## THECOASTALADVANTAGE

Job－site delivery available in most areas

Full scanning \＆printing capabilities

Covered storage of engineered products

Rapid turnaround of plans

Wide range of engineered products
Commercial joists available
In－house and on site training available
Architectural Glulams \＆curved Glulams

气COASTAL

## NORDIC structures

| SIMPSON |
| :--- |
| StrongTie |

ANTHON

ENGINEEREDWOOD PRODUCTS

COASTAL PRO

Coastal pro－i
Norbord
triforce
COASTAL PRO－LAM Coastal Forest Products 451 South River Road Bedford，NH 03110

Website www．coastalfp．com
Toll Free 800．932．9663
Fax 603．226．2787
Email plans＠coastalfp．com

## SOLID-SAWN JOIST

DESIGN PROPERTIES
Chantiers Chibougamau Ltd. harvests its own trees, which enables Nordic products to adhere to strict quality control procedures throughout the manufacturing process. Every phase of the operation, from forest to the finished product, reflects our commitment to quality
Nordic ${ }^{\circledR}$ Engineered Wood I-joists use only finger-jointed black spruce lumber in their flanges ensuring consistent quality superior strength, and longer span carrying capacity


## DESIGN PROPERTIES FOR NORDIC® ${ }^{\ominus}$-JOISTS

| JOIST DEPTH | $\underset{\substack{\text { JOIST } \\ \text { SERIIS }}}{ }$ | $\left\|\begin{array}{c} \mathrm{E}(\mathrm{C}) \\ \left(10^{6} \text { Ibf-in. }{ }^{2}\right) \end{array}\right\|$ | $\underset{(\mathrm{M}}{(\mathrm{b}-\mathrm{ff})}$ | $\mathrm{v}_{(\mathrm{l}(\mathrm{bf})}$ |  | $\text { IR w/WS }{ }_{(\mathrm{lbf})}^{(\mathrm{g})}$ |  | $\left(10^{\left.0^{(1)} \mathrm{lbf}\right)}\right.$ | $\underset{(\mathrm{Ib} / \mathrm{ft})}{\text { WEIIT }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9-1/2" | N-20 | 145 | 2,590 | 1,120 | 1,700 | 1,700 | 900 | 4.94 | 2.55 |
|  | N-40x | 218 | 2,900 | 1,200 | 2,240 | 2,620 | 1,120 | 4.94 | 2.65 |
|  | $\mathrm{NL}-60$ | 231 | 3,810 | 1,200 | 2,240 | 2,620 | 1,120 | 4.94 | 2.78 |
|  | N-80 | 324 | 5,385 | 1,200 | 2,380 | 2,790 | 1,190 | 4.94 | 3.27 |
| 11-7/8" | $\mathrm{N}-20$ | 253 | 3,355 | 1,420 | 1,800 | 1,800 | 900 | 6.18 | 2.85 |
|  | N-40x | 371 | 3,760 | 1,480 | 2,750 | 2,930 | 1,250 | 6.18 | 2.85 |
|  | $\mathrm{NL}-60$ | 396 | 4,935 | 1,480 | 2,750 | 2,930 | 1,250 | 6.18 | 2.99 |
|  | $\mathrm{N}-8 \mathrm{O}$ | 547 | 6,980 | 1,480 | 2,900 | 3,120 | 1,330 | 6.18 | 3.45 |
|  | N -90 | 601 | 8,780 | 1,925 | 3,670 | 3,670 | 1,400 | 6.18 | 3.45 |
| 14" | N-40x | 540 | 4,530 | 1,730 | 2,750 | 3,240 | 1,250 | 7.28 | 3.00 |
|  | N -60 | 584 | 5,945 | 1,730 | 2,750 | 3,240 | 1,250 | 7.28 | 3.15 |
|  | $\mathrm{N}-8 \mathrm{O}$ | 802 | 8,405 | 1,730 | 3,310 | 3,840 | 1,330 | 7.28 | 3.75 |
|  | $\mathrm{N}-90$ | 877 | 10,570 | 2,125 | 3,820 | 3,820 | 1,690 | 7.28 | 3.75 |
| $16 "$ | N -60 | 799 | 6,895 | 1,970 | 2,750 | 3,240 | 1,250 | 8.32 | 3.46 |
|  | N-80 | 1,092 | 9,745 | 1,970 | 3,310 | 3,840 | 1,330 | 8.32 | 3.95 |
|  | N-90 | 1,187 | 12,260 | 2,330 | 3,930 | 3,930 | 1,875 | 8.32 | 3.95 |

Highlighted sizes indicates stocked depths.
For S: $11 \mathrm{lbf}=4.448 \mathrm{~N}, \quad 1 \mathrm{lbf}-\mathrm{in} 2=0.00287 \mathrm{~N}-\mathrm{m} 2, \quad 1 \mathrm{inch}=25.4 \mathrm{~mm}$. (a) The tabulated values are design values for normal duration of load. Alv values, except for El and $K$, are permitted to be adjusted for other
(b) The vertical (bearing) load capacity is 2,000 Ibf/t without bearing stiffeners.
(c) Bending stifness (EI) of the l-joist.
(d) Moment capacity (M) of the I-joist, which shall not be increased by any code al-
lowed repeetitive member use factor.
(e) Shear capacity ( $V$ ) of the I-joist.
(f) Intermediate reaction (IR) of the I-jioist with a minimum bearing length of
$3-1 / 2$ inches without bearing stiffeners.
(g) Intermediate reaction $(\mathbb{R} w W$ wS) of the 1 -joist with a minimum bearing
length of $3-1 / 2$ inches with bearing stifieners.
(h) End reaction (ER) of the I-joist with a minimum bearing length of $1-3 / 4$ inches without bearing stiffeners. Higher end reactions are permitted.
For a bearing length of 4 inches, the end reaction may be set equen the tabulated shear value. Interpolation of the end reaction between $1-3 / 4$ and 4 -inch bearing is permitted. For end reaction values over $1,550 \mathrm{lbf}$, bearing stifiteners are required.
(i) Coefficient of shear deflection (K). For calculating uniform load and center-point load deflections of the l-joist in a simple-span application, use Eqs. 1 and 2.
Uniform Load: $\delta=\frac{5 \omega e^{4}}{384 E I}+\frac{\omega e^{2}}{K}{ }^{(1)}$

Center-Point Load: $\delta=\frac{P \ell^{3}}{48 I}+\frac{2 P l}{K} \quad$ (2)

Where: $\quad \begin{aligned} & \delta=\text { calculated deflection (in.) } \\ & \omega=\text { uniform load (libfin.) }\end{aligned}$
$\omega=$ aniform
$\ell=$ design span (in.)
$P=$ concentrated load (lbf) $E I=$ bending stiffness of the $I$ Ijoist (Ibf-in.2)
$K=$ coefficient of shear deflection $K=$ coefficient of shear deflection (lbf)

SOLID-SAWN JOIST
ALLOWABLE FLOOR SPANS
ALLOWABLE FLOOR SPANS - Live Load $=40$ psf, Dead Load $=10$ psf

| JOIST DEPTH | $\begin{aligned} & \text { JOIST } \\ & \text { SERIES } \end{aligned}$ | SIMPLE SPANS |  |  |  | MULTIPLE SPANS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ON CENTER SPACING |  |  |  | ON CENTER SPACING |  |  |  |
|  |  | $12^{\prime \prime}$ | $16^{\prime \prime}$ | 19.2" | $24^{\prime \prime}$ | $12^{\prime \prime}$ | $16^{\prime \prime}$ | 19.2" | $24^{4}$ |
| $9-1 / 2^{\prime \prime}$ | Nl 20 | $16^{\prime} 7{ }^{\text {7" }}$ | $15^{\prime}-3$ " | 14'5" | 13'6" | 18'1" | 16'7" | $15^{\prime}-8{ }^{\prime \prime}$ | 13'-5" |
|  | N-40x | 18'8" | 17'-0" | 16'1" | 15-0" | 20'4" | 18-5" | 16-10" | $15^{\prime \prime}-0{ }^{\prime \prime}$ |
|  | N1-60 | 18-11" | 17'-4" | 16-4" | 15'3" | 20'8" | 18'-10" | 17-9" | 16-7" |
|  | N 180 | 20'11" | 19'-1" | 18'-0" | 16'9" | 22'-9" | 20'9" | 19'-6" | 18'-2" |
| 11-7/8" | $\mathrm{Nl}-20$ | 19'-11" | 18-3" | 17-3" | $16^{-17}$ | 21-8" | 19'-10" | 17-9" | $14^{4}-2^{\prime \prime}$ |
|  | N-40x | 22'-2" | 20'-3" | 19-2" | 17'-2" | 24'-2" | 21'0" | 19'-2" | $17^{\prime \prime}-1{ }^{\prime \prime}$ |
|  | N-60 | 22-8" ${ }^{\prime \prime}$ | 20'-8" | 19-6" | 18-2" | 24-8" | 22'-6" | 21-2" | 19'-8" |
|  | N 180 | 24'-11" | 22'-8" | 21'4" | 19'-11" | 27-1" | 24-8" | 23'-3" | 21'-7" |
|  | $\mathrm{N} 1-90$ | 25'7" | 23'-3" | 21-11" | 20'5" | $27^{\prime}-10^{\prime \prime}$ | 25-4" | 23'-10" | 22'-2" |
| 14" | N-40x | 25-2" | 22'-11" | 21-2" | 18-11" | 26'8" | 23-1" | 21-1" | $18^{\prime}-10^{\prime \prime}$ |
|  | N1-60 | 25-9" | 23'-6" | 22'-2" | 20'8" | 28'0" | 25-7" | 24'1" | 21'-7" |
|  | $\mathrm{N} 1-80$ | 28'-3" | 25'-9" | 24-3" | 22'-7" | 30'10" | 28-0" | 26'5" | $24^{4}-6{ }^{\prime \prime}$ |
|  | N -90 | 29-0" | 26'-5" | 24'-10" | 23'1" | 31-7" | 28-9" | $27^{\prime \prime} 1{ }^{\prime \prime}$ | 25'-2" |
| $16^{\prime \prime}$ | N -60 | 28-6" | 26-0" | 24'-7" | 22'-10" | $31-1 / 1$ | 28-4" | 26-0" | 21-9" |
|  | N-80 | 31-4" | 28'-6" | 26'-10" | 25'0" | $34^{\prime \prime 2}$ | 31'1" | 29'-3" | 26'-3" |
|  | $\mathrm{NL}-90$ | 32'-11" | 29-3" | 27'-6" | 25-7" | 35-0" | 31'-10" | 29'-11" | 27-10" |

## $\square$ Highlighted sizes indicates stocked depths.

NOTES:
Allowable clear span applicable to residential floor construction with a design live load of 40 psf and dead load of 10 psf. The live load deflection is limited to L 480 as shown, and the total load deflection to L 360 . For multiple-span applications, the end spans shall be $40 \%$ or more of the adia span.
2. Spans are based on a composite floor with glued-nailed sheathing meeting the requirements for APA Rated Sheathing or APA Rated STURD-IFLOOR conforming to PRP-108, PS 1 , or PS 2 with a minimum thickness of $19 / 32$ inch ( $40 / 20$ or 20 oc) for a oist spacing of 19.2 inches or less, or $23 / 32$ inch ( $48 / 24$ or 24 oc) for a joist spacing of 24 inches. Adhesive shall meet APA Specification AFG-01 or ASTM D3498.
3. Minimum bearing length shall be $1-3 / 4$ inches for the end bearings, and $3-1 / 2$ inches for the intermediate bearings.
4. Bearing stiffeners are not required when I-joists are used with the spans and spacing given in these tables, except as required for hangers.
5. These span charts are based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties.
6. For ceramic tile applications, spacings greater than 16 " o.c. are typically not recommended.


CPI-90 JOIST
DIMENSIONS \& SPANS
CPI-PRO JOIST DIMENSIONS - LVL


| CPI-90 | I-Joist Depth | $\begin{gathered} \text { Coastal } \\ \text { Code } \end{gathered}$ | $\begin{aligned} & \text { APA } \\ & \text { Code } \end{aligned}$ | $\begin{gathered} \mathrm{EI}^{(4)} \\ \left(\mathbf{X} 10^{6} \mathrm{Ib}-\mathrm{in}^{2}\right) \end{gathered}$ | $\begin{gathered} \mathbf{M}^{(5)} \\ (\mathrm{ft}-\mathrm{lb}) \end{gathered}$ | $\begin{aligned} & V^{(6)} \\ & \text { (Ib) } \end{aligned}$ | $\begin{aligned} & \hline \mathbf{I R}^{(7)} \\ & (\mathrm{Ib}) \end{aligned}$ | $\begin{aligned} & \mathbf{E R}^{(8)}(\mathrm{lb}) \end{aligned}$ | $\begin{gathered} \mathrm{K}^{(9)} \\ \left(\times 10^{\circ} \mathrm{lb}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11-7/8" | CP1 9012 | PRI-90 | 661 | 10255 | 1925 | 3355 | 1400 | 6.92 |
|  | $14^{\prime \prime}$ | CPI 9014 | PRI-90 | 965 | 12235 | 2125 | 3355 | 1400 | 8.17 |
|  | $16^{\prime \prime}$ | CPI 9016 | PRI-90 | 1306 | 14020 | 2330 | 3355 | 1400 | 9.35 |

Highlighted sizes indicates stocked depths.

1. The tabulated design properties are for normal duration of load. All properties, except El and k , may be adjusted for other load durations as
2. PRI-400 joist series designation. Design properties meet or exceed the requirements of the PRI-400 Performance Standard for APA EWS I-joist.
. Coastal Forest Products Corporation proprietary joist series designatio
3. Bending stiffness (EI)
. Shear capacaity $(\mathbb{V})$. The tabulated values shall not be increased by any code-allowed repetitive member factor.
4. Intermediate reaction capacity (iR) of the immediate I-joist without web stiffeners and a minimum bearing lengl
5. End reaction capacity (ER) of the I-joist without web stiffeners and a minimum bearing length of $1-3 / 4$ inches. (k) Use equatis 1 or 2 to calculate unit ser point load deflections in a simple-span application.


Highlighted sizes indicates stocked depths.
Notes:
. Table values apply to uniformy loaded CPI joists
Use sizing software to analyze conditions outside of the scope of this table such as commercial floors, cantilevers or concealed loads.
span is less than half the length of an adjijcent span.
span is less than harf the engit of an al
4. Table values assume sheathing is glued and nailed to the CPI joists. Reduce spans by $12^{11}$ if sheathing is nailed only


NORDIC® I-JOIST
UNIFORM LOADS
ALLOWABLE UNIFORM FLOOR LOADS (PLF) - 100\%

| $\begin{aligned} & \text { JoIST } \\ & \text { DEPTH } \end{aligned}$ | JOIST SERIES <br> SERIES | CRTERA | CLEAR SPAN (ft) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
| 9-1/2" | NI-40 | ${ }_{\text {V/480TL }}^{1 / 480 \mathrm{~L}}$ | 165 | 133 | 181 | ${ }_{95}^{52}$ | ${ }_{72}^{36}$ | 28 51 5 | 18 <br> 37 | 14 28 28 | 11 22 | --- | --- |  |
|  | $\mathrm{NI}-60$ | \|1/480L-L | 218 | 175 | 122 | ${ }^{80} 8$ | ${ }_{1} 110$ | 39 <br> 79 | 29 <br> 59 | 22 44 4 | 17 17 34 | ${ }_{27}^{13}$ | 21 | - |
|  | NI-80 | ${ }_{\text {l }}^{1 / 480 \mathrm{LL}} \mathrm{l}$ | 31 | 186 | 155 | 108 133 | $\begin{array}{r}75 \\ 117 \\ \hline 18\end{array}$ | $\begin{array}{r}54 \\ 104 \\ \hline\end{array}$ | 40 81 81 | 30 61 60 | 24 48 | 19 <br> 38 | 15 30 | 12 <br> 25 |
| 11-7/8" | NI-40 | \| | 267 | 215 | 180 | 125 <br> 148 <br> 1 | ${ }_{1}^{87}$ | 62 90 | 46 73 | 35 60 | 27 51 | ${ }_{43}^{22}$ | 17 35 | 14 <br> 14 <br> 29 |
|  | NI-60 |  | 267 | 215 | 180 | 132 154 | 92 <br> 135 | ${ }_{118}^{66}$ | 49 96 | 37 <br> 75 | 29 59 | 23 <br> 46 | 18 <br> 37 | 15 30 3 |
|  | $\mathrm{NI}-80$ | ${ }_{\text {c }}^{1 / 4880 \mathrm{LL}} \mathrm{l}$ | 282 | 227 | 189 | 163 | 122 143 14 | ${ }^{88}$ | $\begin{array}{r}66 \\ 114 \\ \hline 1\end{array}$ | 51 102 | 39 79 | 31 <br> 63 | 25 <br> 51 | 21 <br> 42 |
|  | NI-90 | ${ }_{\text {l }}^{1 / 4880 \mathrm{LL}}$ | 326 | 262 | 219 | 187 188 | 132 | ${ }_{14}^{96}$ | ${ }_{132}^{72}$ | ${ }_{111}^{55}$ | 43 87 8 | 34 <br> 69 | 28 56 | 23 46 46 |
| 14" | NI-40 | \| $1 / 4880 \mathrm{LL}$ | 267 | 215 | 180 | 154 | 123 <br> 135 <br> 1 | 89 109 | 66 <br> 88 <br> 8 | 51 73 | 39 61 61 | 31 <br> 52 | 25 <br> 45 | 20 <br> 39 <br> 2 |
|  | NI-60 | ${ }_{\text {l }}^{1 / 480 \mathrm{LL}}$ | 267 | 215 | 180 | 154 | 132 <br> 135 <br> 1 | 96 120 | 71 108 108 | 54 96 | 42 81 81 | 34 68 68 | 27 <br> 55 | 22 45 4 |
|  | NI-90 | ${ }_{\text {c }}^{1 / 480 \mathrm{TL}}$ | 326 | 262 | 219 | 188 | 165 | ${ }_{1}^{136}$ | 102 132 102 | ${ }^{79}$ | ${ }_{110}^{62}$ | ${ }_{99}^{49}$ | 40 <br> 80 | 33 <br> 66 |
| 16" | NI-60 | 1/480 L | 267 | 215 | 180 | 154 | 135 | 120 | ${ }^{9} 96$ | 74 99 | 57 90 | 46 80 | 37 69 | 30 60 60 |
|  | NI-80 | ${ }_{\text {l }}^{\text {l }}$ | 322 | 259 | 216 | 186 | 163 | 145 | 126 130 130 | ${ }_{1} 19$ | 76 109 | ${ }^{66} 100$ | 49 93 | 41 <br> 82 <br> 8 |
|  | NI-90 | ${ }_{\text {l }}^{1 / 480 \mathrm{LL}} \mathrm{l}$ | 354 | 284 | 238 | 204 | 179 | 159 | 135 144 | 105 131 | ${ }_{120}^{83}$ | ${ }_{111}^{66}$ | ${ }^{53}$ | 44 <br> 88 <br> 8 |

Notes:
Table values are based on clear distance between supports and may be used for simple or multiple spans.
For multiple-span applications, the end spans shall be $40 \%$ or more of the adjacent span.
. Tabulated loads are based on uniform loads only, and assume continuous lateral bracing of the compression flange.
3. Both live and total loads must be checked. Where no value is shown in the live load row (LLL), the total load governs the desig

For fllor applications with $L$ L360 live load deflection, multiply L 480 value times 1.33 . Total load deflection is limited to L 240 ,
Verify that the deflection criteria herein are accepled by ocal codes and authorities,
5. The 1 I-joist weight has not been taken into account.

Minimum bearing length shall be $1-3 / 4$ inches for the end bearings, and $3-1 / 2$ inches for the intermediate bearings.
. Bearing stifieners are not required, except as required for hangers.
. Refer to appropriate sections for proper installation.

