₂O

<u>Compounds</u>

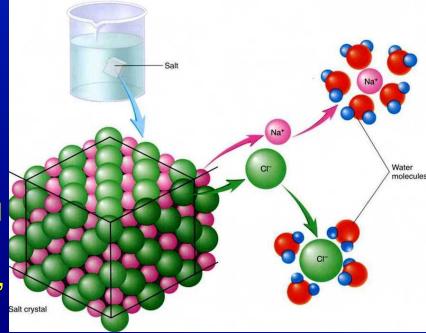

- Substance composed of 2 or more <u>different</u> types of atoms that are chemically combined
- **Thus not all molecules are compounds**
- NaCl (Ionic Compund)
- $C_6H_{12}O_6$
- H₂O
- **Thus not all molecules are compounds**
- Kinds and #'s of atoms in a molecule or compound can be represented by a formula denoting chemicals by symbol & # subscript
- Glucose $C_6H_{12}O_6 \rightarrow$ there are 6-C 12-H and 6-O
- Molecular Mass (MM): adding up the MM of all its atoms 15

Intermolecular Forces

result from weak electrostatic attractions btwn oppositely charged parts of molecules or btwn ions and molecules **These are much weaker than chemical bonds**

Hydrogen Bonds

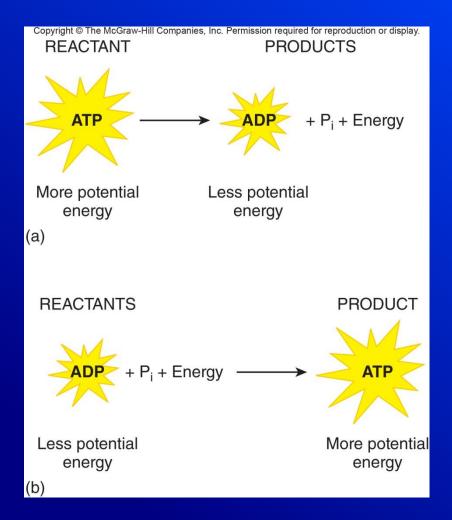
- Molecules w/ polar covalent bonds have + and – ends
- This results in the attraction of the + and – ends to each other.
 - Such as the H₂O example in the picture →
- These play an important role in determining the 3-D shape of complex molecules b/c H-bonds between different polar parts hold the molecule in its shape.



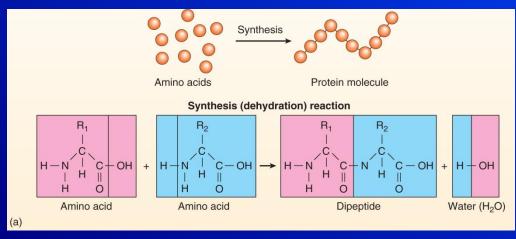
Intermolecular Forces

weak electrostatic attractions btwn oppositely charged parts of molecules/btwn ions and molecules **These are much weaker than chemical bonds**

Solubility and Dissociation

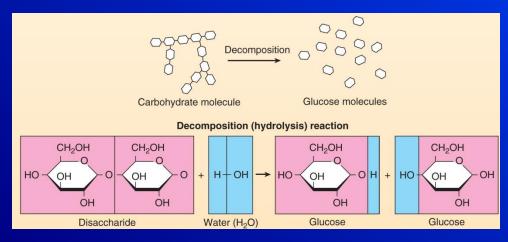

- Solubility: ability of 1 substance to dissolve another
- Charged or polar substances easily dissolve in H₂O
- Non-polar substances DO NOT
- Ionic Compounds:
 - They will dissociate(separate) because the cations will be attracted to the – and anions will be attracted to the +
- Although molecules do not dissociate, 1 molecule can be surrounded and thus suspended in H₂O
- *Electrolytes*
 - Cations and anions can conduct current

II. Chemical Rxns and Energy (E⁺)


- A. Synthesis Rxns
- B. Decomposition Rxns
- C. Reversible Rxns
- D. Oxidation-reduction Rxns
- E. Energy (E⁺)

- Atoms, ions, molecules, or compounds interact to form or break chemical bonds
- 2 players:
 - A. Reactants: substances that enter a rxn
 - B. Products: substances that result from a rxn

3 Important points to chemical rxns


- 1. A less complex reactants are combined to form more complex products
 - AA → Proteins
- 2. Reactants can be broken-down(decomposed) into simpler less complex products
 - Food → basic building blocks for the body to use
- Atoms are generally associated w/ other atoms through chemical bonding or intermolecular forces. Thus to synthesize or bkdwn products it is required to ∆ relationships btwn atoms

Synthesis Rxn

- When 2 or more reactants chemically combine to form a new and larger molecule.
- <u>Dehydration</u>: called "dehydration" when a H₂O molecule is the removed bi-product of the rxn(as shown above).
- Old chemical bonds are broken & new bonds are formed as atoms rearrange
- Anabolism- to build something
 - What Synthesis rxns are referred to that occur w/in the body
 - Growth, maintenance, & repair couldn't take place w/o anabolic rxns

Chemical Rxns & E+

Decomposition Rxn

- Reverse of a synthesis rxn
- Large reactant is chemically brkdwn into 2 or more smaller products
- <u>Hydrolysis-</u> is called a hydrolysis rxn when water is used to break apart the components.
 - Hydro water Lysis- to break down
- <u>Catabolism</u>- to break something down

