
1

The Cognitive Map architecture for facilitating
human-robot interaction in humanoid robots

Victor Ng-Thow-H ing , K ristinn R. Thórisson†, Ravi K iran Sarvadevabhatla , Joel Wormer , and Thor L ist†

 Honda Research Institute USA Inc., 800 California St., Suite 300, Mountain View, C A 94041
† Communicative Machines Inc., 455 W22nd St., Suite 3, New York, N Y 10011

Abstract—The Cognitive Map robot architecture is used to
build multi-agent systems where components can communicate
with each other using a publish-subscribe mechanism of message
passing. Messages can be sent as discrete events or via continuous
data streams. Our approach of isolating the component interface
within a single API layer allows easy conversion of legacy
code into components within our system. Our components can
be divided into four main roles: perception, knowledge/state
representation, decision-making and expression. Interaction, Task
Matrix and Multi-Modal Communication are special components
described for facilitating human-robot interaction with Honda’s
humanoid robot ASIMO. By focusing on the design of these
components and the abstraction layers between them, our ar-
chitecture can be dynamically reconfigured to handle different
applications with minimal changes to the entire system.

Index Terms—robot architecture, humanoid robots, communi-
cation middleware, cognitive map

I. I N T R O D U C T I O N

T H E goal of developing flexible, versatile humanoid robots
capable of co-existence with humans is a challenge which

nonetheless drives many roboticists to work with what typi-
cally is a highly temperamental combination of hardware and
software. In addition to the many shared problems humanoid
robots have with their non-humanoid brethren, there are many
challenges unique to humanoid robots. Chief among these is
that they are intended for general task execution in everyday
environments. Such robots must have a high number of degrees
of freedom for flexible manipulation and navigation, a variety
of sensors to gather information about their environments
and the ability to interact with people using natural modes
of communication. These are important requirements that
strongly dictate the design of the robot architecture.

How can we design an on-line reconfigurable software
architecture capable of reusing components in different ap-
plications or interaction scenarios? One approach is to iso-
late application-specific details from reusable functionality,
eliminating the need to rewrite entire parts of the system
each time a new application is targeted. We have followed
this methodology in building several applications, including
an interactive memory card game[1] and a multi-modal push
planner for moving blocks around a table [2] (F igure 1).

Human-robot interaction research features the humanoid
robot as an embodied intelligent agent that uses natural
forms of multi-modal communication with humans, such as
delivering and understanding speech and gestures. This re-
quires the need for parallel processing and time synchro-
nization capabilities for analyzing and synthesizing multiple

A B

F ig. 1. A pplications built with the Cognitive Map: (A) Memory game, (B)
Multi-modal push planner

data streams. In addition to people, many tasks also require
interaction with passive and active objects in a potentially
unknown environment. The goal is not just to build a ge-
ometric representation of the environment for collision-free
navigation, but also to detect, identify, and reconstruct objects
for potential manipulation and reasoning with the environment.
These problems require efficient designs to handle and share
information throughout the system as it flows from the sensors
into various knowledge representation schemes to be acted
upon by decision-making systems responsible for task-related
motions on the robot.

Most of the technical requirements described above are still
active research problems. Humanoid robots require an impres-
sive integration of many disparate technologies that ultimately
require them to work smoothly together to accomplish a task.
No single research laboratory exists that can claim to be a mas-
ter of all these research areas. Therefore, to pursue a closed,
proprietary strategy for system development in this area would
be both time-consuming and self-defeating. Yet researchers
often invest considerable time and effort developing their
own software prototypes, frameworks and test-beds, including
supplementary code libraries. They are comfortable and most
efficient working in their favorite development environment
(operating system, compilers and build systems). The choice
of environment can be driven by practical constraints such
as driver availability for specific hardware or needing to use
declarative languages versus procedural ones.

Many humanoid robots are comprised of several computers
with different operating systems. Motor control is typically
handled with a real-time embedded operating system. Camera
sensors are driven with software on L inux or Windows oper-
ating systems. With current technology, it is difficult to build
a single monolithic system with all tasks running on a single

2

computer. Better load-balancing is achieved with distributed
systems.

We feel that any effort to attempt a standardization of
robot components at all levels is misguided. In many areas,
no consensus has yet emerged on best-practices for solving
problems such as localization, motion planning or object
classification. A ny attempt to suggest to researchers to rewrite
their own software to a uniform standard will most likely be
met with resistance due to the amount of time required to
rewrite software perfectly adequate for their own current needs
or that a considerable amount of time and money has already
been invested in its development. Many people working on
architectures for robots realize the importance of designing
standardized robot components, but have different convictions
on what the form of that standard should be.

A cceptance of this fundamental situation played an im-
portant influence in the design and strategy of both the
informational flow and structure of our robot architecture and
the software engineering choices we made. To this end, we
have developed the Cognitive Map robot architecture that
minimizes the amount of re-writing of existing legacy software
for integration. The Cognitive Map can be thought of as
a centralized information space for connected components
to contribute both internal and environmental state informa-
tion. We leverage several successfully proven concepts such
as blackboard architectures[3] and publish-subscribe based
messaging[4] to develop a flexible robot architecture that
exhibits fault-tolerance, easily substituted components, and
provides support for different structural paradigms such as
subsumption, sense-plan-act and three-tier architectures[5].
Our multi-agent distributed system has agents corresponding
to system components that are loosely coupled via message-
passing and/or continuous data streams. This architecture was
implemented on the humanoid robot A SIM O [6] manufactured
by Honda Motor Co., Ltd.