TYPICAL FLOOR FRAMING AND CONSTRUCTION DETAILS

1. Except for cuting to length, I-joist flanges should never be cut,
drilled or notched.
. Install I-jisists so that the top and bottom flanges are within
of true vertical alignment.
Concentrated loads should only be applied to the top surface suspended from the bottom flange with threated loads be suspended from the bottom flange with the exception of
light loads such as ceiling fans or light fixtures.
2. 1 -joists must be protected from the weather prior to installation.
3. I-joists must not be used in applications where they will be permanently exposed to weather, or will reach a moisture content greater than 16 percent, such as in swimming pool
or hot tub areas. They must not be installed where they will remain in direct contact with concrete or masonry.
4. End bearing length must be at least $1-3 / 34$ ". For multiple-sppan joists, intermediate bearing length must be at least $3-1 / 2{ }^{\prime \prime}$.
5. Ends of floor joists shall be restrained to prevent rollover. Use rim board or I-joist blocking panels.
6. I-joists installed beneath bearing walls perpendicular to the joists shall have full-deth blocking panels, rim board or squash blocks (cripple blocks) to transfer gravity loads from above the
7. For I-joists installed directly beneath bearing walls paralle to the joists or used as rim board or blocking panels, the
maximum allowable vertical load using a single l-joist is
maximum allowable vertical load using a single - -jo.
2,000 plf, and 4,000 plif fouble lijists are used.

## -JOIST

FLOOR FRAMING \& CONSTRUCTION DETAILS

## COMMON CPI/N I JOIST FLOOR FRAMING

 AND CONSTRUCTION DETAILSSome framing requirements
such as erection bracing and
blocking panels have
been omitted for clarity.
(B)

WEB STIFFENER REQUIREMENTS
Web stifieners are pairs of small blocks, typically cut from wood structural capacity or accommodate a special connector. Web stififeners are not required when joists are sized by means of the tables included in this guide, with the
foliowing excepions:
(1) Web stifieners are required at the ends of joists set in hangers that
are not deep enough to laterally support the top flanges of the joists
are not deep enough to ataerally support the top flanges of the
Refer to the hanger manufacturer's instalation instructions.
(2) Web stifieners are required to accommodate special
connector nailing reauirements. Refer to the conector
connector naliling requirements. Refere to
manufacturer's installation instructions.

I-JOIST
FLOOR FRAMING \& DETAILS

## TYPICAL CPI/NI JOIST FLOOR FRAMING AND CONSTRUCTION DETAILS

All nails shown in the details below are assumed to be common nails unless otherwise noted. 10 d box nails
may be substituted for $8 d$ common shown in details. Individual components not shown to scale for clarity.

 distance stifener lengenth is ap
(17) (in) (11)

Use hangers recognized
in current ICBO ES, SBCC


FIGURE B
WEB STIFFENER REQUIREMENTS

| NUMBER OF WEB STIFFENER NALLS REQUIRED |  |  |  |
| :---: | :---: | :---: | :---: |
| Joist Depth | 24" \& 22" | 20 " \& 18" | $16^{\prime \prime} \&$ less |
| Intermediate Support | 10 | 8 | 4 |
| All Other Conditions | 8 | 6 | 4 |

WEB STIFFENER SIZE REQUIRED

| Series | Flange | Minimum Dimensions |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Web Stiffeners |  | Nails |
|  |  | Thickness | Width |  |
| N1-40x | 2-1/2" | $1{ }^{17}$ | 2-5/16" | 2-1/2" $\times 0.131^{1 \prime}$ |
| N-60 | 2-1/2" | $1{ }^{1 \prime}$ | 2-1/2" | $2-1 / 2^{\prime \prime} \times 0.131^{\prime \prime}$ |
| N 1-80 | 3-1/2" | 1-1/2" | 3-1/2" | $3-1 / 2^{\prime \prime} \times 0.131^{\prime \prime}$ |
| N//CP-90 | 3-1/2" | 1-1/2" | 3-1/2" | $3-1 / 2^{\prime \prime} \times 0.1311^{\prime \prime}$ |

$\qquad$

$$
\begin{aligned}
& \text { (3) Web stiffeners are required at birdsmouth cuts at the low end } \\
& \text { supports of sloped joists. }
\end{aligned}
$$

$$
\text { (4) Web stiffeners are required at all supports on } 22 \text { and } 24 \text { inch joists. }
$$

For additional information, please visit our website at www.coastalfp.com When joists are sized by means of sizing software, or otherwise engineered tor an application, web stiffeners are
reauired as foll required as follows:
(1) Web stiffeners
Refer to ICC-ES ESR-1225 for high reactions at supports.
(2) Web stiffeners are required under concentrated loads applied lo the tops of joists between supports, or along cantilievers
beyond the support, when the concentrated load exceed beyond the sum.
1500 pounds.


I-JOIST
FLOOR FRAMING \& DETAILS

acker block (use if hanger load exceeds 250 lbs.) Before installing through the webs and filler block where the backer block will fft. Clinc install backer tight to top flange. Use twelve 10 d nais, linched when
possible. Maximum ca
BACKER BLOCKS

| Flange Width | Material Thickness Required* | Minimum Depth** |
| :---: | :---: | :---: |
| 1-1/2" | 19/32" | 5-1/2" |
| 1-3/4" | 23/32" | 5-1/2" |
| 2-5/16" | 17 | 7-1/4" |
| 2-1/2" | $1{ }^{1 \prime}$ | 5-1/2 |
| 3-1/2" | 1-1/2" | 7-1/4" |

1g) Load bearing wall above shall align vertically with the wall below. Other

PINN blocking panel

Minimum Orade for backer block matetial shall be Utility yrade SPF (south) or better for solid sawn lumber and Rated Sheathing grade for wood structural panels.

## CPI/NI BLOCKING PANELS

CP//N blocking panels prevent CPI/NI floor joists from overturning and transfer loads hrough the loor system into the structure below.
Due to difference in depth and possible shrinkage, common framing lumber set on
edge is unacceptable as blocking. CP/N 1 blocking panels must be cut to the proper enge is unacceptable as blocking. CP/N blocking panels must be cut to the proper CPI/NI blocking panels may be used

1. To stabiilize CP//N joists laterally y at supports, as shown in Figures 1 a and 19 g. Lateral . 2. To transmit vertical loads up to 2,000 plf per CPI/NI blocking panel in accordance with Figures 1a, 1c, 1f, and 1 g .
2. For closures such as that shown in Figures 1 a and 1 le .
3. To transmit lateral forces to shear walls. Shear transfer nailing into the flanges must
be specified by the building designer
4. To provide lateral stability to walls.


I-JOIST
CANTILEVER DETAILS


Note: APA RATED SHEATHING $48 / 24$ (minimum thickness $23 / 32^{\prime \prime}$ " required on sides of -I-jist. Depth shall match the full height of the joist.
Nail with 8 d nails at 6 " o.c. top and bottom flange. Instal with face grain horizontal. Attach ioist to plate at all supports per Detail 1b.
CANTILEVER DETAIL FOR VERTICAL BUILDING OFFSET


## HOLE

SPECIFICATIONS
CPI/N I JOIST TYPICAL HOLES


Do not cutr rectangular holes, or round holes larger than $1-1 / 2^{2}$ in diameter. in cantilevers
ROUND AND RECTANGULAR HOLES


## general notes

1. Table values apply to joists sized by means of the load or span tables in this publication. Use beam sizing software for a more precise analysis of
to analyze conditions outside of the scope of these tables. 2. Weanalye conditions outside of the scope of these tables.
2. Wea holes may be located anywhere between the joist llanges.
Leave at least 118 " clearance between the edges of holes and the flanges 3. Do oot cut rectangular holes, or round holes larger than $1-1 / 2^{\prime \prime}$ diameter, in cantilevers.
3. The horizontal clearance between the edges of adiacent holes must be at least twice the diameter (or longest side) of the larger hole. Exception: A $1-1 / 22^{\text {inch }}$ nch diameter hole may be drill
anywhere in the web. Provide at least 3 " of horizontal clearance from adjacent holes of any size.
4. $1-1 / 22^{\prime \prime}$ diameter holes are factory-scored in the web at 16 "
on center.

SIMPSON
Strongyle

I-JOIST HANGER CHART

| I-Joist size | TOP MOUNT | FACE MOUNT | TOP MOUNT DOUBLE | FACE MOUNT DOUBLE |
| :---: | :---: | :---: | :---: | :---: |
| N-409-1/2" | ITS25695 | IUS25695 | MIT3952 | MIU5129 |
| N1-40 11-7/8" | ITS2561188 | IUS2561188 | M1T311882 | MIU51211 |
| N1-60 11-7/8" | ITS2561188 | IUS2561188 | MIT311882 | MIU51211 |
| N1-60 14" | ITS25614 | IUS25614 |  | MIU51211 |
| N1-60 16" | ITS35616 | IUS35616 |  | MIU51216 |
| N-80 9-1/2" | ITS35695 | IUS35695 | WP1495-2 |  |
| N1-80 11-7/8" | ITS3561188 | IUS3561 188 | WP1411882 |  |
| N1-80 14" | ITS35614 | IUS35614 | WP14142 |  |
| N1-80 16" | ITS35616 | IUS35616 | WP14162 |  |
| N1-90 11-7/8" | ITS3561188 | IUS3561188 | WP1411882 |  |
| N-90 14" | ITS35614 | IUS35614 | WP14142 |  |
| N-90 16" | ITS35616 | IUS35616 | WP14162 |  |
| CPI-90 11-7/8" | ITS3561188 | IUS3561188 | WP1411882 |  |
| CPI-90 14" | ITS35614 | IUS35614 | WP14142 |  |
| CP1-90 16" | ITS35616 | IUS35616 | WP14162 |  |
| OPEN JOIST TRI-FORCE | TOP MOUNT | FACE MOUNT | TOP MOUNT DOUBLE | FACE MOUNT DOUBLE |
| 9-1/2" $\times 3^{\prime}-16^{\prime}$ | 1TS25695 | IUS25695 | MIT3952 |  |
| 9-1/2" $\times 18^{\prime}$ | ITS35695 | USS35695 |  |  |
| 11-7/8" $\times 3^{\prime}-18^{\prime}$ | ITS2561188 | IUS2561 188 | MIT311882 |  |
| $11-7 / 8^{\prime \prime} \times 20^{\prime}-22$ | ITS3561188 | IUS3561 188 | WP1411882 |  |
| $14^{\prime \prime} \times 3^{\prime}-18{ }^{\prime}$ | ITS25614 | IUS25614 |  |  |
| $14^{\prime \prime} \times 19^{\prime}-24^{\prime}$ | ITS35616 | IUS35614 | WP14142 |  |
| $16^{\prime \prime} \times 3^{\prime}-16^{\prime}$ | ITS25616 | IUS25616 |  |  |
| $16^{\prime \prime} \times 18^{\prime}-30^{\prime}$ | ITS35616 | IUS35616 | WP14162 |  |

All items in stock
Al items in stock
For a complete list of all stocked Simpson Connectors, please contact your Coastal Engineered Lumber representative PLANS@COASTAL.COM

I-JOIST
ROOF FRAMING \& CONSTRUCTION DETAILS

COMMON CPI/N I-JOIST ROOF FRAMING AND CONSTRUCTION DETAILS


I-JOIST
ROOF DETAILS

TYPICAL CPI/N I JOIST ROOF FRAMING AND CONSTRUCTION DETALLS
Individual components not shown to scale for clarity.
BIRDSMOUTH CUT - LOW END OF CPINI I JOIST ONLY
2c) CPI/N I Joist above cp-LAM RIDGe beam


Uplift connections may be required.CPI/N I Joist on beveled plate

(2f)
BIRDSMOUTH CUT - LOW END OF CPI/N I JOIST ONLY


Upilift connections may be required.

## I-JOIST

ROOF DETAILS
COMMON CPI/N I-JOIST ROOF FRAMING AND CONSTRUCTION DETAILS Individual components not shown to scale for clarity.
(29)

ROof opening, FACE MOUNTED HANGER

(2h)
beveled cut bearing stiffener


Uplift connections may be requireOPTIONAL OVERHANG EXTENSIONS FOR
UNIFORMLY DISTRIBUTED LOADS ONLY May be used with details 2 d , 2 e and 2 f (Low end only) Stop CPI/N I Joist at wall line and extend top flange with
$2 \times 4$. Support extension with $2 \times 4$ nailed to web of joist $2 \times 4$. Support extension with $2 \times 4$ nailed to web of joist
with (2) rows of 88 nails at 8 " with (2) rows of 8 d nails at $8{ }^{8} 0$. ..c. Clinched. Extend $2 \times 4$
support at least 4 ' into joist span and nail to top flange with 8 d nails at 8 " $0 . c$.


Upliftconnections may be reauired
overhang parallel to cpi/N I Joist


## -JOIST

ALLOWABLE ROOF SPANS

## Snow Load = 40 psf, Dead Load $=15$ psf

| JoistDepth | JoistSeries | Slope of 1/4: 12 to 4:12 OnCenterspacing |  |  | Slope $>4: 12$ to $8: 12$ OnCenterspacing |  |  | Slope $>8: 12$ to 12:12 OnCenterspacing |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $12^{\prime \prime}$ | $16^{\prime \prime}$ | $24^{\prime \prime}$ | $12^{\prime \prime}$ | $16^{\prime \prime}$ | 24" | $12^{\prime \prime}$ | $16^{\prime \prime}$ | $24^{\prime \prime}$ |
| 9-1/2" |  |  | $17^{\circ}-1{ }^{1{ }^{\prime \prime}}$ | $14^{\text {a }} \mathbf{4}^{\text {a }}$ | 17'-11" | $16^{\prime}-2^{\prime \prime}$ | $14^{4}-1{ }^{11}$ | 16'-8" | $15^{\prime \prime} 1^{\prime \prime}$ |  |
|  |  | $21^{\prime \prime} \mathbf{7}^{\prime \prime}$ | $18^{\prime \prime} 8^{\prime \prime}$ | $15^{\prime}-3{ }^{\prime \prime}$ | 20'-6" | $18^{\prime \prime} \mathbf{4}^{\prime \prime}$ | $14^{\prime \prime}-11^{\prime \prime}$ | 19-1" | $17^{\prime \prime-3 "}$ | 14-6" |
|  |  | $22^{\prime}-1{ }^{\prime \prime}$ | $20^{\prime}-0^{\prime \prime}$ | 17'4" | $20^{\prime}-11^{\prime \prime}$ | $18^{\prime \prime}-11^{\prime \prime}$ | 16'-5" | 19'6" | 173-7" | $15^{\prime \prime} 4^{\prime \prime}$ |
|  |  | $\frac{244^{\prime \prime}}{}{ }^{\prime \prime}$ | ${ }^{211^{\prime}-10^{\prime \prime}}$ | 19 ${ }^{\text {P/-0" }}$ | $\frac{22^{\prime}-11^{\prime \prime}}{22^{\prime \prime}}$ | $\frac{2000}{}{ }^{21}$ | 188'0" | 21-4" | 19'-4" | 16-9" |
|  |  | $24^{\prime}-8^{\prime \prime}$ | 22'-4" | 19'-4" | ${ }^{23^{\prime}-5^{\prime \prime}}$ | 21-2' | 188'4" ${ }^{1 \prime}$ | 21'-9" | $\frac{19}{19^{\prime \prime}-9 "}$ | $\frac{17^{-1} \mathbf{1 0}^{\prime \prime}}{}$ |
| 11-7/8" |  | $22^{\prime 2}-10^{\prime \prime}$ | 20'1" | $16^{\prime}-5^{\prime \prime}$ | 21-7" | 19'-7" | $16^{\prime \prime} 1^{\prime \prime}$ |  | 18'-3" | $15^{\prime}-8^{\prime \prime}$ |
|  |  | $24^{\prime}-8^{\prime \prime}$ | $21^{\prime \prime}-4$ " | $17^{\prime \prime} 4^{\prime \prime}$ | $24^{4}-2^{\prime \prime}$ | 20'-11" | $17^{\prime \prime}-0^{\prime \prime}$ | 22'-10" | 20'4" |  |
|  |  | $26^{\prime \prime} 6^{\prime \prime}$ | 24-0" | $19^{\prime}-11^{\prime \prime}$ | 25'-1" | $22^{\prime \prime}-8^{\prime \prime}$ | 19'-6" | $23^{-4}{ }^{2}$ | $21^{\prime \prime}-2^{\prime \prime}$ | $18^{\prime \prime} 4^{\prime \prime}$ |
|  |  | $28^{\prime}-11^{\prime \prime}$ | 26'-2" | $22^{\prime}-8{ }^{\prime \prime}$ | 27-4" | 24'9" | 21'-6" | $25^{\prime}-6{ }^{\prime \prime}$ | $23^{\prime-17}$ | 20'17 |
|  |  | 29'-6" | $26^{\prime \prime} 8^{\prime \prime}$ | 23'-2" | 27-111" | 25'-3" | $22^{\prime \prime-11^{\prime \prime}}$ | 26'0" | 23'-7" | 20'-5" |
|  |  | $32^{\prime \prime}-5^{\prime \prime}$ | $27^{\prime \prime}-6^{\prime \prime}$ | $23^{2}-10^{\prime \prime}$ | 28'-9" | $26^{\prime}-1{ }^{\prime \prime}$ | $22^{2}-7{ }^{\prime \prime}$ | 26'10" | 24'-4" |  |
| $14{ }^{\prime \prime}$ | $\begin{aligned} & \hline \mathrm{N} 1-40 \mathrm{x} \\ & \mathrm{~N} 1-60 \\ & \mathrm{~N} 1-70 \\ & \mathrm{~N}-80 \\ & \mathrm{~N} 1-90 \\ & \hline \end{aligned}$ | $27^{\prime}-1{ }^{\prime \prime}$ | 23'-5" | 19-110 | $26^{\prime}-7{ }^{\prime \prime}$ | $23^{\prime}-0^{\prime \prime}$ | $18^{\prime \prime}$-8" | 25'-10" | 22'4" | 18'-2" |
|  |  | 30'-2" | 26'-10" | 21'-17" | $28^{-7}{ }^{7}$ | $25^{\prime}-11^{\prime \prime}$ | 21'-6" | $26^{\prime \prime} 8^{\prime \prime}$ | 24-1" | 20'-11" |
|  |  | 32'-17" | ${ }^{29^{\prime}-8^{\prime \prime}}$ | 25'-5" | ${ }^{311^{\prime-} 0^{\prime \prime}}$ | 28 ${ }^{\text {20] }}$ | ${ }^{244^{\prime \prime}-5^{\prime \prime}}$ | 28'-11" | ${ }^{26^{\prime \prime}-2^{\prime \prime}}$ | $\stackrel{22^{\prime \prime}{ }^{\prime \prime \prime}}{ }$ |
|  |  | 33'-7" | 30'-4" | 26'1" | 31'-9" | 28'-9" | 24'-11" |  | 26'-10" | 23'-3" |
|  |  | $34^{\prime \prime} 7^{\prime \prime}$ | 31'-3" | 27'17" | $32^{\prime}-8^{\prime \prime}$ | 29'-7" | $25^{\prime \prime}$ " ${ }^{\prime \prime}$ | 30'-6" | $27^{\prime \prime} 7{ }^{\prime \prime}$ | $24^{-00^{\prime \prime}}$ |
| $16^{\prime \prime}$ | $\begin{array}{\|l\|l\|} \hline \mathrm{NI}-60 \\ \mathrm{NI}-70 \\ \mathrm{NI}-80 \\ \mathrm{NI}-90 \\ \hline \end{array}$ | $33^{\prime}-6^{\prime \prime}$ | 28-171" | $23^{23^{\prime}-7{ }^{\prime \prime}}$ | 31-9" | 28'-5" | $23^{\prime \prime}-2^{\prime \prime}$ | 29'-7 | 26'-10" | $22^{\prime \prime} 6^{\prime \prime}$ |
|  |  | 36'-4" | 32'-11" | $26^{\prime}-11^{\prime \prime}$ | ${ }^{344^{\prime \prime} 5^{\prime \prime}}$ | 31'-2" | $26^{\prime \prime} 10^{\prime \prime}$ | 32'-1" | 29'-0" | 25'-3" |
|  |  | 37'-3" | 33'-8" | 28'-1" | 35'-3" | 31'-11" | 27-7" | 32'-10" | 29'-9" | $\xrightarrow{25^{\prime}-10^{\prime \prime}}$ |
|  |  | 38'-8" | 344-8" | 30'1" | 36'-3" | 32'-10" | 28'-6" | 33'-9" | 30'-7" | 26'-7 |
| NOTES: <br> 1. Allowable clear span applicable to simple-span roof construction with a design roof snow load as shown and dead load of 15 psf. The allowable span is based on the horizontal distance between inside face of supports. The snow load deflection is limited to $L$ /240 and the total load deflection to L 180 . Spans are based on a duration of load (DOL) factor of 1.15. <br> 2. Spans include a cantilever of up to 2 feet on one end of the I-joist. <br> 3. Minimum bearing length shall be $1-3 / 4$ " inches for the end bearings, and $3-1 / 2^{\prime \prime}$ inches on end bearing adjacent to cantilever. |  |  |  |  | 4. Bearing stiffeners are not required when I-joists are used with the spans and spacings given in these tables, except as required for hangers. <br> 5. These span charts are based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. |  |  |  |  |  |


