
DEMAND FORECASTING 

The Context of Demand Forecasting 

The Importance of Demand Forecasting 

Forecasting product demand is crucial to any supplier, manufacturer, or retailer. 
Forecasts of future demand will determine the quantities that should be purchased, 
produced, and shipped. Demand forecasts are necessary since the basic operations 
process, moving from the suppliers' raw materials to finished goods in the customers' 
hands, takes time. Most firms cannot simply wait for demand to emerge and then react to 
it. Instead, they must anticipate and plan for future demand so that they can react 
immediately to customer orders as they occur. In other words, most manufacturers "make 
to stock" rather than "make to order" – they plan ahead and then deploy inventories of 
finished goods into field locations. Thus, once a customer order materializes, it can be 
fulfilled immediately – since most customers are not willing to wait the time it would take to 
actually process their order throughout the supply chain and make the product based on 
their order. An order cycle could take weeks or months to go back through part suppliers 
and sub-assemblers, through manufacture of the product, and through to the eventual 
shipment of the order to the customer. 

Firms that offer rapid delivery to their customers will tend to force all competitors in 
the market to keep finished good inventories in order to provide fast order cycle times. As 
a result, virtually every organization involved needs to manufacture or at least order parts 
based on a forecast of future demand. The ability to accurately forecast demand also 
affords the firm opportunities to control costs through leveling its production quantities, 
rationalizing its transportation, and generally planning for efficient logistics operations. 

In general practice, accurate demand forecasts lead to efficient operations and high 
levels of customer service, while inaccurate forecasts will inevitably lead to inefficient, high 
cost operations and/or poor levels of customer service. In many supply chains, the most 
important action we can take to improve the efficiency and effectiveness of the logistics 
process is to improve the quality of the demand forecasts. 

Forecasting Demand in a Logistics System 

Logistics professionals are typically interested in where and when customer 
demand will materialize. Consider a retailer selling through five superstores in Boston, 
New York, Detroit, Miami, and Chicago. It is not sufficient to know that the total demand 
will be 5,000 units per month, or, say, 1,000 units per month per store, on the average.  
Rather it is important to know, for example, how much the Boston store will sell in a 
specific month, since specific stores must be supplied with goods at specific times. The 
requirement might be to forecast the monthly demand for an item at the Boston superstore 
for the first three months of the next year. Using available historical data, without any 
further analysis, the best guess of monthly demand in the coming months would probably 
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be the average monthly sales over the last few years.  The analytic challenge is to come 
up with a better forecast than this simple average. 

Since the logistics system must satisfy specific demand, in other words what is 
needed, where and when, accurate forecasts must be generated at the Stock Keeping 
Unit (SKU) level, by stocking location, and by time period. Thus, the logistics information 
system must often generate thousands of individual forecasts each week. This suggests 
that useful forecasting procedures must be fairly "automatic"; that is, the forecasting 
method should operate without constant manual intervention or analyst input. 

Forecasting is a problem that arises in many economic and managerial contexts, 
and hundreds of forecasting procedures have been developed over the years, for many 
different purposes, both in and outside of business enterprises. The procedures that we 
will discuss have proven to be very applicable to the task of forecasting product demand in 
a logistics system. Other techniques, which can be quite useful for other forecasting 
problems, have shown themselves to be inappropriate or inadequate to the task of 
demand forecasting in logistics systems. In many large firms, several organizations are 
involved in generating forecasts. The marketing department, for example, will generate 
high-level long-term forecasts of market demand and market share of product families for 
planning purposes. Marketing will also often develop short-term forecasts to help set 
sales targets or quotas. There is frequently strong organizational pressure on the logistics 
group to simply use these forecasts, rather than generating additional demand forecasts 
within the logistics system. After all, the logic seems to go, these marketing forecasts cost 
money to develop, and who is in a better position than marketing to assess future 
demand, and "shouldn’t we all be working with the same game plan anyway…?" 

In practice, however, most firms have found that the planning and operation of an 
effective logistics system requires the use of accurate, disaggregated demand forecasts.  
The manufacturing organization may need a forecast of total product demand by week, 
and the marketing organization may need to know what the demand may be by region of 
the country and by quarter.  The logistics organization needs to store specific SKUs in 
specific warehouses and to ship them on particular days to specific stores. Thus the 
logistics system, in contrast, must often generate weekly, or even daily, forecasts at the 
SKU level of detail for each of hundreds of individual stocking locations, and in most firms, 
these are generated nowhere else. 

An important issue for all forecasts is the "horizon;" that is, how far into the future 
must the forecast project? As a general rule, the farther into the future we look, the more 
clouded our vision becomes -- long range forecasts will be less accurate that short range 
forecasts. The answer depends on what the forecast is used for. For planning new 
manufacturing facilities, for example, we may need to forecast demand many years into 
the future since the facility will serve the firm for many years. On the other hand, these 
forecasts can be fairly aggregate since they need not be SKU-specific or broken out by 
stockage location. For purposes of operating the logistics system, the forecasting horizon 
need be no longer than the cycle time for the product. For example, a given logistics 
system might be able to routinely purchase raw materials, ship them to manufacturing 
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locations, generate finished goods, and then ship the product to its field locations in, say, 
ninety days. In this case, forecasts of SKU - level customer demand which can reach 
ninety days into the future can tell us everything we need to know to direct and control the 
on-going logistics operation. 

It is also important to note that the demand forecasts developed within the logistics 
system must be generally consistent with planning numbers generated by the production 
and marketing organizations. If the production department is planning to manufacture two 
million units, while the marketing department expects to sell four million units, and the 
logistics forecasts project a total demand of one million units, senior management must 
reconcile these very different visions of the future. 

The Nature of Customer Demand 

Most of the procedures in this chapter are intended to deal with the situation where 
the demand to be forecasted arises from the actions of the firm’s customer base. 
Customers are assumed to be able to order what, where, and when they desire.  The firm 
may be able to influence the amount and timing of customer demand by altering the 
traditional "marketing mix" variables of product design, pricing, promotion, and distribution. 
On the other hand, customers remain free agents who react to a complex, competitive 
marketplace by ordering in ways that are often difficult to understand or predict. The firm’s 
lack of prior knowledge about how the customers will order is the heart of the forecasting 
problem – it makes the actual demand random. 

However, in many other situations where inbound flows of raw materials and 
component parts must be predicted and controlled, these flows are not rooted in the 
individual decisions of many customers, but rather are based on a production schedule.  
Thus, if TDY Inc. decides to manufacture 1,000 units of a certain model of personal 
computer during the second week of October, the parts requirements for each unit are 
known. Given each part supplier’s lead-time requirements, the total parts requirement can 
be determined through a structured analysis of the product's design and manufacturing 
process. Forecasts of customer demand for the product are not relevant to this analysis. 
TDY, Inc., may or may not actually sell the 1,000 computers, but that is a different issue 
altogether. Once they have committed to produce 1,000 units, the inbound logistics 
system must work towards this production target. The Material Requirements Planning 
(MRP) technique is often used to handle this kind of demand. This demand for 
component parts is described as dependent demand (because it is dependent on the 
production requirement), as contrasted with independent demand, which would arise 
directly from customer orders or purchases of the finished goods. The MRP technique 
creates a deterministic demand schedule for component parts, which the material 
manager or the inbound logistics manager must meet. Typically a detailed MRP process 
is conducted only for the major components (in this case, motherboards, drives, 
keyboards, monitors, and so forth).  The demand for other parts, such as connectors and 
memory chips, which are used in many different product lines, is often simply estimated 
and ordered by using statistical forecasting methods such as those described in this 
chapter. 
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General Approaches to Forecasting 

All firms forecast demand, but it would be difficult to find any two firms that forecast 
demand in exactly the same way. Over the last few decades, many different forecasting 
techniques have been developed in a number of different application areas, including 
engineering and economics. Many such procedures have been applied to the practical 
problem of forecasting demand in a logistics system, with varying degrees of success. 
Most commercial software packages that support demand forecasting in a logistics system 
include dozens of different forecasting algorithms that the analyst can use to generate 
alternative demand forecasts. While scores of different forecasting techniques exist, 
almost any forecasting procedure can be broadly classified into one of the following four 
basic categories based on the fundamental approach towards the forecasting problem that 
is employed by the technique. 

1. Judgmental Approaches. The essence of the judgmental approach is to 
address the forecasting issue by assuming that someone else knows and can tell you the 
right answer. That is, in a judgment-based technique we gather the knowledge and 
opinions of people who are in a position to know what demand will be. For example, we 
might conduct a survey of the customer base to estimate what our sales will be next 
month. 

2. Experimental Approaches.  Another approach to demand forecasting, which is 
appealing when an item is "new" and when there is no other information upon which to 
base a forecast, is to conduct a demand experiment on a small group of customers and to 
extrapolate the results to a larger population. For example, firms will often test a new 
consumer product in a geographically isolated "test market" to establish its probable 
market share. This experience is then extrapolated to the national market to plan the new 
product launch. Experimental approaches are very useful and necessary for new 
products, but for existing products that have an accumulated historical demand record it 
seems intuitive that demand forecasts should somehow be based on this demand 
experience. For most firms (with some very notable exceptions) the large majority of 
SKUs in the product line have long demand histories. 

3. Relational/Causal Approaches.  The assumption behind a causal or relational 
forecast is that, simply put, there is a reason why people buy our product. If we can 
understand what that reason (or set of reasons) is, we can use that understanding to 
develop a demand forecast. For example, if we sell umbrellas at a sidewalk stand, we 
would probably notice that daily demand is strongly correlated to the weather – we sell 
more umbrellas when it rains. Once we have established this relationship, a good 
weather forecast will help us order enough umbrellas to meet the expected demand. 

4. "Time Series" Approaches.  A time series procedure is fundamentally different 
than the first three approaches we have discussed. In a pure time series technique, no 
judgment or expertise or opinion is sought.  We do not look for "causes" or relationships or 
factors which somehow "drive" demand. We do not test items or experiment with 
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customers. By their nature, time series procedures are applied to demand data that are 
longitudinal rather than cross-sectional.  That is, the demand data represent experience 
that is repeated over time rather than across items or locations. The essence of the 
approach is to recognize (or assume) that demand occurs over time in patterns that repeat 
themselves, at least approximately.  If we can describe these general patterns or 
tendencies, without regard to their "causes", we can use this description to form the basis 
of a forecast. 

In one sense, all forecasting procedures involve the analysis of historical 
experience into patterns and the projection of those patterns into the future in the belief 
that the future will somehow resemble the past. The differences in the four approaches 
are in the way this "search for pattern" is conducted. Judgmental approaches rely on the 
subjective, ad-hoc analyses of external individuals.  Experimental tools extrapolate results 
from small numbers of customers to large populations. Causal methods search for 
reasons for demand. Time series techniques simply analyze the demand data themselves 
to identify temporal patterns that emerge and persist. 

Judgmental Approaches to Forecasting 

By their nature, judgment-based forecasts use subjective and qualitative data to 
forecast future outcomes. They inherently rely on expert opinion, experience, judgment, 
intuition, conjecture, and other "soft" data. Such techniques are often used when 
historical data are not available, as is the case with the introduction of a new product or 
service, and in forecasting the impact of fundamental changes such as new technologies, 
environmental changes, cultural changes, legal changes, and so forth. Some of the more 
common procedures include the following: 

Surveys. This is a "bottom up" approach where each individual contributes a piece 
of what will become the final forecast.  For example, we might poll or sample our customer 
base to estimate demand for a coming period. Alternatively, we might gather estimates 
from our sales force as to how much each salesperson expects to sell in the next time 
period. The approach is at least plausible in the sense that we are asking people who are 
in a position to know something about future demand. On the other hand, in practice 
there have proven to be serious problems of bias associated with these tools. It can be 
difficult and expensive to gather data from customers.  History also shows that surveys of 
"intention to purchase" will generally over-estimate actual demand – liking a product is one 
thing, but actually buying it is often quite another. Sales people may also intentionally (or 
even unintentionally) exaggerate or underestimate their sales forecasts based on what 
they believe their supervisors want them to say. If the sales force (or the customer base) 
believes that their forecasts will determine the level of finished goods inventory that will be 
available in the next period, they may be sorely tempted to inflate their demand estimates 
so as to insure good inventory availability. Even if these biases could be eliminated or 
controlled, another serious problem would probably remain.  Sales people might be able 
to estimate their weekly dollar volume or total unit sales, but they are not likely to be able 
to develop credible estimates at the SKU level that the logistics system will require. For 
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these reasons it will seldom be the case that these tools will form the basis of a successful 
demand forecasting procedure in a logistics system. 