We review various forms of communication middleware
and component models in Section II. Section III provides
an overview of our architecture and considerations in its
design. Section I V details the process from conceptualizing
an interactive application to its instantiation in the robot
architecture. Section V singles out several important high-
level components that play a significant role in many of our
interactive scenarios. We follow with discussions in Section
V I and conclusions in Section V II.

I I. PR E V I O U S W O R K

O ver the evolution of robot architectural design, one im-
portant structural theme has persisted: component models and
their interconnectivity through distributed systems. Component
models provide a software construct for encapsulation of
elements of a robot’s functionality or behavior and are repre-
sented with strictly defined interfaces where communication
between components is done exclusively through message
passing. A s long as the interface is adhered to, the actual
implementation details and environment can be opaque to the
other components. Because of the sheer amount of parallel,
collective computation required, components often exist on

different processing and storage elements. Many different
robot architectures have been designed based on this basic
idea, but differ in the design of the component model. The
design of the components’ interface influences patterns of
message interchange, representations of information and the
granularity of the components.

A. Component model frameworks
Player 2.0 [7] is the latest revision of a popular robotics

development platform that provides standardized abstraction
interfaces for robot sensors and actuators. Whereas the original
Player [8] provided a single server for multiple clients of a
robot’s devices, Player 2.0 allows multiple servers. However,
servers are not allowed to have cyclic dependencies for in-
formation. In contrast, our architecture treats components as
semi-independent “agents” which can exchange information
with each other via a central blackboard.

OpenH RP (Open A rchitecture Humanoid Robotics Plat-
form) [9] follows the C O R B A (Common Object Request
Broker A rchitecture) model for inter-process communication
between components. The structure of C O R B A’s interface
definition language (ID L) provides an abstraction for program-
ming language independence and distributed system communi-
cation. However, since the ID L promotes a remote procedural
call protocol, the information and execution flow is restricted
to client-server interactions. This makes component activ-
ity dependent on external components calling its functions,
which in turn makes it difficult to design architectures with
concurrent independent behaviors. Furthermore, the coupling
between components is stronger than it needs to be as it is
necessary for one component to know the available functions
of another component to interact with it. In contrast, our Cog-
nitive Map architecture follows a publish-subscribe protocol
which allows looser coupling between components. OpenH RP
also identifies several important components for humanoid
robots, focusing more on motion generation: collision check-
ing, dynamic simulation, motion planning and controllers.
The Cognitive Map has similar components, but many more
are added for perception and decision-making, especially for
targeting human-robot interaction.

The M icrosoft Robotics Studio [10] treats components
as services that can communicate asynchronously and run
concurrently using the C C R (Concurrency and Coordination
Runtime) asynchronous programming library and DSS (De-
centralized Software Services) application model. Components
must organize their state information and dependencies with
other components using standardized elements such as service
handlers for each type of incoming messages, partners for
components it works with and service state for accessible
component information. The advantages of this standardization
of component parts are that components can have an easier
time self-discovering the capabilities of other components.
However, burden is placed on developers to conform their
existing legacy code into the structure dictated to by the com-
ponent model. Furthermore, since M icrosoft Robotics Studio
is built upon managed run-time code libraries dependent on the
Windows operating system, the flexibility of running compo-
nents with other operating systems like L inux is limited. The

3

Cognitive Map uses an X M L-based communication protocol
and allows components to be implemented on a variety of
programming languages (C, C ++, Java, C#) and operating
systems (Windows, L inux, MacOSX).

The B B C M (Brain B ytes Component Model) and B B D M
(Brain B ytes Data Model) [11] component models were de-
signed to encapsulate processing and data roles respectively
for intelligent systems. During system design, the integrated
system architecture is conceived first, followed by populating
the design with modules that meet the functional requirements
of the architecture. A s B B C M components can be very simple
in function, there can be hundreds of components in the
system. A ny existing software should be reimplemented to
follow the component interface and functional constraints
dictated by the system design. In contrast, our systems are
built from storyboards that visualize the desired behavior of
our robots in interactive scenarios. Key low-level component
technologies are identified and created by modifying legacy
code whenever possible. Several high-level components are
then designed or reused that coordinate and collect the infor-
mation produced by these lower-level components to produce
new information. Consequently, our systems exhibit a smaller
number of components with more encapsulated behavior in
each component, simplifying the abstract view of the overall
system design.

U R B I (Universal Real-time Behavior Interface) [12] allows
a robot to be represented as an U R B I engine that can process
execution scripts residing locally or sent to it via T CP/IP
from remote clients. The components follow an object-oriented
abstraction interface called UObjects which nicely expose
their functionality with object-oriented programming syntax
features in the scripting languages of the engine. The U R B I
engine allows concurrent, event driven execution of behaviors.
E xisting code must be converted into a U Object template.
One key conceptual difference for the Cognitive Map is that
it requires minimal changes to the legacy code. Rather than
restructure existing legacy code to fit the component interface,
the component interface for the Cognitive Map is accessed
with a single application programming interface (A PI), whose
routines are called within the legacy code.

B. Traditional Robot Architectures

Three dominant robot architectural paradigms are currently
being used extensively. The Sense-Plan-A ct paradigm intro-
duced in the Shakey robot [13] features three distinct stages
of operation. This strict decomposition is not very suitable for
dynamic environments. In response to this, the subsumption
architecture [14] proposes building robot architectures from
a collection of interconnected low-level behaviors, where
sensor outputs are directly connected to actuators. H igher-
level behaviors could then override or subsume the lower
level behaviors. However, it is difficult to specify long-
term behaviors or optimize plans consisting of multiple tasks
with these architectures. Layered architectures like 3T [15]
attempt to combine the low-level behavior layers with high
level planning layers by introducing an intermediate executive
layer for sequencing tasks. Some software frameworks, like

C A R M E N ’s support of 3T[16], directly adopt a particular
architectural paradigm.