| CPIPRO JOISTS 50 PSF LIVELOAD-15 PSF DEAD LOAD |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPI | CPI | Slope of 4/12 or Less |  |  | Slopes over 4/12 up to 8/12 |  |  | Slopes over 8/12 up to 12/12 |  |  |
| Joist Series | Joist Depth | 16"0.c. | 19.2"0.C. | 24"0.C. | 16"O.C. | 19.2"0.C. | 24"0.C. | 16"0.C. | 19.2"0.C. | 24"0.C. |
| CP1 20 | 9-1/2" | 16'00' | 14-7" | $11^{\prime-7{ }^{\prime \prime}}$ | 15'5" | $14^{\prime-17}$ | 11'-3" | $14^{\prime} 4^{\prime \prime}$ | $13^{\prime}-6{ }^{\prime \prime}$ | $10^{\circ}-9{ }^{\prime \prime}$ |
|  | 11-7/8" | 17'7" | $14^{\prime-7} 7^{\prime \prime}$ | 11-7" | 17'0" | 14-1" | 11'-3" | $16^{-3} 3^{\prime \prime}$ | 13'-6" | 10'-9" |
| CP1 30 | 9-1/2" | $16^{\prime}-9{ }^{\prime \prime}$ | $15^{\prime}-8^{\prime \prime}$ | 13'-1" | 15'-11" | 14'-11" | $12^{1} \cdot{ }^{1 / 7}$ | 14'-11" | $14^{4}-0^{\prime \prime}$ | 12'-1" |
|  | 11-7/8" | 19-9" | 16-5" | $13^{\prime-11^{\prime \prime}}$ | $19^{\prime \prime} 1^{\prime \prime}$ | $15^{5}-10^{\prime \prime}$ | ${ }^{12^{2}-77^{\prime \prime}}$ | 17'-11" | $15^{-17}$ | 12 ${ }^{2}-1{ }^{10}$ |
| CPI 40 | 9-1/2" | $16^{\prime}-8{ }^{\prime \prime}$ | $15^{\prime}-2{ }^{\prime \prime}$ | 13'-7" | 16'-5" | 144-11" | 13-4" | 15'-10" | $14^{\prime}-7{ }^{7}$ | $13^{-}-0^{\prime \prime}$ |
|  | 11-7/8" | 19-0" | $17^{\prime \prime} 4^{\prime \prime}$ | 15'6" | 18-8" | $17^{-17}$ | $15^{1}-3$ " | 18'-3" | $16^{-}-8{ }^{\prime \prime}$ | 14'-10" |
|  | $14^{\prime \prime}$ | 20'-11" | 19-1" | 17'0" | 20'-7" | $18^{-9} 9$ | $16^{\prime \prime-8 "}$ | 20'17 | $18^{\prime \prime} 4^{\prime \prime}$ | $15^{\prime}-11^{\prime \prime}$ |
|  | $16^{\prime \prime}$ | 22'-6" | $20^{\prime}-6{ }^{\prime \prime}$ | 17-3" | $22^{-2} 2^{\prime \prime}$ | $20^{\prime}-2{ }^{\prime \prime}$ | $16^{\prime \prime} 8^{\prime \prime}$ | $21^{1-810}$ | 19-9" | 15'-11" |
| CP1 50 | 9-1/2" | 17'-6" | 16'5" | $14{ }^{-0} 0^{\prime \prime}$ | $16^{-8} 8^{\prime \prime}$ | $15^{-8} 8^{\prime \prime}$ | $13^{1}-66^{\prime \prime}$ | $15^{\prime}-7{ }^{\text {" }}$ | $14{ }^{-8} 8^{\prime \prime}$ | 12'-11" |
|  | 11-7/8" | 21'11" | $17^{\text {² }}$-7" | $14^{\text {- }} \mathrm{O}^{\prime \prime}$ | 20'1" | 17'017 | $13^{13}-6^{\prime \prime}$ | $18^{\prime \prime} 10^{\prime \prime}$ | $16^{-3} 3^{\prime \prime}$ | 12'-11" |
|  | $14^{\prime \prime}$ | $21^{\prime \prime} 2^{\prime \prime}$ | $17^{7}-7{ }^{\text {² }}$ | $14{ }^{-0} 0^{\prime \prime}$ | 20'5" | 17-0" | 13'-6" | 19-6" | $16^{-3 \prime} 3^{\prime \prime}$ | 12'-11" |
|  | $16^{\prime \prime}$ | $21^{\prime \prime} 2^{\prime \prime}$ | 17'7\% | $14^{+} 0^{\prime \prime}$ | 20'5" | 17-0" | $13^{\prime}-6{ }^{\prime \prime}$ | 19-6" | $16^{\prime}-3^{\prime \prime}$ | 12'-11" |
| CPI 60 | 9-1/2" | 18'10" | $17^{\prime}-8{ }^{\prime \prime}$ | 14'-10" | 17'-11" | $16^{\prime \prime} 10^{\prime \prime}$ | $14^{4}-4^{\prime \prime}$ | $16^{\prime}-9{ }^{\text {" }}$ | 15'-9" | 13-8" |
|  | 11-7/8" | 22'-5" | 20'5" | 17'-3" | 21-6" | 20'1" | $16^{\prime \prime-8 "}$ | 20-2" | 18-11" | 15'-11" |
|  | $14^{\prime \prime}$ | 24-7" | $21^{-77^{\prime \prime}}$ | 17-3" | $24^{-2} 2^{\prime \prime}$ | $20^{\prime}-10^{\prime \prime}$ | $16^{16-88^{\prime \prime}}$ | 22'-11" | 19'-11" | 15'-11" |
|  | $16^{\prime \prime}$ | 25'-11" | 21-7" | $17^{-3} 3^{\prime \prime}$ | $25^{-17}$ | $20^{\prime}-10^{\prime \prime}$ | $16^{\prime \prime} 8^{\prime \prime}$ | 24-0" | 19'-11" | 15'-11" |
| CPI 70 | 11-7/8" | $23^{\prime-5 "}$ | $20^{-21}$ | $16^{-17}$ | $22^{1 / 4}$ | 19-6" | $15^{\prime}-6{ }^{\prime \prime}$ | $20^{\prime}-10^{\prime \prime}$ | $18^{-7} \mathbf{7}^{\prime \prime}$ | $14^{4}-10^{\prime \prime}$ |
|  | $14^{\prime \prime}$ | 24-3" | $20^{-212}$ | $16^{-17}$ | 23'-5" | $19^{-6 "}$ | $15^{\prime \prime-6 "}$ | 22-4" | 18'-7" | 14'-10" |
|  | $16^{\prime \prime}$ | 24-3" | $20^{\prime}-2{ }^{\prime \prime}$ | $16^{-1} 1^{\prime \prime}$ | 23'5" | $19^{\prime \prime}$-6" | 15'-6" | $22^{-4 \prime}$ | $18^{-7}{ }^{\text {T" }}$ | 14'-10" |
| CPI 90 | 9-1/2" | 22'-6" | 21-1" | 19'6" | 21'5" | 20-1" | $18^{\prime \prime} 7^{\prime \prime}$ | 20'010 | $18^{\prime}-10^{\prime \prime}$ | 17'5" |
|  | 11-7/8" | 26'-10" | $25^{\prime \prime} 2^{\prime \prime}$ | 23-2" | 25'7" | 24-0" | 22'-2" | 23'-11" | 22'5" | 20-9" |
|  | $14^{\prime \prime}$ | 30'5" | 28-7" | $23^{-22^{\prime \prime}}$ | 29'010 | $27^{-3} 3^{\prime \prime}$ | 22'-5" | $27^{\prime \prime}-2{ }^{\prime \prime}$ | $25^{\prime \prime-6 "}$ | 21'5" |
|  | $16^{\prime \prime}$ | 33'-9" | 29'11" | $23^{-22^{\prime \prime}}$ | 32-2" | 28-1" | 22'-5" | $30^{-114}$ | $26^{\prime} 10^{\prime \prime}$ | 21'5" |



NOTES

1. Table values apply to uniformly loaded simple or
multiple span CPI joists. Span is the horizontal dist multiple span CPP joists. Span is ithe horizontal distance
from face to face of supports. Use beam sizing software from face to face of supports. Use beam sizing software
to analyze multiple span joists if the length of any to analyze mutipel span joistsin the enght of any
span is less than half the length of an adiacent span. 2. Roofs must be slop
assure drainage.

Foradditional information, pleasevisistour wesbite at www.coastatf.com COASTAL PRO-I $\underset{\text { STRUCTURES }}{\text { NOR }}$
3. Live load deflection is limited to L 240 . Total load
 criteria conform to local building code requirement
4. Table values are based on $1-3 / 44^{\prime \prime}$ end and $3-1 / 2^{\prime \prime}$
intermediate bearing lengths without web stiffeners

Engineered Rim Board is a structural framing member designed to support wall loads and tie floor joists together Engineered Rim Board must be continuously supported along the bottom edge and not used to span openings. It may not be used as other structural framing elements such as joists, rafters, headers and ledgers.
advantages

- No delamination
-Manufactured to match the depths of l-joist framing members
Resistant to moisture
Dimensionally stable
12 foot standard
PERFORMANCE CRITERIA
Norbord Rim Board is manufactured in accordance with CBO AC-124 Acceptance Criteria for Wood-Based Rim Board Products.
STORAGE AND HANDLING
Ship Rim Board under tarp. Set bundles on supports to keep Rim Board off the ground and provide air circulation. Out doors, keep Rim Board under a protective cover. When high moisture exists, cut banding on the stack to prevent edge supports to minimize damage from forks.



## AVAILABLE SIZES AND WEIGHTS

| Approximate Weight (PLF) |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thickness <br> (inches) |  |  |  |  |  |  | Depth <br> (inches) |  |  |  |
|  | $9-1 / 2$ | $11-7 / 8$ | 14 | 16 |  |  |  |  |  |  |
| Norbord <br> Rim Board Plus${ }^{1-1 / 88^{\prime \prime}}$ | 264 | 3.30 | 3.89 | 4.44 |  |  |  |  |  |  |

design capacities

|  | Rim Board <br> (inches) | Horizontal <br> Shear (plf) | Vertical Load <br> Capacity (lbf/tt) | $1 / 2$ " Lag <br> Screw Lateral <br> Resistance (lbf) |
| :--- | :---: | :---: | :---: | :---: |
| Norbord <br> Rim Board Plus | $1-1 / 8$ | 200 | 4,850 | 350 |

Availabe $\quad 1-1 / 8$
Available Depths: $\quad 9-1 / 2^{\prime \prime}, 11-7 / 8^{\prime \prime}, 14^{\prime \prime} \& 16^{\prime \prime}$ Complies with ICC ES AC-124

## installation

A full $1-1 / 8^{\prime \prime}$ edge surface allows for quick installation with virtually A full $1-1 / 8^{10}$ edge surface allows for quick installation with virtually
no risk of spliting. Installation of Rim Boards require $8 d$ common or ring-shank nails.

I-JOIST - drive 1 nail into the top flange and 1 into the bottom flange Plate - toe-nail Rim Board at 6 " on center to wall plates.
Floor Deck - space fasteners at 6 " on center
Ledger - use $1 / 2^{\prime \prime}$ lag screws and ensure they completely penetrate Ledger - use $1 / 2$ " lag screws and ensure they completely penetrate and placement of lag screws.
Starter Joist - when Rim Boards are used as starter joists to maintain the Starter Joist - when Rim Boards are used as starter joists to maintain the
vertical loading, there are several installation options, such as blocking vertical loading, there are several instalation options, such as blocking
(maximum 24" o.c.) double up on the Rim Boards, or place an 1-JOIST adjacent to the Rim Board. Please consulty your designer for the appropriate option and details for your application

## OPEN JOIST

FLOOR SPANS
Maximum Allowable
Floor Spans for Residential Application

| USA - I/480, Glued and nailed, LL: 40 psf, DL: 15 psf |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Spacing Subfloor - C |  |  | $\begin{aligned} & 12^{\prime \prime} \\ & 5 / 8^{\prime \prime} \end{aligned}$ | $\frac{16^{\prime \prime \prime}}{5 / 8^{\prime \prime}}$ | $\frac{192^{\prime \prime}}{5 / 8^{\prime \prime}}$ | $\frac{24^{4}}{3 / 4^{4}}$ |
| Depth (in) | Series | Chords | Weight | Maximum Spans o.c. |  |  |  |
|  | OJ314 | 2 "×3" | 2.70 | $16^{\prime}-0 \mid$ | $15^{\prime}-7{ }^{\prime \prime}$ | 14'7" | 13'-0" |
| 9-1/2 | 03418 | 2 " 4 " | 3.25 | $18{ }^{\text {-0 }}$ | $188^{-01}$ | 17-5" | 16'-2" |
|  | OJ314 | 2"x ${ }^{\prime \prime}$ | 2.80 | $16^{-100}$ | $16^{-0} 0^{\prime \prime}$ | $16^{-0} 0^{\prime \prime}$ | 14'-10" |
|  | O3315 | 2"x ${ }^{\prime \prime}$ | 2.80 | 18-0" | $18{ }^{-00}$ | 17-9" | 16'-3" |
| 11-7/8" | OJ415 | $2^{\prime \prime} \times 4^{\prime \prime}$ | 3.35 | 20'0" | 20'0" | 19-9" | 18-4" |
|  | OJ418 | $2 \mathrm{2} \times 4^{\prime \prime}$ | 3.35 | $22^{-0} 0^{\prime \prime}$ | 22-0" | 20'9" | - |
|  | 03314 | 2 "x3" | 2.85 | 16-0" | $16^{-0} 0^{\prime \prime}$ | 16'0" | $16^{-0} 0^{\prime \prime}$ |
| $14^{4}$ | 03315 | 2"x ${ }^{\text {" }}$ | 2.85 | $20^{\prime-010}$ | 20'0" | 20'0" |  |
|  | 03415 | 2"x4" | 3.45 | 22'-0" | 22'-0" | 22'-0" | 20'11" |
|  | 03418 | 2 "×4" | 3.45 | 260'0" | 25'0" | 23'-7" |  |
|  | OJ314 | 2"x ${ }^{\prime \prime}$ | 2.95 | $16^{\prime}-0^{\prime \prime}$ | $16^{\prime}-0^{\prime \prime}$ | $16^{-100}$ | $16^{\prime}-0^{\prime \prime}$ |
| $16^{17}$ | OJ315 | 2"x ${ }^{\prime \prime}$ | 2.95 | 20-0" | 20-0" | 20'0" | 19-3" |
| $16^{6}$ | 03418 | $2^{\prime \prime} \times 4$ " | 3.55 | 26'0" | $26^{-100}$ | 26'0" | 24-2" |
|  | OJ420 | 2 "×4" | 3.55 | 30'-0" | $28^{\prime \prime} 6^{\prime \prime}$ | 26'10" |  |

Notess

1. Spans apply to simple span application only 2. Minimum end bearing ength it $1-1 / 2^{\prime \prime} 11$
except for bold spans minimum $1-12^{\prime \prime}$ except for bold spans minimum $1-1 / 2^{1 \prime}$
at the OSB section with web stifieners at the OSB section with web stifterers
. Maximum spans are measured centerine to centerline of bearing and are cased on uniformly loadeded jists. Dead load defiection is limited to L/240 and total load defilection is is limited LL24 Live load is linited to $\llcorner 480$. The spans shown consider a minimum
$5 / 8{ }^{\text {thick }}$ rated sheathing nailed and
glued to oiost in accordance with the glued to oist it accordrance witd the
applicable oode or a $3 / 44$ at $244^{\circ} \mathrm{O}$. . applicable code or a $31 / 4$ "a at 24 " O.C.
Allowable spans take into consideration
the composite effect trom glued and the composite effect from glued and
nailed subloor for deflections. nailed subfloor for deflections. Refer to appropriate sections of the
Specifier Guide for installation guide lines and construction detatiols. The nailing specificationss are to be in
accordance with in force building code accordance with in force buiding code
and the adhesives used dhould comply
with APA Specification AFG-01 or with
ASTM D
S
Maximum Allowed
Unfactored Live Load Chart for Residential Application


Notes:
1.Uniform loads shown are for full span Uniform loads shown are for full span
(bearing includeded). Higher loads could be applied using longer end bearing length. 2. Minimum end bearing length is $1-1 / 22^{\prime \prime}$,
except for bold l laads minimum $1-12^{\prime \prime}$ except for bold loads, minimum 1-1/2"1"
with web stiffeners at the OSB section with web stiffeners at the OSB section
3. Dead load deflection is limited to L240 and total load deflection is linited to $L / 240$ 4. Live load deflection is limited to $L$ U360. Speefifier Guide for installation guideline and construction details.
The nailing specifications are to be in
accordance with in force building code accordance with in force building code
and the adhesives used should comply and the adhesives used should cor ASTM D3498
Mid Span Continuous Strongback Recommendations

| PSF DL= 15 PSF |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Notes: <br> 1. Specified continuous strongbacks installed at mid span shown, take into consideration a performance criterion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12" | $16^{\prime \prime}$ | 92" | 24. | ${ }^{12}$ | $16^{\prime \prime}$ | 192" | 24. | ${ }^{12 \times}$ | $16^{4}$ | 1924 | 124 | 12" | ${ }^{16}$ | 19.2" |  |  |
| $14^{4}-0^{\prime \prime}$ | None | None | 1-2x4 | None | 2. Refer to appropriate section |
| $16^{\circ} 0^{-1}$ | - $\times 4$ | 2x4 | 1-2x4 |  | None | 1-2x4 | 1-2x4 | None | N | Spe |
| $18^{\circ} 0^{01}$ | 2-2x4 | 1-2x4 | 2-2x4 | 2-2x4 | 2x4 | 1-2x6 | 1-2x6 | 1-2x6 | None | 1-2x6 | $1-2 \times 6$ | 1-2x6 | None | None | 1-2x6 |  |  |
| $20^{-00^{+1}}$ |  | $\cdots$ | $\cdots$ | - | 2-2x4 | 1-2x6 | 2-2x6 | 1-2x8 | 1-2x6 | 1-2x6 | $1-2 \times 6$ | 1 | 1-2x6 | 1-2x6 | 1-226 | 1-296 | 3. Live load deflection is lin |
| 22-04 |  |  |  |  | 1-2x6 | 2-2x6 | 1-2x8 | 2-2x8 | 1-2x6 | 1-2x6 | 2-2x6 | 2-2x6 | None | 1-2x6 | 1-2x6 |  |  |
| 24-0" |  |  |  |  |  |  |  |  | 1-2x6 | 2-2x6 | 2-2x8 | 2-2x8 | 1-2x6 | 1-2x6 | 2-2x6 | 2-2x6 |  |
| 26-00 | - | - | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | -- | - | 2-2x6 | 2-2x8 | $2-2 \times 10$ | 2-2x8 | 1-2x6 | 2-2x6 | 1-2x8 | 1-2x8 |  |
| 88-0" |  |  |  |  |  |  |  |  |  |  |  |  | 2-2x6 | 2-2x8 | 2-2x |  |  |
| 00-0" | -- | --- | -- | ---- | $\cdots$ | $\cdots$ | $\cdots$ | -- | -- | $\cdots$ | -- | $-$ | 2-2x8 | $2-2 \times 10$ | $2-2 \times 10$ |  | flection is limited L 480 . | 1. Speciifed continuous strongbacks

installed at mid span shown, take into consideration a performance criterion. Specifier Guidide for installation guidelines and construction details. This table of continuous strongback for maximum spans when the live load

## OPEN JOIST

FLOOR DETAILS

## Mechanical Clearances

| Mechanical Opening Dimension |  |  |  |
| :---: | :---: | :---: | :---: |
| Depth | Round | Square | Rectangular |
| 9-1/2 | $5 "$ | 4 " $\times 6$ " | $3 " \times 9$ " |
| 11-7/4" | 71/4" | $5^{3 / 4} 4^{\prime \prime} \times 5^{3 / 4}{ }^{\prime \prime}$ | $3^{\prime \prime} \times 13^{\prime \prime}$ |
| $14^{\prime \prime}$ | 81/2" | $6^{1 / 2} \times 1 \times 1 / 2^{\prime \prime}$ | $3^{\prime \prime} \times 14,66^{\prime \prime} \times 8{ }^{\prime \prime}$ |
| $16^{\prime \prime}$ | $91 / 2^{\prime \prime}$ | $71 / 2 \times 71 / 2$ | $3^{\prime \prime} \times 15^{\prime}$ |

Contact your TRIFORCE ${ }^{\circ}$ representataive for more details

## Typical Details



## STRONGBACKS

DETAILS

Strongbacks must be dry lumber and secured with 2 spiral or resined 3 " nails or $2-3$ " screws at mid-span, to a vertical brace or diagonal web.