Consensus methods.  As an alternative to the "bottom-up" survey approaches, 
consensus methods use a small group of individuals to develop general forecasts.  In a 
“Jury of Executive Opinion”, for example, a group of executives in the firm would meet and 
develop through debate and discussion a general forecast of demand. Each individual 
would presumably contribute insight and understanding based on their view of the market, 
the product, the competition, and so forth. Once again, while these executives are 
undoubtedly experienced, they are hardly disinterested observers, and the opportunity for 
biased inputs is obvious. A more formal consensus procedure, called “The Delphi 
Method”, has been developed to help control these problems. In this technique, a panel of 
disinterested technical experts is presented with a questionnaire regarding a forecast. 
The answers are collected, processed, and re-distributed to the panel, making sure that all 
information contributed by any panel member is available to all members, but on an 
anonymous basis. Each expert reflects on the gathering opinion. A second questionnaire 
is then distributed to the panel, and the process is repeated until a consensus forecast is 
reached. Consensus methods are usually appropriate only for highly aggregate and 
usually quite long-range forecasts.  Once again, their ability to generate useful SKU level 
forecasts is questionable, and it is unlikely that this approach will be the basis for a 
successful demand forecasting procedure in a logistics system. 

Judgment-based methods are important in that they are often used to determine an 
enterprise's strategy. They are also used in more mundane decisions, such as 
determining the quality of a potential vendor by asking for references, and there are many 
other reasonable applications. It is true that judgment based techniques are an 
inadequate basis for a demand forecasting system, but this should not be construed to 
mean that judgment has no role to play in logistics forecasting or that salespeople have no 
knowledge to bring to the problem. In fact, it is often the case that sales and marketing 
people have valuable information about sales promotions, new products, competitor 
activity, and so forth, which should be incorporated into the forecast somehow. Many 
organizations treat such data as additional information that is used to modify the existing 
forecast rather than as the baseline data used to create the forecast in the first place. 

Experimental Approaches to Forecasting 

In the early stages of new product development it is important to get some estimate 
of the level of potential demand for the product. A variety of market research techniques 
are used to this end. 

Customer Surveys are sometimes conducted over the telephone or on street 
corners, at shopping malls, and so forth. The new product is displayed or described, and 
potential customers are asked whether they would be interested in purchasing the item. 
While this approach can help to isolate attractive or unattractive product features, 
experience has shown that "intent to purchase" as measured in this way is difficult to 
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translate into a meaningful demand forecast. This falls short of being a true “demand 
experiment”. 

Consumer Panels are also used in the early phases of product development. 
Here a small group of potential customers are brought together in a room where they can 
use the product and discuss it among themselves.  Panel members are often paid a 
nominal amount for their participation. Like surveys, these procedures are more useful for 
analyzing product attributes than for estimating demand, and they do not constitute true 
“demand experiments” because no purchases take place. 

Test Marketing is often employed after new product development but prior to a 
full-scale national launch of a new brand or product.  The idea is to choose a relatively 
small, reasonably isolated, yet somehow demographically "typical" market area.  In the 
United States, this is often a medium sized city such as Cincinnati or Buffalo. The total 
marketing plan for the item, including advertising, promotions, and distribution tactics, is 
"rolled out" and implemented in the test market, and measurements of product awareness, 
market penetration, and market share are made. While these data are used to estimate 
potential sales to a larger national market, the emphasis here is usually on "fine-tuning" 
the total marketing plan and insuring that no problems or potential embarrassments have 
been overlooked. For example, Proctor and Gamble extensively test-marketed its 
Pringles potato chip product made with the fat substitute Olestra to assure that the product 
would be broadly acceptable to the market. 

Scanner Panel Data procedures have recently been developed that permit 
demand experimentation on existing brands and products. In these procedures, a large 
set of household customers agrees to participate in an ongoing study of their grocery 
buying habits.  Panel members agree to submit information about the number of 
individuals in the household, their ages, household income, and so forth. Whenever they 
buy groceries at a supermarket participating in the research, their household identity is 
captured along with the identity and price of every item they purchased.  This is 
straightforward due to the use of UPC codes and optical scanners at checkout. This 
procedure results in a rich database of observed customer buying behavior. The analyst 
is in a position to see each purchase in light of the full set of alternatives to the chosen 
brand that were available in the store at the time of purchase, including all other brands, 
prices, sizes, discounts, deals, coupon offers, and so on. Statistical models such as 
discrete choice models can be used to analyze the relationships in the data. The 
manufacturer and merchandiser are now in a position to test a price promotion and 
estimate its probable effect on brand loyalty and brand switching behavior among 
customers in general.  This approach can develop valuable insight into demand behavior 
at the customer level, but once again it can be difficult to extend this insight directly into 
demand forecasts in the logistics system. 

Relational/Causal Approaches to Forecasting 

Suppose our firm operates retail stores in a dozen major cities, and we now decide 
to open a new store in a city where we have not operated before. We will need to forecast 
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what the sales at the new store are likely to be. To do this, we could collect historical 
sales data from all of our existing stores. For each of these stores we could also collect 
relevant data related to the city's population, average income, the number of competing 
stores in the area, and other presumably relevant data. These additional data are all 
referred to as explanatory variables or independent variables in the analysis. The sales 
data for the stores are considered to be the dependent variable that we are trying to 
explain or predict. 

The basic premise is that if we can find relationships between the explanatory 
variables (population, income, and so forth) and sales for the existing stores, then these 
relationships will hold in the new city as well. Thus, by collecting data on the explanatory 
variables in the target city and applying these relationships, sales in the new store can be 
estimated. In some sense the posture here is that the explanatory variables "cause" the 
sales. Mathematical and statistical procedures are used to develop and test these 
explanatory relationships and to generate forecasts from them.  Causal methods include 
the following: 

Econometric models, such as discrete choice models and multiple regression. 
More elaborate systems involving sets of simultaneous regression equations can also be 
attempted.  These advanced models are beyond the scope of this book and are not 
generally applicable to the task of forecasting demand in a logistics system. 

Input-output models estimate the flow of goods between markets and industries. 
These models ensure the integrity of the flows into and out of the modeled markets and 
industries; they are used mainly in large-scale macro-economic analysis and were not 
found useful in logistics applications. 

Life cycle models look at the various stages in a product's "life" as it is launched, 
matures, and phases out. These techniques examine the nature of the consumers who 
buy the product at various stages ("early adopters," "mainstream buyers," "laggards," etc.) 
to help determine product life cycle trends in the demand pattern.  Such models are used 
extensively in industries such as high technology, fashion, and some consumer goods 
facing short product life cycles. This class of model is not distinct from the others 
mentioned here as the characteristics of the product life cycle can be estimated using, for 
example, econometric models. They are mentioned here as a distinct class because the 
overriding "cause" of demand with these models is assumed to be the life cycle stage the 
product is in. 

Simulation models are used to model the flows of components into manufacturing 
plants based on MRP schedules and the flow of finished goods throughout distribution 
networks to meet customer demand. There is little theory to building such simulation 
models. Their strength lies in their ability to account for many time lag effects and 
complicated dependent demand schedules. They are, however, typically cumbersome 
and complicated. 
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Time Series Approaches to Forecasting 

Although all four approaches are sometimes used to forecast demand, generally 
the time-series approach is the most appropriate and the most accurate approach to 
generate the large number of short-term, SKU level, locally dis-aggregated forecasts 
required to operate a physical distribution system over a reasonably short time horizon.  
On the other hand, these time series techniques may not prove to be very accurate. If the 
firm has knowledge or insight about future events, such as sales promotions, which can 
be expected to dramatically alter the otherwise expected demand, some incorporation of 
this knowledge into the forecast through judgmental or relational means is also 
appropriate. 

Many different time series forecasting procedures have been developed. These 
techniques include very simple procedures such as the Moving Average and various 
procedures based on the related concept of Exponential Smoothing. These procedures 
are extensively used in logistics systems, and they will be thoroughly discussed in this 
chapter. Other more complex procedures, such as the Box-Jenkins (ARIMA) Models, are 
also available and are sometimes used in logistics systems. However, in most cases 
these more sophisticated tools have not proven to be superior to the simpler tools, 
and so they are not widely used in logistics systems. Our treatment of them here will 
therefore be brief. 

Basic Time Series Concepts 

Before we begin our discussion of specific time series techniques, we will outline 
some concepts, definitions, and notation that will be common to all of the procedures. 

Definitions and Notation 

A time series is a set of observations of a process, taken at regular intervals. For 
example, the weekly demand for product number "XYZ" (a pair of 6 " bi-directional black 
speakers) at the St. Louis warehouse of the "Speakers-R-Us" Company during calendar 
year 1998 would be a time series with 52 observations, or data points. Note that this 
statement inherently involves aggregation over time, in that we do not keep a record of 
when during the week any single speaker was actually demanded. If this were in fact 
important, we could work with a daily time series with 365 observations per year. In 
practice, for purposes of operating logistics systems, most firms aggregate demand into 
weekly, bi-weekly, or monthly intervals. 

We will use the notation Zt to represent observed demand at time t. Thus the 
statement "Z13 = 328" means that actual demand for an item in period 13 was 328 units. 
The notation Z't will designate a forecast, so that "Z'13 = 347" means that a forecast for 
demand in period 13 was 347 units.  By convention, throughout this chapter we will 
consider that time "t" is "now"; all observations of demand up through and including time 
"t" are known, and the focus will be on developing a "one-period ahead" forecast, that is, 
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Z’t+1. Note that in the time series framework, such a forecast must be generated as a 
function of Zt-1, Zt-2, Zt-3, …-- the observed demand. 

We intend for the forecasts to be accurate, but we do not expect them to be perfect 
or error-free. To measure the forecast accuracy, we define the error associated with any 
forecast to be et, where: 

e  Z  Z  ' t = -t t 

That is, the error is the signed algebraic difference between the actual demand and 
the forecasted demand. A positive error indicates that the forecast was too low, and a 
negative error indicates an "over-forecast". 

In the time series approach, we assume that the data at hand consist of some 
"pattern", which is consistent, and some noise, which is a non-patterned, random 
component that simply cannot be forecasted.  Conceptually, we can think of noise as the 
way we recognize that a part of customers’ behavior is inherently random. Alternatively, 
we can think of a random noise term as simply a parsimonious way of representing the 
vast number of factors and influences which might effect demand in any given period 
(advertising, weather, traffic, competitors, and so forth) which we could never completely 
recognize and analyze in advance. The time series procedure attempts to capture and 
model the “pattern” and to ignore the “noise”.  In statistical terms, we can model the noise 
component of the observation, nt, as a realization of a random variable, drawn from an 
arbitrary, time-invariant probability distribution with a mean of zero and a constant 
variance. We further assume that the realizations of the noise component are serially 
uncorrelated, so that no number of consecutive observations of the noise would provide 
any additional information about the next value in the series. 

Time Series Patterns 

The simplest time series would be stationary data.  A series is said to be stationary 
if it maintains a persistent level over time, and if fluctuations around that level are merely 
random, that is, attributable only to noise. We can represent a stationary time series 
mathematically as a set of observations arising from a hypothetical generating process 
function of the form: 

Z  L et= +t 

where L is some constant (the "level" of the series) and nt is the noise term associated 
with period t. This is a very simple process that is trivial to forecast – our forecast should 
always be: 

'Z t +1 = L 

It does not follow, however, that our forecasts will be particularly accurate. To the 
extent that the noise terms are small in absolute value, in comparison to the level term 
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(which is to say, to the extent that the variance of the probability distribution function from 
which the noise observations are drawn is small), the forecasts should be accurate. To 
the extent that the noise terms are relatively large, the series will be very volatile and the 
forecasts will suffer from large errors. 

Another common pattern is that of trend, which is the persistent general tendency 
of the series to move in one direction over time, either upwards or downwards. If demand 
has linear trend, then it is growing (or shrinking) at a consistent or constant rate over time. 
Non-linear trend is also possible, in which case the rate of growth or shrinkage per period 
is changing over time. A time series usually possesses both a trend component and a 
noise component, so that the actual nature and extent of the trend in the data is obscured 
by the noise and may not be obvious. Specific time series procedures have been 
developed to explicitly model the trend phenomenon when it is expected in demand data. 

Seasonality is the tendency of the series to regularly move through high and low 
periods that are directly related to time, and most typically, to time of year. Seasonality is 
a pervasive pattern that is found in the demand not only for consumer goods, but for 
commercial and industrial goods as well. Seasonality patterns can be quite pronounced. 
It is not unusual for SKU level demand to vary by thirty to forty percent from season to 
season. In some cases, such as the retail demand for toys and other gift items, demand 
during the month of December is often many times the average demand per month. In 
another example, about eighty percent of all the gas barbecue grills which will be sold in 
the United States in any given year will be sold during the ten percent of the year which 
falls between Memorial Day and the Fourth of July. With industrial and commercial goods 
there is a pronounced tendency to ship more product at the end of each month and 
particularly at the end of each quarter, when sales and manufacturing quotas are being 
tallied up. A forecasting procedure that ignores or somehow "misses" the seasonality will 
produce forecasts that are not merely inaccurate. The forecasts will tend to under-
forecast during the peak season and over-forecast during the off-season. As a result, the 
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firm will under-produce and under-stock the item during the selling peak, and will over
produce and over-stock during periods when demand is slow. 