We have found that a single architectural design does not
efficiently implement all tasks equally well. The S∗ approach
to behavior-based control argues that access to high-level
task-based knowledge for perception components is important
especially for implementing attention mechanisms [17]. While
this approach could not be directly supported in idealized im-
plementations of the architectural paradigms described above,
the ability of components in the Cognitive Map to subscribe
and publish to any other component in the system permits
S∗ and other alternative controller arrangements to be imple-
mented. Our communication subsystem is designed to allow
dynamic reconfiguration of our components so that any one
of these paradigms can be activated for a particular task to
be done. This approach derives partly from the Y mir agent
architecture for multi-modal dialog and interaction[18], which
proposed groups of preceptors, deciders and actions/planning
components operating and interacting in parallel, as well as
transversal priority layers that cut across perception, decision,
planning and action. L ike in Y mir, Cognitive Map components
can potentially accept messages from any other component,
removing the need to partition components into layers.

I I I. A R C H I T E C T U R E

To manage shared information, the Cognitive Map architec-
ture is built on the Psyclone Whiteboard system [19] which
combines the shared information concepts of a blackboard
architecture [3] with data streams that can be shared, have
their data samples timestamped for synchronization, and data
content transformed (e.g. coordinate conversion) or selectively
screened while being transmitted between components. One or
more blackboards can be located on the centralized server. In
our architecture, we use two blackboards, CognitiveMapWB
and TaskWB, for handling environment state and transient
command messages respectively (see F igure 2). D ifferent
blackboards can also be assigned to each level in a layered
architecture to explicitly partition shared information based
on its functional level of operation. Messages can be sent
individually or placed in continuous data streams, which
feature fixed semantics and less processing overhead per
message. Components can publish and subscribe to messages
and streams on the whiteboards. A n important point is that
publishers and subscribers do not have to know about each
other, making this form of coupling looser than C O R B A -
based or DSS-based (see Section II) component models. The
advantage of this loose coupling is that components can be
restarted (or even substituted with other components sharing
the same interface) without affecting the rest of the system.
Our architecture follows the Constructionist Design Method-
ology (C D M)[20]. C D M was developed to help in the creation
of systems capable of a large number of functionalities that
must be carefully coordinated to achieve coherent system
behavior. C D M is based on iterative system construction where
components are incrementally added to a network of named
interacting modules.

To minimize the effort of integrating existing legacy code
when converting them to components, we developed a single

4

«perception»
CardDetector

«expression»
TextToSpeech

«decision-making»
MultiModal Communication

«perception»
TableDetector

«decision-making»
MemoryGame Rules and Behavior

«perception»
SpeechRecognition

«perception»
NaturalLanguageProcessor

Cognitive Map Server

«blackboard»
CognitiveMapWB

«blackboard»
TaskWB

«catalog»
CognitiveMap «expression»

Task Matrix

«knowledge/state»
EnvironmentMap

«expression»
Robot Motion Server

«perception»
Camera Server

Motion communication link
to actuator servos

Sensor communication
link to cameras

F ig. 2. O verview of the Cognitive Map robot architecture: Representative components depicted showing connectivity to the central Cognitive Map server.
Component types are labeled above name. A rrow directions depict dependencies on various interfaces (not message directions).

void MyComponent::MainLoop() // Where all the work gets done
{

UpdateFromCogmap(); // Poll messages/streams from Cognitive Map
DoProcessing(); // Example, feature detection, decision-making, planning, etc.
UpdateToCogmap(); // Publish information to Cognitive Map

}

F ig. 3. Main loop of component for processing incoming (UpdateFrom-
Cogmap) and outgoing (UpdateToCogmap) messages from the Cognitive Map.

library called the CogMapApi that manages message and
stream communication within the Cognitive Map. To handle
incoming and outgoing message traffic, a component typically
calls one or both of two functions, UpdateFromCogmap
and UpdateToCogmap, that are inserted into the beginning
and end of the component’s original main processing loop,
respectively (F igure 3). If a component exclusively publishes
or subscribes to messages, only one of these is necessary.
In our experience, a component can be integrated into our
system within a few days. This is possible because the
adopted strategy leaves the majority of existing legacy code
unchanged by isolating Cognitive Map related communication
to CogMapA pi calls in the two functions described above.

The Cognitive Map does not directly support real-time
communication (with guaranteed response times to events),
although it does support time-aware communication. Our
architecture uses specialized communication libraries in sit-
uations where more direct peer-to-peer communication is
required and were it is not necessary to store information
in a centrally-accessible blackboard. Typically this includes
communications for sensors and actuators, such as streaming
camera video directly to components or providing a low-
level motion interface for sending joint angle trajectories to
the robot. In the case of streaming video from cameras,
components handling different vision tasks can subscribe to
the same video stream from a camera server on-board the
robot. They can then reside on dedicated computers for faster
distributed computation while reporting their computed results
back to the Cognitive Map blackboard. In cases where hard
real-time is needed, components are implemented together on

a real-time operating system with a dedicated communication
link to the rest of the Cognitive Map.

A. Messages
The Cognitive Map features a centralized server to han-

dle high-level message dispatching and registration of con-
nected components. Components can either reside exter-
nally from the Cognitive Map, using T CP/IP socket-based
communication, or be dynamically loaded internal com-
ponents, communicating directly through memory. Follow-
ing the OpenA IR specification [19], messages have a type
that provides the selection criteria for subscribing. In or-
der for components to be aware of the available messages
in the system, an ontology of all the messages needs to
be maintained. Messages types are hierarchical with each
level delimited by a period (”.”). For example, for table
events, we have percept.vision.physobject.table.appear and
percept.vision.physobject.table.touch events.