## Detail 5 <br> Strongback (at mid span)

Option \#1 (recommanded)
Secure vertical side block (2x4) as
per detail, with 2 nails* to both
chords and strongback to vertical
with 2 nails**. (gun nails 0.122 " $\times 3$
$\left.1 / 4^{\prime \prime}\right)$

## Strongback Overlap



Notes:
CP-LAM beam sizes are listed as the number of $1-3 / 4^{\prime \prime}$ thick pieces by the beam depth, e.g. $2-1 / 2$ indicates two $1-3 / 4$ " pieces by $9-1 / 2^{\prime \prime}$
deep. . All CP-LAM beams require support across their full width.
. The minimum required end and intermediate bearing lengths symbol is shown. In that case, 4-1/2" and 10-1/2" end and intermediate bearing lengths are required.
4. CP-LAM beam sizes are based on residential floor loading of 40 pst live load and 10 pst dead load. The roof framing must be
5. trusses supporied at the exterior walls only.
6. CP-LAM beam sizes are based on continuous floor joist span continuous, it is permisssibe to consider a "Wioth of Building" dimension that is equal to 0.8 times the actual width of the building.

### 2.0ECP-LAM

ALLOWABLE UNIFORM LOADS FLOOR 100\%

## ALLOWABLE UNIFORM LOADS* - POUNDS PER LINEAR FOOT - 1-3/4" 2.0E CP-LAM

| Span (ft) | Key | One 1-3/4"CP-LAM |  |  | Two 1-3/4"CP-LAM |  |  |  |  | Three 1-3/4"CP-LAM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | $16^{\prime \prime}$ | $18^{\prime \prime}$ | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | $16^{\prime \prime}$ | 18" |
| 6 | LL |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | TL | 1063 | 1425 | 1796 | 2127 | 2850 | 3591 | 4388 | 5304 | 3190 | 4275 | 5387 | 6582 | 7955 |
|  | BRG | 2.2/5.4 | 2.977.2 | 3.6/9.1 | 2.2/5.4 | 2.97. 2 | 3.6/9.1 | 4.4/11.1 | 5.4/13.4 | 2.2/5.4 | 2.97. 2 | 3.6/9.1 | 4.4/11.1 | .4/13/4 |
| 8 | LL | 724 |  |  | 1447 |  |  |  |  | 2171 |  |  |  |  |
|  | TL | 746 | 979 | 1208 | 1493 | 1958 | 2416 | 2887 | 3404 | 2239 | 2937 | 3624 | 4331 | 5105 |
|  | BRG | 2/5 | 2.6/6.6 | 3.3/8.2 | 2/5 | 2.6/6.6 | 3.3/8.2 | 3.9/8.8 | 4.6/11.5 | 2/5 | 2.6/6.6 | 3.3/8.2 | 3.9/9.8 | 4.6/11.5 |
| 10 | LL | 370 | 724 |  | 741 | 1447 |  |  |  | 1111 | 2171 |  |  |  |
|  | TL | 551 | 745 | 909 | 1103 | 1490 | 1819 | 2150 | 2504 | 1654 | 2236 | 2728 | 3224 | 3755 |
|  | BRG | 1.9/4.7 | 2.5/6.3 | 3.1/7.7 | 1.9/4.7 | 2.5/6.3 | 3.1/7.7 | 3.6/9.1 | 4.2/10.6 | 1.994.7 | 2.5/6.3 | 3.1/7.7 | 3.6/9.1 | 4.2/10.6 |
| 11 | LL | 278 | 544 |  | 557 | 1087 |  |  |  | 835 | 1631 |  |  |  |
|  | TL | 413 | 665 | 809 | 826 | 1331 | 1618 | 1905 | 2211 | 1240 | 1996 | 2427 | 2858 | 3316 |
|  | BRG | 1.5/3.9 | 2.5/6.2 | 3/7.5 | 1.5/3.9 | 2.5/6.2 | 3/7.5 | 3.5/8.9 | 4.1/10.3 | 1.5/3.9 | 2.5/6.2 | 3/7.5 | 3.5/8.9 | 4.1/10.3 |
| 12 | LL | 214 | 419 | 686 | 429 | 837 | 1372 |  |  | 643 | 1256 | 2058 |  |  |
|  | TL | 317 | 586 | 729 | 635 | 1172 | 1452 | 1711 | 1979 | 952 | 1758 | 2186 | 2566 | 2968 |
|  | BRG | 1.5/3.2 | 2.4/6 | 3/7.4 | 1.5/3.2 | 2.4/6 | 3/7.4 | 3.5/8.7 | 4/10.1 | 1.5/3.2 | 2.4/6 | 3/7.4 | 3.5/8.7 | 4/10.1 |
| 13 | LL | 169 | 329 | 540 | 337 | 659 | 1079 |  |  | 506 | 988 | 1619 |  |  |
|  | TL | 249 | 489 | 663 | 497 | 977 | 1325 | 1552 | 1790 | 746 | 1466 | 1988 | 2328 | 2686 |
|  | BRG | 1.5/3 | 2.2/5.4 | 2.997.3 | 1.5/3 | 2.2/5.4 | 2.927.3 | 3.4/8.6 | 3.9/9.9 | 1.5/3 | 2.2/5.4 | 2.9/7.3 | 3.4/8.6 | 3.9/9.9 |
| 14 | LL | 135 | 264 | 432 | 270 | 527 | 864 | 1290 |  | 405 | 791 | 1296 | 1935 |  |
|  | TL | 198 | 390 | 578 | 396 | 780 | 1156 | 1420 | 1635 | 595 | 1170 | 1734 | 2130 | 2452 |
|  | BRG | 1.5/3 | 1.9/4.7 | 2.8/6.9 | 1.5/3 | 1,994.7 | 2.8/6.9 | 3.4/8.4 | 3.9/9.7 | 1.5/3 | 19/4.7 | 2.8/6.9 | 3.4/8.4 | 3.9/9.7 |
| 15 | LL | 110 | 214 | 351 | 220 | 429 | 703 | 1049 | 1493 | 329 | 643 | 1054 | 1573 | 2240 |
|  | TL | 160 | 316 | 503 | 321 | 632 | 1006 | 1280 | 1504 | 481 | 949 | 1508 | 1921 | 2255 |
|  | BRG | 1.5/3 | 1.6/4.1 | 2.6/6.4 | 1.5/3 | 1.6/4.1 | 2.6/6.4 | 3.3/8.2 | 3.8/9.6 | 1.5/3 | 1.6/4.1 | 2.6/6.4 | 3.3/8.2 | 3.8/9.6 |
| 16 | LL | 90 | 177 | 289 | 181 | 353 | 579 | 864 | 1230 | 271 | 530 | 868 | 1296 | 1846 |
|  | TL | 131 | 260 | 428 | 263 | 519 | 856 | 1124 | 1391 | 394 | 779 | 1284 | 1685 | 2086 |
|  | BRG | 1.5/3 | 1.5/3.6 | 2.3/5.8 | 1.5/3 | 1.5/3.6 | 2.3/5.8 | 3.1/7.7 | 3.8/9.5 | 1.5/3 | 1.5/3.6 | 2.3/5.8 | 3.1/7.7 | 3.8/9.5 |
| 17 | LL | 75 | 147 | 241 | 151 | 295 | 483 | 720 | 1026 | 226 | 442 | 724 | 1081 | 1539 |
|  | TL | 109 | 216 | 356 | 218 | 431 | 711 | 994 | 1230 | 326 | 647 | 1067 | 1490 | 1845 |
|  | BRG | 1.5/3 | 1.5/3.2 | 2.1/5.2 | 1.5/3 | 1.5/3.2 | 2.1/5.2 | 2.977.2 | 3.68.9 | 1.5/3 | 1.5/3.2 | 2.1/5.2 | 2.9/7.2 | 3.6/8.9 |
| 18 | LL | 64 | 124 | 203 | 127 | 248 | 407 | 607 | 864 | 191 | 372 | 610 | 910 | 1296 |
|  | TL | 91 | 181 | 299 | 182 | 361 | 597 | 885 | 1095 | 273 | 542 | 896 | 1327 | 1643 |
|  | BRG | 1.5/3 | 1.5/3 | 1.8/4.6 | 1.5/3 | 1.5/3 | 1.8/4.6 | 2.776.8 | 3.4/8.4 | 1.5/3 | 1.5/3 | $1.8 / 4.6$ | $2.7 / 6.8$ | 3.4/8.4 |
| 19 | LL | 54 | 105 | 173 | 108 | 211 | 346 | 516 | 735 | 162 | 316 | 519 | 774 | 1102 |
|  | TL | 77 | 153 | 253 | 153 | 306 | 506 | 760 | 981 | 230 | 459 | 759 | 1139 | 1472 |
|  | BRG | 1.5/3 | 1.5/3 | 1.7/4.1 | 1.5/3 | 1.5/3 | 1.7/4.1 | 2.5/6.2 | 3.2/8 | 1.5/3 | 1.5/3 | 1.7/4.1 | 2.5/6.2 | 3.278 |
| 20 | LL | 46 | 90 | 148 | 93 | 181 | 296 | 442 | 630 | 139 | 271 | 445 | 664 | 945 |
|  | TL | 65 | 130 | 216 | 130 | 261 | 432 | 649 | 884 | 195 | 391 | 648 | 974 | 1326 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.7 | 2.2/5.6 | $3 / 7.6$ | 1.5/3 | 1.5/3 | 1.5/3.7 | 2.2/5.6 | 3/7.6 |
| 22 | LL | 35 | 68 | 111 | 70 | 136 | 223 | 332 | 473 | 104 | 204 | 334 | 499 | 710 |
|  | TL | 48 | 97 | 161 | 96 | 193 | 321 | 484 | 694 | 144 | 290 | 482 | 726 | 1040 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3.1 | 1.5/3 | 1.5/3 | 1.5/3.1 | 1.8/4.6 | $2.6 / 6.6$ | 1.5/3 | 1.5/3 | 1.5/3.1 | 1.8/4.6 | 2.6/6.6 |
| 24 | LL | 27 | 52 | 86 | 54 | 105 | 172 | 256 | 365 | 80 | 157 | 257 | 384 | 547 |
|  | TL | 36 | 73 | 122 | 72 | 146 | 245 | 370 | 530 | 108 | 219 | 367 | 554 | 796 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.9 | 2.2/5.5 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.9 | 2.2/5.5 |
| 26 | LL | 21 | 41 | 67 | 42 | 82 | 135 | 201 | 287 | 63 | 124 | 202 | 302 | 430 |
|  | TL | 27 | 56 | 95 | 55 | 113 | 190 | 288 | 414 | 82 | 169 | 284 | 431 | 621 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.3 | 1.9/4.7 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.3 | 1.9/4.7 |
| 28 | LL | 17 | 33 | 54 | 34 | 66 | 108 | 161 | 230 | 51 | 99 | 162 | 242 | 344 |
|  | TL | 21 | 44 | 75 | 42 | 88 | 149 | 227 | 328 | 63 | 132 | 224 | 341 | 492 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.6/4.1 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.6/4.1 |
| 30 | LL | 14 | 27 | 44 | 27 | 54 | 88 | 131 | 187 | 41 | 80 | 132 | 197 | 280 |
|  | TL | 16 | 35 | 60 | 33 | 70 | 119 | 182 | 264 | 49 | 104 | 179 | 273 | 395 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.5 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.5 |
| Can be applied to the CP-LAM beam in addition to its own weight. - Simple or multiple Key to Table: <br> LL = Maximum live load- linits deflection to L 360 <br> $T L=$ Maximum total load - limits deflection to $L$ L240 <br> BRG= Required endifintermediate bearing length (inches), based on plate bearing stress of 85 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 2.0E CP-LAM

ALLOWABLE UNIFORM LOADS ROOF SNOW 115\%
ALLOWABLE UNIFORM LOADS* - POUNDS PER LINEAR FOOT - 1-3/4" 2.0E CP-LAM

| Span (ft) | Кеу | One 1-3/4" CP-LAM |  |  | Two 1-3/4" CP-LAM |  |  |  |  | Three 1-3/4" CP-LAM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 9-1/2" | 11-7/8" | 14" | 9-1/2" | 11-7/8" | $14^{\prime \prime}$ | $16^{\prime \prime}$ | $18^{\prime \prime}$ | 9-1/2 | 11-7/8" | $14^{\prime \prime}$ | $16^{\prime \prime}$ | $18^{\prime \prime}$ |
| 6 | TL | 1224 | 1640 | 2006 | 2447 | 3279 | 4132 | 5049 | 6102 | 3671 | 4919 | 6198 | 7573 | 9152 |
|  | LL |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | BRG | 2.5/6.2 | 3.3/8.3 | 4.2/10.4 | 2.5/6.2 | 3.3/8.3 | 4.2/10.4 | 5.1/12.8 | 6.2/15.4 | 2.5/6.2 | 3.3/8.3 | 4.2/10.4 | 5.1/12.8 | 5.2/15.4 |
| 8 | TL | 859 | 1127 | 1390 | 1718 | 2254 | 2780 | 3323 | 3917 | 2577 | 3380 | 4170 | 4984 | 5875 |
|  | LL |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | BRG | 2.3/5.8 | 3/7.6 | 3.8/9.4 | 2.3/5.8 | 3/7.6 | 3.8/9.4 | 4.5/11.2 | 5.3/13.2 | 2.3/5.8 | 3/7.6 | 3.8/9.4 | 4.5/11.2 | 5.3/13.2 |
| 10 | LL | 556 |  |  | 1111 |  |  |  |  | 1667 |  |  |  |  |
|  | TL | 651 | 858 | 1047 | 1302 | 1716 | 2093 | 2474 | 2882 | 1954 | 2573 | 3140 | 3711 | 4322 |
|  | BRG | 2.2/5.5 | 2.977.3 | 3.5/8.8 | $2.2 / 5.5$ | 2.8/7.3 | 3.5/8.8 | 4.2/10.5 | 4.9/12.2 | 2.2/5.5 | 2.977.3 | 3.5/8.8 | 4.2/10.5 | 9/12.2 |
| 11 | LL | 418 |  |  | 835 |  |  |  |  | 1253 |  |  |  |  |
|  | TL | 537 | 766 | 931 | 1075 | 1532 | 1863 | 2193 | 2545 | 1612 | 2298 | 2794 | 3290 | 3817 |
|  | BRG | $2 / 5$ | 2.977.1 | 3.5/8.7 | $2 / 5$ | 2.977.1 | 3.58.7 | 4.1/10.2 | 4.7/11.8 | $2 / 5$ | 2.977.1 | 3.5/8.7 | 4.1/10.2 | 4.7/11.8 |
| 12 | LL | 322 | 628 |  | 643 | 1256 |  |  |  | 965 | 1884 |  |  |  |
|  | TL | 424 | 675 | 839 | 849 | 1350 | 1678 | 1970 | 2278 | 1273 | 2025 | 2517 | 2954 | 3417 |
|  | BRG | . $1.7 / 4.3$ | 2.7/6.9 | 3.4/8.5 | 1.7/4.3 | $2.7 / 6.9$ | 3.4/8.5 | 4/10 | 4.6/11.6 | 1.7/4.3 | $2.7 / 6.9$ | 3.4/8.5 | 4/10 | 6/11.6 |
| 13 | LL | 253 | 494 |  | 506 | 988 |  |  |  | 759 | 1482 | - |  |  |
|  | TL | 333 | 574 | 763 | 666 | 1148 | 1526 | 1787 | 2061 | 999 | 1723 | 2289 | 2681 | 3092 |
|  | BRG | 1.5/3.7 | 2.5/6.3 | 3.4/8.4 | 1.5/3.7 | 2.5/6.3 | 3.4/8.4 | 3.9/9.8 | 4.5/11.3 | 1.5/3.7 | 2.5/6.3 | 3.4/8.4 | 3.9/9.8 | 4.5/11.3 |
| 14 | LL | 203 | 396 | 648 | 405 | 791 | 1296 |  |  | 608 | 1187 | 1944 |  |  |
|  | TL | 266 | 494 | 666 | 531 | 989 | 1332 | 1635 | 1882 | 797 | 1483 | 1997 | 2453 | 2823 |
|  | BRG | 1.5/3.2 | 2.4/5.9 | 3.2/7.9 | 1.5/3.2 | 2.4/5.9 | 3.2/7.9 | 3.999.7 | 4.5/11.2 | 1.5/3.2 | 2.4/5.9 | 3.2/7.9 | 3.9/9.7 | .5/11.2 |
| 15 | LL | 165 | 322 | 527 | 329 | 643 | 1054 |  |  | 494 | 965 | 1581 |  |  |
|  | TL | 215 | 423 | 579 | 430 | 847 | 1158 | 1475 | 1732 | 646 | 1270 | 1737 | 2212 | 2597 |
|  | BRG | 1.5/3 | 2.2/5.4 | 307.4 | 1.5/3 | 2.2/5.4 | 3/7.4 | 3.8/9.4 | 4.4/11 | 1.5/3 | 2.2/5.4 | 3/7.4 | 3.8/9.4 | 4.4/11 |
| 16 | LL | 136 | 265 | 434 | 271 | 530 | 868 |  |  | 407 | 795 | 1303 |  |  |
|  | TL | 177 | 348 | 508 | 353 | 696 | 1016 | 1294 | 1602 | 530 | 1044 | 1525 | 1941 | 2402 |
|  | BRG | 1.5/03 | 1.9/4.8 | 2.8/6.9 | 1.5/3 | 1.9/4.8 | 2.8/6.9 | 3.8/8.8 | 4.4/10.9 | 1.5/3 | 1.8/4.8 | 2.8/6.9 | 3.5/8.8 | 4/10.9 |
| 17 | LL | 113 | 221 | 362 | 226 | 442 | 724 | 1081 |  | 339 | 663 | 1086 | 1621 |  |
|  | TL | 146 | 289 | 449 | 293 | 578 | 899 | 1145 | 1417 | 439 | 867 | 1348 | 1717 | 2125 |
|  | BRG | 1.5/3 | 1.7/4.2 | $2.6 / 6.5$ | 1.5/3 | 1.774.2 | 2.6/6.5 | 3.3/8.3 | 4.1/10.2 | 1.5/3 | 1.7/4.2 | 2.6/6.5 | 3.3/8.3 | 4.1/10.2 |
| 18 | LL | 95 | 186 | 305 | 191 | 372 | 610 | 910 |  | 286 | 558 | 915 | 1366 |  |
|  | TL | 123 | 243 | 400 | 245 | 485 | 800 | 1020 | 1262 | 368 | 728 | 1208 | 1529 | 1893 |
|  | BRG | 1.5/3 | 1.5/3.8 | 2.5/6.2 | 1.5/3 | 1.5/3.8 | 2.5/6.2 | 3.177.8 | 3.9/9.7 | 1.5/3 | 1.5/3.8 | 2.5/6.2 | 3.1/7.8 | 3.9/9.7 |
| 19 | LL | 81 | 158 | 259 | 162 | 316 | 519 | 774 | 1102 | 243 | 475 | 778 | 1161 | 1653 |
|  | TL | 104 | 206 | 339 | 207 | 411 | 679 | 914 | 1131 | 311 | 617 | 1018 | 1370 | 1696 |
|  | BRG | 1.5/3 | 1.5/3.4 | 2.2/5.5 | 1.5/3 | 1.5/3.4 | 2.2/5.5 | $3 / 7.4$ | 3.7/9.2 | 1.5/3 | 1.5/3.4 | 2.2/5.5 | $3 / 7.4$ | 3.7/9.2 |
| 20 | LL | 69 | 136 | 222 | 139 | 271 | 445 | 664 | 945 | 208 | 407 | 667 | 996 | 1418 |
|  | TL | 88 | 175 | 290 | 177 | 351 | 580 | 823 | 1019 | 265 | 526 | 870 | 1235 | 1529 |
|  | BRG | 1.5/3 | 1.5/3 | $2 / 5$ | 1.5/3 | 1.5/3 | $2 / 5$ | 2.817 | 3.5/8.7 | 1.5/3 | 1.5/3 | $2 / 5$ | $2.8 / 7$ | 3.5/8.7 |
| 22 | LL | 52 | 102 | 167 | 104 | 204 | 334 | 499 | 710 | 157 | 306 | 501 | 748 | 1065 |
|  | TL | 65 | 131 | 216 | 131 | 261 | 433 | 650 | 839 | 196 | 392 | 649 | 975 | 1259 |
|  | BRG | 1.5/3 | 1.5/3 | 1.6/4.1 | 1.5/3 | 1.5/3 | 1.6/4.1 | 2.5/6.1 | 3.2/7.9 | 1.5/3 | 1.5/3 | 1.6/4.1 | 2.5/6.1 | 3.27.9 |
| 24 | LL | 40 | 79 | 129 | 80 | 157 | 257 | 384 | 547 | 121 | 236 | 386 | 576 | 820 |
|  | TL | 49 | 99 | 165 | 99 | 199 | 330 | 498 | 703 | 148 | 298 | 496 | 746 | 1054 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3.5 | 1.5/3 | 1.5/3 | 1.5/3.5 | 2.1/5.2 | 2.977.3 | 1.5/3 | 1.5/3 | 1.5/3.5 | 2.1/5.2 | 2.977 .3 |
| 26 | LL | 32 | 62 | 101 | 63 | 124 | 202 | 302 | 430 | 95 | 185 | 304 | 453 | 645 |
|  | TL | 38 | 77 | 129 | 76 | 154 | 257 | 388 | 557 | 114 | 231 | 386 | 582 | 836 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.8/4.4 | 2.5/6.3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.814.4 | 2.5/6.3 |
| 28 | LL | 25 | 49 | 81 | 51 | 99 | 162 | 242 | 344 | 76 | 148 | 243 | 363 | 517 |
|  | TL | 29 | 61 | 102 | 59 | 121 | 203 | 308 | 443 | 88 | 182 | 305 | 462 | 664 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.8 | 2.2/5.4 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.8 | 2.2/5.4 |
| 30 | LL | 21 | 40 | 66 | 41 | 80 | 132 | 197 | 280 | 62 | 121 | 198 | 295 | 420 |
|  | TL | 23 | 48 | 81 | 46 | 96 | 163 | 248 | 357 | 69 | 145 | 244 | 371 | 535 |
|  | BRG | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3.3 | 1.9/4.7 | 1.5/3 | 1.5/3 | 1.5/3 | 1.5/3 | 1.9/4.7 |
| Can be applied to the CP-LAM beam in addition Key to Table: <br> $\mathrm{LL}=$ Maximum live load- limits deflection to $\mathrm{L} / 360$ <br> TL= Maximum total load - limits deflection to L/240 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