A final type of pattern that is often discussed in the general forecasting literature is 
that of “cycle”. Cycle is the tendency of a series to move through long term upward and 
downward movements which are not of regular length or periodicity and which are 
therefore not related to the time of year.  Cyclical patterns often occur in economic time 
series (including aggregate demand data) which are influenced by the general state of the 
national economy, or the so-called "business cycle".  As the economy slowly moves 
through stages of expansion, slow-down, recession, and recovery, the general demand for 
most goods could be expected to mirror this cycle. On the other hand, some goods can 
be counter-cyclical; that is, they sell well when the economy is weak and poorly when the 
economy is strong. For example, we might expect the demand for filet mignon to be 
cyclical and the demand for hamburger to be counter-cyclical if consumers switch from 
steak to hamburger when "times are tough." Cycle undoubtedly has an influence on the 
demand for some items in a logistics system, but the "turns" of the business cycle are 
exceedingly difficult to forecast accurately. In addition, cycle is a long-term phenomenon.  
For the purpose of generating short-term demand forecasts, most logistics systems simply 
ignore cycle.  This is the equivalent of assuming that the current state of the economy, 
and hence its influence on demand for the item, will not change appreciably during the 
forecasting horizon. 

Many items in a logistics system can be expected to display demand patterns that 
simultaneously include trend, seasonality, and noise. Most traditional time series 
techniques attempt to separate out these influences into individually estimated 
components. This general concept is often referred to as the decomposition of the series 
into its component structure. 
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Accuracy and Bias 

In general, a set of forecasts will be considered to be accurate if the forecast errors, 
that is, the set of et values which results from the forecasts, are sufficiently small. The 
next section presents statistics based on the forecast errors, which can be used to 
measure forecast accuracy. In thinking about forecast accuracy, it is important to bear in 
mind the distinction between error and noise. While related, they are not the same thing.  
Noise in the demand data is real and is uncontrollable and will cause error in the 
forecasts, because by our definition we cannot forecast the noise. On the other hand, we 
create the errors that we observe because we create the forecasts; better forecasts will 
have smaller errors. 

In some cases demand forecasts are not merely inaccurate, but they also exhibit 
bias. Bias is the persistent tendency of the forecast to err in the same direction, that is, to 
consistently over-predict or under-predict demand.  We generally seek forecasts which are 
as accurate and as unbiased as possible. Bias represents a pattern in the errors, 
suggesting that we have not found and exploited all of the pattern in the demand data. 
This in turn would suggest that the forecasting procedure being used is inappropriate.  For 
example, suppose our forecasting system always gave us a forecast that was on average 
ten units below the actual demand for that period. If we always adjusted this forecast by 
adding ten units to it (thus correcting for the bias), the forecasts would become more 
accurate as well as more unbiased. 

Logistics managers sometimes prefer to work with intentionally biased demand 
forecasts. In a situation where high levels of service are very important, some managers 
like to use forecasts that are "biased high" because they tend to build inventories and 
therefore reduce the incidence of stockouts. In a situation where there are severe 
penalties for holding too much inventory, managers sometimes prefer a forecast which is 
"biased low," because they would prefer to run the increased risk of stocking out rather 
than risk holding “excess” inventories. In some cases managers have even been known 
to manually adjust the system forecasts to create these biases in an attempt to drive the 
inventory in the desired direction. This is an extremely bad idea. The problem here is that 
there is no sound way to know how much to "adjust" the forecasts, since this depends in a 
fairly complicated way on the costs of inventory versus the costs of shortages.  Neither of 
these costs is represented in any way in the forecasting data. The more sound approach 
is therefore to generate the most accurate and unbiased forecasts possible, and then to 
use these forecasts as planning inputs to inventory control algorithms that will explicitly 
consider the forecasting errors, inventory costs, and shortage costs, and that will then 
consciously trade-off all the relevant costs in arriving at a cost-effective inventory policy.  If 
we attempt to inf luence the inventory by "adjusting" the forecasts up-front, we short-circuit 
this process without proper information. 
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Error Statistics 

Given a set of n observations of the series Zt , and the corresponding forecasts Z't , 
we can define statistics based on the set of the error terms ( where et = Zt - Z't ) that are 
useful to describe and summarize the accuracy of the forecasts. These statistics are 
simple averages of some function of the forecast errors. While we are developing these 
statistics in the context of time-series forecasting, these measures are completely general.  
They can be applied to any set of forecast errors, no matter what technique had been 
used to generate the forecasts. 

The Mean Deviation (MD) is a simple and intuitive error statistic.  It is computed as 
the arithmetic average of the set of forecast errors. Note, however, that, large positive 
and negative errors will "cancel themselves out" in the average. It follows that a small 
mean deviation does not necessarily imply that the errors themselves were small, or that 
the forecasts were particularly accurate. The MD is in fact a measure of the bias in the 
forecasts. 

n1 

n 
MD  = � ei 

i=1 

The Mean Absolute Deviation (MAD) corrects for this "canceling out" problem by 
averaging the absolute value of the errors.  Thus the MAD represents the average 
magnitude of the errors without regard to whether the errors represented under-forecasts 
or over-forecasts.  The MAD is a traditional and popular error measure in logistics and 
inventory control systems because it is easy to calculate and easy to understand.  
However, the statistical properties of the MAD are not well suited for use in probability-
based decision models. 

n1
MAD  = � | |

n 
ei 

i=1 

The Mean Squared Error (MSE) is obtained by averaging the squares of the 
forecast errors. Note that this procedure will also eliminate the "canceling out" problem. 
In an unbiased set of forecasts, the MSE is the equivalent of the variance of the forecast 
errors. MSE is the statistically appropriate measure of forecast errors.  For a given item, 
we will generally compare the accuracy of various forecasting procedures on the basis of 
MSE, and we seek to find the forecasting technique that will minimize the MSE of our 
forecasts. 

n1 2 

n 
MSE  = � ei 

i=1 

The Root Mean Squared Error (RMSE) is simply the square root of the MSE. 

RMSE  = MSE 
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As such, the RMSE of a set of unbiased forecasts represents the standard deviation of the 
forecast errors. Note also that the MSE is expressed in "units squared", which can be 
unintuitive and difficult to interpret. The RMSE, on the other hand, is expressed in the 
same measurement units as the demand data and is therefore more intuitive to interpret. 
In sufficiently large data sets, it can be shown that the RMSE will be proportional to the 
MAD, where the constant of proportionality depends upon the underlying probability 
distribution of the forecast errors. If the errors are normally distributed, for example, then: 

MAD 2 
= 

RMSE p 

When assessing the performance of forecasting procedures in a logistics system, it 
will be useful to summarize the general accuracy or inaccuracy of the forecasts over a 
large set of SKUs. We can expect that some of these items will be high demand items 
and some will be low. We would expect to see larger forecast errors on items that 
average a demand of, say, 100,000 unit per week than on items with average demand of 
5,000 units per week. If we were to measure overall accuracy by calculating an MSE for 
each SKU and then calculating an average of these individual MSEs, the overall average 
would be strongly influenced by MSEs of the high-volume items and would therefore be 
very difficult to interpret. In this situation, other "relative" measures of accuracy are 
popularly used. These techniques express the forecast errors on a comparative basis, 
usually as a "percentage of actual". Thus each error is expressed, not in units, but as a 
fraction or percentage of the actual demand which occurred in that period, and these 
percentages are then averaged. 

In the Mean Percent Error (MPE), algebraic signs are maintained, and so errors 
can "cancel out". The MPE is a relative measure of the bias in a set of forecasts. For 
example, we would interpret an "8% MPE" to mean that the set of forecasts 
underestimated actual demand by about 8% on average. 

n 

n 
MPE = 1 � ei 

i =1 Zi 

In the Mean Absolute Percent Error (MAPE), we express the absolute magnitude of 
each forecast error as a percentage of the actual demand and then average the 
percentages. The MAPE is the most popular aggregate measure of forecasting accuracy. 

� ei 

n 
MAPE = 1 n | |  

i =1 Zi 

Forecast Optimality and Accuracy 

What might constitute an optimal forecast? In other words, we do not expect a 
forecast to be perfect, but how accurate should or can a forecast be?  If a time series 
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consists of pattern and noise, and if we understand the pattern perfectly, then in the long 
run our forecasts will only be wrong by the amount of the noise. In such a case, the MSE 
of the error terms would equal the variance of the noise terms. This situation would result 
in the lowest possible long-term MSE, and this situation would constitute an optimal 
forecast. No other set of forecasts could be more accurate in the long run unless they 
were somehow able to forecast the noise successfully, which by definition cannot be 
done. In practice, it is usually impossible to tell if a given set of forecasts is optimal 
because neither the generating process nor the distribution of the noise terms is known.  
The more relevant issue is whether we can find a set of forecasts that are better (more 
accurate) than the ones we are currently using. 

How much accuracy can we expect or demand from our forecasting systems? This 
is a very difficult question to answer.  Forecasting item level demand in a logistics system 
can be challenging, and the degree of success will vary from setting to setting based on 
the underlying volatility (or noise) in the demand processes. Having said that, many 
practitioners suggest that for short-term forecasts of SKU level demand for high volume 
items at the distribution center level, system-wide MAPE figures in the range of 10% to 
15% would be considered very good. Many firms report MAPE performance in the range 
of 20%, 30%, or even higher. As we shall see, highly inaccurate forecasts will increase 
the need for safety stock in the inventory system and will reduce the customer service 
level. Thus the costs of inaccurate forecasting can be very high, and it is worth 
considerable effort to insure that demand forecasts are as accurate as we can make them. 

Simple Time Series Methods 

In this section we will develop and review some of the most popular time series 
techniques that have been applied to forecasting demand in logistics systems.  All of 
these procedures are easy to implement in computer software and are widely available in 
commercial forecasting packages. 

The Cumulative Mean 

Consider the situation where demand is somehow known to be arising from a 
stationary generating process of the form: 

Z  L nt= +t 

where the value of L (the “level” of the series) and the variance of the noise term are 
unknown. In the long run, the optimal forecast for this time series would be: 

'Z t+1 = L 

since we cannot forecast the noise. Unfortunately, we do not know L. Another way to 
think about this is to consider the expected value of any future observation at time t, 
where E[x] is the expected value of the random variable x: 

16




t ] = t ] = L E[n  L  0E[Z  E[ L + n  E[  ]  + ] = + = Lt 

This is so because L is a constant and the mean of the noise term is zero. It 
follows that the problem at hand is to develop the best possible estimate of L from the 
available data. Basic sampling logic would suggest that, since the underlying process 
never changes, we should use as large a sample as possible to sharpen our estimate of L. 
This would lead us to use a cumulative mean for the forecast. If we have data reaching 
back to period one, then at any subsequent period t: 

t 

t 
'Z t+1 =

1 �Z 
i=1 

i 

We would simply let the forecast equal the average of all prior observations. As our 
demand experience grew, we would incorporate all of it into our estimate of L. As time 
passed, our forecasts would stabilize and converge towards L, because in the long run the 
noise terms will cancel each other out because their mean is zero. The more data we 
include in the average, the greater will be the tendency of the noise terms to sum to zero, 
thus revealing the true value of L. 

Should this procedure be used to forecast demand in a logistics system?  Given the 
demand generating process we have assumed, this technique is ideal. In the long run, it 
will generate completely unbiased forecasts. The accuracy of the forecasts will depend 
only upon the volatility of demand; that is, if the noise terms are large the forecasts will not 
be particularly accurate. On the other hand, without regard to how accurate the forecasts 
may be, they will be optimal. No other procedure can do a better job on this kind of data 
than the cumulative mean. 

The issue of the utility of this tool, however, must be resolved on other grounds. If 
we have purely stationary demand data, there is no doubt that this is the technique of 
choice. On the other hand, very few items in a logistics system can be expected to show 
the extreme stability and simplicity of demand pattern implied by this generating process. 
Sometimes analysts are tempted to average together demand data going back five years 
or more because the data are available, because the data are "true" or accurate, and 
because "big samples are better." The issue here is not whether the historical demand 
truly happened -- the question is whether the very old data are truly representative of the 
current state of the demand process.  To the extent that old data are no longer 
representative, their use will degrade the accuracy of the forecast, not improve it. This 
procedure will seldom be appropriate in a logistics system. 

The Naive Forecast 

Consider the situation where demand is arising according to the following 
generating process: 

Z  Z  nt = +t t-1 
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Each observation of the process is simply the prior observation plus a random 
noise term, where the noise process has a mean of zero and a constant variance. This 
demand process is a "random walk". As a time series it is non-stationary and has virtually 
no pattern -- no level, trend, or seasonality.  Such a series will simply wander through long 
upward and downward excursions. If we think in terms of the expected value of the next 
observation at any specific time t, we see that: 

t ] = + t ] = t ] = 0E[Z  E[ Z  n  E[ Zt -1] + E[n  Z  t -1 + = Zt -1t -1 

because at time t , the value of Zt-1 is known and constant. This suggests that the best 
way to forecast this series would be: 

'Z t+1 = Zt 

Each forecast is simply the most recent prior observation. This approach is called 
a “naïve” forecast and is sometimes referred to as "Last is Next". This is, in fact, an 
almost instinctive way to forecast, and it is frequently used to generate simple short-term 
forecasts. It can be shown that, for this specific generating process, the naive forecast is 
unbiased and optimal. Accuracy will once again depend on the magnitude of the noise 
variance, but no other technique will do better in the long run. 