The contents of the message can consist of various primitive
and aggregate data types (real, string, integers, tables), but
can also consist of objects with attributes. In particular, the
information about both tangible and intangible objects are
encapsulated in a CMObject data object (F igure 4). C M Objects
can represent physical objects identified from sensory input or
conceptual objects generated by the components algorithms
(e.g., observed actions). Physical objects can have 3-D pose
and geometric information and they can be symbolically
labeled with an object type if it can be identified. Objects
of a specific type can also have custom fields associated with
them. For example, a table object has its length and width
parameters for the tabletop in order to allow reconstruction
of its geometry from a relatively small set of parameters.
Messages can correspond to pure information about the sensed
world (e.g., object poses), commands to specific components
(e.g., task execution commands) or event notifications (e.g.,
person touching a table).

In addition to its basic dispatching role, the Cognitive Map
provides three mechanisms for processing messages at the

5

Example:
cogmap::api::CMApiHandle *cmhandle; // handle for Cognitive Map API

cogmap::CMStream *cmstream; // previously retrieved stream handle

// Create CMObject
cogmap::CMObject *cmobject = new cogmap::CMObject();

// Set up parameters
double x = 3.5;
cmobject->setId(“Victor-Mug”);
cmobject->setType(“cup”);
cmobject->setPosX(x); cmobject->setPosY(3.2); cmobject->setPosZ(2.0*x);
cmobject->setOri(0.0,0.0,0.0,1.0);

cogmap::CMDictionary *trainingviews = new cogmap::CMDictionary();
trainingviews->put(“view1”,”Victor-Mug-001.png”);
trainingviews->put(“view2”,”Victor-Mug-002.png”);
cmobject->setPropertyDictionary(“training”,trainingviews);

cmhandle->UpdateObjectSample(cmstream,cmobject);

Victor-Mug-
002.png

view2

Victor-Mug-
001.png

view1training

(0,0,0,1)ori

(3.5,3.2,7.0)pos

cuptype

Victor-Mugid

Victor-Mug-
002.png

view2

Victor-Mug-
001.png

view1training

(0,0,0,1)ori

(3.5,3.2,7.0)pos

cuptype

Victor-Mugid

Structure of
CMObject

F ig. 4. Sample table representation of the message contents stored in the
C M Object corresponding to a cup object with multiple viewpoint images.

central server hub: Indexers, Deciders, Detectors. Indexers
provide different ways to access stored data coming into
the Cognitive Map via streams. B y default, samples on a
stream are accessed by timestamps and frame count. Indexers
can provide other search criteria for accessing an object
with high-performance indexing, such as organizing objects
based on their coordinate positions. Detectors are instantiated
dynamically by the Cognitive Map upon requests from other
system components, to set up tests for world conditions and
events based on data from one or more Indexers. Typically,
the creation of a Detector automatically initiates the creation
of an Indexer.

A Detector implements a Boolean function that can produce
answers to specific questions about the data in a stream. One
Indexer is created to facilitate this process upon the creation
of a Detector. The criteria for a detector can originate from
a component and be dynamically specified at run-time. In
our system, detectors can be specified using pre-set Boolean
operators written in C or be entirely scripted and interpreted
at run-time using the Lua language [21]. A ll samples coming
through a stream monitored by the Detector are evaluated and
allowed to pass if the Boolean expression has a true value.
This mechanism can be used to reduce message traffic. For
example, a component responsible for manipulating objects
on a table can use detectors to report new objects exclusively
within the bounds of the table top. Deciders subscribe to
information from one or more Detectors, or other Deciders,
and make decisions on how to respond to events. They can then
report their decisions back to the Cognitive Map. In Section
V-A , we describe how these three mechanisms can be used
for a specific application like the memory game.

I V. S C E N A R I O D E S I G N

The architecture describes the components and communi-
cation middleware between these components. However, the
physical instantiation of the architecture - the specific com-
ponents and message passing behavior during robot execution
depends on the nature of the active robot application. A s a
robot switches application modes, the Cognitive Map recon-
figures itself by changing the set of components it interacts
with. In the following sections, we will ground the discussion
of our architecture by reference to an interactive memory card
game that is developed between the robot and a human player
(F igure 1) [1].

A. Memory Game
The Memory Game (F igure 1) features a deck of matching

pairs of cards that are shuffled and placed face down on a table.

Player arrives

P:”No, you

go first”

P:”Yes”

A:”Do you want

to go first?”

Player picks 1
st

card

A:”Ok, my turn.”

A:”Ok, go

ahead”

Two or more

hands raised

One hand

raised

P:”Pick me”

A:”Ok, you on

the left come

play”

Wait for player

to come to

table

Asimo points at

card with hand .

Asimo points at

card with hand -

mounted laser

pointer ..

1

Player reaches for card .

4

F ig. 5. Portion of the storyboard used to design the memory game. The
circled 1 and 4 are references to different scenarios not shown here.

Players take alternate turns picking two cards in an attempt to
find and collect matching pairs. A player who successfully
finds a match keeps the cards and is entitled to another turn.
If they do not find a match, the other player starts his or her
turn. When a player achieves a majority of the cards or both
players tie, the game is over.