Metabolism → (Catabolism + Anabolism)- defined as both anabolic and catabolic rxns in the body

Chemical Rxns & E+

<u>Reversible Rxn</u>

- A chemical rxn in which the rxn can go forward or backward
- Equilibrium:
 - Rate of product formation is equal to rate of product breakdown
 - Ex. Body

$H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

Oxidation-Reduction Rxn

- Chemical rxns that result from the $X\Delta$ of E- btwn reactants
- Oxidation: loss of an E⁻
- Reduction: Gain of an E⁻
- Ionic: complete loss or gain of E⁻
- Covalent: partial loss or gain of E⁻
- Because loss by one atom usually means the gain of another it is also referred to as a <u>Redox Rxn</u>
- Synthesis/Decomposition rxns can be redox rxns

<u>Chemical Rxns & E+</u> Energy

- E⁺: the capacity to do work
 - 2 classifications:
 - 1. Potential E⁺
 - Stored e+ that could do work but isn't doing it
 - Ex/ Ball being held
 - 2. Kinetic E⁺
 - Form of e+ that does work and moves matter
 - Ex/ Ball falling

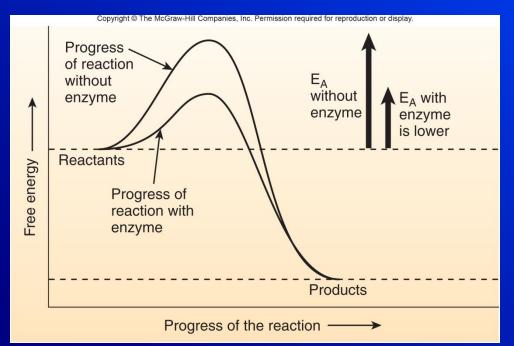
Two types mentioned come in 3 forms

1. Mechanical E⁺

- E+ resulting from the position and movement of objects
- Ex/ Moving a limb

2. Chemical E⁺

- A form of e+ in which a substance is a form of stored (potential) e+ w/in its chemical bonds
- $Ex/ \underline{ATP + H_2O} \rightarrow \underline{ADP + H_2PO_4 + E^+}$
 - Potential e+ in chemical bonds of ATP > products thus e+ released by rxn

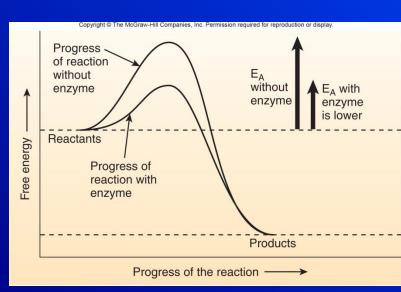

3. <u>Heat E+</u>

- E+ that flows btwn objects that are different temperatures
- Ex/ Human body's chemical rxns release heat as a byproduct and this helps to maintain body temperature

Chemical Rxns & E+ Speed of Chemical Rxns

Reminder

- Atoms are surrounded by eclouds, each e- is negatively charged thus the repulsive forces of these "clouds" must be overcome before a chemical rxn can occur
- **It must have sufficient kinetic e+
- Activation E+
 - Minimum e+ required for reactants to begin a chemical rxn
- Most chemical reactions required to sustain life are too slow to sustain life that is why we have <u>catalysts!</u>



Chemical Rxns & E+ Speed of Chemical Rxns: Things that A rate of rxns

 Catalyst: Substance that ↑ the rate of a chem. rxn w/o being ∆ed or depleted

Change the rate of a chemical rxn

- 1. <u>Temperature</u>
 - as temp ↑ reactants kinetic e+ ↑ thus they move faster and collide w/ one another more frequently & w/greater force increasing the likelihood of chem. rxns
- Concentration- greater concentration can ↑ rate of rxn b/c w/↑ concentration atoms more likely to come into contact w/ each other for chem. rxns.

III. Inorganic Chemistry A. Water (H_2O) B. Solution Concentrations ([]'s) C. Acids and Bases $D.O_2$ E. CO_2

Inorganic Chemistry Understanding:

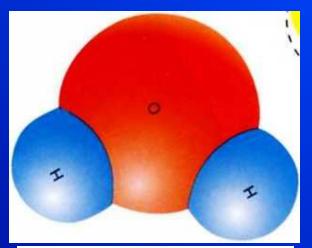
Inorganic Chemistry

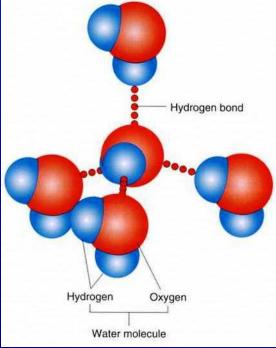
- Generally deals with those substances that <u>do not</u> contain Carbon
- Another definition: lack of carbon-hydrogen bonds

Organic Chemistry

 Study of carbon containing substances

Exceptions to the rule:


CO → Carbon Monoxide CO_2 → Carbon Dioxide HCO_3^- → Bicarbonate Ion


Inorganic Chemistry:

H₂O

Characteristics of H₂O

- 1. Polar molecule:
 - b/c it is polar it forms H+ bonds with other H2O molecules forming a lattice structure w/in the H2O
- 2. % of body's weight
 - 50% in \bigcirc (> body fat than \bigcirc)
 - 🛛 60% in ♂
- 3. % of blood plasma
 - 92% H₂O

Inorganic Chemistry: H₂O: Fxns in living organisms

1. Stabilizing Body Temp.

- H2O has a high specific heat (meaning it takes a large amount of e+ to raise its temperature)
- Thus it is resistant to temperature Δ 's
- H2O also evaporates (thus it can be sweat used to cool the body when it evaporates and takes the "heat" with it)

2. Protection

- Acts as a lubricant to prevent damage from friction
- It also forms a "fluid cushion" around the organs (ex/CSF)

3. <u>Chemical Rxns</u>

- Reacting molecules must be dissolved in H2O for many of the bodies chemical rxns
- **Hydrolysis
 - **Dehydration Synthesis

4. <u>Mixing Medium</u>

- Mixture: combination of 2 or more substances blended together but not chemically combined
- a. Solution
- b. Suspension
- c. Colloid

Inorganic Chemistry: H₂O: Fxns in living organisms cont...

a) Solution (Sol'n)

- Mixture of liquids, gases, or solids in which substances are uniformly distributed w/no clear boundary btwn substances
- Solute dissolves in solvent
- Solvent dissolves the solute
- Ex/ Salt Water
- b) Suspension
 - Mixture containing materials that separate unless they are continually, physically blended together
 - Ex/ Penicillin
- c) Colloid
 - Mixture in wh/ dispersed (solute-like) substance is distributed throughout a Dispersing (solvent-like) substance
 - The dispered particles are larger than simple molecules but small enough that they do not immediately settle out of solution
 - Ex/ Blood (Plasma is made up of plasma + proteins

Inorganic Chemistry: Sol'n Concentrations ([]'s)

- [] of solute particles dissolved in solvents can be expressed in several ways
 - Most Common -> grams/milliliter (g/ml)
 - 10% NaCl sol'n = 10 g of NaCl into enough water to make 100 mls (water will be displaced by NaCl's solid volume)

Inorganic Chemistry: Acids & Bases

<u>Acid</u>

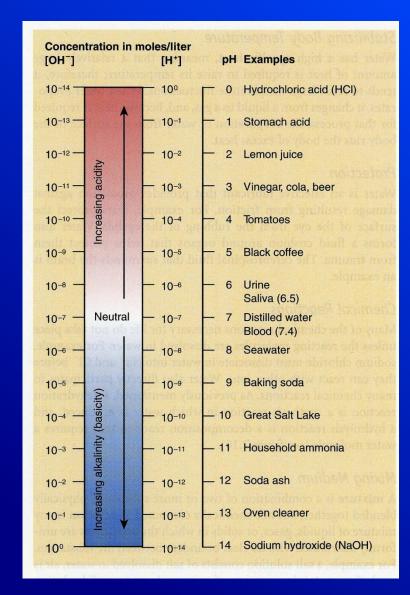
A proton (H⁺) donor

Base

- A proton (H⁺) acceptor
- OH⁻ is what is usually found in solution that will bind to free H⁺'s

Strong Acid/Base

- Either will completely dissociate when put into H₂O, releasing all of the H⁺ or OH⁻ in their make-up
- The rxn is not freely reversable
- Ex/
 - HCI → H⁺ + CI⁻
 - NaOH → Na⁺ + OH⁻


Weak Acid/Base

- A proton (H⁺) acceptor
- OH- is what is usually found in solution that will bind to free H+'s
- Rxn is reversible
- Ex/
 - $H_3COOH \leftrightarrow H_3COO^- + H^+$

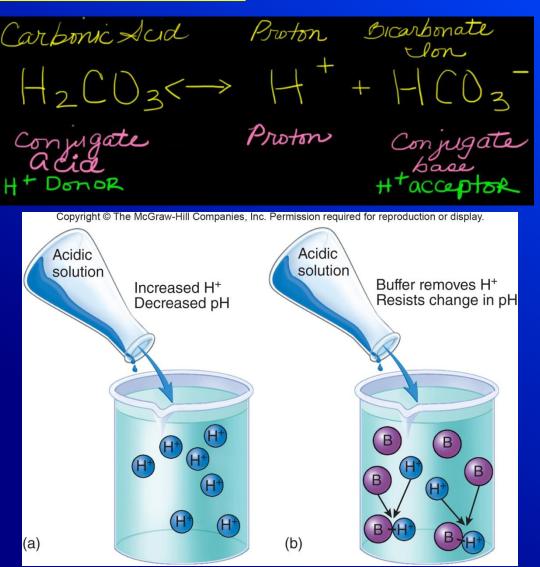
Inorganic Chemistry: Acids & Bases

pH Scale

- Way to refer to the H+ [] in a sol'n
- H₂O is considered neutral
 - pH of H₂O = 7
 - $pH < 7 \rightarrow Acidic$
 - pH > 7 → Basic
 - Δ of 1 pH "unit" is exponential
 - 10X ∆ in [H+]
 - pH 6 = 10X> [H+] than 7
 - pH 7= 10X> [H+] than 8

Inorganic Chemistry: Acids & Bases

<u>Salts</u>


- Compounds made of the combination of a cation and an anion
 - Except for H⁺ and OH⁻
- Formed by the interaction of an acid and a base
 - HCI + NaOH → H₂O + NaCI
 (acid) (base) (water) (salt)

<u>Buffers</u>

- Chemical behavior of a molecule can ∆ as pH does (enz's wk in narrow range)
- Thus: an organisms survival depends on its ability to regulate its pH
- A sol'n of a conjugate acid-base pair in which the acid and base components occur in similar []'s

Inorganic Chemistry: <u>Acids & Bases</u> Buffers cont...