It does not follow that this is a particularly useful tool in a logistics system. The 
naive forecast should only be used if demand truly behaves according to a random walk 
process. This will seldom be the case. Customers can be inscrutable at times, but 
aggregate demand for most items usually displays some discernable form or pattern. 
Using a naive forecast ignores this pattern, and potential accuracy is lost as a result. 

As an illustration of how forecast errors can be inflated by using an inappropriate 
tool, look at what happens, for example, when we use a naive forecast on demand data 
from a simple, stationary demand process. If demand is being generated according to: 

Z  L n  t= +t 

where L is a constant and the noise terms have a mean of zero and a variance of s2, we 
have seen that the optimal forecasting procedure would be the cumulative mean, and that 
in the long run the accuracy of the forecasts would approach: 

2MSE[Cumulative Mean] @ s 

What would happen to the MSE if we used a naive forecast instead of the cumulative 
mean on this kind of data? In general, each error term would now be the difference 
between two serial observations: 

t = ( - -e  Z Z  ' t ) = (Z Z  t -1)t t 
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The expected value of the error terms would be: 

t ] = - t ] - L LE[e  E[Z Z  t -1] = E[ L + n  E[ L + n ] = - = 0t t -1 

and so the resulting forecasts would be unbiased. However, the variance of the error 
terms would be: 

t ]
2V[e  V[Z Z  ] = V[L +  +  + t -1] 2st ] = - n  V[ L n  = t t -1 

since L is a constant. It follows that the MSE of the naive forecasts will be twice as high 
as the MSE of the cumulative mean forecasts would have been on such a data set. 

The Simple Moving Average 

Sometimes the demand for an item in a logistics system may be essentially “flat” for 
a long period but then undergo a sudden shift or permanent change in level. This may 
occur, for example, because of a price change, the rise or fall of a competitor, or the 
redefinition of the customer support territory assigned to the inventory location. The shift 
may be due to the deliberate action of the firm, or it may occur without the firm's 
knowledge. That is, the time of occurrence and size of the shift may be essentially 
random from the firm's point of view. What forecasting procedure should be used on such 
an item? Prior to the change in level, a cumulative mean would work well.  Once the shift 
has occurred, however, the cumulative mean will be persistently inaccurate because most 
of the data being averaged into the forecast is no longer representative of the new, 
changed level of the demand process. If a naive forecast is used, the forecast will react 
quickly to the change in level whenever it does occur, but it will also react to every single 
noise term as though it were a meaningful, permanent change in level as well, thus greatly 
increasing the forecast errors. A moving average represents a kind of compromise 
between these two extremes. 

In a moving average, the forecast would be calculated as the average of the last 
“few” observations. If we let M equal the number of observations to be included in the 
moving average, then: 

1 t 

M 
'Z t+1 = � Zi 

i t M= + -1 

For example, if we let M=3, we have a "three period moving average", and so, for 
example, at t = 7: 

+  +  7 6Z '8 = 
Z Z Z  5 

3 
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The appropriate value for the parameter M in a given situation is not obvious. If M is 
"small", the forecast will quickly respond to any "step", or change in level when it does 
occur, but we lose the "averaging out" effect which would cancel out noise when many 
observations are included. If M is "large", we get good averaging out of noise, but 
consequently poorer response to the occurrence of the step change. The optimal value 
for M in any given situation depends in a fairly complicated way upon the level, the noise 
variance, and the size and frequency of occurrence of the step or steps in the demand 
process. In practice, we will not have the detailed prior knowledge of these factors that 
would be required to choose M optimally. Instead, M is usually selected by trial and error; 
that is, values of M are tested on historical data, and the value that would have produced 
the minimum MSE for the historical demand data is used for forecasting. Note that this 
approach implicitly assumes that these unknown factors are themselves reasonably 
stationary or time-invariant. 

An example of this approach is shown in the table below.  Thirty periods of time 
series data are forecasted with moving averages of periods two through seven. MSEs are 
calculated over periods eight through thirty. The lowest MSE (52.26) occurs with the three 
period moving average (M=3).  Note from the table of the forecasts that these data 
underwent a step change in level at period twenty. In effect, the value of M=3 made the 
best compromise between canceling noise before the step occurred and then reacting to 
the step once it happened. 
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AN ILLUSTRATION OF THE EFFECT OF M ON MSE 

t Zt M=2 M=3 M=4 M=5 M=6 M=7 
1 98 
2 110 
3 100 104

4
 94 105

5 100 97

6 92 97

7 96 96

8 102 94

9 105 99


10 96 104

11 103 101

12 95 100

13 96 99

14 101 96

15 99 99

16 94 100

17 92 97

18 95 93

19 100 94

20 95 98

21 113 98

22 120 104

23 106 117

24 118 113

25 123 112

26 125 121

27 107 124

28 116 116

29 121 112

30 109 119


MSE[t8 to t30] 68.30


103 
101 101 
98 101 100 
95 97 99 99 
96 96 96 99 99 
97 98 97 97 99 

101 99 99 98 98 
101 100 98 99 98 
101 102 100 99 99 
98 100 100 100 98 
98 98 99 100 99 
97 99 90 99 100 
99 98 99 98 99 
98 98 97 98 98 
95 97 96 96 97 
94 95 96 96 96 
96 95 96 97 97 
97 96 95 96 97 

103 101 99 98 98 
109 107 105 103 101 
113 109 107 105 103 
115 114 110 109 107 
116 117 116 113 111 
122 118 118 118 114 
118 118 116 117 116 
116 118 118 116 116 
115 117 118 118 117 

52.26 57.96 69.39 74.70 76.70 

The fundamental difference among the three time-series procedures discussed 
thus far is the treatment or “value” placed upon historical observations of demand by each 
forecasting model.  The cumulative mean procedure ignores the age of the observation, 
treating all observations as equally relevant to the current state of the demand generating 
process, no matter how old the individual observation is. This is seldom reasonable for 
demand forecasting in a logistics system, since things do change over time. The naive 
forecast acts as though only the most recent observation has any real forecasting value, 
and all prior observations are treated as worthless and ignored. Few logistics demand 
processes are quite this volatile. Things change, but not quite that abruptly and 
continually. The moving average behaves as though the latest M periods of data are all 
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equally useful and all older observations are totally worthless. This is a sort of 
compromise. Note that: 

1. The cumulative mean is a moving average where M "expands indefinitely" in the 
sense that it includes all prior observations and grows with the "length" of the series being 
forecasted. 

2. The naive forecast is a moving average where M = 1. 

In this sense, "small" moving averages resemble the naive approach, with all of its 
strengths and weaknesses. "Large" moving averages resemble the cumulative mean, 
with all of its advantages and disadvantages. 

The Weighted Moving Average 

It might seem more reasonable to assume that historical observations actually lose 
their predictive value "gradually", rather than so "abruptly" as in the moving average. As a 
given data point becomes older and older, it becomes progressively more likely that it 
occurred before the step change in level happened, rather than after it did. It therefore 
might improve the accuracy of the forecast if we placed relatively more emphasis on 
recent data and relatively less emphasis on less current experience.  This idea leads to 
the concept of a weighted moving average forecast, where the last M observations are 
averaged together, but where they are not given equal weight in the average: 

t 

� Wt i  - +1Zi 
= - +  1= i t M'Z t+1 M 

�Wi 
i=1 

For example, a "three period weighted moving average" might look like: 

'Z t+1

3Zt + 2Zt-1 +1Z 
= t-2 

6 

Here the three most recent observations are weighted in the proportions of 3 : 2 : 1 in their 
influence on the forecast. This technique might in fact work better in terms of MSE than a 
simple moving average, or it might not.  The technique also leads to a "parameterization" 
problem, since there is no obvious way to choose either M or the set of weights to use. 
Any such pattern of weights will "work" in the sense of generating a forecast, and the 
optimal choice is not at all clear. 

Simple Exponential Smoothing 

A popular way to capture the benefit of the weighted moving average approach 
while keeping the forecasting procedure simple and easy to use is called exponential 
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smoothing, or occasionally, the “exponentially weighted moving average”.  In its simple 
computational form, we make a forecast for the next period by forming a weighted 
combination of the last observation and the last forecast: 

(1  Z t 'Z t+1 = aZt + - a) '  

where a is a parameter called the “smoothing coefficient”, “smoothing factor”, or 
“smoothing constant”. Values of a are restricted such that 0 < a < 1. The choice of a is 
up to the analyst. In this form, a can be interpreted as the relative weight given to the 
most recent data in the series.  For example, if an a of 0.2 is used, each successive 
forecast consists of 20% "new" data (the most recent observation) and 80% "old" data, 
since the prior forecast is composed of recursively weighted combinations of prior 
observations. A little algebra on the forecasting model yields a completely equivalent 
expression that can also be used: 

'Z t+1 =Z ' +aett 

In this form we can see that exponential smoothing consists of continually updating 
or refining the most recent forecast of the series by incorporating a fraction of the current 
forecast error, where a represents that fraction. During periods when the forecast errors 
are small and unbiased, the procedure has presumably located the current demand level. 
Adding a fraction of these errors to the forecast will not change it very much.  If the errors 
should become large and biased, this would indicate that the level of demand had 
changed. Adding in a fraction of these errors will now "move" the forecast toward the new 
level. Thus exponential smoothing is a kind of feedback system, or an error monitoring 
and correcting process. 

The choice of an appropriate value for a will depend upon the nature of the demand 
data. In this sense, choice of a in exponential smoothing is analogous to the choice of M 
in a moving average. If we use a relatively large value for a , we will have "Fast 
Smoothing"; that is, the forecasts will be highly responsive to true changes in the level of 
the series when they do occur. Such forecasts will also be "nervous" in the sense that 
they will also respond strongly to noise. If we use a relatively small value for a , we will 
have "Slow Smoothing", with sluggish response to changes in the true level of the series. 
On the other hand, forecasts will be relatively "calm" and unresponsive to the random 
noise in the demand process. The choice of the optimal value of a in a specific situation is 
usually done on a trial and error basis so as to minimize MSE on a set of historical data. 
Experience has shown that when this model is appropriate, optimal a values will typically 
fall in a range between .1 and .3 . 

Another way to think about the choice of a is to consider how a specific choice of a 
will inflate the forecast error while the data are truly stationary. It can be shown that if the 
data are simply level and the standard deviation of the noise terms is sn, then the ratio of 
the forecast RMSE using a given a to the sn will be: 
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RMSE 2a = 
s 2 -an 

For example, using an a value of 0.20 on stationary data "inflates" the RMSE by 
about five percent. In a sense, this is the price we pay each period to be able to react to a 
change in the level if and when such a change should appear. 

In using exponential smoothing to forecast demand data, there is another issue 
beyond the choice of a. Since each forecast is a modification of a prior forecast, from 
where does the initial forecast come? The usual solution to this “initialization” problem is 
to set the first "forecast" to be equal to the actual demand in the first period: 

Z '1 = Z1 

after the fact, and to then use exponential smoothing for period 2 and beyond. 

Although exponential smoothing is a very simple process, the model is actually 
more subtle than the arithmetic might suggest. The process is called "exponential" 
smoothing because each forecast can be shown to be a weighted average of all prior 
observations, where the weights being employed "decline exponentially" with the 
increasing age of the observations. Suppose we have been forecasting a series for many 
periods. At each point in time, we form a forecast such as: 

(1  Z t 'Z t+1 = aZt + - a) '  

If we are at time t, what does Z't consist of? It is the forecast formed one period ago, at 
time = t-1: 

Z ' t = aZt-1 + -a ) '(1  Z t-1 

Substituting this expression for Z't into the equation for Z't+1 yields the equivalent 
expression: 

'Z t+1 = aZt + - a){  aZ + - a ) ' }(1  t -1 (1  Z t -1 

Which simplifies to: 

(1  2'Z t+1 = aZt + a (1  - a )Z + - a) Z ' }t-1 t-1 

Continuing this process of expanding the Z' term on the end of the formula will lead to a 
general expression: 

0 1 2 3'Z t+1 = a(1  - a) Zt + a(1  - a ) Z + a(1  - a ) Zt-2 + a (1  - a ) Zt-3 + .....t-1 
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This implies that exponential smoothing is the equivalent of a weighted average 
where the values of the weights are determined by the choice of a. The table and figure 
below illustrate the patterns of weights that result from various values of a. When a is 
very small (on the order of 0.01 to 0.05), the pattern of small, approximately equal weights 
that results implies that the forecasts will closely resemble those generated by the 
cumulative mean.  For all the reasons previously discussed, this suggests that very small 
values of a will seldom be appropriate. Similarly, very large a values (0.7 and above) 
place almost all the weight on the few most recent data points, and so these forecast 
results will resemble those from the naïve forecast.  It follows that very large values of a 
will not often perform well either. 