B. Design

Our design process begins with the construction of a branch-
ing storyboard (F igure 5) that depicts the desired observed
behavior of both the robot and humans involved in the sce-
nario. E very attempt is made to predict different conditional
behaviors and responses to those situations. For example, the
storyboard shows how the robot would behave if it won,
what happens if it failed to see a detected card or how
to respond if the human player asks for help. This process
allows us to identify what technical components are required
and what information they should publish or subscribe to for
accomplishing their role within the system. Relating to the
Cognitive Map, the storyboard aids both in the design of
individual components and their message interfaces between
each other. For example, if dialog is present in the storyboard,
this implies the need for both speech recognition and speech
synthesis components. The storyboard in F igure 5 further sug-
gests that a simple input text message interface to the speech
synthesis component would suffice for the scenario’s dialog
requirements, preventing the implementation of unnecessary
features or an overly complex interface to the component.
The types of gestures that we wish the robot to perform
also has important implications for motor control and sensing.
Pointing gestures require both awareness of object position in
the environment and an end-effector based control scheme for
positioning and orienting the robot’s hand.

In the design of interactions components which will be
further described in Section V-A , the storyboard identifies all
individual states that can occur during the scenario as well
as the events that can trigger transitions between these states.
This suggests what would be the most appropriate decision-
making scheme to adopt within the interaction component. In
the memory game, a finite state machine could be used to

6

keep track of the current contextual game state and expected
transition events that are likely to occur from each state. The
transition events between states in the storyboard identify what
types of messages need to be generated by the components of
our Cognitive Map architecture. In F igure 5, a transition occurs
when a player picks a card, implying that a perception module
for detecting cards would need to detect physical card motion
or flipping and publish these message events to the Cognitive
Map. If the storyboard described a simpler application which
does not need to keep track of history, a basic action-selection
table could be implemented as the interaction component
instead.

V. C O M P O N E N T S

Components in our Cognitive Map architecture tend to
feature a combination of four broad roles: perception, knowl-
edge/state representation, decision-making, and expression
(see F igure 2 for examples). Perception components include
low-level sensor outputs and various feature extractors that
extract higher-level information from the sensor data. For ex-
ample, a component that performs face detection and tracking,
or that returns object identification, would be in this category.
K nowledge/state representation components use features to
assemble higher-level information such as internal or external
environmental state information. This information can also be
transient, such as a list of active tasks the robot is performing,
or it may be long-term information, such as a database of
recognized objects encountered during the robot’s operational
lifetime. The Cognitive Map supports generic database ob-
jects called catalogs (see F igure 2) for accessing persistent
information. The decision-making components make use of the
stored information or events from the perception components
to decide what actions to perform in the form of new motor
and non-motor tasks. F inally, expression components result in
physical observed behavior from the robot, including motor
task execution and speech utterances. Components can have
fairly specialized behaviors such as text-to-speech conversion
or an object detector. However, in our experience we have
identified several high-level components which have general
use across several applications. We describe these in the
following subsections.

A. Interaction
For interactive applications, the scheduling of tasks must

be dependent on events in the robot’s environment. It must be
assumed that any task can be interrupted by sudden changes
in human behavior, such as a new verbal request, while
the robot is in the middle of executing a task. Humanoid
robots must have the capability of switching between different
interactive tasks. This means that the sequencing of tasks for a
specific interactive application must be modularized to allow
interchange of robot behavior.

The Cognitive Map allows interaction components to be
created to orchestrate different forms of interaction from turn-
based games, query-response interchanges, to script-based
scenarios with conditional branching based on how a human
responds. The interaction component is a decision-making

component and is usually the main coordinating component
that orchestrates behavior in response to events under dif-
ferent contextual situations. To aid in the decision process,
this kind of component subscribes to inputs from perception
components and sends queries to the knowledge and state rep-
resentation components. Once an action has been decided, the
interaction component sends appropriate command messages
to the expression components.

Consequently interaction components often play the role as
Deciders, as described in Section III-A . In the memory game,
the interaction component subscribes to different detectors
such as the table for recognizing the necessary conditions to
start a game or a card detector for notification of card dealing,
removing and flipping events. If we had placed other non-
card objects on the table, we can use the detector mechanism
to filter out these objects so that the detector stream will
only report card-related object events. If the player chooses
to discard cards in a specific region of the table, an indexer
can be created that organizes the cards by coordinate positions
so that a detector can be established that filters out card events
occurring in the discard region of the table. These mechanisms
allow the interaction component to contain simpler logic by
eliminating the need for extensive special-case handling of
non-relevant events.

The structure and implementation of the interaction com-
ponent depends on the nature of interaction required by the
application. For the memory game, we initially used a single
finite state machine (FSM) to represent the entire game state
(F igure 6(a)), modeling both the player and the robot’s state
as well as several special-case scenarios, such as the player
asking for help or A SIM O warning the player they are about to
pick a bad card. We found that as we increased the complexity
of the interaction, the number of states and transitions in our
FSMs increased dramatically and had negative implications
for scalability.

We were able to refactor the interaction component to keep
multiple state machines for different entities in the game
(F igure 6(b)), featuring one state machine for the state of cards
on the table and one for the rules of the game. This approach
simplified the structure of the game, and increased robustness
by allowing the card table state machine to focus on valid
card layouts while the game rules state machine separately
monitored whether it was currently the robot or the player’s
turn.

B. Environment Map
The environment map is a knowledge/state representation

component (F igure 2) that collects pose information from
objects in the scene, such as the table and its cards. It
unifies the different position information for all objects in
the scene into a common reference frame, allowing important
spatial operations to be performed such as deictic gestures and
collision avoidance.