- Examples of buffers used by living systems include:
 - Bicarbonate, Phosphates, Amino Acids, Proteins as Components
- The greater the buffer concentration the more resistant to ∆, but pH may still ∆ just not as drastically as seen w/o the buffer

Inorganic Chemistry

<u>Oxygen</u>

- 21% of earth's atmosphere is O2
- Essential to lives of most animals
- Humans use it in the final step in a series of rxns in which e+ is extracted from food molecules

Carbon Dioxide

- Bi-product of organic molecule metabolism
- A small % is eliminated via exhalation
- Accumulation of high amounts is toxic to cells

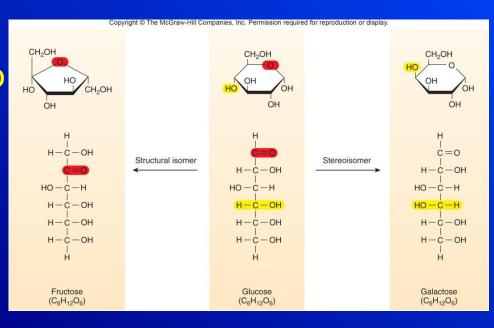
IV. Organic Chemistry A. Carbohydrates B. Lipids C. Proteins D. Nucleic Acids: DNA & RNA E. Adenosine Triphosphate

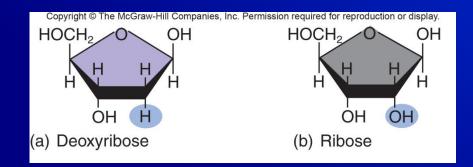
IV. Organic Chemistry

• <u>Carbon</u>:

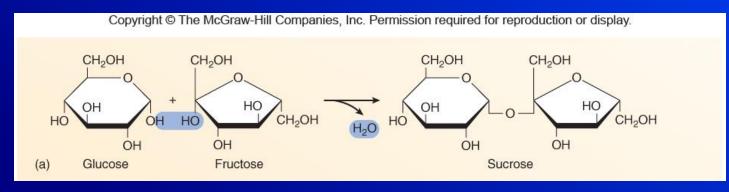
- Unique in that it can form covalent bonds w/ up to 4 other atoms.
- 2 mechanisms that allow the formation of a wide variety of molecules are:
 - 1. Variation in length of the carbon chains
 - 2. Combination of atoms involved
- <u>Carbon containing molecules essential</u> to living organisms are:
 - 1. Carbohydrates
 - 2. Lipids
 - 3. Proteins
 - 4. Nucleic Acids
 - 5. Adenosine triphosphate

Organic Chemistry: Carbohydrates


- <u>Carbo</u>: Atom <u>Hydrates</u>: Hydrated
- Range from small to large in size
 - 1. Monosaccharide- Mono→ 1 Simple Sugar
 - 2. Disaccharide- Di→ 2
 - 3. Polysaccharide- Complex Sugar
- Made up of C, H, O in a 1:2:1 ratio
 Glucose: C₆H₁₂O₆


Organic Chemistry: Carbohydrates Functions

- A. <u>Structural</u>: ribose and deoxyribose are component of DNA, RNA, ATP
- B. <u>Energy</u>: simple sugars(monosaccharides) can be used as an immediate e⁺ source, complex sugars must be processed before use
 - Glycogen (polysaccharide) important e⁺ storage molecule
- C. <u>Bulk</u>: cellulose (polysaccharide) forms the bulk of feces

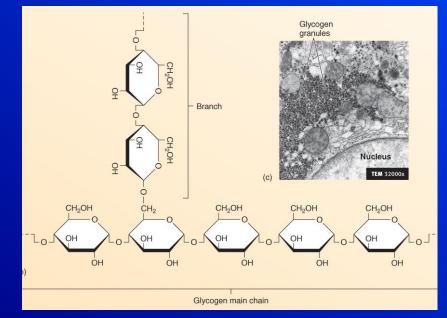

Organic Chemistry: Carbohydrates Monosaccharides

- Mono=1 Saccharide=Sugar
- MS's usually have from 3 to 6 C's in their make-up.
- Those w/6 are the most essential to humans
 - These include:
 - Glucose, fructose & galactose
 - These are isomers of each other
- 2 important 5-carbon monosaccharides include:
 - Ribose & deoxyribose
 - Structural components of DNA

Organic Chemistry: Carbohydrates Disaccharides

Di**→** 2

Saccharide -> Sugar


- 2 MS's bound together
 - 1. Sucrose → Glucose + Fructose
 - Lactose → Glucose + Galactose
 - 3. Maltose → 2 Glucose

