The complete solution to systems with inputs

Eytan Modiano

Learning Objectives

- Analyze linear time-invariant systems with inputs
- Solve for the homogeneous response of the system

Natural response without inputs

- Solve for the particular solution

Identify forced response for different input functions

- Obtain the complete solution using initial conditions

Complete solution = homogeneous solution + particular solution

- Derive the transfer function

Systems with input

- In general, systems have inputs
- Applied force in mechanical systems
- Voltage and current sources in circuits
E.g., battery, power-supply, antenna, scope probe, etc.
- Systems also have outputs
- Displays, speakers, voltmeters, etc.
- We need to be able to analyze the system response to inputs
- Two methods:

Solution to linear constant-coefficients differential equations
Transfer function methods

Linear constant coefficient differential equations

- E.g., $\frac{d x(t)}{d t}+2 x(t)=u(t)$
- Where \mathbf{x} is the state variable and u is the input
- The complete solution is of the form:
$x(t)=x_{p}(t)+x_{h}(t)$
where x_{p} is the particular solution (when input spefified) and x_{h} is the homogeneous solution to the DE when $u(t)=0$

$$
\text { i.e., } \frac{d x(t)}{d t}+2 x(t)=0
$$

- Thus far we have only considered homogeneous systems

The particular solution

$$
\frac{d x(t)}{d t}+2 x(t)=u(t), \quad u(t)=\left\{\begin{array}{cc}
0 & t<0 \\
e^{3 t} & t \geq 0
\end{array}\right.
$$

- A common method for solving for the particular solution is to try a solution of the same form as the input
- This is called the "forced response"
- So try, $x_{p}(t)=a e^{3 t}$
- To solve for the constant a, we plug the solution to the original equation

$$
\begin{aligned}
& \frac{d x(t)}{d t}+2 x(t)=e^{3 t} \Rightarrow 3 a e^{3 t}+2 a e^{3 t}=e^{3 t} \Rightarrow a=1 / 5 \\
& \text { Particular solution : } x_{p}(t)=\frac{e^{3 t}}{5}, t>0
\end{aligned}
$$

The complete solution

homogeneous solution: $x_{h}(t)=B e^{s t}$

$$
\begin{aligned}
& B s e^{s t}+2 B e^{s t}=0 \Rightarrow B s+2 B=0 \Rightarrow B(s+2)=0 \Rightarrow s=-2 \\
& \Rightarrow x_{h}(t)=B e^{-2 t}
\end{aligned}
$$

$$
x(t)=\frac{e^{3 t}}{5}+B e^{-2 t} \quad, t>0
$$

In order to solve for B , must know initial conditions.
E.g., $\mathrm{x}(0)=0 \Rightarrow \frac{e^{0}}{5}+B e^{0}=0 \Rightarrow B=-\frac{1}{5}$
$x(t)=\frac{1}{5}\left[e^{3 t}-e^{-2 t}\right], \quad t>0$

Key points

- Solution consists of homogeneous and particular solution
- Homogeneous solution is also called the "natural response" It is the response to zero input
- The particular solution often takes on the form of the input It is therefore referred to as the "forced response"
- The complete solution requires specification of initial conditions
- An $\mathbf{n}^{\text {th }}$ order system would have n initial condition
- Apply initial conditions to the complete solution in order to obtain the constants

The initial conditions are on the complete solution, not just the homogeneous part

Example: RC circuit with inputs

$$
\begin{array}{ll}
\frac{e_{1}}{R}=-i_{1} & \\
\frac{d v_{1}}{d t}=\frac{i_{1}}{C} \Rightarrow \frac{d v_{1}}{d t}=\frac{-e_{1}}{R C} & u(t)=e^{-s t} \\
e_{1}(t)=v_{1}(t)+u(t) & C \\
\Rightarrow \frac{d v_{1}}{d t}=\frac{-v_{1}(t)}{R C}-\frac{u(t)}{R C} & \mathrm{C}=1 \mathrm{~F}, \mathrm{R}=1 \mathrm{ohm} \\
\mathrm{C}=1, \mathrm{R}=1 \Rightarrow \frac{d v_{1}}{d t}=-v_{1}(t)-u(t) &
\end{array}
$$