C. Task Matrix
The Task Matrix (F igure 2) is an expression component that

serves to map high-level symbolic commands to the low-level

7

Waiting
for

ASIMO’s
1st card

Waiting
for

ASIMO
2nd card

Waiting
removal
of ASIMO
cards

Waiting
flip back
ASIMO’s
cards

ASIMO
offers to
concede
game

Waiting
for

player’s
1st card

Waiting
for

player’s
2nd card

Player
chooses
2nd card

ASIMO
chooses
2nd card

Waiting
removal
player’s
cards

Waiting
flip back
player’s
cards

ASIMO
asks

player to
concede

Awaiting
player’s
responsequit_accepted/offerPlayAgain quit_accepted/offerPlayAgain

picked/handleASIMOCard1

picked/handleASIMOCard2

picked/handleplayercard1

picked/handleplayercard2

match/
handleASIMOmatch

no match/
handlePlayerNomatch

quit_declined/
startNewTurn

quit_declined/
startNewTurn

cardsremoved,canquit/
offerQuit

cardsremoved,canquit/
offerQuit

cardsflipped/
startPlayerTurn

cardsflipped/
startASIMOTurn

no match/
handleASIMOnomatch

match/
handlePlayerMatch

(a) Original finite state machine

Game Strategy/State
(simplified)

Start
No
Table

Table
Ready

Waiting
for
table

ASIMO’s
Turn

Player’s
Turn

Tableau

TableAppear/
handleTableAppear

Cognitive Map
Card‐related
events

Table Appear
event

Waiting
for deal

Waiting
for player
response

Waiting
to clear
table

CardsFlippedBack/
StartPlayerTurn

CardsFlippedBack/
StartASIMOTurn

TableEmpty/
StartDeal

DealtCard/
HandleDealtCard

PlayedCard/
HandleTurn

TableEmpty/
OfferPlayAgain

TableEmpty/
OfferPlayAgain

Accepted/RestartGameReconciles events
with current
historical context

Conditions
based on
tableau
state

(b) Refactored finite state machine

F ig. 6. E volution of the interaction component’s finite state machines
(simplified for clarity). Transitions denote condition/action pairs.

motor commands that physically realize the task. It consists of
a collection of parametrized tasks ranging in complexity from
simple following of joint angle trajectories to manipulation
tasks complete with motion planning to find collision-free
paths in the workspace. The Task Matrix separates out reusable
task programs from the application specific interaction com-
ponents. The ability to specify parameters for a task allow
the task ’s generic definition to be applicable to a particular
environmental situation. For example, the generic pointing task
can be made to point at different objects in the scene by
specifying the target object as a parameter. The Task Matrix
queries the Environment Map to resolve symbolic parameters
like a card’s name into its 3-D pose in the environment.

Task programs within the Task Matrix are implemented as
dynamically-loaded plug-ins that are loaded on demand as a
task execution request is made. Rather than enforcing a single
control paradigm for all tasks, the Task Matrix allows tailored
controllers for different tasks which is important for humanoid
robots. For example, a walking task can use a more simplified
2-D planar planner for simple navigation whereas a complex
pushing task required 3-D obstacle information so that the
upper body can avoid self-collision or colliding with a table.

Simplified resource conflict resolution is provided by mak-
ing sure the Task Matrix ’s different tasks do not compete for
the same kinematic chains. Other run-time checking for tasks
can be done such as verifying that an object to be manipulated
is present in the stored environment map of the robot. To

avoid code duplication, common libraries for motion control
such as motion planners or inverse kinematic routines can
be shared between all tasks. In the memory game, the Task
Matrix is used to store a library of gestures, both representing
free motions and spatial tasks that respond to changes in the
environment.

D. Multi-modal Communication
Specific to humanoid robots is the need for natural, multi-

modal forms of communication. Humans typically combine
different modalities for effective communication. For example,
we commonly gesture with our hands while engaging in
conversation. The Multi-modal communication (M M C) com-
ponent coordinates speech and gesture expression. Interaction
components send parameterized utterance types to the M M C
component, which internally convert these requests to spoken
text and/or gesture messages that are forwarded to text-to-
speech and the Task Matrix components respectively. The
choice of wording is influenced by a combination of style
directives from the interaction component and internal state
information in the knowledge representation components.

The multi-modal component (M M C) is a decision-
making component that accepts utterance-type messages
from the interactive components, specifying the content
of the message to be spoken. For instance, the directive
Indicate(<objects=card10>,<style=urgent>), is processed
by the multi-modal module to generate the spoken words,
”I choose this card”, and the concurrent deictic gesture of
pointing at the physical card on the table. Intonation changes
can be placed on the word “this”. The developer responsible
for the interactive module does not need to worry about the
mechanism for recovering spatial position of the card nor the
choice of words spoken.

Multi-modal communication can be used to remove char-
acteristic repetitive behaviors from the scenario: B y forcing
the developers of the interaction module to think only about
the content of the communication and deferring the style to
the M M C, the robot can behave in slightly different ways
under the same game state conditions, greatly increasing
the flexibility of the system. Since the interactive module
does have knowledge of contextual state information, the
style parameter can be used to offer hints to the multi-
modal communication on how to express the message. For
example, if <style=urgent>, the robot can choose to modify
the text-to-speech parameters to adjust the speed of spoken
text. Localization and culture-specific interaction issues can
also be handled by the M M C. Since the multi-modal module
can subscribe to messages that indicate information about the
player (name, age, gender, nationality), this information can
be used to select appropriate gestures such as bowing to the
Japanese and holding out a handshake to North A mericans
and Europeans. Personalization in spoken words can also be
handled, such as: ”John, do you need help?”, and different
phrasing can be chosen for requests directed at children versus
adults.

In contrast to the application-specific interaction component,
the multi-modal component provides generic response mech-
anisms which can be re-used across unrelated scenarios. For

8

example, it provides the generic response mechanism Indicate.
This mechanism can handle different kinds of objects the robot
can expect to encounter (cards, fruits, household objects) and
their location in the environment, number of entities (singular,
multiple) and semantics of indication (refer to each entity or
collectively to all of them). Such a mechanism naturally leads
to a parsimonious framework without sacrificing the robot’s
expressiveness.