AN ILLUSTRATION OF THE WEIGHTS APPLIED IN EXPONENTIAL SMOOTHING 

Age of data 0 1 2 3 4 5 
Weight a(1-a)0 a(1-a)1 a(1-a)2 a(1-a)3 a(1-a)4 a(1-a)5 

a=0.1 .100 .090 .081 .073 .066 .059 
a=0.2 .200 .160 .128 .102 .082 .066 
a=0.3 .300 .210 .147 .103 .072 .050 
a=0.4 .400 .240 .144 .086 .052 .031 
a=0.5 .500 .250 .125 .062 .031 .016 
a=0.6 .600 .240 .096 .038 .015 .006 
a=0.7 .700 .210 .063 .019 .006 .002 
a=0.8 .800 .160 .032 .006 .001 .000 
a=0.9 .900 .090 .009 .001 .000 .000 
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Adaptive Response Rate Exponential Smoothing 

Since a small value for a works well while the demand data are "temporarily 
stationary", but a large value of a works well to correct after a change of level has 
occurred, the choice of a in simple exponential smoothing is always a compromise 
between these two competing needs if we expect that the level of the demand data can 
change from time to time. We could envision a slightly more sophisticated model with two 
values for a , one large and one small. If the forecasts have been fairly accurate lately, 
we would use “small a “ to forecast, but if the forecasts have been bad lately, we would 
use a large value of a, presumably to "catch up" to the change in level which has been 
causing the recent large errors. This might make sense, but parameterization issues 
remain. Which two values should we use for a? How "bad" is bad? How "lately" is 
lately? 

Adaptive Response Rate Exponential Smoothing (ARRES), which was proposed by 
Trigg and Leach, is a technique which embodies this basic idea and avoids the 
parameterization issue (almost) by allowing a to vary from period to period as a function of 
the smoothed forecast errors.  We start with a fixed smoothing coefficient, b, which is 
usually set to a value of about 0.2, although once again an appropriate value can be found 
by experimentation with historical demand data. Given a value for b, we calculate and 
update Et, which is a smoothed average of our forecast errors: 

(1  Et = b et + - b ) Et-1 

Et is the "exponentially smoothed equivalent" of the Mean Deviation and is therefore a 
rolling estimate of the current bias in the forecasts. We also use b to calculate At , which 
is an exponentially smoothed average of the absolute errors and is therefore a "rolling" 
estimate of the current MAD: 

At = b | e | + - b ) A(1  t t-1 

Then we use Et and At to set at, which is a value of a that is appropriate given the current 
forecast accuracy: 

=| E At |a t t 

and we use at to generate a forecast: 

Z (1  t Z t 'Z t+1 = at  t  + - a ) '  

In this way at will automatically adapt or respond to the forecast errors, taking on large 
values when large, biased errors occur and taking on small values when small and 
unbiased errors are generated. While adaptive procedures such as this are intuitively very 
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plausible, experience with them in actual logistics system applications has shown that they 
tend to be too "nervous" or "over-reactive".  The resulting instability in the at values often 
leads to forecasts that are no more accurate than those which would have been obtained 
with simple exponential smoothing. 

Extending the Forecast Horizon 

In each of the models considered so far, we have focused on developing a "one 
period ahead" forecast. That is, at time t we develop an expression for Z’t+1. In many 
cases it will be useful to extend the forecast two or more periods into the future. For each 
of the models developed thus far, the forecast developed at time t holds indefinitely into 
the future: 

'Z t+k = Z ' t+1 , for  all k  > 1 

This is true because in these models the underlying demand process is assumed to be 
simply stationary, or "temporarily stationary", or a random walk. As such, we have no 
additional information or reason to modify our forecast based on the length of the 
forecasting horizon. On the other hand, if the demand process is subject to changes in 
level (or is random walk), then we would expect the forecast accuracy to decline as we 
extend the forecasting horizon. An MSE that is calculated on weekly forecasts that were 
made, for example, eight weeks in advance could be much higher than the MSE on 
forecasts made only one week in advance. This happens, in one sense, because the long 
forecasting horizon allows much more opportunity for the demand level to change 
between the time the forecast for a given period was made and the time when the demand 
actually occurs. 

Trended Demand Data 

Many items in a logistics system can be expected to shown a trend in demand.  
None of the models discussed thus far will cope well with a trended demand generation 
process. Models such as the ones we have seen, which are intended to forecast 
stationary data, will lag badly behind trended data, showing poor accuracy and high bias.  
Consider a completely noiseless data series with a simple, constant, linear trend. This 
should be a very simple pattern to forecast. As is shown in the figure below, neither a 
moving average nor exponential smoothing will produce a useful forecast.  The problem is 
that any such procedure is averaging together "old" data, all of which is unrepresentative 
of the "future level" of the series. It is as though the series undergoes a change in level in 
each period, and the forecast never has a chance to adapt to it or to "catch up." 
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Time Series Regression 

One way to deal with trended demand data is to fit the historical data to a linear 
model with an "ordinary least squares" regression. We would fit a linear model of the 
form: 

y = mx b+ 

In effect, we would take a set of demand observations and treat Zt as the dependent 
variable and t as the independent variable, so that: 

Z ' t = Tt I+ 

where the parameters to be estimated in the regression are I, an intercept term, and T, the 
trend component, or the projected amount of growth in the series per time period. In the 
regression procedure, these two parameters are chosen in such a way that the MSE of 
the "fitted" Z’t estimates is minimized. A "k step ahead" forecast at period t would then be 
calculated as: 

+ ( +Z ' t k  = T t  k  ) + I 

This procedure is an attempt to decompose the demand data observations into an 
initial level (the I term), a trend component (the T term), and noise components, which are 
modeled as the errors in the regression estimates. Once established, the model can be 
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used for several periods, or it could be updated and re-estimated as each new data point 
is observed. Given the current state of computer capability, the computational burden 
implied by this continual updating need not be excessive. On the other hand, this 
regression-based approach suffers from the same potential problem as do the cumulative 
mean and simple moving average. In a simple regression, each observation, no matter 
how old, is given the same weight or influence in determining the regression coefficients, 
and hence, the value of the next forecast. However, there is always the possibility that the 
series can undergo a shift in “level” at some point, or that the slope of the trend line may 
change. Once such a change has occurred, all of the "older" data are unrepresentative of 
the future of the process. This logic suggests that perhaps some weighting scheme 
should be used to "discount" the older data and place more emphasis on more recent 
observations. This might be done, for example, with a "Weighted Least Squares" 
regression. While this could be done, in actual practice other, simpler procedures are 
more commonly used that accomplish the same ends. 

Brown’s Double Smoothing 

If we refer again to the data in the previous figure, we can see that although the 
forecasts lag badly behind the actual data, both the moving average and the exponential 
smoothing forecasts do capture the true rate of growth in the series.  The amount by 
which the forecast lags is basically a function of how fast the series is growing and how far 
back the data is being averaged, which is in turn a function of the M value or a value being 
used. It is possible to use this insight to develop a smoothing procedure that will separate 
the trend component from the noise in the series and forecast trended data without a lag. 
One such procedure, which has been popularized by R.G. Brown, is called Double 
Exponential Smoothing, or Double Smoothing.  Given a smoothing coefficient of a, we first 
calculate a simple smoothed average of the data: 

(1  Bt+1 = a Zt + -a )Bt 

This series will follow the slope of the original data while smoothing out some of the noise. 
A second series is then formed by smoothing the Bt values: 

(1  Ct+1 = aBt + - a )Ct 

The second series will also tend to capture the slope of the original data while further 
smoothing the noise. Now we can use these two smoothed values to form the forecast: 

-t t'Z t+1 = 2B Ct 
a (B C )

- +  t 
1 -a 

It has been demonstrated that performing double smoothing on a data set is 
mathematically equivalent to forecasting with a rolling (or continually updated) weighted 
least squares regression where the weights being applied would be of the form: 
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Wi = a (1  -a )i 

where i represents the age of the data point. That is, for the most recent data point, i=0, 
for the next most recent, i=1, and so on. The double smoothing technique is illustrated on 
a trended data set in the following table and figure. 
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Holt’s Procedure 

Holt’s procedure is a popular technique that is also used to forecast demand data 
with a simple linear trend. The procedure works by separating the "temporary level", or 
current “height” of the series, from the trend in the data and developing a smoothed 
estimate of each component. The "level" component, Lt, can be thought of as an estimate 
of the actual level of demand in period t absent the noise component nt that is present in 
the observation Zt. The trend component, Tt, is the smoothed average of the difference 
between the last two estimates of the "level" of the series. Separate smoothing 
parameters can be used for each component. A value of a is chosen to smooth the series 
and adapt to changes in level. A value of b is chosen to allow the trend estimate to react 
to changes in the rate of growth of the series. To create a forecast at time t, we update 
our estimates of Lt and Tt and then combine them: 

(1  Z tLt+1 = a Zt + - a) '  

(1  Tt+1 = b (L - L ) + - b )Tt+1 t t 

'Z t+1 = Lt+1 + Tt+1 

'Z t+k = Lt+1 + kTt+1 , forall k  ‡ 1 

The effects of large versus small values for the smoothing coefficients, a and b , are the 
same as in simple smoothing; that is, large a or b is responsive but nervous, small a or b 
is stable and calm. Appropriate values are usually established by trial and error with a 
criterion of minimizing MSE. 

Holt's Procedure Example 
Alpha= 0.2 

Beta= 0.1 
L1= 100 
T1= 50 

t Zt Lt Tt Z't et 
1 100 100 50 150 
2 200 140 49 189 11 
3 150 191 49.2 240.4 -90.4 
4 300 222 47 269.7 30.25 
5 310 276 48 323.8 -13.8 
6 400 321 47.7 368.8 31.21 
7 350 375 48.4 423.4 -73.4 
8 500 409 46.9 455.6 44.38 
9 550 464 47.8 512.3 37.72 

10 520 520 48.5 568.4 -48.4 

31




Holt's Procedure 
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One might consider that stationary data are simply a special case of the more 
general trended process where the trend component is equal to zero.  Following this logic, 
we could use a trend model without regard to whether the demand was stationary or 
trended. However, procedures such as Double Smoothing and Holt's technique should 
only be used if the data really are trended; otherwise, the MSE will be inflated because 
these procedures "look" for trend. For example, if the last three or four observations just 
happen, due to noise, to suggest a trend, Holt’s procedure will react to the data and move 
in the direction of the apparent trend more strongly than a simple smoothing forecast 
would. As a result, the trended forecasts will tend to wander away from the true level of 
the data, and this will increase the forecast errors. If Holt's technique is being used on 
data that are not in fact trended, the Tt values will be near zero, that is, small positive and 
negative values will occur. This would be a strong indication that there is no real trend in 
the data and that a stationary model should be used instead. 

Smoothing with Seasonal Indices 

Seasonal fluctuation in customer demand for product is a very common 
phenomenon in most logistics systems. One simple approach to forecasting demand 
which is level over the long run, but that has a strong seasonal movement, is to add a 
correction amount to the forecast based on, say, the season of the year.  For example, if 
we were forecasting monthly demand we could develop a set of twelve seasonal 
corrections. We could use a forecast model of the form: 

'Z t+1 = Lt+1 + Sq [t+1] 

The notation q[t+1] can be read as "the season of the year which period t+1 represents". 
For example, if t = 1 is a January, then t = 13 is also a January, so q[13] = 1, and q[27] = 

32




3, (which is a March) and so forth.. We could develop and update exponentially smoothed 
estimates of the level and of each seasonal correction term as demand was observed.  
Each value of Sq[t] would represent an estimate of how much above or below the general 
monthly average we expect demand to be during a given month of the year. 

A similar but more useful approach that includes a seasonal influence in the model 
is to develop a set of seasonal indices that are used to adjust the forecast to account for 
the time of year. In this way we represent the seasonal correction as a factor or multiplier 
of the base level, rather than as an additive amount which is somehow independent of the 
level. This becomes an important issue in the situation where the level can change, and 
particularly when the demand process also includes trend. For this reason we will develop 
the following factor-based forecasting model: 

'Z t+1 = L Sq [ 1 ]t+1 t+ -m 

The model will include a level term, L, and as many seasonal indices, S, as there are 
seasonal periods, where m is the number of such periods in a year. Thus, for mont hly 
forecasts, m equals twelve; for weekly forecasts, m would be 52. The level estimate and 
each of the seasonal indices are updated with exponential smoothing, using a on the level 
term and g as the smoothing coefficient on the indices. To understand the updating and 
forecasting process, we should interpret the notation Sq[t] to mean "the seasonal index for 
period of the year that t represents as was estimated at time period t ". 