Homogeneous Solution: $u(t)=0$
Guess $v_{1}(t)=a e^{s t} \Rightarrow a s e^{s t}=-a e^{s t} \Rightarrow a s=-a \Rightarrow s=-1$

The complete solution

Forced Response: $v_{F}(t)=B e^{-5 t}, \dot{v}_{F}=-5 B e^{-5 t}$
$\frac{d v_{1}}{d t}=-v_{1}(t)-u(t) \Rightarrow-5 B e^{-5 t}=-B e^{-5 t}-e^{-5 t}$
$\Rightarrow-5 B=-B-1 \Rightarrow B=1 / 4 \Rightarrow v_{F}(t)=\frac{e^{-5 t}}{4}$
$v_{1}(t)=v_{H}(t)+v_{F}(t)=a e^{-t}+\frac{e^{-5 t}}{4}$
Initial conditions: $v_{1}(0)=0 v \Rightarrow a e^{0}+\frac{e^{0}}{4} \Rightarrow a+\frac{1}{4}=0 \Rightarrow a=-\frac{1}{4}$
$v_{1}(t)=\frac{-e^{-t}+e^{-5 t}}{4}, y(t)=v_{1}(t)+u(t)=e^{-5 t}+\frac{e^{-5 t}-e^{-t}}{4}$

Example: RLC circuit with inputs

Initial conditions: $\mathrm{V}_{\mathrm{c}}(0)=2 \mathrm{~V}, \mathrm{i}_{\mathrm{L}}(0)=2 \mathrm{~A}$
Output $=\mathrm{Y}(\mathrm{t})=$ Voltage across inductor $=\mathrm{v}_{2}(t)$

Node equation at $\mathrm{v}_{1}: \frac{v_{1}(t)-u(t)}{R}+i_{1}+i_{2}=0 \Rightarrow i_{1}=\frac{v_{1}}{R}+\frac{u}{R}-i_{2}$ $\frac{d v_{1}}{d t}=\frac{i_{1}}{C} \Rightarrow \frac{d v_{1}}{d t}=\frac{v_{1}}{C R}+\frac{u}{C R}-\frac{i_{2}}{C}$ $\frac{d i_{2}}{d t}=\frac{1}{L} v_{2}=\frac{v_{1}}{L}$

The homogeneous solution (aka: the natural response)

$$
\frac{d}{d t}\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 / R C & -1 / C \\
1 / L & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]+\left[\begin{array}{c}
1 / R C \\
0
\end{array}\right] u(t)
$$

homogeneous solution: take $u(t)=0$
$\frac{d}{d t}\left[\begin{array}{l}v_{1} \\ i_{2}\end{array}\right]=\underbrace{\left[\begin{array}{cc}-1 / R C & -1 / C \\ 1 / L & 0\end{array}\right]}_{A}\left[\begin{array}{l}v_{1} \\ i_{2}\end{array}\right]$
Let $\mathrm{C}=1 \mathrm{~F}, \mathrm{R}=1 / 2 \Omega, \mathrm{~L}=2 \mathrm{H} \Rightarrow \mathrm{A}=\left[\begin{array}{cc}-2 & -1 \\ 1 / 2 & 0\end{array}\right] \Rightarrow S I-A=\left[\begin{array}{cc}\mathrm{s}+2 & 1 \\ -1 / 2 & \mathrm{~s}\end{array}\right]$
characteristic equation: $s^{2}+2 s+1 / 2=0$
$\Rightarrow s_{1}=-1+\frac{1}{\sqrt{2}}, s_{1}=-1-\frac{1}{\sqrt{2}}$
Evanimadine Natural response: $e^{(-1+1 / \sqrt{2}) t}, e^{(-1-1 / \sqrt{2}) t}$