V I. D I S C U SS I O N

The design of the Cognitive Map robot architecture can sig-
nificantly facilitate the implementation of human-robot inter-
active scenarios. We will now reflect on our robot architecture
from two perspectives: component design and communication
of information between components.

A. Reusability
A general software engineering principle we adopted was

removing application-specific details from as many compo-
nents as possible. In cases where application-specific details
are unavoidable, such as knowledge of the rules of a game,
they were isolated to a single module, allowing all changes
to the application to be made in one location. This decision
allowed us to reuse many components for other scenarios.

In general, components that have communication function-
ality are often reused because of their general importance in
human-robot interaction. The text-to-speech and multi-modal
communication components were reused in a conversational
application where A SIM O answers questions about the re-
search ongoing in our lab and its own technology. The Task
Matrix and Environment Map was used together with an
object recognition system to point at and identify objects on
a table. We have also used the Environment Map for planning
pushing motions to manipulate objects on a table [2]. The table
detector component from the memory game was also used in
the pushing application to update the Environment Map to
allow the robot to navigate around the table while walking.
The Environment Map provided up-to-date configurations of
objects on the table, allowing the motion planner to re-plan
when it was notified of changes in the table environment.

B. Abstraction
Certain components serve as intermediaries between high-

level decision components and low-level robot behavior.
Specifically, they transform high-level directives to low-level,
expressions of behavior. The Task Matrix allows high-level
symbolic commands to be transformed into physically, real-
izable actions. The Multi-Modal Communication component
takes symbolic utterances and coordinates both speech and
gestures. Superficially, this roles seems similar to the exec-
utive layer in layered robot architectures like 3T. However,
in our architecture the entire layer has been encapsulated
and partitioned into several different components with clear
responsibilities. This modularity allows these behaviors to be
managed and maintained separately without refactoring other
parts of the architecture. For example in the Task Matrix,

by employing a plug-in based mechanism for expanding the
number of tasks, and providing access to all tasks through a
single component interface, a cleaner mechanism for dynam-
ically adding and removing tasks is achieved. If the robot’s
hardware or joint configuration is modified, changes only need
be made in the Task Matrix while keeping the rest of the
system untouched. The Multi-Modal Communication module
separates the content in the application from the style in which
that content is expressed during communication. A ny changes
done in this component will result in immediately-changed
behavior in all applications that use it.

C. Information Flow
In the area of information communication between com-

ponents, we have found that one-to-many patterns where
information published by one component is consumed by
multiple components offers a rich and powerful way to initiate
complex, concurrent behavior in the robot. For example, dur-
ing the memory game, the player may flip a card, generating
a detected perceptual event which gets published by the card
detector component to the rest of the Cognitive Map. Simul-
taneously, this information is handled by different component
agents for their own purposes. The interaction module which
keeps track of the game’s states uses this information to
determine if the robot should initiate its turn or wait for a
second card to be drawn from the player. Meanwhile, the
environment map uses the card flip information to update its
knowledge of the card’s identity and current position on the
table.

D. Systems-based Approach
The benefits of taking a systems-based approach to building

an application enables new valuable information to be gen-
erated and shared as a result of the integration of several
components. For example, in the memory game, a table
detector publishes its 3-D pose information with respect to the
camera as well as the transformed homographic image of the
table-top. The card-detector uses this image stream to report
position of cards in terms of 2-D image coordinates. However,
since the environment map module has access to both the
table’s 3-D pose information, the 3-D transformation of the
camera with respect to the robot, and the 2-D positions of the
cards, it is able to assemble this information to report back
3-D positions of cards with respect to the robot’s reference
frame, allowing the robot to point at the cards to indicate its
intentions.

E. Independent Behavior
The amount of behavioral independence in each component

agent seems to promote flexibility and robustness in the
system. For example, a common problem with interactive
tasks involving computer vision is determining when to dis-
able various specialized object detectors during the course
of interaction. For example, if A SIM O moves his head to
speak to the player, a table detector may incorrectly assume
a table has been removed from the scene since it would

9

lose track of the object. One solution is to allow the Task
Matrix to report head motions to the Cognitive Map and allow
individual components to decide how to appropriately respond
to that information. In the case of the table detector, if it
realized that the camera motion would be disruptive, it could
choose to disable its processing until it was notified that head
motion has stopped. On the other hand, another object detector
component could decide to continue to operate if it has more
robust tracking algorithms. Deferring many of the operational
decisions to individual perceptual components simplifies the
logic of higher-level components that interact with them.

F. Synergies
In the course of the memory game, we were able to easily

substitute the card detector and game behavior components
with faster and more robust implementations, without requir-
ing changes in the rest of the system. This was possible with
loose coupling. However, beneficial effects of the improved
behavior do tend to affect overall system performance. A faster
module that publishes messages consumed by many other
components tends to improve overall system responsiveness
since multiple lags due to processing delay are reduced. To
improve overall robustness in an application, both component-
level robustness and exploiting multiple sources of information
are needed. For example, many vision components suffer
from false positive detection events. However, by analyzing
concurrent events and other surrounding state information, it
is possible to identify and avoid such false positive events.
The environment map can rule out objects that are physically
implausible, such as a table that appears to be floating an
unreasonable distance above the floor. A false card flip event
in the memory game could be detected by checking if there
is a coincident table touch event by the table detector.

V I I. C O N C L U S I O N

The relative naturalness and speed of implementing various
phenomena with the Cognitive Map architecture reinforces
our confidence of its suitability for modeling human-robot
interactive applications. This is achieved using a design that
features components that exhibit behavioral independence and
have abstract interfaces that permit the subsitution and reuse
of components. The publish-subscribe communication scheme
facilitates concurrent and coordinated behavior in our robot.