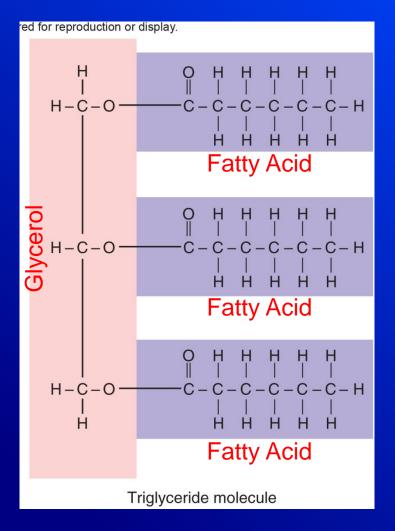
Organic Chemistry: Carbohydrates Polysaccharides

Poly > many

Saccharide -> Sugar

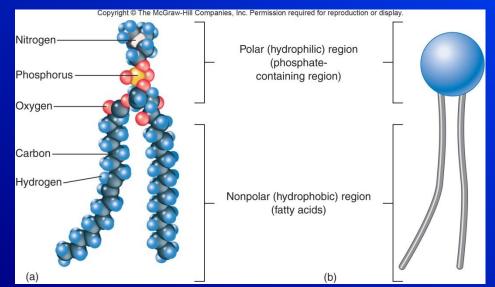
- Many MS's bound together to form long chains (can be straight or branched)
- <u>3 Fxns/major types:</u>
 - In animals you find 1 type in plants 2 types
 - a) Glycogen: "animal starch"; used as an e+ storage molecule. When quickly metabolized it results in e+ for cells
 - b) Starch: long chains of glucose used for e+ storage in plants
 - Humans can break it down & use it for e+
 - c) Cellulose
 - Long chains of glucose that fxn as a structural molecule in plants
 - Humans can't break it down & use it for e+, thus it b/comes bulk of feces

Organic Chemistry: Lipids (a.k.a. fats)

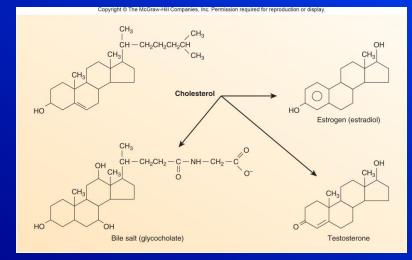

- Major components: C, H, & O
- Minor components: P & N
- Compared to carb's, lipids have a lower ratio of O to C, this makes them less polar thus they can be dissolved in non-polar organic solvents (acetone, alcohol)
- 4 major groups:
 - Triglycerides
 - Phospholipids
 - Steroids
 - "Other"

Organic Chemistry: Lipid Functions

- A. Protection: surrounds and protects organs
- B. Insulation: fat under the skin prevents heat loss; myelin sheaths electrically insulate axons of neurons
- C. Regulation: steroids → regulates physiological processes prostaglandins → regulate inflammation
- D. Vitamins: "fat soluble" vitamins do many things
 - Vit A → forms retinol req'd for night vision
 - − Vit D→ Promotes Ca²⁺ uptake in bone tissue
 - − Vit E → Promotes healing
 - − Vit K → necessary to form clotting factors
- E. Structure- form the phospholipids and choleterol in the cell's membrane
- F. Energy: can be broken down to yield more e+ than either carb's or proteins


Organic Chemistry: Lipids Trigycerides

- Make-up 95% of fats in the human body
- 1- glycerol + 3 Fatty Acids (FA's)
- FA's differ from each other by # of C's and degree of saturation
 - 2 types:
 - 1. Saturated
 - Only single covalent bond btwn C's in the carbon backbone
 - 2. Unsaturated
 - 1 or more double covalent bond btwn C's in the carbon backbone
 - a) Monounsaturated
 - b) Polyunsaturated
 - *Trans* fats: chemically altered UF, that is more of a risk of cardiovascular disease development than even the SF


Organic Chemistry: Lipids Phospholipids

- Glycerol + 2 FA's + phosphate containing molecule
 - Notice structurally similar to TG's
- Polar Molecule:
 - Hydrophilic Head (Polar)
 - Hydrophobic Tails (Nonpolar)
- Essential in the cell membrane's structure

Organic Chemistry: Lipids Steroids

- Structurally they are a unique lipid, but their solubility characteristics are similar
- All composed of C's bound together in a 4-ring-like structure
- Important Ex/
 - Cholesterol (building blocks for other steroids)
 - Ingest too much → heart disease, but it is still essential to diet
 - Bile Salts
 - Estrogen
 - Progesterone
 - Testosterone

Organic Chemistry: Lipids Other

- <u>Eicosanoids</u>
 - Group of important molecules derived from FA's
 - Made in most cells
 - Important regulatory molecules
 - Ex/
 - a) Prostaglandins: implicated in regulation of hormones for blood clotting, some reproductive fxns, and more (*Asprin*
 - b) Thromboxanes
 - c) Leukotrienes

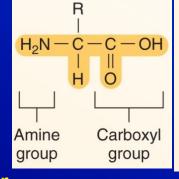
• Fat Soluble Vitamins

 Structurally not similar to one another but they are non-polar molecules essential to normal body fxn