RG $=$ Required endiintermediate bearing length (inches), based on plate bearing stress of 850 psi

CP-LAM

3a. $\begin{aligned} & \text { BEAM-TO-BEAM CONNECTION } \\ & \text { Make sure hanger capacity is }\end{aligned}$ Make sure hanger cap
appoprite for eah
application.Hangers application.Hangers
must be properly must be propery
instled to
accommodate accommodate
full capacityPrevent directcon
CP-LAM with concrete. Consult local
building code building code
for requirements

BEARING DETAILS
BEARING OEXTERIOR WALL
Prevent direct contact of CPLAM BEARINGLENGTHREQUMREMENTS

| Support Material |  | S-P-F F South)(Nom-Fit(North)(5) |  | ${ }_{\text {S-P--Fsis }}^{\text {Hem-fir }}$ |  | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Southern Pine } \\ \text { Douglas } \\ \text { Fir-Larch } \end{array} \\ \hline 565 \end{array}$ |  | 1.8E or 2.0E CP-LAM ${ }^{(6)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (psi) |  |  | 40 |  |  |  |  |  |
| $\begin{gathered} \text { CP-LAM Beam } \\ \text { Width (in) } \end{gathered}$ |  | ${ }^{1-3 / 44^{\prime \prime}}$ | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" |
| ¢ |  | $3^{\prime \prime}$ | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" | 1-1/2" | -1/1/2 |
|  | 2 | 3-1/2" | $3^{\prime \prime}$ | $3^{\prime \prime}$ | 1-1/2" | $3^{\prime \prime}$ | 1-1/2/ | 1/2 | $1-1 / 2^{\prime \prime}$ |
|  | 3 | 5-1/2" | $3^{\prime \prime}$ | 4-1/2" | $3^{\prime \prime}$ | 3-1/2" | 3" | 3" | 1-1/2" |
|  | 4 | 7-1/2" | 3-1/2" | $6^{\prime \prime}$ | $3^{\prime \prime}$ | 4-1/2" | $3^{\prime \prime}$ | $3^{\prime \prime}$ | 1-1/2" |
|  | 5 | 9-1/14 | 4-1/2" | 7-1/4" | 4-1/2" | 5-1/2" | $3^{\prime \prime}$ | 3-1/2" | 3" |
|  | 6 |  | $5-1 / 2^{\prime \prime}$ | 9-1/4" | 4-1/2" | 7-1/14 | 3-1/2 | 4-1/2" | $3^{\prime \prime}$ |
|  | 7 |  | $6^{\prime \prime}$ |  | 5-1/2" | 7-1/4" | 4-1/2" | 5-1/2" | $3^{\prime \prime}$ |
|  | 8 |  | $7-1 / 4^{4}$ |  | $6^{\prime \prime}$ | 9-1/4" | 4-1/2" | 5-1/2" | 3-1/2" |
|  | 9 |  | 9-1/1/4 |  | 7-1/4" | 9-1/4" | 5-1/2"101 | 7-1/2" | 3-1/2 |
|  | 10 |  | $9-1 / 4^{\prime \prime}$ |  | 7-1/4" |  | 5-1/2 | -1/21 | 3-1/2" |
|  | 11 |  |  |  | $9-1 / 44^{\prime \prime}$ |  | $6^{\prime \prime}$ | -1/2" | 4-1/2" |
|  | 12 |  |  |  | 9-1/4" |  | 7-1/4" | $9{ }^{9}$ | 4-1/2" |

5. Use these values when the CP-LAM beam is supported by a wall plate, sill plate, timber or built up girder.
Use these valus
6. The support member must be sized to carry the load from the CP-LAM beam
This technical note applies only to uniformly loaded, simple and multiple span CP-LAM beams. Beams that cary concentrated loads, or cantilevered beams, are outside the scope of this technical note.
7. Round holes may be drilled or cut with a hole saw anywhere within the shaded area of the CP-LAM beam.
The horizontal distance between adiacent holes must be at least two times the size of the larger hole. This restriction also applies to the location of access
8. Do not drill more than three access holes in any four foot long section of CP-LAM beam.
9. The maximum round hole diameter permitted is | CP-LAM Beam Depth | $5-1 / 2^{\prime \prime}$ | $7-1 / 2^{\prime \prime}$ | $9-1 / 2^{\prime \prime}$ to $24^{\prime \prime}$ |
| :--- | :--- | :--- | :--- |

 The size and location of holes drilled for fasteners are governed by the
8. CP-LAMM beams deflect under load. Size holes to provide clearance where required.

| Support Materia |  | S-P-F (South) |  |  |  | $\begin{array}{\|c\|c} \hline \begin{array}{c} \text { Southern Pine } \\ \text { Douglas } \\ \text { Fir-Larch } \end{array} \\ 565 \end{array}$ |  | 1.8 E or 2.0 E CP-LAM ${ }^{(6)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{F}_{\mathrm{CA}}(\text { Psi) } \\ \hline \begin{array}{c} \text { CP-LAM Beam } \\ \text { Width (in) } \end{array} \\ \hline \end{gathered}$ |  |  | 35 |  |  |  |  |  |  |
|  |  | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" | 1-3/4" | 3-1/2" |
| $\frac{\mathrm{I}}{\overline{\mathrm{I}}}$ | 13 |  |  |  | $9-1 / 4^{\prime \prime}$ |  | 7-1/4" |  | 4-1/2" |
|  | 14 <br> 15 <br> 1 |  |  |  |  |  | ${ }_{\text {7-1/4" }}{ }^{-1 / 44^{\prime \prime}}$ | $9 "$ | ${ }^{5-1 / /^{\prime \prime}} 5$ |
|  | 15 16 |  |  |  |  |  | ${ }^{9-1 / 1 / 4 "}$ |  | ${ }^{\frac{5-1 / 1 / 2}{}}$ |
|  | 17 |  |  |  |  |  | $9-1 / 4^{\prime \prime}$ |  | $6^{\prime \prime}$ |
|  | 18 |  |  |  |  |  | $9-1 / 4^{\prime \prime}$ |  | 7-1/2" |
|  | 19 |  |  |  |  |  |  |  | 7-1/2" |
|  | 20 |  |  |  |  |  |  |  | 7-1/2" |
|  | 21 |  |  |  |  |  |  |  | 7-1/2" |
|  | 22 |  |  |  |  |  |  |  | 7-1/12 |
|  | 23 |  |  |  |  |  |  |  | $9^{\prime \prime}$ |


2. Duration of load factors may not be applied to bearing length requirements . AICP-LAM beams require lateral suppot at hearing points

HOLE DETAILS


## MULTI-PLY

CP-LAM BEAM ASSEMBLY

MAXIMUM UNIFORM SIDE LOAD (PLF) 2.0 E CP-LAM

|  | 3-1/2" $\times$ 0.131: Nails |  | 16d Common Nails |  | 1/2" Bolts |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIECES IN MEMBER Condition A (2-1-3/4") | $\begin{aligned} & 2 \text { Rows at } \\ & \text { 12" O.C. } \\ & 390 \end{aligned}$ | 3 Rows at 12" O.C. 585 | 2 Rows at 12" O.C. 505 | 3 Rows at 12" O.C. 760 | 2 Rows at 24" O.C. 510 | 2 Rows at 12" O.C. 1015 | $\begin{gathered} \text { 3 Rows at } \\ 12 \text { " O.C. } \\ 1520 \\ \hline \end{gathered}$ |
| Condition B ( $3-1-3 / 4$ ") | 290 | 435 | 380 | 570 | 380 | 760 | 1140 |
| Condition C (2-1-3/4"+1-3-1/2") | 260 | 390 | 340 | 505 | 465 | 930 | 1395 |
| Condition D (4-1-3/4) |  | use bolts for this condition |  |  | 340 | 680 | 1015 |
| Condition E (2-3-1/2") |  | use bolts for this condition |  |  | 860 | 1720 | 2580 |

Notes:
Minimum fastener schedule for smaller side loads and top-locked CP-LAM beams:
Conditions $A, B, \&, C$, beams 12 " deep or less: 2 rows $3-1 / 2^{1 "} \times 0.131^{7}$ at $122^{\prime \prime}$ O.c. Conations A, B \& C, beams deeper than $12^{\prime \prime}$

onditions $\mathrm{D} \& \mathrm{E}$, all beam depths:
2 rows $1 / 22^{1}$ bolts at $24^{4} \mathrm{O} . \mathrm{C}$
2. The table values for nails may be doubled for $6^{\prime \prime} \mathrm{O}$.C. and tripled for

4" O.C. nail spacings.


The nail schedulues sh
HOWTO USETHE MAXIMUM UNIFORM SIDE LOADTABLE

## EXAMPLE:

## ?

THREE 1 -3/4" Plies (CONDITION B)
Use allowable load tables or sizing software to size the CP-LAM beam to
carry a total load of $(300+610+550)=1460$ plf.
2. Refer to the 2.0 E CP-LAM table for beam assembly requirements. Refer to the condition $B$ row in the table. Scan across the Condition B row from left to right for a table value greater
than 550 plf, which is the greatest side load carried by the beam. The fouth value in the row indicates that 3 rows of 16 d common nails at 12 " 0 . C will laccommodate a side load of 570 plf which is greater than the 550 plf required. Use3 rows of 16 d common nails at 12 " O.C.,
from both sides, to assemble the beam.


ENGINEERED STUDS
COASTAL PRO ENGINEEREDTALL WALL STUDS
Douglas fir LVL or MFR black spruce

- For walls that are stiff, straight, and strong
- Coastal Pro studs are engineered to reduce
twisting, warping, and splitting
- The ideal product to be used in installation of counters
and cabinets in kitchens without the hassles of shimming

Reduce construction time when installing tall walls
Available in $2 \times 4$ and $2 \times 6$ with lengths up to 24 feet
Building-code approved
There is no question that the total savings to builders and framers far There is no question that the total savings to builders and framers fay

Coastal Pro LVL Studs.
Doug Fir, waxed \& eased edge
MOE (Modulus of Elasticit)
Fb (Bending)
Fv (Horizontal Shear):
Fe (Compression Parallel to grain):
1,500,000 psi 2735 psi - $2 \times$ 220 psi 1,950 psi
As Available: Coastal Pro Engineered Framing Studs MSR Black Spruce
MOE -Modulus of Elasticity): $\quad 1,600,000$ psi
Fc (Compression Parallel To Grain) $\quad 1,200 \mathrm{psi}$


Perfect for deck beams and columns raised floor construction, coastal construction, boardwalks and pier/ beam foundations
Treated for above ground and ground contact applications
$\square$ Stock widths of $31 / 2^{\prime \prime}$ and $51 / 4^{\prime \prime}$ at IJC depths (custom widths and depths up to $52^{\prime}$ ) Backed by a 25 -year warranty as strong as our products

ach Construction


Floating Docks


## Power Bean

DESIGN PROPERTIES 3000F

| Allowable Desion Stresses (psi) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Flexural <br> Stress** <br> Fb | Tension <br> Parallel to <br> Grain $\mathrm{Ft}_{\mathrm{t}}$ |  | Compression Perpendicular to Grain Fc1 |  | Horizontal Shear $\mathrm{F}_{\mathrm{v}}$ | Modulus of Elasticity E |  |
| $3-1 / 2^{\prime \prime} \& 5-1 / 2^{\prime \prime}$ | 3000 |  |  |  |  | 300 |  | ,000 |
| $7{ }^{\prime \prime}$ | 2800 |  | 1300 |  |  | 300 |  | ,000 |
| 3-1/2" Beam Widith |  |  |  |  |  |  |  |  |
| Depth (in) | 7-1/4 | 9-1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 | 18 |
| Weight* (lbs/ft) | 7.0 | 9.0 | 9.2 | 10.9 | 11.6 | 13.6 | 15.6 | 17.5 |
| $\mathrm{C}_{\text {dt }}$ Factor (L=21) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.999 |
| 1 ( $\mathrm{in}^{4}$ ) | 111 | 231 | 250 | 415 | 489 | 800 | 1195 | 1701 |
| Moment Capacity (lbs-ft) | 7665 | 12478 | 13161 | 18457 | 20582 | 28583 | 37333 | 47193 |
| Shear Capacity (lbs) | 5075 | 6475 | 6650 | 7875 | 8316 | 9800 | 11200 | 12600 |
| 5-1/2" Beam Width |  |  |  |  |  |  |  |  |
| Depth (in) | 7-1/4 | 9-1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 | 18 |
| Weight* (lbs/ft) | 11.1 | 14.1 | 14.5 | 17.2 | 18.2 | 21.4 | 24.4 | 27.5 |
| $\mathrm{C}_{\text {do }}$ Factor (L=21) | 1.00 | 1.00 | 1.00 | 0.997 | 0.989 | 0.989 | 0.982 | 0.976 |
| 1 ( $\mathrm{in}^{4}$ ) | 175 | 363 | 393 | 653 | 768 | 1258 | 1877 | 2673 |
| Moment Capacity (lbs-ft) | 12046 | 19608 | 20682 | 28916 | 32246 | 44415 | 57625 | 72503 |
| Shear Capacity (lbs) | 7975 | 10175 | 10450 | 12375 | 13068 | 15400 | 17600 | 19800 |
| 7"Beam Width |  |  |  |  |  |  |  |  |
| Depth (in) | 7-14 | 9-1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 | 18 |
| Weigh** (lbs/ft) | 14.1 | 18.0 | 18.5 | 21.9 | 23.1 | 27.2 | 31.1 | 35.0 |
| $\mathrm{Cata}_{\text {Factor ( }}(\mathrm{L}=21)^{\prime}$ | 1.00 | 0.997 | 0.996 | 0.988 | 0.985 | 0.977 | 0.970 | 0.965 |
| $1\left(\mathrm{in}^{4}\right)$ | 222 | 462 | 500 | 8.31 | 978 | 1601 | 2389 | 3402 |
| Moment Capacity (lbs-ft) Shear Capacity (lbs) | 14309 | 23231 | 24472 | 34030 | 37845 | 52127 | 67631 | 85093 |
| 7" Beam Width |  |  |  |  |  |  |  |  |
| Depth (in) | 19-1/4 | 20-5/8 | 22 | 12-7/8 | 24-3/4 | 26-1/8 | 27-1/2 | 28-7/8 |
| Weight* (bs/ft) | 37.4 | 40.1 | 42.8 | 45.5 | 48.1 | 50.8 | 53.5 | 56.1 |
| $\mathrm{Catab}^{\text {Factor ( }} \mathrm{L}=21^{\prime}$ ) | 0.962 | 0.958 | 0.955 | 0.952 | 0.950 | 0.947 | 0.945 | 0.942 |
| 1 ( $\mathrm{in}^{4}$ ) | 4161 | 5118 | 6211 | 7450 | 8844 | 10401 | 12132 | 14044 |
| Moment Capacity (lbs-ft) | 96996 | 110964 | 125845 | 141637 | 158338 | 175943 | 19451 | 213860 |
| Shear Capacity (lbs) | 26950 | 28875 | 30800 | 32725 | 34650 | 36575 | 38500 | 40425 |

*Beam Weights are based on 40 pcf.
${ }^{* *}$ Flexural Stress, $\mathrm{F}_{\mathrm{b}}$, shall be modified by Volume Factor, C C , as outlined in ICC ESR-1940, APA
Product report-L263 and APA-EWS Y117 where;
$C_{V}=K_{L}\left[(21 / L)^{0.05} \times(12 / \mathrm{d})^{0.05} \times(5.125 / b)^{0.05}\right]<1.0$
Where
$=$ loading coefficient ( 1.0 for uniformly distributed),
Stock Depths
$L=$ length of bending (1.0 for uniformly distributed)
\(\begin{array}{ll} \& <br>

\)| $11-7 / 2^{\prime \prime \prime}$ | $16^{\prime \prime}$ |
| :--- | :--- |
| $144^{\prime \prime}$ | $188^{\prime \prime}$ |\end{array}

$\mathrm{d}=$ depth of bending member, in.
Tabulated Moment Capacities are based on a span of 21 feet and modified for other spans.
Width and depth portions of Volume Factor, $\mathrm{C}_{\nu}$, are incorporated in tabulated Moment Capacities using Cab Factor Note
Note: Alowable design properties and load capacities are based on a load duration of 100 percent and dry use conditions.

## Power Beam

## DESIGN PROPERTIES 3000F

## VERTICAL HOLES

Whenever possible, avoid drilling vertical holes through glulam beams. As a rule of thumb, vertical holes drilled through the depth of a glulam beam will cause a reduction in the capacity at the location directly proportional to the ratio of $1-1 / 2$ times the diameter of the hole by approximately $\frac{(1 \times 1-1 / 2)}{6}=25 \%$

For this reason, when it is necessary to drill vertical holes through a glulam member, the holes should be positioned in areas of the member that are stressed to less than 50 percent of design in bending. In a simply supported, uniformally loaded beam, this area would be located from the end of the beam inward approximately $1 / 8$ of the beam span. In all cases, the minimum clear edge distance, as measured from wandering" of the bit as it passes through knots or material of varying density, and to insure a true alignment of the hole through the depth of the beam.
HORIZONTAL HOLES
ike notches, holes in a glulam beam remove wood fiber, thus reducing the net area of the beam at the hole location and introducing stres concentrations. These effects cause a reduction in the capacity of the beam in the area of the penetration. For this reason, horizontal holes in glued laminated timbers are limited in size and location to maintain the structural integrity of the beam. Figure 1 shows the zones of a uniformly loaded, simply supported beam where the field drilling of holes may be considered. These non-critical zones are located in portions of the beam stressed to less than 50 percent of design bending stress and less than 50 percent of design shear stress. For beam of more complex loading or other than simple spans, similar diagrams may be developed.
ZONES WHERE SMALL HORIZONTAL HOLES ARE PERMITTED IN A UNIFORMLY LOADED, SIMPLY SUPPORTED BEAM

$l=$ length of beam
$d=$ depth of beam

Field-drilled holes should be used for access only and should not be used as attachment points for brackets or other load bearing hardware unless specifically designed as such by the engineer or designer. Examples of access holes include those
used for the passage of wires, electrical conduit, small diameter sprinkler pipes, fiber ootic cables, and other small lightweight materials. Thess field-drilled horizontal holes should meet the following guidelines:

1. Hole size: the hole diameter should not exceed $1-1 / 2$ inches or $1 / 10$ the beam depth, whichever is smallest, with the exception of 1 -inch-diameter or smaller holes as noted in Item 2 below.
2. Hole location: The hole should have a minimum clear distance, as measured from the edge of the hole to the nearest of the beam, of 4 hole diameters to the top or bottom face of the beam and 8 hole diameters from the end of the beam. approved by an engineer or architect qualified in engineered timber design.