The robotics research community is diverse and highly
specialized. This has resulted in a focus on solving problems
under a highly-qualified set of conditions. With the Cognitive
Map, we allow components to share information to aid in
their individual processing. Introducing external sources of
information to the system is sometimes seen as cheating or
reducing the purity of the problem. In contrast, we believe that
achieving higher levels of robust performance for interactive
applications can only be done using a systems-based approach
where multiple sources of information can be combined to
create new knowledge and confidence in the robot’s under-
standing of its situation.

Debugging distributed systems is challenging because of the
difficulty in isolating the source of observed incorrect robot be-
havior. In future work, we intend to develop a monitoring tool

that will act as an additional but independent component in the
Cognitive Map architecture. This component will allow visual
inspection of the inter-relationships between components at
runtime. A llowing an operator to visualize the dependencies
and flow of information can reveal the component that was the
original source of incorrect information, instead of mistakenly
attributing the problem to an intermediate component. Since
our architecture easily combines perceptual elements, motor
task generation and knowledge representation, we are using
this framework in the investigation of task learning from
observation - in fact, the Cognitive Map architecture was
partially designed with these research problems in mind. B y
modularizing the behavior and structure of interactivity in the
particular manner described here, we can more easily experi-
ment with various mechanisms for interaction. B y combining
different interaction models, humanoid robots can begin to
exhibit autonomous and adaptive behavior in their interactions
with humans.

R E F E R E N C E S

[1] V. Ng-Thow-H ing, J. L im, J. Wormer, S. Ravi K iran, C. Rocha, K . Fu-
jimura, and Y. Sakagami, “ The memory game: Creating a human-robot
interactive scenario for asimo,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’08), 2008.

[2] K . Hauser, V. Ng-Thow-H ing, and H. Gonzalez-Banos, “ Multi-modal
motion planning for a humanoid manipulation task,” in International
Symposium on Robotics Research (ISRR 2007), 2007.

[3] B. Hayes-Roth, “A blackboard architecture for control.” Artificial Intel-
ligence, vol. 26, pp. 251–321, 1985.

[4] A . Farinelli, G. Grisetti, and L. Iocchi, “ Design and implementation
of modular software for programming mobile robots,” International
Journal of Advanced Robotic Systems, vol. 3, no. 1, pp. 37–42, 2006.

[5] D. Kortenkamp and R. Simmons, “Robotic systems architectures and
programming,” in Handbook of Robotics, B. Siciliano and O. K hatib,
Eds. Springer, 2008, ch. 8, pp. 187–206.

[6] Honda Motor Co., Ltd., “A simo year 2000 model,”
http://world.honda.com/A SIM O/technoloogy/spec.html, 2000.

[7] T. H. Collett, B. MacDonald, and B. P. Gerkey, “Player 2.0: Toward
a practical robot programming framework,” in Australasian Conf. on
Robotics and Automation (ACRA), 2005.

[8] B. P. Gerkey, R. T. Vaughan, and A . Howard, “ The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Intl. Conf. on
Advanced Robotics (ICAR), 2003, pp. 317–323.

[9] F. K anehiro, H. H irukawa, and S. K ajita, “ Openhrp: Open architecture
humanoid robotics platform,” The International Journal of Robotics
Research, vol. 23, no. 2, pp. 155–165, 2004.

[10] M icrosoft Corporation, “ M icrosoft robotics studio,”
http://msdn.microsoft.com/en-us/robotics/default.aspx, 2006.

[11] A . Ceravola, M. Stein, and C. Goerick, “Researching and developing
a real-time infrastructure for intelligent systems - evolution of an
integrated approach,” Robitics and Autonomous Systems, vol. 56, no. 1,
pp. 14–28, 2008.

[12] J. Baillie, “ Universal programming interfaces for robotic devices,” in
Joint Conf. on Smart objects and ambient intelligence, 2005, pp. 75–80.

[13] N. N ilsson, “Shakey the robot.” SRI, Menlo Park, C A” Technical Report
323, 1984.

[14] R. Brooks, “A robust layered control system for a mobile robot.” IEEE
Journal of Robotics and Automation, vol. R A -2, A pril 14-23 1986.

[15] E. Gat, “ On three-layer architectures,” in Artificial Intelligence and
Mobile Robots, R. P. Bonnasso and R. Murphy, Eds. A A A I Press,
1998.

[16] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming: The carnegie mellon navigation (carmen)
toolkit.”

[17] A . Rotenstein, A . Rothenstein, M. Robinson, and J. Tsotsos, “Robot
middleware must support task-directed perception,” in ICRA 2nd In-
ternational Workshop on Software Development and Integration into
Robotics, A pril 14 2007, rome, Italy.

10

[18] K . R. Thórisson, “A mind model for multimodal communicative crea-
tures and humanoids,” International Journal of Applied Artificial Intel-
ligence, vol. 13, no. 4-5, pp. 449–486, 1999.

[19] K . R. Thórisson, T. L ist, C. Pennock, and J. D iPirro, “ Whiteboards:
scheduling blackboards for semantic routing of messages & streams,”
in AAAI-05 Workshop on Modular Construction of Human-Like Intelli-
gence, 2005, pp. 8–15.

[20] K . R. Thórisson, H. Benko, A . A rnold, D. A bramov, and A . Vaseekaran,
“A constructionist methodology for interactive intelligences,” A.I. Mag-
azine, vol. 25, no. 4, pp. 70–90, 2004.

[21] R. Ierusalimschy, Programming in Lua. Lua.org, 2006.