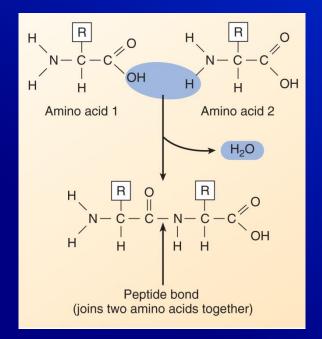
Organic Chemistry: Proteins

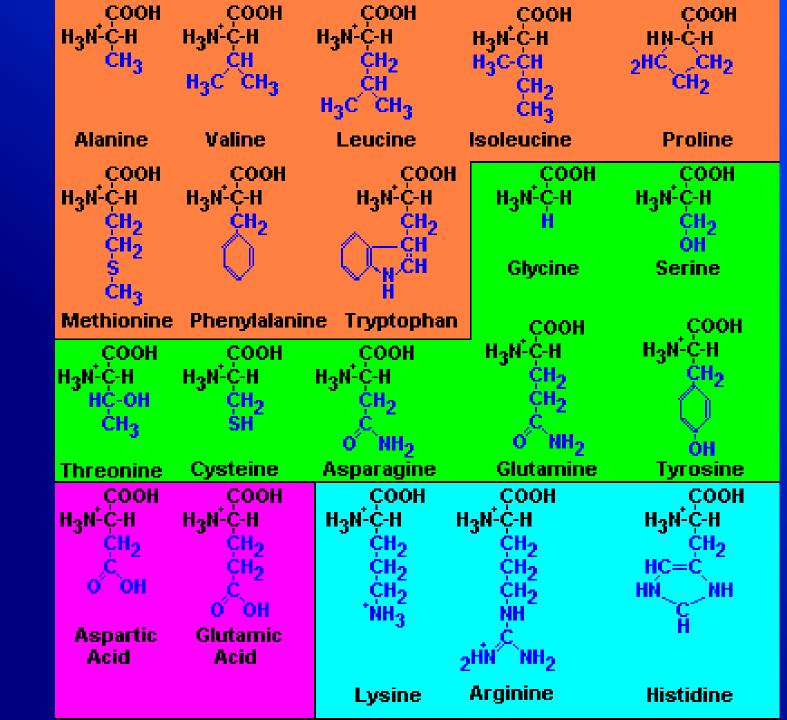
- Major components: C, H, O, & N
- Minor components: S, P, Fe, and I
- Protein's molecular mass can be huge:
 - NaCl= 58
 - Glucose= 108
 - − Proteins → 1000 to several million

Organic Chemistry: Protein Functions


- 1. Regulation
 - Enz's control chem rxns and hormones regulate many physiological processes
- 2. Transport
 - Can help to transport things in the watery environment of the blood & can control mvmt in & out of cell
- 3. Protection
 - Antibodies and complement system proteins protect against foreign invaders
- 4. Contraction
 - Actin and Myosin and proteins involved in muscle movement
- 5. Structure
 - Collagen fibers give structural framework
 - Keratin lends strength to hair, skin, nails
- 6. Energy
 - Can be broken down to produce e+ equals the same yield as carb's

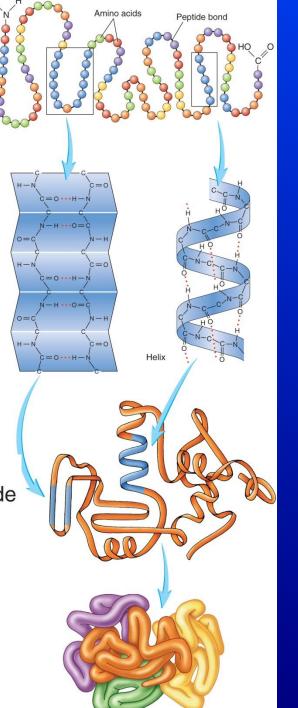
<u>Organic Chemistry:</u> Protein Structure


- The building blocks of proteins are <u>amino</u> <u>acids(AA)</u>:
 - These are made up of a central C with an Amine group at one end and a carboxyl group at the other
 - The R-Group varies from AA to AA


Peptide Bonds

 Btwn each AA the Amine and Carboxyl groups bind to each other and form <u>Peptide Bonds</u>. Thus the reason proteins are often referred to as polypeptides.

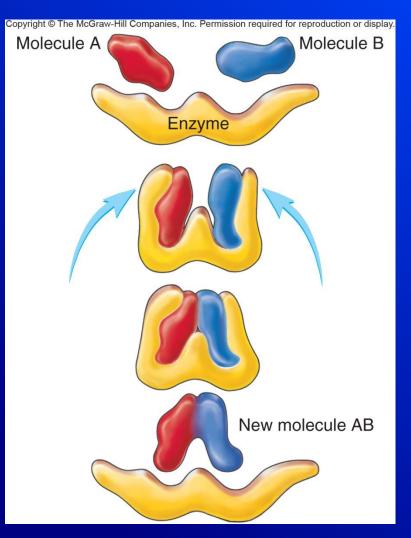
The general structure of an amino acid showing the amine group $(-NH_2)$, carboxyl group (-COOH), and hydrogen atom highlighted in yellow. The R side chain is the part of an amino acid that makes it different from other amino acids.