Power Beamº allowable floor load tables LDF=1.0-3000F
 Row 3: Required Bearing Length in trimmer thickness
(e.g. $1.5=1$ trimmer, $3.0=2$ trimmers, etc.)

| ALLOWABLE FLOOR LOAD TABLES LDF $=1.0-3000 \mathrm{~F}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c} \text { Actual } \\ \text { Span } \end{array}$ | 3-1/2" |  |  |  |  |  |  |  | 5-1/2" |  |  |  |  |  |  |  |
|  | (1) |  |  |  |  | 14 | 16 | 18 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 71/4 |  |  | 91/4 | $91 / 2$ | ${ }_{\text {epth (in). }}^{111 / 4}$ |  | $\begin{array}{r} 14 \\ \hline 6600 \\ \hline 6600 \end{array}$ | 16 | 8 |
| ${ }^{7}$ | ${ }^{1251}$ | 2037 | 2149 | ${ }_{3013}^{3013}$ | ${ }^{3311}$ |  | 4200 | 5169 5169 | ${ }^{6330}$ | 1967 1584 | 3201 | ${ }_{3}^{3377}$ |  | 4735 | 5203 <br> 523 | 8123 8123 | ${ }^{9900}$ |
|  | 1008 | 2037 | 2149 | ${ }_{4}^{3013}$ | ${ }^{3311}$ | ${ }^{4200}$ | 5169 | ${ }^{6300}$ | ${ }^{1584}$ | ${ }_{3}^{3201}$ | ${ }^{3377}$ | 4735 4.5 |  | 5203 4.5 | 8123 7 | ${ }^{9900}$ |
| $8^{8}$ | 958 | 1560 | 1645 | 2307 | 2571 | 3459 | 4200 | 5040 | 1506 | 2451 | 2585 | 3625 | 4040 | 5435 | 6600 | 7920 |
|  | 675 | 1403 | 1520 | 2307 | 2571 | 3459 | 4200 | 5040 | 1061 | 2204 | 2388 | 3625 | 4040 | 5435 | 6600 | 7920 |
|  | 1.5 |  |  | ${ }_{4}^{4.5}$ | 4.5 | 6 | 7.5 | 9 | 1.5 | 3 | 3 | 4.5 | 4.5 | 6 | 7.5 |  |
| $9^{9}$ | 712 | 123 | 1300 | 1872 | 2031 | 2823 | 3537 | 4200 | 178 | 1937 | 2043 | 2865 | 3192 | 4436 | 5558 | 6600 |
|  | 474 1.5 | 985 3 | 1067 3 | ${ }^{1772}$ | $\begin{array}{r} 2031 \\ 4.5 \\ \hline \end{array}$ | 2833 6 | $\begin{array}{r} 3537 \\ 6 \\ \hline \end{array}$ | $\begin{array}{r} 4200 \\ \hline \end{array}$ | $\begin{aligned} & 745 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1548 \\ 3 \\ \hline \end{array}$ | $\begin{array}{r} 1677 \\ 3 \end{array}$ | $\begin{array}{r} 2785 \\ \hline \end{array}$ | $\begin{aligned} & 3192 \\ & 4192 \\ & 4 \end{aligned}$ | 4436 6 | $\begin{array}{r}5558 \\ \hline\end{array}$ | 6600 7.5 |
| ${ }^{10}$ | 519 | 998 | 1053 | 1477 | 1645 | 2287 | 2987 | 3600 | 815 | 1569 | 1655 | 2320 | 2585 | 3593 | 4693 | 5657 |
|  | 346 1.5 | 718 3 | $\begin{array}{r} 778 \\ \hline \end{array}$ | $\begin{aligned} & 1292 \\ & \hline \end{aligned}$ | 1520 3 | $\begin{array}{r} 2287 \\ \hline \end{array}$ | ${ }^{2987}$ | $\begin{aligned} & 3600 \\ & 7.5 \end{aligned}$ | 543 1.5 | 1129 | $\begin{array}{r} 1223 \\ \hline \end{array}$ | 2030 3 | 2388 3 | 3593 4.5 | ${ }^{4693}$ | 5657 7.5 |
| ${ }^{11}$ | 390 | 809 | 870 | 1220 | 1360 | 1890 | 2468 | 3124 | 612 | 127 | 1367 | 1918 | 2137 | 2970 | 3879 | 4909 |
|  | 260 | 540 | 585 | 971 | 1142 | 1871 | 2468 | 3124 | 408 | ${ }_{848}$ | 919 | 1525 | 1794 | 2940 | 3879 | 4909 |
|  | 1.5 | 3 |  |  |  | 4.5 |  |  | 1.5 |  | 3 | 3 | 3 | 4.5 |  | 7.5 |
| ${ }^{12}$ | 300 | 623 | 675 | 1025 | 1142 | 1588 | 2074 | 2625 | 472 | 980 | 1061 | 1611 | 1795 | 2495 | 3259 | 4125 |
|  | 200 1.5 | 416 1.5 | 145 1.5 | 748 3 | 879 | 1445 | 2074 | 2625 6 | 314 <br> 1.5 | 1.5 1.5 | 707 1.5 | 1175 3 | ${ }^{1382}$ | 2264 4.5 | 3259 6 | ${ }^{4125}$ |
| ${ }^{13}$ | 236 | 490 | 531 | 874 | 973 | 1353 | 1767 | 2237 | 371 | 771 | 835 | 1373 | 1530 | 2126 | 2777 | 3515 |
|  | 157 | 327 | 354 | 588 | 692 | 1133 | 1692 | 2237 | 247 | 514 | 556 | 924 | 1087 | 1781 | 2658 | 3515 |
|  |  |  |  |  |  |  |  |  | 297 | ${ }^{1.5}$ | 6.5 |  |  |  |  |  |
| ${ }^{14}$ | 189 | 393 | ${ }^{2} 25$ | 171 | 85 | 1 | 1524 | 1929 | ${ }^{297}$ | 617 | 668 | +10 | 105 | 1833 | 2395 | 3020 |
|  | 126 <br> 1.5 | 262 1.5 | 28.5 1.5 | 47 | 554 3 | ${ }_{3} 9$ | 1354 | 1929 6 | 198 <br> 1.5 | 411 1.5 | 446 1.5 | 740 3 | 870 3 | 1426 3 | 2128 4.5 | 3020 6 |
| 15' | 154 | 319 | 346 | 574 | 675 | 1016 | 1327 | 1680 | 242 | 502 | 543 | 902 | 1061 | 1597 | 2084 | 2622 |
|  | $\begin{array}{r}102 \\ 15 \\ \hline 1\end{array}$ | 213 15 | $\begin{array}{r}231 \\ 15 \\ \hline 1\end{array}$ | 383 <br> 3 | ${ }^{450}$ | 738 3 | 1101 45 | ${ }^{1568}$ | $\begin{array}{r}161 \\ 15 \\ \hline\end{array}$ | $\begin{array}{r}334 \\ 15 \\ \hline 15\end{array}$ | $\begin{array}{r}362 \\ 15 \\ \hline\end{array}$ | ${ }_{6}^{602}$ | ${ }_{7}^{707}$ | 1159 | $\begin{array}{r}1731 \\ 45 \\ \hline 1\end{array}$ | 2464 |
| 16' | 127 | 263 | 285 | 473 | 556 | 893 | 1167 | 1477 | 199 | ${ }^{413}$ | ${ }_{4}^{48}$ | 744 | 874 | 1404 | 1825 | 2297 |
|  | 84 | 175 | 190 | 315 | 371 | 608 | 907 | 1292 | 133 | 276 | 298 | 496 | 583 | 955 | 1426 | 2030 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 45 | 4.5 |
| ${ }^{17}$ | 106 | 219 | 238 | 394 | 464 | 760 | 1033 | 1308 | 166 | 345 | 373 | 620 | 729 | 1195 | 1612 | 2028 |
|  | 70 1.5 | 146 1.5 | 158 1.5 | 263 1.5 | 309 1.5 | 507 3 | 757 45 | 1077 45 | $\begin{array}{r}111 \\ 1.5 \\ \hline\end{array}$ | 230 15 | 245 | 413 15 | 486 15 | 796 | 1189 | 1693 |
| 18' | 89 | 185 | 200 | 332 | ${ }^{19}$ | ${ }_{640}$ | 922 | 1167 | 140 | 290 | 314 | 522 | 614 | 1006 | 1434 | 1804 |
|  | 59 | 125 | 135 | 225 | 261 | ${ }^{427}$ | 637 | 907 | 93 | 194 | 215 | 348 | 409 | 671 | 1001 | 1426 |
|  | 1.5 | 1.5 | 1.5 | 1.5 203 | 1.5 <br> 322 | 3 |  | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 |
| 19' | 76 | 157 | 170 | 283 185 | ${ }^{332}$ | $\begin{array}{r}535 \\ 543 \\ \hline\end{array}$ | 813 542 | ${ }^{1047}$ | 119 | $\begin{array}{r}245 \\ \hline 155\end{array}$ | $\begin{array}{r}267 \\ \hline 175\end{array}$ | 444 | ${ }_{5}^{522}$ | ${ }^{856}$ | 1277 | ${ }^{1615}$ |
|  | 50 1.5 | 105 1.5 | 113 1.5 | 188 1.5 | 222 1.5 | 363 3 | 542 3 | $\begin{gathered} 772 \\ 4.5 \\ \hline \end{gathered}$ | 79 1.5 | 165 | 178 1 125 | 296 15 | $\begin{array}{r}348 \\ 1.5 \\ \hline\end{array}$ | 570 | ${ }_{8}^{82}$ | 1212 45 |
| $20^{\prime}$ | 65 | 135 | 146 | 242 | 285 | 467 | 697 | 945 | 102 | 212 | 229 | 381 | 448 | ${ }^{734}$ | 1095 | 1454 |
|  | 43 | 90 | 97 | 161 | 190 | 311 | 465 | 662 | ${ }^{68}$ | 141 | 153 | 254 | 298 | 489 | 730 | 1040 |
|  | 1.5 56 | 1.5 116 | 1.5 126 | 1.5 209 | 1.5 <br> 246 | 403 4 | 602 | 4.5 856 | 1.5 <br> 88 | 1.5 <br> 183 <br> 1 | 1.5 <br> 198 | 1.5 329 | 1.5 387 | $\begin{array}{r}3 \\ 634 \\ \hline\end{array}$ | 946 | ${ }_{13}^{435}$ |
| $21^{\prime}$ | 37 | 78 | 84 | 140 | 164 | 269 | 401 | 571 | 59 | 122 | 132 | 219 | 258 | 422 | 631 | 898 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 |
| $2^{2}$ | 49 | 101 |  | 182 | 214 | ${ }^{331}$ |  |  |  | ${ }^{159}$ | 172 | ${ }^{286}$ | 336 | ${ }^{531}$ |  | ${ }_{781}^{1171}$ |
|  | 32 <br> 1.5 | $\begin{aligned} & 67 \\ & 1.5 \\ & \hline \end{aligned}$ | $\begin{array}{r} 73 \\ 1.5 \\ \hline \end{array}$ | 121 1.5 | 143 <br> 1.5 <br> 1 | 234 1.5 | 34 3 | $\begin{array}{r} 497 \\ \hline \end{array}$ | 51 1.5 | 106 1.5 | 115 1.5 | 191 1.5 | 224 125 | 367 15 | 549 | 781 |
| ${ }^{23}$ | ${ }^{43}$ | 89 | ${ }_{9} 9$ | 159 | 1.5 | ${ }_{3} 1.5$ | 458 |  | $\begin{array}{r}1.5 \\ \hline 1\end{array}$ | ${ }_{1}^{139}$ | ${ }_{1}^{151}$ | ${ }^{1.5}$ | $\stackrel{1.5}{294}$ | $\stackrel{182}{482}$ | 72 | 12 |
|  | 28 | 59 | 64 | 106 | 125 | 205 | 305 | 435 | 45 | 93 | 100 | 167 | 196 | 322 | 480 | 683 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 |
| ${ }^{24}$ | ${ }^{38}$ | 78 | ${ }^{84}$ | 140 | 165 | 270 | ${ }^{403}$ | 574 | 59 | 122 | ${ }^{133}$ | 220 | $\begin{array}{r}259 \\ \hline 173\end{array}$ | ${ }^{425}$ | 634 | ${ }^{902}$ |
|  | 25 1.5 1 | $\begin{array}{r}52 \\ 1.5 \\ \hline\end{array}$ | 56 1.5 | 1.5 1.5 1 | 110 1.5 | 180 1.5 | 269 3 | 383 <br> 3 | $\begin{array}{r}39 \\ 1.5 \\ \hline\end{array}$ | 1.5 1.5 | 88 1.5 | 147 1.5 | 173 1.5 | 283 1.5 | 422 3 | 602 3 |
| $25^{5}$ | ${ }^{33}$ | 69 | 75 | 124 | 146 | 239 | 357 | 508 | 5 | 108 | 117 | 195 | 229 | ${ }^{376}$ | 561 | ${ }^{798}$ |
|  | 22 <br> 1.5 <br> 1 | $\begin{array}{r}46 \\ 1.5 \\ \hline\end{array}$ | 50 1.5 | 83 1.5 | 1.5 <br> 1. | 159 1.5 | $\begin{array}{r}238 \\ 3 \\ \hline\end{array}$ | 339 3 | $\begin{array}{r}35 \\ 1.5 \\ \hline\end{array}$ | 72 1.5 | 78 <br> 1.5 | 130 1.5 | $\begin{array}{r}153 \\ 1.5 \\ \hline 1\end{array}$ | 250 1.5 | $\begin{array}{r}374 \\ 3 \\ \hline\end{array}$ | $\begin{array}{r}532 \\ 3 \\ \hline\end{array}$ |
| 26 | 26 | 55 | 59 | 98 | 116 | 190 | 283 | 403 | ${ }^{41}$ | 86 | 93 | 155 | 182 | 298 | 445 | ${ }^{634}$ |
|  | 18 1.5 | 36 1.5 | 40 1.5 | 66 1.5 | 17 1.5 | $\begin{array}{r}127 \\ 1.5 \\ \hline 1\end{array}$ | $\begin{array}{r}189 \\ 1.5 \\ \hline 1\end{array}$ | $\begin{array}{r}269 \\ 3 \\ \hline\end{array}$ | 28 1.5 | $\begin{array}{r}57 \\ 1.5 \\ \hline\end{array}$ | 62 1.5 | 103 15 15 | 121 1 1 | 199 | 297 | ${ }_{4}^{42}$ |
| ${ }^{27}$ | ${ }^{30}$ |  |  | 110 | 130 | 212 | 317 |  | 46 | 96 | 104 | 173 | 204 | 334 | 498 | 710 |
|  | 20 | 41 | 44 | 74 | 86 | 142 | 211 | 301 | 31 | 64 | 70 | 116 | 136 | 223 | 335 | 473 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 <br> 267 | 1.5 309 | 58 |
| 28 | 24 16 | ${ }_{33}^{49}$ | $\begin{array}{r}53 \\ 35 \\ \hline\end{array}$ | 598 59 | 104 69 | 170 113 | 254 169 | ${ }_{241}^{362}$ | $\begin{array}{r}37 \\ 25 \\ \hline\end{array}$ | 77 51 | 84 56 | 139 92 | 163 109 | 267 178 | 399 266 | 568 379 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | ${ }_{3}$ | 25 <br> 1.5 | 1.5 <br> 1 | 56 1.5 | 1.5 <br> 1.5 | 109 1.5 | 178 1.5 | 266 1.5 | 3 |
| 29 | 21 |  |  | 79 | 93 | 153 | 229 |  | ${ }^{33}$ | 59 | 75 | 125 | 147 | 241 | 359 | 511 |
|  | 14 1.5 | 29 1.5 | 32 1.5 | 53 1.5 | ${ }_{1.5}^{62}$ | 102 1.5 | 152 1.5 | ${ }_{2}^{217}$ | 22 <br> 1.5 | 46 1.5 | 50 1.5 | 83 1.5 | 1.5 1.5 | 160 1.5 | 239 1.5 | 341 3 |
| 30 | 19 | 40 | ${ }^{43}$ |  |  | 138 | 206 |  | ${ }^{30}$ | 63 | 68 |  | 133 | 217 | 324 | ${ }_{462}$ |
|  | 13 | 27 | 29 | 48 | 56 | 92 | 138 |  | 20 | 42 | 45 | 75 | 88 | 145 | 216 | 308 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |
| ${ }^{32}$ | 16 | ${ }^{33}$ | ${ }^{36}$ | 59 | 70 | 114 | 170 | 242 | 25 | 5 | ${ }^{56}$ | 93 | 109 | 179 | 267 | 381 |
|  | 1.5 | $\begin{aligned} & 22 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 24 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 39 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 46 \\ & 1.5 \end{aligned}$ | 76 1.5 | 113 1.5 | $\begin{aligned} & 161 \\ & 1.5 \end{aligned}$ | 17 | $\begin{aligned} & 34 \\ & 1.5 \end{aligned}$ | 37 1.5 | 62 | 73 1.5 | 119 | 178 <br> 1.5 | $\begin{aligned} & 254 \\ & 1.5 \end{aligned}$ |

Power Beani allowable floor load tables LDF=1.0-2800F
 Key: For each clear span there are three numbers: $\quad$ (e.g. $1.5=1$ trimmer, $3.0=2$ trimmers, etc.)