As an illustration of the procedure, consider an example with monthly forecasts.  
Unless we had prior information about initial estimates of the level and seasonal factors, 
we would probably observe one full year’s worth of data to initialize these model terms. At 
period t = m = 12, with the first twelve observations in hand, we would estimate the level 
as the average per-period demand: 

m1 

m 
Lm+1 = �Zi 

i =1 

or: 

1 3 ...  L13  = (Z + Z2 + Z + + Z12 )/12 

By averaging over one full year (or multiple whole years if the data were available), we 
"de-seasonalize" the data and “average out” the seasonal effects from the level.  We can 
now estimate each seasonal index as the ratio of that period’s actual demand to the 
overall average demand per period: 

Sq [ ]  = 
Zi , fori  = 1 t o m

Li 
m+1 
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Having established an initial estimate of the level and the set of seasonal indices, at time 
period t we would use the forecasting model: 

'Z t+1 = L Sq [ 1 ]t+1 t+ -m 

by first updating the level by smoothing the old value against the "de-seasonalized" most 
recent observation of the series: 

(1  Lt+1 = a(Z St q [ ] ) + - a)Lt t 

and by then multiplying the level by the appropriate seasonal index. After the actual 
demand in period t+1 has been observed, we can update the associated index: 

(1  t+1 1Sq [t+1]  = g (Z  Lt+1) + - g )Sq [t+ -m ] 

As an example, in the case where m = 12, at period t = 27: 

Z '28  = L S1628  

L28  = a( (1  ) + -a)LZ  S  27 27 27 

S28  = g ( (1  ) + -g )SZ  L  28 28  16 

The procedure is illustrated in the table below, where monthly data for four years are 
presented. The first twelve periods were used to initialize the estimates, and then 
forecasts were generated using a = 0.2 and g = 0.2 for month 13 through month 48. As 
can be seen in the figure, the forecasts track the seasonal pattern quite closely. 
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

A Seasonal Data Set 
t Zt Lt St Z't et m'/m 

91.7 101.0 0.908 
131.1 101.0 1.298 
143.5 101.0 1.421 
138.3 101.0 1.370 
204.5 101.0 2.024 
120.9 101.0 1.197 

82.7 101.0 0.819 
57.4 101.0 0.568 
26.9 101.0 0.266 
51.3 101.0 0.508 
60.4 101.0 0.598 

103.4 101.0 1.023 
109.6 101.0 0.943 91.7 17.9 100.3% 
138.1 104.1 1.304 135.1 3.0 100.3% 
132.4 104.4 1.390 148.3 -15.9 100.1% 
154.8 102.6 1.397 140.5 14.3 100.3% 
214.3 104.2 2.031 211.0 3.3 100.4% 
116.8 104.5 1.181 125.1 -8.3 100.2% 

97.5 103.4 0.844 84.6 12.9 100.5% 
69.2 105.8 0.585 60.1 9.1 100.6% 
31.9 108.3 0.272 28.8 3.1 100.6% 
36.4 110.1 0.473 55.9 -19.5 100.3% 
56.9 103.5 0.588 61.9 -5.0 100.3% 

113.1 102.1 1.040 104.5 8.6 100.4% 
115.5 103.5 0.978 97.6 17.9 100.7% 
111.3 106.4 1.252 138.7 -27.5 100.3% 
123.5 102.9 1.352 143.0 -19.5 99.9% 
166.5 100.6 1.449 140.5 26.0 100.4% 
201.6 103.4 2.014 210.0 -8.5 100.2% 
140.2 102.8 1.218 121.4 18.8 100.5% 

80.3 105.2 0.828 88.8 -8.5 100.4% 
63.0 103.6 0.590 60.6 2.4 100.4% 
40.8 104.2 0.296 28.3 12.4 100.6% 
25.7 111.0 0.425 52.5 -26.7 100.2% 
62.7 100.9 0.595 59.4 3.3 100.3% 

102.9 101.8 1.034 105.9 -3.0 100.3% 
107.8 101.3 0.995 99.1 8.7 100.4% 
130.0 102.7 1.255 128.7 1.4 100.4% 
107.0 102.9 1.290 139.1 -32.2 99.9% 
144.3 98.9 1.451 143.3 0.9 99.9% 
187.6 99.0 1.990 199.4 -11.8 99.7% 
132.1 98.1 1.244 119.4 12.7 99.9% 

68.8 99.7 0.800 82.5 -13.7 99.7% 
81.3 97.0 0.640 57.2 24.1 100.1% 
42.6 103.0 0.319 30.5 12.2 100.3% 
30.8 109.1 0.396 46.3 -15.5 100.1% 
27.9 102.8 0.530 61.2 -33.3 99.5% 
78.7 92.8 0.997 96.0 -17.3 99.2% 
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One final adjustment is often made to this procedure. Notice that, due to the 
manner in which we initialize the seasonal indices, the sum of the indices must equal m, 
or in other words, the average of the indices must equal one. This makes sense; it is the 
equivalent of saying that the average month must be equal to the average month.  
However, once we begin the updating process, we change the indices one at a time. For 
this reason, the sum of the indices will no longer necessarily equal m. For example, in the 
table above, the last column shows the sum of the twelve most recent index values 
expressed as a percentage of m. If the sum of the indices is allowed to wander away from 
m, biased forecasts will result. The final step in the procedure, then, is to "normalize" the 
index values. In this context, normalization means that when one index value is updated, 
all the other index values are adjusted so that their sum always equals m. The specific 
adjustment mechanism is arbitrary. A typical procedure would be: 

1. Take the amount that the update has added to the new value of the seasonal 
index, 

2. Apportion it out to the other (m-1) indices, and 

3. Subtract it from the (m-1) indices in such a way that the (m-1) estimates maintain 
their same relative proportion, and the sum of all the indices is still m. 

If we had a set of seasonal indices, say, S1 through Sm, and an update of an index results 
in an increment of d being added to, for example, St , then the new set of indices, S’1 

through S’m would be calculated as: 

S ' t = St + d 

S ' i = Si -
d Si , for  all i  „ t

m S- t 

Winter’s Model for Seasonal/Trended Demand 

It will often be the case that items in a logistics system exhibit demand patterns that 
include both trend and seasonality. It is possible to combine the logic of Holt’s procedure 
for trended data and the seasonal index approach so as to forecast level, trend, and 
seasonality. This approach is embodied in Winter's Model for Trended/Seasonal Data. 
Each component term of the forecast is estimated with exponential smoothing, and 
separate smoothing coefficients, a , b , and g , can be used for each estimate: 

1 'Z t+1 = (Lt+1 + Tt+1) Sq [ t+ -m] 

Lt+1 = a(Z Sq [ ]) + (1  - a)(  L T  )t t t + t 

(1  Tt+1 = b (L - L ) + - b )Tt+1 t t 
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(1  Sq [t+1]  = g (Zt+1 1Lt+1) + - g )Sq [t+ -m ] 

Developing reasonable initial estimates of the L, T, and S values is more difficult in 
this procedure.  Unless we have some good a priori reason to establish these values, we 
will need at least two full seasons of historical data (usually two years worth) to be able to 
distinguish between trend and seasonality in the data. As an example, a simple but 
approximate approach is as follows. 

Given two years of monthly data (Z1 through Z24), we can compute Y1 as the 
average monthly demand of the first year and Y2 as the average monthly demand of the 
second year. Since averaging over a year de-seasonalizes the data, and also allows 
some of the noise to cancel, the difference between Y1 and Y2 can be roughly attributed to 
one year’s accumulation of trend, so an initial estimate of T can be calculated: 

m1 

m 
Y1 = �Zi 

i=1 

m
1 2m 

Y2 = � Zi 
= +1i m  

Y Y1-2T = 
m 

The first year average, Y1, can be thought of as the average of the initial level plus eleven 
months with increasing trend. In other words, if we ignore seasonality and noise: 

( L  T  ) ( L T L m  -1} )  
Y1 

L +  +  +  +  2 )  + ...(  {  T 
= 

m 

or: 

Y1 = + 
+ + +  ....{  m - 1})mL  T  (1 2 3  

m m 

An estimate of the initial level can therefore be: 

(
L Y1 -

T m -1)
= 1 2 

The seasonal influence can be initially estimated from the difference between the actual 
demand observed in a period and an estimate based only on level and trend.  For each of 
the m periods in a year, we have two observations to average, so: 
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ø+Si = 
1 Ø Zi + 

Zm i  
œ , for i  =1 to m  

2 Œ L + (i - 1)  T L + (m + - 1)T ßº i 

Due to the manner in which these indices have been estimated, they will not generally 
sum to m. They should therefore be normalized before they are used. 

These procedures are illustrated in the following tables and figure, where two years 
worth of monthly data are used to initialize the estimates and Winter’s procedure is used 
to generate forecasts for the following three years. 

Winter's Model 
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Winter's Procedure for Trended/Seasonal Data 
Alpha=0.25, Beta=0.3, Gamma=0.2 

t Zt Lt Tt St Z't et m'/m |et|/Zt 
533.9 
512.5 
659.1 
878.9 
802.5 
999.4 
913.9 
590.0 
503.7 
368.0 
369.8 
775.0 
980.6 1.101 

1175.2 1.096 
1396.2 1.268 
1677.1 1.510 
1481.4 1.280 
1758.7 1.475 
1574.7 1.268 
1127.2 0.823 
680.6 0.567 
446.7 0.378 
569.8 0.406 

1228.2 1411.1 43.0 0.828 
1530.3 1461.4 45.2 1.090 1659.0 -128.7 99.9% 8.4% 
1600.3 1480.9 37.5 1.093 1664.5 -64.2 99.9% 4.0% 
2020.9 1504.7 33.4 1.283 1950.9 70.0 100.0% 3.5% 
2648.7 1547.2 36.1 1.550 2390.2 258.5 100.3% 9.8% 
2188.3 1614.7 45.5 1.295 2125.6 62.7 100.5% 2.9% 
2381.0 1667.5 47.7 1.466 2530.3 -149.2 100.4% 6.3% 
2065.1 1692.6 40.9 1.259 2198.9 -133.9 100.3% 6.5% 
1337.8 1710.2 33.9 0.815 1435.2 -97.4 100.2% 7.3% 
898.7 1718.6 26.3 0.558 988.7 -90.0 100.2% 10.0% 
680.5 1711.4 16.2 0.382 652.4 28.0 100.2% 4.1% 
828.4 1741.5 20.4 0.420 714.5 113.9 100.3% 13.7% 

1396.3 1815.0 36.3 0.816 1532.9 -136.6 100.2% 9.8% 
1981.5 1816.2 25.8 1.090 2008.3 -26.8 100.2% 1.4% 
2253.4 1835.7 23.9 1.120 2032.9 220.5 100.4% 9.8% 
2617.5 1897.7 35.3 1.303 2480.7 136.8 100.6% 5.2% 
3364.6 1952.2 41.1 1.585 3089.6 275.0 100.9% 8.2% 
2962.9 2025.7 50.8 1.329 2689.7 273.2 101.2% 9.2% 
2995.6 2114.8 62.3 1.456 3191.0 -195.4 101.1% 6.5% 
2655.1 2147.3 53.3 1.254 2770.2 -115.0 101.1% 4.3% 
1893.0 2179.6 47.1 0.825 1814.2 78.9 101.1% 4.2% 
1176.2 2243.3 52.0 0.551 1280.6 -104.4 101.1% 8.9% 
1036.7 2255.0 39.9 0.397 875.8 160.9 101.2% 15.5% 
1209.0 2373.6 63.5 0.438 1022.6 186.4 101.4% 15.4% 
1925.9 2518.7 88.0 0.806 2127.7 -201.7 101.3% 10.5% 
2402.0 2552.4 71.7 1.061 2861.5 -459.5 101.0% 19.1% 
2596.0 2534.3 44.8 1.101 2888.6 -292.6 100.9% 11.3% 
3223.2 2523.8 28.2 1.297 3324.1 -100.9 100.8% 3.1% 
4167.3 2535.1 23.1 1.597 4054.1 113.2 100.9% 2.7% 
3637.3 2571.2 27.0 1.346 3452.4 184.8 101.1% 5.1% 
3728.5 2624.3 34.8 1.449 3871.2 -142.7 101.0% 3.8% 
3168.9 2637.7 28.4 1.244 3344.2 -175.3 100.9% 5.5% 
2162.6 2636.5 19.5 0.824 2192.6 -30.0 100.9% 1.4% 
1483.7 2647.8 17.1 0.553 1468.8 14.9 100.9% 1.0% 
1198.5 2669.4 18.4 0.408 1067.8 130.7 101.0% 10.9% 
1335.2 2751.0 37.4 0.447 1220.0 115.2 101.1% 8.6% 
2253.1 2837.8 52.2 0.804 2329.2 -76.1 101.1% 3.4% 
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Once again, it can be important to normalize each seasonal index as the 
forecasting proceeds. As was true with the models for trended data, seasonal procedures 
should only be used on data that are truly seasonal; otherwise, the MSE can be inflated.  
If we use a seasonal technique on data that are not seasonal, then all the Sq[t] values will 
be "near" 1.0 all of the time. 

While Winter’s procedure is not complex, there can be quite a bit of tedious 
calculation involved. To forecast weekly demand data, for example, we would first select 
appropriate values of a , b , and g as smoothing parameters. This would involve a 
simultaneous search of possible combinations of values. At each weekly forecast, we 
would update estimates of Lt, Tt, and the appropriate Sq[t], and then normalize the other 51 
seasonal indices. Needless to say, in practice this work is done in a computer. Most 
commercial software intended to forecast demand in a logistics system incorporates this 
procedure or some variation on it. 