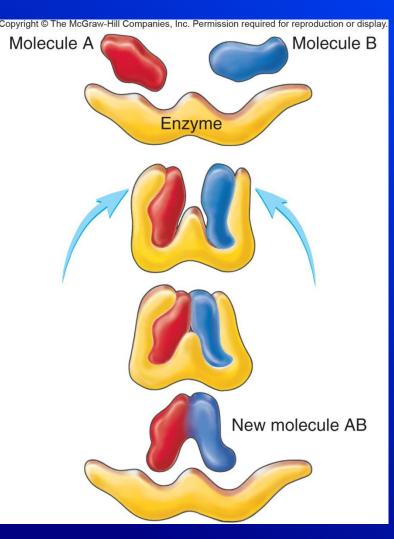
(a) Primary structure—the amino acid sequence. A protein consists of a chain of different amino acids (represented by different colored spheres).

(b) Secondary structure results from hydrogen bonding (*dotted red lines*). The hydrogen bonds cause the amino acid chain to form pleated (folded) sheets or helices (coils).

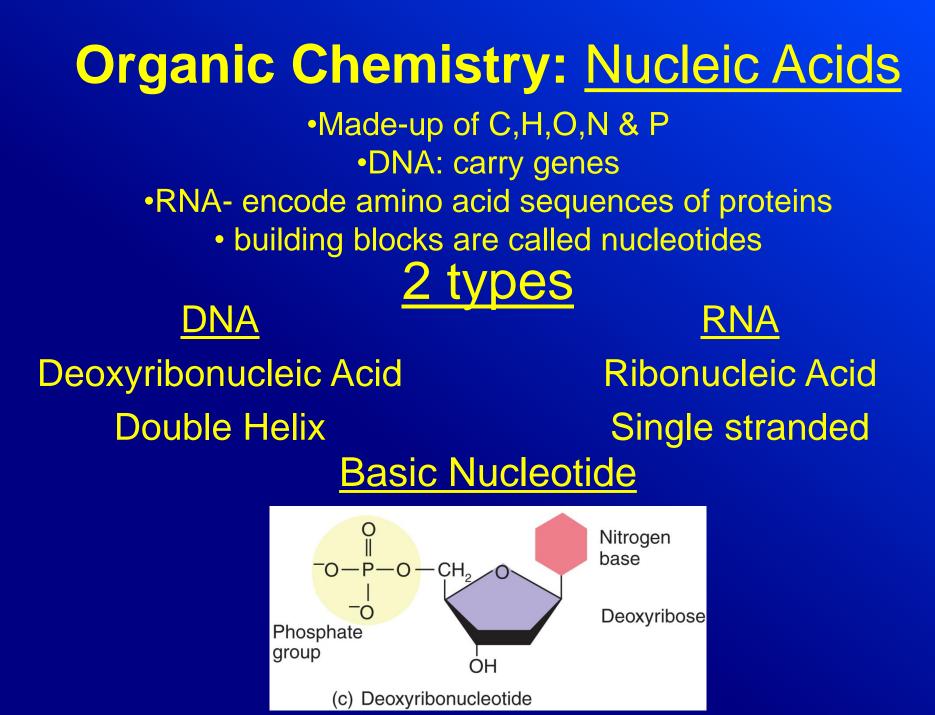
(c) Tertiary structure with secondary folding caused by interactions within the polypeptide and its immediate environment


(d) Quaternary structure — the relationships between individual subunits

Pleated sheet

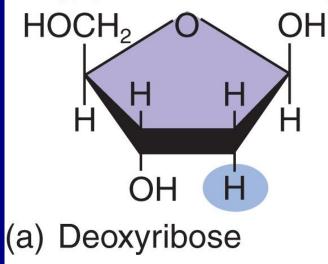

<u>Organic Chemistry:</u> Protein- Enzymes

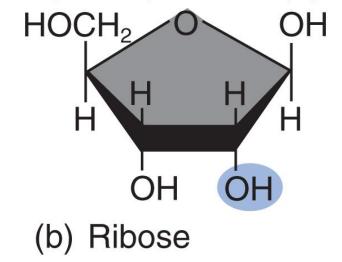
- Protein catalyst that increases the rate of chemical rxn w/o being changed itself
- An enzymes 3-demisional shape is essential to its function
- Induced fit model
 - The enzyme can change its shape significantly to fit its reactants.
- Enzymes lower activation e⁺ b/c they orient the reactant in such a way that chemical reaction is more likely to occur


<u>Organic Chemistry:</u> Protein- Enzymes

- 1. Enzymes binds reactants
- 2. Combines reactants
- 3. Releases reactant so that it can do it all occur again
- 4. It is capable of catalyzing multiple reactions
- Some enzymes require cofactors to function or an organic molecule
 - Co-factors: ions
 - Usually finalize the shape of the active site
 - Organic Molecule: co-enzymes