| ALLOWABLE LOADS FOR ANTHONY POWER BEAM ${ }^{\ominus}$ IN POUNDS PER LINEAR FOOT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Actuu } \\ & \text { Span } \end{aligned}$ | Depth (in.) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7-1/4 | 9.1/4 | 9-1/2 | 11-1/4 | 11-7/8 | 14 | 16 |  | 19-1/4 | 20518 | 22 | 23-3/8 | 243/4 | 26-1/8 | 27-1/2 | 28778 |
|  | ${ }_{2}^{2336}$ | 3803 | ${ }_{4011}^{4011}$ | 5625 | ${ }^{6267}$ | ${ }^{8400}$ | 10338 <br> 10388 | ${ }_{1}^{12600}$ | 14215 12215 | ${ }_{1}^{16211}$ | 18480 <br> 1888 | 21285 | 24104 | ${ }_{27647}^{27647}$ | 31862 31862 | 36888 <br> 3688 |
| ${ }^{7}$ | 2016 1.5 | 3803 3 | ${ }_{3}^{4011}$ | 5625 4.5 | ${ }_{4.5}^{626}$ | ${ }^{8400}$ | $\begin{array}{r}10338 \\ 7.5 \\ \hline\end{array}$ | ${ }^{12600}$ | 14215 10.5 | 16211 | 18480 13.5 | ${ }_{1085}^{21085}$ | 24104 | 27647 | 31862 | ${ }^{36888}$ |
| ${ }^{8}$ | 1789 | 912 | 3071 | 4307 | 4798 | 6669 | 8400 | 10080 | 11249 | 12658 | 14215 | 15947 | 17884 | 20064 | ${ }_{2}^{2253}$ | 25365 |
|  | 1351 1.5 | 2805 3 | 3039 3 | 4307 4.5 | 4798 4.5 | ${ }^{6669} 6$ | 8400 7.5 | 10080 9 | 11249 9 | 12658 10.5 | ${ }_{12}^{14215}$ | 15647 <br> 13.5 | 17884 15 | 20064 16.5 | 22537 19.5 | 25365 <br> 22.5 <br> 1 |
| ${ }^{9}$ | 1413 | 2300 | ${ }^{2426}$ | ${ }^{3403}$ | ${ }^{3791}$ | 5270 | ${ }_{6883}^{688}$ | 840 | ${ }^{9306}$ | ${ }^{10382}$ | ${ }^{11550}$ | ${ }_{1}^{12823}$ | 14215 | ${ }^{15745}$ | 17434 | 19357 |
|  | 949 1.5 | ${ }^{1970}$ | 2134 3 | 3403 3 | 3791 4.5 | 5270 4.5 | ${ }^{6883}$ | 8400 7.5 | ${ }^{9306}$ | ${ }^{10382}$ | 11550 10.5 | ${ }_{12}^{1283}$ | 14215 13,5 | 15745 15 | 17434 16.5 | 19307 18 |
| 10' | 1037 | 1863 | 1965 | 2756 | 3071 | 4268 | 5575 | 7056 | 7936 | 8800 | 9726 | 10722 | 11796 | 12956 | 14215 | 15586 |
|  | 692 | 1436 | 1556 | 2584 | 3039 | 4268 | 5575 | 7056 | 7936 | 8800 | 9726 | 10722 | 11796 | 12956 | 14215 | 15586 |
|  | 1.5 | ${ }^{3}$ |  |  |  | 4.5 |  | 7.5 | 7.5 | 9 | 10.5 | 10.5 | 12 | 13.5 | 15 | 16.5 |
| $11^{1}$ | 779 | 1540 | 1624 | 2278 | ${ }^{2538}$ | 3528 | 4608 | 5811 | ${ }_{6}^{6624}$ | 7578 | 8400 | 9213 | 10080 | 11007 | 12000 | ${ }_{13067}^{1306}$ |
|  | 520 1.5 | 1079 3 | $\begin{array}{r}1169 \\ \hline\end{array}$ | 1941 3 | $\begin{array}{r} 2283 \\ 3 \\ \hline \end{array}$ | $\begin{array}{r} 3528 \\ 4.5 \\ \hline \end{array}$ | 4608 6 | 5811 6 | $\begin{gathered} 6624 \\ 75 \end{gathered}$ | 7578 9 | 8400 9 | $\begin{gathered} 9213 \\ 10.5 \end{gathered}$ | 10080 12 | $\begin{gathered} 11007 \\ 12 \end{gathered}$ | $\begin{array}{r} 12000 \\ 13 \\ \hline \end{array}$ | 13067 15 |
| ${ }^{12}$ | 600 | 1247 | 1351 | 1914 | 2133 | 2964 | 3864 | 4862 | 5542 | 6340 | 7190 | 8076 | 8800 | 9567 | 10382 | 11249 |
|  | 400 1.5 | ${ }_{1.5}^{831}$ | 1.5 1.5 | ${ }^{1495}$ | ${ }_{1759}$ | ${ }^{2882}$ | 3864 4.5 | ${ }^{4862}$ | $\begin{array}{r}5542 \\ \hline 7.5\end{array}$ | 6340 75 | 7190 | 8076 10.5 | 8800 105 | 9567 | 10382 | 1249 135 |
| ${ }^{13}$ | 472 | 981 | 1062 | 1631 | 1817 | 2526 | 3279 | 4126 | 4703 | 5380 | 6102 | 6887 | 7677 | 8461 | 9149 | 9875 |
|  | 315 | 654 | 708 | 1176 | 1383 | ${ }_{2267}$ | 3279 | 4126 | 4703 | 5380 | 6102 | 6867 | 7677 | 8461 | 9149 | 9875 |
|  | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | 10.5 | 10.5 | 12 | 13.5 |
| ${ }^{14}$ | ${ }^{378}$ | 785 | ${ }^{851}$ | ${ }^{1406}$ | 1567 | 2171 | 2817 | ${ }^{3544}$ | 4040 | ${ }_{4622}^{462}$ | ${ }_{5242}^{524}$ | 5900 | 6595 | ${ }_{7328}^{738}$ | ${ }^{8099}$ |  |
|  | 252 1.5 | ${ }_{1}^{523}$ | 567 1.5 | ${ }_{9}^{94}$ | 1108 3 | ${ }_{1815}^{18}$ | 279 4 4 | 3544 6 | ${ }^{4040}$ | ${ }^{4622}$ | 5242 75 | 5900 | ${ }^{6595}$ | 7338 105 | 8099 | 8800 |
| ${ }^{15}$ | 307 | 638 | 692 | 1148 | 1351 | 1885 | 245 | 3077 | 3507 | 4012 | 4550 | 5121 | 5725 | 6362 | 7031 | 7733 |
|  | 205 | 426 | 461 | 766 | 900 | 1476 | 2203 | 3077 | 3507 | 4012 | 4550 | 5121 | 5725 | 1159 | 7031 | 7733 |
|  | 1.5 | 1.5 | 1.5 |  |  | 3 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 9 | , | 10.5 | 12 |
| ${ }^{16}$ | 253 | 526 | 570 | 946 | 1113 | 1651 | 2142 | 2696 | 3073 |  | 3986 | 4487 | 5016 | 5573 | 6160 | 6775 |
|  | 169 | 351 | 380 | 631 | 742 | ${ }^{1216}$ | 1815 45 | 2584 | 3073 | 3515 | 3986 | 4487 | 5016 | 5573 | 6160 | 6775 |
|  | $\stackrel{1.5}{211}$ | 1.5 439 | 1.5 475 | 1.5 789 | 928 | 1458 | 4.5 1892 | ${ }_{2}^{4881}$ | 4.5 | 3104 | ${ }^{6} 5$ | 7.5 3962 | 7.5 4430 | 492 | 10.5 5440 | $\stackrel{10.5}{5983}$ |
| ${ }^{17}$ | 141 | 292 | 317 | 526 | 619 | 1014 | 1513 | 2154 | 2635 | 3104 | 3521 | 3962 | 4430 | 4922 | 5440 | 5983 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | ${ }^{3}$ | 3 | 4.5 | 4.5 | 6 | , | 7.5 | 7.5 | 星 | 9 | 10.5 |
| ${ }^{18}$ | 178 | 369 | 400 | 665 | 782 | ${ }^{1281}$ | 1683 | 2117 | 2413 | 2761 | 3131 | 3524 | 3940 | 4378 | 4838 | 5321 |
|  | 119 | 245 | 267 | 443 | 521 | 854 | 1275 | 1815 | 2220 | 2730 | 3131 | 3524 | 3940 | 4378 | 4838 | 5321 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 5 | 7.5 | 7.5 | 9 | 9 |
|  | 151 | 314 | ${ }^{340}$ | 565 | 665 | 1089 | 1506 | 1895 | 2160 | 2471 | 2803 | 3155 | 3526 | 3919 | 4331 |  |
|  | 101 1.5 | 209 1.5 | ${ }_{1.5}^{227}$ | ${ }_{1.5}^{377}$ | 443 1.5 | $\begin{array}{r}726 \\ 3 \\ \hline\end{array}$ | 1084 | 1543 4.5 | $\begin{array}{r}1887 \\ \hline\end{array}$ | 2321 4.5 | 2803 6 | 3155 6 | 3526 <br> 7.5 <br> 10 | 3919 7.5 | ${ }^{4331}$ | $\begin{array}{r}4763 \\ \hline\end{array}$ |
| 20 | 130 | 269 | 292 | 484 | 570 | 934 | 1356 | 1706 | 1945 | 2225 | 2523 | 2840 | 3174 | 3527 | 3899 | 4288 |
|  | 86 | 180 | 194 | 325 | 380 | 623 | 929 | 1323 | 1615 | 1990 | 2416 | 2840 | 3174 | 3527 | 3899 | 4288 |
|  | $\stackrel{1.5}{112}$ | ${ }^{1.5}$ | ${ }^{152}$ | 1.5 419 | 1.5 | 807 | $\begin{array}{r}3 \\ 1204 \\ \hline\end{array}$ | 4.5 154 | 4.5 1780 | ${ }^{4.5}$ | 2283 | ${ }^{256}$ | 2872 | 7.5 3192 | 75 3527 | 3880 |
|  | 75 | 155 | 168 | 279 | 328 | 538 | ${ }_{803}$ | 1143 | 1398 | 1719 | 2087 | 2503 | 2872 | 3192 | 3527 |  |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 | 7.5 |
| 22 | 97 | 202 | 219 | 364 | 428 | 702 | 1047 | 1403 | 1600 | 1830 | 2075 | 2336 |  |  | 3207 | 3527 |
|  | ${ }^{65}$ | 135 | 145 | 243 | 285 | 468 | 698 | 994 | 1215 | 1495 | 1815 | 2177 | 2584 | 2901 | 3207 | 3527 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | , | 6 | 6 | 7.5 | 7.5 |
|  | 85 <br> 57 | 118 | ${ }_{128}^{192}$ | 319 | 375 250 | 614 409 | 916 611 | 1281 870 | 1460 1064 | 1670 1309 | 1895 1588 | 2132 1905 | ${ }_{2261}^{2384}$ | ${ }_{2649}^{2649}$ | ${ }_{2927}^{2927}$ | 3220 <br> 3220 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |  | 4.5 | 4.5 | 4.5 | 4.5 | 6 | 6 | 7.5 | 7.5 |
| 24 | 75 | 156 | 169 | 280 | 330 | 540 | 807 | 1148 | 1338 | 1531 | 1736 | 1954 | 2184 | 2427 |  |  |
|  | 50 |  |  | 185 | 220 | 360 |  | 766 | 936 | 1152 | 1398 | 1677 | 1990 | 2341 | 2683 | 2951 |
|  | 1.5 | 1.5 | 1.5 |  | 1.5 | 1.5 | 3 | 3 | 3 | 4.5 | 4.5 | 4.5 | 6 | 6 | 6 | 7.5 |
| 25 | ${ }_{6}^{66}$ | ${ }^{138}$ | 149 | 248 165 1 | 292 19 | ${ }^{478}$ | 714 | ${ }^{1016}$ | ${ }^{1231}$ | 1408 1015 | 1597 1237 | 1797 1783 | 2009 1761 | ${ }_{223}^{223}$ | 2467 | 2714 2714 |
|  | ${ }^{44}$ | 1.5 | 1.5 | 165 1.5 | 194 1.5 | 319 1.5 | ${ }_{3}^{46}$ | ${ }_{3}$ | ${ }_{3}$ | 10.5 | 4.5 | 4.5 | ${ }_{6} 176$ | ${ }^{207}$ | 6 | $\begin{array}{r}27.5 \\ \hline\end{array}$ |
| 26 | 59 | 123 | 133 | 221 | 259 | 425 | 634 | 903 | 1105 | 1299 | 1473 | 1658 | 1854 | 2060 | 2277 | 2504 |
|  | 39 | 82 | 89 | 147 | 173 | 283 | 423 | 602 | 737 | 906 | 1099 | 1319 | 1565 | 1841 | 147 | 88 |
|  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 6 | 6 |  |
| 2 | 53 |  |  |  | 232 | 380 | 566 | 807 | 987 | ${ }^{1203}$ | 1354 | 1535 | 1716 | 1907 | 2107 | ${ }_{2}^{2318}$ |
|  | 35 1.5 | 73 1.5 | $\begin{array}{r}79 \\ 1.5 \\ \hline\end{array}$ | $\begin{aligned} & \begin{array}{l} 131 \\ 1.5 \end{array} \\ & \hline \end{aligned}$ | 154 1.5 | $\begin{array}{r} 253 \\ 1.5 \\ \hline \end{array}$ | 378 1.5 | ${ }_{5}^{538}$ | 658 3 | 89 3 | 982 4.5 | 1178 4.5 | $\begin{array}{r}1398 \\ 45 \\ \hline\end{array}$ | 1646 |  |  |
| 28 | 47 |  |  | 177 | 208 | 340 | 508 | 723 | 885 | 1088 | 1266 | 1425 | 1593 | 1770 | 1956 | 2151 |
|  | $\begin{array}{r}32 \\ 1.5 \\ \hline\end{array}$ | 1.5 1 | $\begin{array}{r}71 \\ 1.5 \\ \hline\end{array}$ | 118 1.5 | 138 1.5 | 227 <br> 1.5 | 339 1.5 | 482 3 | 590 3 | 725 3 | 880 4.5 | 1056 4.5 | 1253 4.5 | 1474 4.5 | 1719 |  |
| 29 | ${ }^{43}$ |  |  | 159 | 187 | 306 | 457 | 651 | 796 | 979 | 1178 | 1326 | 1482 | 1647 | 1820 | 2002 |
|  | ${ }_{15}^{28}$ | ${ }_{5}^{59}$ | ${ }^{64}$ | 106 15 | ${ }_{125}^{125}$ | 204 | 305 | ${ }^{434}$ | 531 | ${ }_{6} 63$ | ${ }_{45} 9$ | 950 45 | $\begin{array}{r}1128 \\ 45 \\ \hline\end{array}$ | 135 | ${ }^{1548}$ | 1791 |
|  | $\begin{array}{r}1.5 \\ \hline 8 \\ \hline\end{array}$ | 1.5 80 | 1.5 86 | 1.5 | 1.5 | $\stackrel{1.5}{277}$ | 1.5 413 | 588 | 3 719 | 88 | - 1074 | ${ }_{12.5}^{1237}$ | 4.5 1383 | 4.5 1536 | ${ }_{1688}$ | ${ }_{1867}$ |
|  | 26 | 53 | 58 | 96 | 113 | 184 | 275 | 392 | 479 | 590 | 716 | 858 | 1019 | 1198 | 1398 | 1618 |
|  | 1.5 <br> 32 | 1.5 |  |  | 1.5 | 1.5 <br> 228 | 1.5 <br> 300 |  |  |  |  | 4.5 | 4.5 | 4.5 |  |  |
|  | ${ }_{21}$ | ${ }_{44}^{66}$ | 47 | 178 | ${ }_{93}^{139}$ | 228 <br> 152 | 327 | ${ }^{484}$ | ( 393 | 48 | 885 <br> 59 | 107 | 840 | (1348 | 1487 <br>  <br> 1152 | 11036 |
|  |  |  |  | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 |  | 3 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |

POWER PRESERVED GLULAM ${ }^{\circledR}$
CLEAR GUARD ${ }^{\text {TM }}$ TREATED GLULAMS

## POWER PRESERVED GLULAM ${ }^{\oplus}$

## CLEAR GUARD ${ }^{\text {TM }}$ TREATED GLULAMS

| Stocked at Coastal Forest Products Up to 48'Lengths |  |  |
| :---: | :---: | :---: |
| 3-1/2" ${ }^{\text {" }}$ 9-1/2" ${ }^{\text {/ }}$ | $5^{5-1 / 4 " 4 \times 9-1 / 2^{\prime \prime}}$ | $5-1 / 4^{\prime \prime} \times 16^{\prime \prime}$ |
|  | $5-1 / 4 \times 11-7 / 8^{\prime \prime}$ |  |

Cop-Guard ${ }^{\circ}$ (Copper Naphthenate-CuN and Clear-Guard ${ }^{m}$ (PBC/Permethrin) wood preservatives are both dissolved in low odor mineral spirits as a carrier and are an ideal fungicide and insecticide for the long term preservation of wood products. PPG beams and columns have a green coloration when treated with Clear-Guard ${ }^{\text {m }}$ wood preservatives.Clear-Guard ${ }^{\text {m }}$ wood preservative treated glulam is in a solution of IPBC (fungicide) and Permethrin (insecticide) wood preservative listed in AWPA P-58-10. Both preservatives are low in toxicity, environmentally Cop-Guard ${ }^{\circ}$ and Clear-Guard ${ }^{m}$, please see the SDS sheets and
Hoover Technical Notes on our website at www.anthonyforest.com
Three times as strong as \#2 PT SYP 4x12
No strength reductions required after treatment.
Automatic substitute for Parallam ${ }^{\oplus}$ Plus PSL.
Stainable and Paintable (See restrictions).
Not considered hazardous material.
CONDITIONS OF USE (DRY OR WET)
Power Preserved Glulam products are recommended for above laminated beam will not exceed $16 \%$ thus allowing dry-use design laminated beam will not exceed $16 \%$ thus allowing dry-use design
values (over $16 \%$ considered wet-use.) The definitions of dry and wet service vary from the many publications available on the subject. CODE APPROVALS
Power Preserved Glulam ${ }^{\circ}$ is manufactured in accordance with ANSIA190.1, which is the code recognized standard for glued laminated timber and is accepted nationwwide under the CC-ESR
1940 and APA Product Report 1282 The adhesive used in 1940 and APA Product Report L282. The adhesive used in our
glulam conforms to wet-use complying with ASTM D2559. The APA-EWS is our third party inspection agency.


POWER PRESERVED GLULAM ${ }^{\circ}$ (PPG) Anthony Forest Products® has been a name to trust in the glued laminated timber business for over 45 years. Anthony
stock $2400 \mathrm{~F}_{\mathrm{b}}-2.1 \mathrm{E}-300 \mathrm{Fv}$ SYP glulam has been our mainstay stock $2400 \mathrm{~F}_{\mathrm{b}}-2.1 \mathrm{E}$ - 300 Fv SYP glulam has been our mainstay
in business along with the high strength Power Beam 3000 F -1.8 E - 300F, IJC beam.
With the shortage of high-quality, high strength, solid souther pine treated timber, Anthony offers Power Preserved Glulam ${ }^{\circ}$ Beams, which have been pressure treated with Hoover Cop-Guard ${ }^{\circ}$ or Clear-Guard ${ }^{\text {m" }}$ at 04 pounds per cubic foot (PCF) or .02 pound per cubic foot retention levels suitable for above ground uses decay and wood-destroying insect attacks and are covered by a 25 year warranty by Hoover. FACT SHEET
-2400Fb- $1.8 \mathrm{E}-300 \mathrm{Fv}$ SYP glulam industrial grade. - High strength allows for reduction in size columns or number of pilings and piers.
Two separate warranties for your protection
Balanced lay-up and zero camber.

- No top or bottom.
- As environmentally safe as untreated wood Above ground use for beams (AWPA use categories UC3B) and ground contact for the columns
(AWPA use categories UC4A, UC4B and UC4C). For PPG Beams sizes not listed, please call Anthony Fores FASTENERS
Non-Corrosive fasteners may be used with PPG in protected areas. Corrosion resistant fasteners are required if a connection is made to other water borne copper treated wood. - Local building code requirements will always supersede above restrictions.
- Above ground use for beams (AWPA use categories UC3B) and ground contact for the columns (AWPA use categories UC4A, UC4B and UC4C).
For PPG Beams sizes not listed, please call Anthony Forest.