The homogeneous solution, continued

Finding the eigen-vectors:

$$
\begin{aligned}
& \mathrm{s}_{1}=-1+\frac{1}{\sqrt{2}} \Rightarrow E^{s_{1}}=\left[\begin{array}{c}
\frac{-\sqrt{2}}{\sqrt{2}+1} \\
1
\end{array}\right], \quad \mathrm{s}_{2}=-1-\frac{1}{\sqrt{2}} \Rightarrow E^{s_{2}}=\left[\begin{array}{c}
\frac{-\sqrt{2}}{\sqrt{2}-1} \\
1
\end{array}\right] \\
& v_{1 n}=a\left(\frac{-\sqrt{2}}{\sqrt{2}+1}\right) e^{\left(-1+\frac{1}{\sqrt{2}}\right) t}+b\left(\frac{-\sqrt{2}}{\sqrt{2}-1}\right) e^{\left(-1-\frac{1}{\sqrt{2}}\right) t}, i_{2 n}=a e^{\left(-1+\frac{1}{\sqrt{2}}\right) t}+b e^{\left(-1-\frac{1}{\sqrt{2}}\right) t}
\end{aligned}
$$

Complete solutions: $v_{1}=v_{1 n}+v_{1 f}, \quad i_{2}=i_{2 n}+i_{2 f}$

The particular solution (aka: the forced response)

$$
u(t)=1 v
$$

The forced response would be a constant. I.e., $v_{1 f}=A, i_{2 f}=B$

$$
\frac{d v_{1 f}}{d t}=0=\frac{-v_{1 f}}{R C}+\frac{u}{R C}-\frac{i_{2}}{C}=\frac{-A}{R C}+\frac{1}{R C}-\frac{B}{C}
$$

$$
C=1 F, R=1 / 2 \Omega, L=2 H \Rightarrow 0=2 A+2-B \Rightarrow 2 A+B=2
$$

$$
\frac{d i_{2 f}}{d t}=\frac{v_{1}}{L}=\frac{A}{L}=0 \Rightarrow A=0 \Rightarrow v_{1 f}=0 V
$$

$$
2 A+B=2 \Rightarrow B=2 \Rightarrow i_{2 f}=2 A
$$

Does this solution make sense?

The complete solution

Initial conditions: $v_{1}(0)=2, i_{2}(0)=2$
Complete solutions: $v_{1}=v_{1 n}+v_{1 f}, \quad i_{2}=i_{2 n}+i_{2 f}$

$$
\begin{aligned}
& v_{1}=a\left(\frac{-\sqrt{2}}{\sqrt{2}+1}\right) e^{\left(-1+\frac{1}{\sqrt{2}}\right) t}+b\left(\frac{-\sqrt{2}}{\sqrt{2}-1}\right) e^{\left(-1-\frac{1}{\sqrt{2}}\right) t}+0 \\
& i_{2}=a e^{\left(-1+\frac{1}{\sqrt{2}}\right) t}+b e^{\left(-1-\frac{1}{\sqrt{2}}\right) t}+2
\end{aligned}
$$

$$
\left.\begin{array}{l}
v_{1}(0)=2 \Rightarrow a\left(\frac{-\sqrt{2}}{\sqrt{2}+1}\right)+b\left(\frac{-\sqrt{2}}{\sqrt{2}-1}\right)=2 \\
i_{2}(0)=2 \Rightarrow a+b=2 \Rightarrow a=-b
\end{array}\right\} \Rightarrow a=\frac{1}{\sqrt{2}}, b=\frac{-1}{\sqrt{2}}
$$

$$
v_{1}(t)=\frac{-1}{\sqrt{2}+1} e^{\left(-1+\frac{1}{\sqrt{2}}\right) t}+\frac{1}{\sqrt{2}-1} e^{\left(-1-\frac{1}{\sqrt{2}}\right) t} \quad \text { Forced response, } \mathrm{v}_{1 \mathrm{f}}=0
$$

$$
i_{2}(t)=\frac{1}{\sqrt{2}} e^{\left(-1+\frac{1}{\sqrt{2}}\right) t}-\frac{1}{\sqrt{2}} e^{\left(-1-\frac{1}{\sqrt{2}}\right) t}+2 \longleftarrow \text { Forced response, } \mathrm{i}_{2 \mathrm{f}}=2
$$