Forecasting Low Density Demand 

Many items in a logistics system can be expected to exhibit low density of demand; 
that is, the demand for a specific SKU at a specific location over a relatively short time 
interval will be small or sparse. This can often occur, for example, at the retail level in 
consumer goods, and in the case of maintenance, repair, and operating supplies (MRO 
items) in industrial systems. In situations where demand is sporadic and often is zero in 
any given period, time-series procedures as discussed above are usually inappropriate.  
Error measures such as MAPE, for example, are ill defined when the actual demand that 
occurs is zero. If the usual forecast being generated by the forecasting model is simply 
zero, why are we carrying the item?  How will our inventory control logic handle an item 
when its projected demand is zero? 

Another forecasting approach is called for. Instead of working with historical data 
to estimate the current expected value of the generating process (Z’t+1) and using the 
observed forecast errors to estimate a standard deviation, another approach is to directly 
estimate the demand probability distribution. In this case, the "forecast" becomes the 
current estimation of the entire probability distribution, rather than a point 
estimate of the next period demand. 

The Poisson Distribution 

This discrete, non-negative distribution is often appropriate to describe the probability of 
"rare" events. For example, if demand arises from a failure process, as in repair parts, 
there is theoretical justification for the Poisson. Many mechanical and electronic 
components follow a failure process such that the "time to failure", or component lifetime, 
will follow the exponential probability distribution. For a set of such items, the number 
failing per unit time will follow the Poisson. 

The Poisson can also be a reasonable choice for a demand distribution in the case 
where a relatively large number of customers all have a given probability of purchasing an 
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item and all customers act independently of one another and over time.  In such a case 
the demand distribution for each customer can be thought of as a binomial distribution. If 
the number of customers is large, and the probability associated with each customer is 
small, then the Poisson is an excellent approximation for demands arising from this set of 
customers. The Poisson is also an excellent approximation even if all of the customer's 
purchase probabilities are not exactly equal, that is, even if some customers are more 
likely to purchase than others. 

If the average number of demands per unit time is l , and if demand is Poisson, 
then the probability of observing exactly d demands in any given time period is: 

e -lld 

[ ]  =P d  
d ! 

Poisson probabilities are very easy to compute recursively in computer programs and 
spreadsheets, since: 

[P d  = 0] = e -l 

And: 

P d -1]l
[  ]  = , for all d  > 0P d  

[ 

d 

The Poisson is a discrete distribution, but its mean need not be an integer. Thus if we 
generate a forecast that "demand per period is Poisson with a mean of 3.5 units", this 
forecast implies a set of specific probabilities that specific numbers of units will be 
demanded in the next period: 

Poisson Probabilities 
Mean = 3.5 

Demand Probability 
0 0.030 
1 0.106 
2 0.185 
3 0.216 
4 0.189 
5 0.132 
6 0.077 
7 0.039 
8 0.017 
9 0.007 
10 0.002 
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The variance of the Poisson distribution is always equal to l, so this single 
parameter completely describes the distribution. As l becomes large (l >25), the Poisson 
converges to a discrete approximation to the Normal distribution.  To estimate demand 
with the Poisson, one usually gathers historical observations of demand per period and 
averages them to estimate l. Note that this is the equivalent of the "cumulative average 
approach" with all of its inherent assumptions of extreme stability in the demand process 
over time. To react to potential movements in the generating process, one might operate 
Exponential Smoothing on the observed data and use the resulting forecast as the current 
estimate of the mean of the Poisson process. In this case it would be important to 
maintain several decimal places in the estimate instead of rounding the average to an 
integer value. 

Compound Poisson Distributions 

It is frequently the case that the observed demand data display more variance than 
would be expected from the Poisson distribution; that is, the observed demand variance is 
substantially greater than the mean demand. In this situation a set of related distributions 
may be appropriate.  For example, the Gamma-Poisson, also called the Negative 
Binomial, is a discrete, non-negative "Poisson-like" distribution that can have any variance 
greater than its mean. The Gamma-Poisson distribution would model the case where 
demand in any given period is Poisson, but the mean of the Poisson varies over time as 
though in each period it were an independent realization from a Gamma probability 
distribution. Given that a random variable is Gamma-Poisson distributed with a mean of m 
and a variance of s2, the distribution parameters, a , b , and r , are defined as: 

2s
b = 

m 

a b 1= -

m 
r = 

a 

We follow the parameter notation here that is conventional in the field; these parameters 
are in no way related to the exponential smoothing coefficients a and b. In using the 
Gamma-Poisson distribution, probabilities can be easily calculated from the following 
recursive formulae: 

[ -rP d = 0] = b

And: 
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[  ]  = P d  -1]  
a r + -1) 

, for all d  > 0P d  [
( d 

d b 

One would typically use historical observations to estimate the mean and variance of 
observed demand to estimate the parameters of the distribution. Once again, the use of 
very long-term averages for these estimates implies an assumption of underlying 
stationarity in the demand process that may or may not be appropriate. 

Empirical Distributions and Vector Smoothing 

A third approach is to simply fit the observed demand data to an arbitrary empirical 
distribution. If, for example, over N periods we observed that demand was zero exactly n0 

times, and that demand in a period was exactly one on n1 occasions, and so forth, we 
would estimate that: 

P d  = = =  
ni[	 i] Pi N 

Once again we have the problem of updating these estimates to reflect changes in the 
underlying demand distribution which may occur over time.  An approach to this problem 
that has been developed by R.G. Brown is called "Vector Smoothing". 

Given a set of historical demand data, we could establish initial estimates of the set 
of Pi values as described above.  Then as new demand data were observed, each Pi 

estimate would be updated using Vector Smoothing as follows: 

P  t  (1  [	 „[  ]  = a(0)  + - a)P  t  -1] ,  for all i Zti	 i 

P  t  (1  [	 =[  ]  = a(1)  + - a)P  t  -1] ,  for all i Zti	 i 

So long as the initial Pi estimates sum to 1.0, this procedure will generate new 
Pi[t] estimates that will also sum to 1.0 at each time period. The choice of a large or small 
value for a will determine how quickly or how slowly the probability estimates will change 
in response to changes in the observed frequencies of the demanded quantities. 

Other Time Series Procedures 

Many other more sophisticated time-series forecasting procedures are available, 
and many have been applied to the problem of forecasting demand in a logistics system. 
We will discuss two of the more well known approaches, Power Spectrum Analysis and 
the Box-Jenkins procedure.  Our treatment of each will be introductory, brief, and non
technical. 
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Power Spectrum Analysis 

The basic concept of power spectrum analysis is that a time series can be 
represented, and hence forecasted, by a set of simple trigonometric functions.  Variations 
of this concept are called Spectral Analysis and Fourier Analysis. The approach is 
intuitively attractive in a situation where the time series exhibits strong periodicity, such as 
in strongly seasonal demand data. 

As an illustration of the idea, consider hypothetical monthly demand data that is 
level with a strong seasonal component and a noise term. We have superimposed a sine 
wave, where the frequency of the sine function has been set at one year and the 
amplitude has been fitted to the demand data. The sine function has a period of 360° ; 
that is, the "sine wave" repeats itself every 360°. With monthly data, the "degrees" 
associated with each period t would be: 

t� = 
360t 
12 

We could think of these data as having been generated by: 

t�Zt = Asin( )  + nt 

where A is the amplitude and nt is a random noise term. Forecasts would be produced by: 

'Z t+1 = A sin({  t + 1} )  

In practice, actual demand will seldom track accurately to a simple sine wave.  The usual 
pattern is more complex. However, very complex waveforms can be constructed from a 
small set of sine functions with different frequencies, amplitudes, and phases. For 
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example, in the following figure the complex waveform pattern is simply the sum of three 
sine functions with frequencies of 6, 12, and 18 periods. 

In a power spectrum analysis, the objective is to search through the data to 
determine its underlying periodic structure; that is, to find the frequencies, amplitudes, and 
phases of the small set of sine functions that will accurately track to the historical data. 
Sine functions are fitted to the data using ordinary least squares techniques. This model 
of the historical demand data is then used to forecast future demand. 

The power spectrum analysis process can reveal an underlying periodic dynamic in 
the data, if there is one, which may not be at all obvious from a visual inspection of the 
data. For this approach to prove useful in the context of forecasting demand there should 
be a reason to believe that the actual demand may be "fluctuating at more than one 
frequency." For example, suppose the market for an item consists of a consumer 
segment and a commercial segment. Further suppose that the consumer segment 
exhibits strongly seasonal demand on an annual basis, while the commercial segment is 
unaffected by the time of year but is strongly influenced by a tendency of customers to 
"load up" at the end of each fiscal quarter because of common budgetary practices.  Total 
demand would be the sum of these two processes. In this scenario, a power spectrum 
analysis might bring out the underlying periodic nature of the demand. 

Box-Jenkins [ARIMA] Models 

The Box-Jenkins technique is a rigorous, iterative procedure for time series 
forecasting. It relies on a series of tests to select a particular correlative model from a 
family of models. This is referred to as the "identification phase" of the procedure. The 
parameters of this model are then estimated.  A battery of statistical tests is then applied 
to the models; if the model is rejected a new one is depicted and the process repeats until 
a satisfactory model is found. The method requires a least 50 historical observations for 
consecutive periods.  It is an elaborate procedure, but most commercial statistical 
packages include Box-Jenkins routines. 
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The basic idea is that there is a simple but large set of functional models that can 
represent many possible patterns of data found in time series.  For a stationary series, we 
can visualize the data generating process as a weighted combination of prior observations 
plus a random noise term: 

Zt = m + f Zt -1 + f Z + f Zt -3 + .... + nt1 2 t -2 3 

This is referred to as an autoregressive (AR) model, where the f terms represent the 
weights or relative contribution of an old observation to the next data point. For example, 
with monthly data that were strongly seasonal, we would expect to see a large value for 
f12 , because demand in January is strongly correlated to demand in the prior January, 
February with the prior February, and so forth. In a typical set of time series data, most of 
the possible f terms will have trivially small or statistically insignificant f parameters, so 
that the series can be well represented by a small set of significant parameters which 
characterize the specific series.. 

We could also visualize the data generating process as a weighted combination of 
prior noise terms and the current noise term: 

Zt = m + q n + q2nt -2 + q3nt -3 + .... + n1 t -1 t 

This is referred to as a moving average (MA) model.  This is an unfortunate choice of 
terminology, because it is easily confused with the simple moving average procedure. 
Either the AR model or the MA model can be used to represent the time series, but for a 
given data set, one form will generally be much more parsimonious than the other.  That 
is, in the case where the AR form results in a model with ten or fifteen significant f terms, 
an equivalent MA representation may require only two or three q parameters. These two 
general models can also be combined to form an autoregressive moving average (ARMA) 
process, such as: 

Zt = m + f1Zt-1 + f2Zt- 2 + q n +q2nt-2 + .... + nt1 t-1 

The approach so far has assumed that the data series is stationary. If the series is 
trended, the data are first "reduced to stationarity" by taking what is called the "first 
difference" of the series. The first difference of the series, Dt, is defined as: 

Dt = Zt - Zt -1 

If the data contain a simple linear trend, taking this first difference will eliminate the trend 
component and leave a stationary series. Applying an ARMA model to a "differenced" 
time series produces what is called an autoregressive integrated moving average (ARIMA) 
model, such as: 

Dt = m + f1D + f Dt -2 + q n +q2nt -2 + .... + nt -1 2 1 t -1 t 
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In the identification phase of a Box-Jenkins analysis, an analysis of the correlational 
structure of the data set is undertaken to determine a parsimonious but adequate model to 
represent the underlying process. In the estimation phase, non-linear regression tools are 
used to find specific parameter values (f’s and q’s) that will fit the model to the data with a 
minimum squared error criterion. Finally, the fitted model can be used to forecast future 
observations of the series. 

The Box-Jenkins approach allows for a rich set of functional forms to model 
demand data. The analyst uses diagnostic tools such as the autocorrelation functions and 
partial correlations to interpret the structure of the observations, but the analysis process 
is complex and requires considerable training and skill. In a system where thousands of 
individual SKUs must be forecast, the Box-Jenkins approach will likely prove to be too 
burdensome. The process also requires considerable historical data, and it includes the 
assumption that the underlying process is time-invariant; that is, that the data generating 
process does not evolve over time. In studies of actual SKU level demand data, Box-
Jenkins forecasts have not generally proven to be more accurate than those generated by 
simpler tools. For these reasons, Box-Jenkins is not often used for demand forecasting in 
a logistics system. 

Implementation Issues 

We have discussed a number of reasonably simple quantitative tools that can be 
used to develop demand forecasts. In practice, however, this is often the easiest part of 
the forecasting problem. The forecasting algorithm – the "arithmetic" -- is easily 
embedded in computer software that is widely available. Many important implementation 
issues remain, most of which focus on the data being used in the forecasting system. In 
this section we will focus on a discussion of some of these data issues. 