## OECK READY

Treated Glulam Allowable Floor Loads (plf)
EWS 24F-V5M1/SP • Dry-Use $\cdot \mathrm{F}_{\mathrm{b}}=2,400 \mathrm{psi} \cdot \mathrm{F}_{\mathrm{v}}=300 \mathrm{psi} \cdot E=1.8 \times 10^{6} \mathrm{psi} \cdot \mathrm{F}_{\mathrm{c}}=740 \mathrm{psi} \cdot($ LDF=1.00 $)$

| $\begin{array}{\|c\|} \hline \text { Width } \\ \text { (in) } \end{array}$ | Depth (in) | Load Condition | Span (feet) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 |
| 3-1/2" | $91 / 2$ | Total Load | 2108 | 1293 | 827 | 474 | 298 | 200 | 140 | 102 | 77 | 59 | 47 |
|  |  | Live Load |  | 1279 | 655 | 379 | 239 | 160 | 112 | 82 | 62 | 47 | 37 |
|  |  | Min. End/Int.Bearing (in.) | 2.5/6.3 | 2.0/5.0 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | $117 / 8$ | Total Load Live Load | 2901 |  | $\begin{aligned} & 1293 \\ & 1279 \end{aligned}$ | $\begin{aligned} & 898 \\ & 740 \end{aligned}$ | $\begin{aligned} & 583 \\ & 466 \end{aligned}$ | $\begin{aligned} & 390 \\ & 312 \end{aligned}$ | $\begin{aligned} & 274 \\ & 219 \end{aligned}$ | $\begin{aligned} & 200 \\ & 160 \end{aligned}$ | $\begin{aligned} & 150 \\ & 120 \end{aligned}$ | $\begin{aligned} & 116 \\ & 93 \end{aligned}$ | $\begin{aligned} & 91 \\ & 73 \end{aligned}$ |
|  |  | Min. End/Int.Bearing (in.) | 3.4/8.5 | 3.0/7.5 | 2.5/6.3 | 2.1/5.3 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | 14 | Total Load | 3743 | 2401 | 1782 | 1248 | 917 | 702 | 449 | 328 | 246 | 190 | 14 |
|  |  | Live Load | -- | --- | 1784 | 1213 | 764 | 512 | 359 | 262 | 197 | 152 | 119 |
|  |  | Min. End/Int.Bearing (in.) | 4.4/11.0 | 3.8/9.5 | 3.5/8.8 | 2.917.3 | 2.87.0 | 2.2/5.5 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | 16 | Lo | 4719 | 2926 | 2101 | 615 | 82 | 901 | 671 | 489 | 36 | 28 | 223 |
|  |  | Live Load |  |  |  |  | 1140 | 764 | 537 | 391 | 294 | 226 | 178 |
|  |  | Min. End/Int.Bearing (in.) | 5.6/14.0 | 4.6/11.5 | 4.1/10.3 | 3.8/9.5 | 3.3/8.3 | 2.817.0 | 2.4/6.0 | 1.9/4.8 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 |
|  | 18 | Total Lo | 5917 | 3522 | 2485 | 2046 | 149 | 1143 | 899 | 725 | 523 | 403 | 317 |
|  |  | Live Load | --- | --- | - | -- | --- | 1088 | 764 | 557 | 418 | 322 | 253 |
|  |  | Min. End/Int.Bearing (in.) | 7.0/17.5 | 5.5/13.8 | 4.9/2.3 | 4.8/12.0 | 4.1/10.3 | 3.6/9.0 | 3.2/8.0 | 2.877.0 | 2.3/5.8 | 1.9/4.8 | 1.6/4.0 |
| 5-1/4" | $91 / 2$ | Tot | 3199 | 1948 | 矿 | 350 | 220 | 148 | 214 | 156 | 57 | 44 | 34 |
|  |  | Live Load |  | 1181 | 605 | 350 | 220 | 148 | 104 | 76 | 57 | 44 | 34 |
|  |  | Min. End/Int.Bearing (in.) | 2.5/6.3 | 2.0/5.0 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | $117 / 8$ | Total Load | 4403 | 2910 | 1944 | 1344 | 885 | 593 | 419 | 305 | 229 | 177 | 139 |
|  |  | Live Load |  | --- |  | 1131 | 712 | 477 | 335 | 244 | 183 | 141 | 111 |
|  |  | Min. End/Int.Bearing (in.) | 3.4/8.5 | 3.077.5 | 2.5/6.3 | 2.1/5.3 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | 14 | Total Load | 5679 | 36 | 2707 |  |  |  |  |  |  |  |  |
|  |  | Live Load |  |  |  | 1853 | 1167 | 782 | 549 | 400 | 301 | 232 | 182 |
|  |  | Min. End/Int.Bearing (in.) | 4.4/11.0 | 3.8/9.5 | 3.5/8. | 2.817.0 | 2.8/6.3 | 2.2/5.5 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 | 1.5/3.8 |
|  | 16 | Total Load | 7161 | 4440 | 3188 | 2425 | 1794 | 1400 | 1018 | 742 | 558 | 460 | 340 |
|  |  | Live Load | --- | --- | --- | --- | 1741 | 1167 | 819 | 597 | 449 | 346 | 272 |
|  |  | Min. End/Int.Bearing (in.) | 5.6/14.0 | 4.6/11.5 | 4.1/10.3 | 3.8/9.5 | 3.3/8.3 | 2.877.0 | 2.4/6.0 | 1.9/4.8 | 1.6/4.0 | 1.5/3.8 | 1.5/3.8 |
|  | 18 | Total Load | 8979 | 5343 | 3770 | 3106 | 2274 | 1734 | 1365 | 1128 | 794 | 615 | 484 |
|  |  | Live Load |  |  |  |  |  | 1661 | 1167 | 851 | 639 | 492 | 387 |
|  |  | Min. End/Int.Bearing (in.) | 7.017.5 | 5.5/13.8 | 4.912 .3 | 4.8/12.0 | 4.1/10.3 | 3.6/9.0 | 3.2/8.0 | 2.817.0 | 2.3/5.8 | 1.9/4.8 | 1.6/4.0 |

NOTES:
. (PLL) that can be applied to the beam.

## These tales and fer and .

The final design should include complete design analysis.
3. Bearing lengths shown in the third row of each cell are for maximum PLF loads for the two end bearins and for the middlle or intermediate bearings when beam is continuous. A shorter bearing may be used if proper analysis is done
Live load is based on the deflection criterion of L 360 and includes the beam weight ( 48 pcf)
5. Total load is based on the deflection criterion with a LUDL ration of 4 or higher-
. For deffection limits of L 240 and L 480 , multiply the live load figures by 1.5 and 0.75 respectully.
. The beam is assumed to be loaded on the top edge and with full lateral support at bearing points
. Selected beam must satisfy both live and total load
Where no live load shows, live load is the same as total load
Call Coastal Forest Products for sizes not listed

Power Column ${ }^{\circledR}$
COMBINATION \#50


Power Column ${ }^{\circledR}$ COMBINATION \#50
Allowable Axial Loads (Pounds) for Combination No. 50
side loads are not permitted. End loads are limited to a maximum eccentricity of either $1 / 6$ column width or depth whichever is worse.

| Effective Column (ft) | Lamination Net Width = 3-12" |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Depth = 3-1/2" (3 lams) |  |  | Net Depth = 4-1/8" (3 lams) |  |  | Net Depth = 5-1/2" (4 lams) |  |  | Net Depth $=7$ " ${ }^{\text {( }}$ lams) |  |  |
|  | 1.00 | 1.15 | 1.25 | Load Duration Factor |  |  | Load Duration Factor |  |  | Load Duration Factor |  |  |
|  |  |  |  | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 |
| 4 | 11,750 | 13,130 | 13,990 | 14,410 | 16,190 | 17,320 | 22,740 | 25,110 | 26,560 | 29,700 | 32,950 | 34,950 |
| 6 | 9,130 | 9,810 | 10,200 | 11,330 | 12,150 | 12,610 | 16,260 | 17,220 | 17,770 | 21,900 | 23,300 | 24,110 |
| 8 | 6,600 | 6,910 | 7,090 | 8,100 | 8,460 | 8,670 | 11,220 | 11,660 | 11,920 | 15,350 | 16,000 | 16,370 |
| 10 | 4,830 | 5,000 | 5,090 | 5,880 | 6,070 | 6,190 | 8,040 | 8,290 | 8,430 | 11,090 | 11,450 | 11,650 |
| 12 | 3,650 | 3,750 | 3,810 | 4,420 | 4,540 | 4,610 | 6,010 | 6,160 | 6,250 | 8,330 | 8.540 | 8,670 |
| 14 | 2,840 | 2,910 | 2,950 | 3,430 | 3,510 | 3,550 | 4,650 | 4,750 | 4,800 | 6,460 | 6,600 | 6,680 |


| $\begin{aligned} & \text { Effective } \\ & \text { Column } \\ & \text { Length } \\ & \text { (ft) } \end{aligned}$ | Lamination Net Width $=5-1 / 2^{\prime \prime}$ |  |  |  |  |  | $\begin{gathered} \text { Lamination Net Width = 7" } \\ \hline \text { Net Depth }=7 \text { " ( } 6 \text { lams) } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Depth = 5-1/2" (4 lamas) |  |  | Net Depth $=\mathbf{7}$ " 6 lams) |  |  |  |  |  |
|  | Load Duration Factor |  |  | Load Duration Factor |  |  | Load Duration Factor |  |  |
|  | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 | 1.00 | 1.15 | 1.25 |
| 6 | 32,920 | 36,550 | 38,810 | 45,610 | 51,260 | 54,840 |  |  |  |
| 8 | 27,420 | 29,640 | 30,950 | 39,290 | 42,590 | 44,520 | 53,480 | 59,380 | 63,060 |
| 10 | 21,970 | 23,280 | 42,030 | 31,680 | 33,560 | 34,650 | 46,900 | 51,070 | 53,550 |
| 12 | 17,550 | 18,380 | 18,850 | 25,300 | 26,470 | 27,140 | 40,070 | 42,840 | 44,450 |
| 14 | 14,200 | 14,760 | 15,080 | 20,430 | 21,210 | 21,660 | 38,840 | 35,730 | 36,830 |
| 16 | 11,670 | 12,060 | 12,290 | 16,760 | 17,300 | 17,610 | 28,630 | 29,990 | 30,770 |
| 18 | 9,730 | 10,020 | 10,180 | 13,950 | 14,350 | 14,580 | 24,400 | 25,400 | 25,980 |
| 20 | 8,230 | 8,440 | 8,570 | 11,780 | 12,080 | 12,250 | 20,980 | 21,740 | 22,180 |
| 22 | 7,040 | 7,210 | 7,300 | 10,070 | 10,290 | 10,420 | 18,190 | 18,780 | 19,120 |
| 24 | ---- | ---- | ---- | ----- | ----- | ----- | 15,900 | 16,370 | 16,640 |

## NOTES and Allowable Design Properties

1. The tabulated allowable loads apply to one-piece glulam members made with all N1D14 laminations (Combination 50) without special tension laminations.
2. The tabulated allowable loads are based on simply axially loaded columns subjected to a maximum eccentricity of either $1 / 6$ column width or $1 / 6$ column depth
whichever is worse. For side loads, other eccentric end loads, or other combined axial and flexural loads, see 2005 NDS.
3. The column is assumed to be unbraced, except at the column ends, and the effective column length is equal to the actual column length.

Design properties for normal load duration and dry-use service conditions:
. Compression parallel to grain ( $\left(F_{\mathrm{F}}\right)=2,300$ psi for 4 or more lams, or 1,700 psi for 2 or 3 lams.
Compression parallel to grain $\left(F_{\mathrm{F}}\right)=2,3$,
Modulus of elasticty $(\mathrm{E})=1.9 \times 10$ psi.
Flexural stress when loaded parallel to wide faces of lamination ( $\mathrm{F}_{\mathrm{b}}$ )
$=2,300$ psif or 4 or more lams, or 2,100 psi for 3 lams.

- Lexural stress when loaded perpendicular to wide faces of lamination ( $F_{\text {bx }}$ $=2,100$ psi for 2 lams to 15 " deep without special tension laminations.
Volume factor for Fox $_{\text {x }}$ i in accordance with 2005 NDS. Size factor for $\mathrm{F}_{\text {by }}$ is (12/d $)^{\prime \prime}$,
where $d$ is equal to the lamination width inches.

For additional information, please visit our website at www.coastalfp.com

COASTAL ENGINEERED
FRAMING LUMBER

| Stocked at Coastal Forest Products Up to $48^{\prime}$ Lengths |  |
| :---: | :---: |
| $2 \times 4$ | $2 \times 12\left(11-1 / 4^{4}\right)$ |
| $2 \times 6$ | $2 \times 10\left(9-1 / 4^{\prime \prime}\right)$ |
| $2 \times 8$ |  |

- 1.6 MOE

Same size as SPF/Fir (1-1/2")
Low moisture content means dimensionally stable

- Ideal for long rafters (up to 32')
Similar spans like l-joists

Similar spans like I-joists
Approved as substitute in new IRC fire code
Uses standard size joist hangers
Frame roof with traditional compression ridge and collar ties


No problem notching birdmouths Every piece is wane free!
Excellent product for stair stringers! No cracks, rot or large knots, dried to $14 \%$
Engineered sizing available through CSD Engineered sizing available through CSD -Struct software

MOE 1.6 (Modulas of Elasticity)
Fb 1200 psi (Fiber Bending)
Fv 135 psi (Shear)
Fc 1600 psi (Compression Parallel to Grain) These values are based on normal load duration. When structural members qualify as repetitive members in accordance with applicable code, a $4 \%$ increase is permitted to Fb .
Manufactured by Lamco EWP

COASTAL ENGINEERING

## FRAMING LUMBER SPANS

| F | Chart Based Upon Uniform Loads |  | Floor Joists - 40 psf Live Load, 10 psf Dead Load, L/480 |  |  |  | Floor Joists - 40 psf Live Load, 10 psf Dead Load, L/360 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24"O.C. | 12"O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |
| R | 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 13'09" | 12'09" | 12'02" | 11'02" | 15'02" | 13'08" | 12'06" | 11'02" |
| s | 1-1/2" $\times$ 9-1/4" | 1.6 MOE | 17'02" | 15'11" | $15^{\prime} 02{ }^{\prime \prime}$ | $13^{\prime} 08^{\prime \prime}$ | 18'11" | 16'09" | 15'03" | $13^{\prime} 08^{\prime \prime}$ |
| P | 1-1/2" $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 20'08' | 19'01" | 17'11" | $16^{\prime} 01^{\prime \prime}$ | 22'09" | 19'08" | 17'11" | $16^{\prime} 01{ }^{\prime \prime}$ |
| $\stackrel{\text { A }}{ }$ | 1-1/2" $\times 14^{\prime \prime}$ | 1.6 MOE | 25'05" | 23'05" | 21'06" | 19'03" | 27'03" | 23'07" | 21'06" | 19'03" |
| s | $1-1 / 2 \mathrm{v} \times 16^{\prime \prime}$ | 1.6 MOE | 28'10" | 26'04" | 24'01" | 24'06" | 30'05" | 26'04" | 24'01" | 21'06" |


|  | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 17'02" | 15'05" | 14'01" | 12'07" | 40 PSF Ground Snow Load10PSF Dead Load, |
|  | 1-1/2" $\times 9-1 / 4^{\prime \prime}$ | 1.6 MOE | 21'02" | 18'11" | 17'03" | 15'05" |  |
|  | 1-1/2" $\times 111-1 / 4^{\prime \prime}$ | 1.6 MOE | 25'08" | 22'03" | 20'04" | 18'02" |  |
|  | 1-1/2" $\times 14^{\prime \prime}$ | 1.6 MOE | 30'09" | 26'08" | 24'04" | 21'09" | Live Load L/240 Total Load L/180 |
|  | 1-1/2" $\times 16^{\prime \prime}$ | 1.6 MOE | $31^{\prime} 08{ }^{\prime \prime}$ | 29'09" | 27'02" | 24'04" |  |
| R |  |  |  |  |  |  |  |
| 0 | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |
|  | 1-1/2"x ${ }^{\text {" }}$ | 1.6 MOE | 15'10" | 14'04" | 13'04" | 11'11" | 52 PSF Ground Snow Load10 PSF Dead Load |
| 0 | 1-1/2" $\times 9-1 / 4^{\prime \prime}$ | 1.6 MOE | 20'02" | 17'11" | 16'04" | $14^{\prime} 07^{\prime \prime}$ |  |
| F | 1-1/2"x $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 24'04" | 21'01" | 19'03" | 17'02" |  |
|  | 1-1/2" $\times 14^{\prime \prime}$ | 1.6 MOE | 29'03" | 25'03" | 23'01" | 20'08" | Live Load L/240 Total Load L/180 |
|  | 1-1/2" $\times 16^{\prime \prime}$ | 1.6 MOE | 32'08" | 28'03" | 25'10" | 23'01" |  |


| s | Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 14'02" | 12'10" | 11'08" | 10'06" | 70 PSF Ground Snow Load 10 PSF Dead Load |
|  | 1-1/2" $\times 9-1 / 4^{\prime \prime}$ | 1.6 MOE | 18'02" | 15'09" | $14^{\prime} 04{ }^{\prime \prime}$ | 12'10" |  |
| A | 1-1/2" $\times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 2104" | 18'06" | $16^{\prime} 10^{\prime \prime}$ | 15'01" |  |
| N | 1-1/2" $\times 14^{\prime \prime}$ | 1.6 MOE | $25^{\prime} 07^{\prime \prime}$ | 22'02" | 20'03" | 18'01" | Live Load L/240 Total Load L/180 |
|  | $1-1 / 2^{\prime \prime} \times 16^{\prime \prime}$ | 1.6 MOE | 32'08" | 28'03" | 25'10" | 23'01" |  |


| Size | Strength | 12" O.C. | 16" O.C. | 19.2" O.C. | 24" O.C. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-1/2" $\times 7-1 / 4^{\prime \prime}$ | 1.6 MOE | 13'01" | 11'07" | 10'07" | 9'05" | 91 PSF Ground Snow Load10 PSF Dead Load |
| $1-1 / 2^{\prime \prime} \times 9-1 / 4^{\prime \prime}$ | 1.6 MOE | $16^{\prime} 04^{\prime \prime}$ | 14'02" | 12'11" | 11'07" |  |
| $1-1 / 2^{\prime \prime} \times 11-1 / 4^{\prime \prime}$ | 1.6 MOE | 19'03" | $16^{\prime} 08^{\prime \prime}$ | 15'02" | 13'07" |  |
| 1-1/2" $\times 14^{\prime \prime}$ | 1.6 MOE | 23'01" | 20'00" | 18'03" | 16'04" | Live Load L/240 Total Load L/180 |
| $1-1 / 2^{\prime \prime} \times 16^{\prime \prime}$ | 1.6 MOE | 25'10" | 22'04" | 20'05" | 18'03" |  |

Support Requirements: Rafters must have adequate support. Ceiling joists are not required when properly designed ridge beams are used. A ridge board may be support Requirements. Roaters must thave adequale beam when the slope equals or exceeds 3 in 12 , except that ridge beams are required for cathedral ceilings. Ridge boards must be t" nomisul thiced tess and not tess than the depth of the cut end of the ratter. Ratters must be elpaced diriectly opposite each other, and ceiling joists must be installed parallel
no the rafters to provide a continuous tie between exterior walls or alternatively, standard building code approved Ridge Board and Collar-Tie framing is acceptable.
Rafter spans do not include composite action of adhesive and sheathing. Upifit loads caused by wind also have not been considered. Spans in the tables are given in feet and inches and are the maximum allowable horizontal span of the member from inside to inside of bearings. For sloping ratters, the span is also measured along the horizontal projection.
For rafters, the load duration used in these tables is 1.15 (Cd). Rater spans have been evaluated for wind loads up to and including Vasd $=110 \mathrm{mph}$, to determine hat wind does not control design. For wind greater than Vasd=110 mph, engineering design is required.

POWER PRESERVED COLUMN®
PRESSURE TREATED COLUMNS

## Stocked at Coastal Forest Products Up to $28^{\prime}$ Lengths $5-1 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$ - up to $28^{\prime}$

## POWER PRESERVED COLUMN ${ }^{\circ}$

Anthony Forest Products offers our popular Power Column ${ }^{\circledR}$ as a Power Preserved Column ${ }^{\circledR}$ for ground contact using Hoover Cop-Guard ${ }^{\circ}$ These columns are treated to the high retention evel of 0.075 PCF, meeting AWPA use categories $4 \mathrm{~A}, 4 \mathrm{~B}$ and 4 C (should not be used in direct contact with water)

Suggested Uses: (Exterior only)
Deck support columns and boardwalks
Residential and commercial exposed structural columns Raised coastal construction supports replacing piling Pedestrian bridges and park shelters - Pergolas


## THE MOST POWERFUL SOFTWARE TOOLS INTHE MARKET

iStruct ${ }^{\text {TM }}$ software suite featuring isPlan ${ }^{\text {TM }}$ and is Design ${ }^{\text {TM }}$ Our goal is to provide our customers with the best information services in the industry. Coastal Forest Products supplies its customer base with various software tools to perform daily engineering and drawing functions required in today's market.
isPlan ${ }^{m}$ i includes capabilities to draw and design EWP framing plans (floor and roof layouts), structural analysis and reporting, takeoffs, quotes, cutting and the single member design (beam software), that supports the full Coastal Forest Products product line. isPlan'm will automatically develop loads and produce bold color graphics layouts in 2 D and 3D. (Intended for the lumber yard that has dedicated design staff to operate.)
sDesign ${ }^{r m}$ is a single member sizing program that is user friendly and reflects impeccable graphics that make he beam calc easy to read and pleasant to look at. isDesign $n^{m \times 1}$ will analyse loads, calculate sizes and spacing for Coastal engineered products. isDesign ${ }^{m m}$ requires little or no training for the architect or engineer/designer specifying designs with Coastal engineered products.

## Coastal Forest Products Customers Receive:

No charge for isDesign ${ }^{m / 3}$ single member sizing software.
No charge for customers to distribute is Design ${ }^{m}$ to its customer bas
Printed calc sheets showing sheer, deflection, moment and reaction

- Value engineered framing plans.

Internet software training and sup


Training is reduced significantly so users are up and running quickly and cost effective.
What you get from Coastal Forest Products is what your customers expect from you The best tool and best service possible



## Coastal pro



SIMPSON
StrongTie
Matching Connectors
In-Stock!!!