-<u>ase</u>


this suffix means enzyme



Organic Chemistry: Nucleic Acids DNA & RNA

Nucleotide: Sugars

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

<u>Nitrogenous Organic Bases</u>


<u>2 types</u>

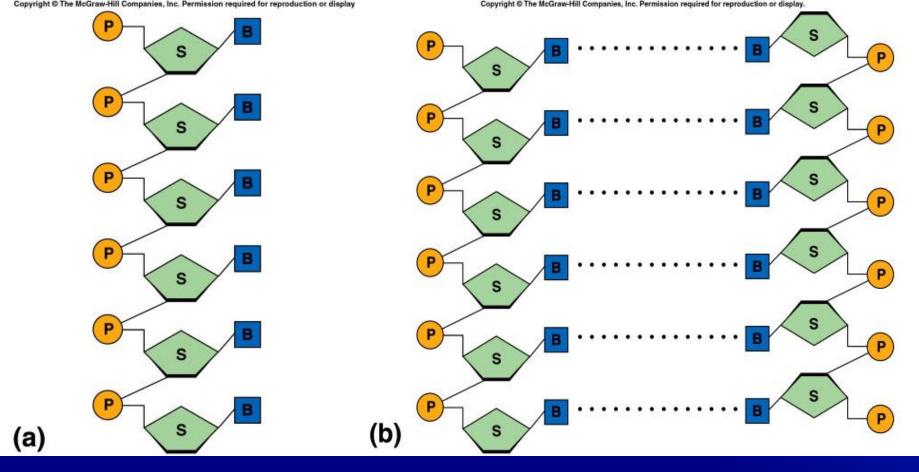
Pyrimidines

- Cytosine
- Thymine
- Uracil

<u>DNA's bases</u>

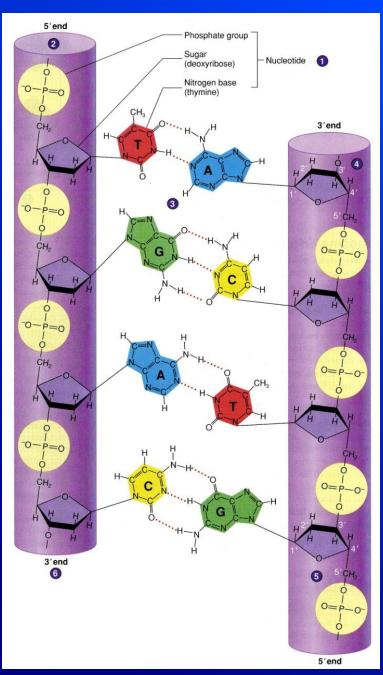
- Adenine
- Guanine
- Cytosine
- Thymine

<u>Purines</u> – Guanine – Adenine

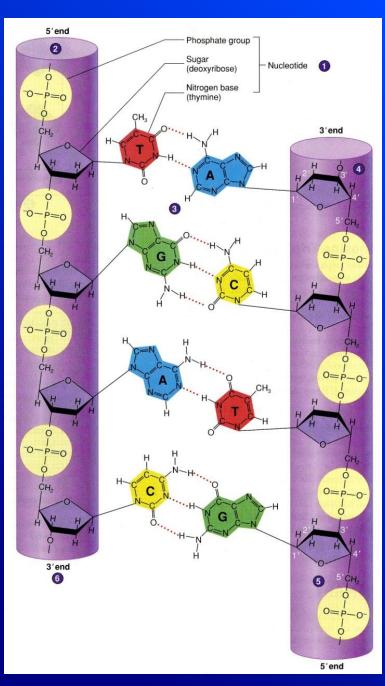

<u>RNA's bases</u>

- Uracil
- Guanine
- Cytosine
- Adenine

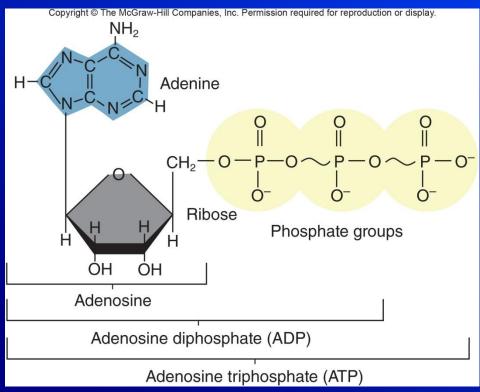
Organic Substances Nucleic Acids


RNA (single stranded)

DNA (Double Stranded)


Nucleic Acids: DNA

- DNA is a double helix
 "twisted ladder"
- Vertically nucleotides are held together via a covalent bond between
 - The phosphate group of 1 NA and the next
- Horizontally nucleotides are held together via a H bond between
 - Nitrogenous bases next to each other
 - **NB's must have to correct partner to bind to** this is called <u>complementary</u> <u>base pairing</u>
 - DNA :T=A G=C
 - RNA: U=A G=C


Nucleic Acids: DNA

- The two opposing strands of DNA also run *antiparallel* to each other.
 - Meaning the sugar phosphate backbone of 1 strand runs the opposite direction of it's partner
 - 5' **→** 3'
 - 3' **→** 5'
- Within DNA the sequence of bases is a "code" that stores information used to determine the structure and fxn of cells
- Gene: sequence of DNA that directs the synthesis of an RNA molecule that will become a protein

Adenosine Triphosphate (ATP)

There is potential e+ stored in the 3rd (last) phosphate group that is essential to living organisms because it provides the e+ used in nearly all of the chemical rxns within the cells of the body

<u>How to Make ATP</u> ADP + P_i + Energy \rightarrow ATP

- Catabolism of glucose, fat, or protein releases e+ and that is transferred via a series of Oxidation-reduction rxns.
- ATP is used to provide e+ for other chemical rxns (anabolism) or to drive cell processes.
 - Ex/ muscle contraction
- ATP is called the "Energy Currency" because it is both capable of giving or taking e+