Demand Data Aggregation 

Most demand data are composed of many individual elements. For example, store 
sales are based on customers' individual purchase decisions. These purchase decisions 
are aggregated in several ways in order to enable managers to use them in decision 
making. The elemental action is the purchase of a given item by a given customer at a 
given location on a certain date. The universe of such actions can be aggregated as 
follows: 

Temporally: add up the sales of each product line at each store by day, week, 
month, quarter and year. 

Geographically: add up sales of all departments in a given store, all stores in an 
area, all areas in a region, all regions in a country, all countries in a continent (or 
other geographical division used by the firm), and overall total. 

By product line: add up all SKU level sales in a sub-category (e.g., soaps) and 
category (e.g., health and beauty aids). 
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By manufacturer: add up all sales by a given manufacturer. 

By socio-economic characteristics: add up all sales by a given customer across all 
departments and product lines, add up all sales of high-spending customers, etc. 

Different aggregations are used for different purposes. In practice, most demand 
data actually represent several aggregations simultaneously. Thus a material manager 
may look at a weekly flows of parts from all manufacturers in a certain area of the country 
into an assembly plant, and a distribution manager may be interested in sales by week or 
by month at given regions and individual locations, by manufacturer. 

It is usually the case that the more aggregated the data, the "easier" it is to 
forecast. In other words, many forecasts of, say, total annual sales of a given item may be 
quite accurate; the weekly sales at a given store, however, can be much more difficult to 
forecast. This is an inherent characteristic of the forecasting process. To see why this is 
so, consider, a manager who must forecast the daily sales of bottled aspirin at one large 
drugstore to set orders for deliveries. Suppose we know from past data that the average 
daily volume is 100 bottles, there is no trend or seasonality in the data, and the standard 
deviation of demand is ten units, with demand (and hence the noise) normally distributed. 
Thus the demand data are stationary with L = 100 units and the standard deviation of the 
noise terms,sn, equal to 10 units. If we forecasted these data using simple exponential 
smoothing with an a value of 0.2 the long run forecast accuracy would be: 

2RMSE = s = 1.05  ·10  = 10.5[a =0.2] 2 - a n 

Since these data are stationary, the MAPE should equal 100 times the MAD 
divided by L: 

MAD 2 p RMSE
MAPE = = = .0841  = 8.41%

L L 

Now suppose we were forecasting weekly sales rather than daily sales.  With 
seven days in a week, expected demand per period would be (7L) or 700 units. Each day 
has a noise variance of 100 units squared, and the weekly noise variance is (7s2

n) or 700 
units squared, so the weekly noise standard deviation is 26.5 units. Thus with an a of 
0.20, we would expect an RMSE of 27.9 units and an MAPE of 3.18 % 

In general, the standard deviation of the noise terms grows as the square root of 
the number of periods being aggregated. As a result, the forecast RMSE grows as the 
square root of the number of periods being aggregated, and the MAPE falls as the inverse 
of the square root of the number of periods being aggregated. As a rough rule of thumb, 
for example, if we compared weekly forecasts to monthly forecasts, we would expect the 
monthly results to have twice the RMSE and half the MAPE. 
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As is illustrated in this analysis, the relative forecast error (MAPE) declines as the 
aggregation level grows. This is the reason that it may be “easier” to forecast annual 
sales than daily sales, or regional sales rather than sales at a single store.  The effect of 
aggregation on accuracy can be particularly powerful when the aggregation takes place 
across SKUs and locations. When the aggregation takes place across time, however, two 
forces come into play. Notice that in this numerical example the underlying demand 
process was assumed to be time-invariant.  As a result, aggregating demand data 
reduced relative forecast errors. In many situations, we will face both an "aggregation 
effect" and a "forecasting horizon effect". In order to aggregate demand over time, we 
must extend the forecasting horizon. As we have seen, when a demand process is 
subject to random changes over time, lengthening the forecasting horizon will increase the 
forecast errors. The extent to which aggregation over time periods will improve forecast 
accuracy will therefore depend, in each situation, upon which is the more dominant of 
these two effects. In addition, there will still be the issue of the utility of the forecasts. If 
the firm really needs weekly forecasts to operate, the fact that monthly or quarterly 
forecasts may prove to be more accurate is not really relevant. 

Sales History versus Demand Data 

Most firms believe that they have an extensive historical demand database to use 
for forecasting, but in fact this is very seldom the case. In most firms, all of these records 
actually represent sales histories, not demand histories. If the firm enjoys one hundred 
percent inventory availability, one hundred percent of the time, then this is probably not of 
great importance. But to the extent that individual items are out of stock, and sales are 
lost as a result, sales data will generally misrepresent the "true" or "latent" demand that 
occurred. In many firms, particularly at the retail level, there is no effective way to capture 
this "missing" demand. In a retail establishment, a customer looks at the shelf, sees the 
out of stock condition, and buys the item from someone else. Even in the commercial or 
industrial setting, where it would be possible to capture "lost demand data" in the formal 
order processing system, very few firms do. As firms move towards increased Supply 
Chain visibility by allowing their customers one-line, real-time access to their current 
inventory availability position, more and more commercial and industrial ordering 
situations begin to resemble the consumer retail shelf in this regard. 

As a result, our carefully maintained data may be accurate sales records, but they 
are not demand data.  For purposes of forecasting future demand, we should augment the 
sales records with estimates of "lost demand", but this is not easy to do. The fundamental 
question can be thought of as this: How much would we have sold while we were out of 
stock? Unfortunately, in most cases this is simply "unknowable". On the other hand, if we 
ignore the issue, then we are implicitly estimating the missing data with a value of zero. 
Surely we can do better than that. 

Suppose, for example, that the record shows that we sold 300 units of an item last 
month. Suppose the records also show that the item was out of stock for a total of one 
week last month. If we simply (and conservatively) assume that demand is about the 
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same each day, and that it is not affected by our stock position, then it seems reasonable 
to estimate that "true demand" was about 400 units. In other words, a very rough way to 
approximate true demand in a period might be: 

Observed Demand
"True" Demand = 

Fraction of Time In Stock 

As simple as this adjustment is, most firms do not use it.  There seems to be great 
reluctance to use "imaginary" data, as opposed to the "real" data in the sales records. 
The point is, which set of numbers will do the best job of forecasting future demand -- total 
demand -- for the item?  Notice, also, the self-perpetuating nature of this process.  We run 
out of stock in one period and lose some potential sales as a result. Using this sales 
record, we under-forecast demand in the next period.  Based on this low forecast, we 
carry too little inventory in the next period.  As a result, we run out again, and the vicious 
cycle continues. Eventually, customers tire of our poor inventory availability and they don't 
come back. At this point our under-forecasts have become a self-fulfilling prophecy. 
There is no easy analytic solution to this problem. However, it seems clear that for items 
that have serious availability problems, some adjustment to sales data must be made to 
correct the biased forecasts that will otherwise inevitably occur. 

Demand Displacement 

And what about those situations where stockouts do not cause lost sales? In many 
of these cases, the shortage is addressed by backordering, by shipping from an alternate 
location, or by item substitution. In these cases, "total demand" is somehow preserved 
and represented in the firm's sales records, but the records are distorted in a way that will 
interfere with accurate demand forecasting. 

Consider the situation where demand is backordered during stock outages and is 
satisfied when stock becomes available.  For forecasting purposes it is important that the 
demand is registered as occurring when the property was ordered, not when the order 
was filled. If we record the sale when filled, the demand is "displaced in time". This 
distortion or "time shifting" of the data will particularly reduce forecast accuracy when 
demand is trended or seasonal. If the firm maintains its own backorder records, this is a 
relatively easy problem to correct. In many cases, however, the customers in effect 
maintain their own backorders. That is, sometimes loyal customers simply wait until stock 
is finally available and then buy. In this situation there are no backorder records to work 
with, but some adjustments are still possible. Suppose we have an item which routinely 
sells about 100 units per week. We run out of stock, and are out for four weeks. In the 
fifth week, we sell 500 units. Does this indicate that a large "noise term" happened, or that 
the demand level on this item has jumped to a new level of about 500 per week, or does 
this represent "pent up" demand or customer "self-backordering"?  How we answer this 
question will have a significant effect on our forecast -- and our forecast accuracy. 

In many logistics systems, an out of stock situation at one location will be handled 
by satisfying the customer with property from another location. As an example, we might 
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routinely serve a customer in Miami from our regional distribution center in Atlanta. If we 
are out of stock in Atlanta, and the customer will not accept a backorder, we might ship 
from our distribution center in Dallas. The shipping will probably cost more, and the transit 
time will likely be longer, but it is important to fill the orders. Who should receive "credit" 
for this sale?  To keep the on-hand inventory records accurate, we must record the 
transaction against the inventory in Dallas. For the purposes of demand forecasting, we 
must record the demand against the Atlanta facility. To do otherwise is to "misplace 
demand" twice.  This would result in exaggerating the demand in Dallas, thus building 
unnecessary stock, as well as underestimating demand in Atlanta, which would result in 
under-stocking there. 

In still other situations, particularly at the final retail level, temporary stock 
shortages are handled by item substitution. We wanted to buy a forty-ounce bottle of 
detergent, but the store was out, so we put a sixty-ounce bottle in our cart instead.  We 
wanted to buy a blue sweater, but our size is sold out. The job of the salesperson at this 
point is to convince us that we really look good in green, which is available. In each of 
these situations, demand is almost always recorded against the less preferred alternative, 
which is the item that was actually sold. Given the use of forecasts to control inventory, 
the ensuing forecasts will increase the probability that the less preferred item will be 
available in the next period, and will increase the probability that the more preferred item 
will not be. 

A certain amount of demand displacement seems inevitable in any large inventory 
system with less than one hundred percent inventory availability. To the extent that it 
occurs, it will interfere with forecast accuracy. The remedy is conceptually simple: record 
the demand in the time period, in the location, and against the item where it really 
occurred. In practice, very few firms have developed the capability to do this. 

Treatment of "Spikes" in Demand Data 

Sometimes we observe a "spike" in demand; that is, one or two periods of highly 
unusual demand for an item. Demand might be many multiples above or below its typical 
level -- far beyond what might be thought of as "just noise" or normal variability.  These 
records may represent errors in the data. Alternatively, the records may accurately reflect 
what really happened. If the demand was real, management may understand why the 
unusual demand occurred. Perhaps there was a natural disaster, a weather incident, a 
major labor strike, or some other dramatic event that caused the disruption of the normal 
demand pattern. On the other hand, there may be no obvious explanation of why the 
demand occurred. In any case, how should we treat these data "spikes" when we forecast 
demand for the item? 

Once again, the issue is not whether the demand "really happened"; rather, the 
issue is whether the use of these data will improve or degrade the forecasts. We know 
that time series techniques will be influenced by these spikes, and that forecasts in 
general will move in the direction of the spike.  Since spikes do not represent the regular 
period to period pattern in the data, an ideal forecasting procedure would ignore them. 
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One of the reasons to work with small values for the smoothing coefficients in the 
exponential smoothing techniques is that small values will not react as strongly to spikes. 
Another approach is to eliminate the spikes from the demand data and to replace them 
with more representative data. In a logistics system where thousands of individual SKU 
level forecasts are being generated, this would be difficult and time-consuming to do 
manually. It would probably be more reasonable to "filter" the data in the computer 
program. For example, any demand point that was sufficiently "unusual", say, an 
observation with a forecast error that is: 

| | 4et ‡ · RMSE 

might trigger a request for the analyst's intervention, or it might automatically be replaced 
by a more typical value such as the previously forecasted value for that period. 

Another approach to this general problem is to code all sales transactions as they 
occur as either “recurring demand” or as “non-recurring demand”.  Recurring demand is 
the normal, everyday sales data that we would use to build forecasts. Any sale that was 
highly unusual or "one time" in nature would be coded as non-recurring demand and 
would not be used for forecasting. This approach has been used for decades in the 
military logistics systems of the United States. For example, a fighter aircraft traveling 
cross-country might need to stop at a bomber base for unscheduled repairs.  Any spare 
parts that were needed would be ordered and coded as non-recurring demand so that the 
forecasting and inventory algorithms would not begin to routinely stock the fighter parts at 
the bomber base. 

The emphasis throughout this chapter has been on formal statistical forecasting 
methods. These methods draw information out of data that are assumed to be based on 
simple underlying patterns and random process. In many cases, however, a significant 
effort should be spent before any forecasting model is developed to extract a deterministic 
part of the observation. Many data patterns include orders or shipments based on MRP 
systems, accounting practices, incentive pay of various actors in the supply chain, national 
holidays around the globe, or other planned or predictable events. 

Frequently such sources generate lumpy demand with distinct patterns. Separating 
this demand from the rest allows different treatment of this demand. For example, in the 
context of supplying an assembly plant, major parts and sub-assemblies that are particular 
to specific products should be treated deterministically, since they can be derived directly 
from the production schedule. Such inbound parts could be ordered and supplied “just-in-
time ‘ to minimize inventory build up. Less expensive items, as well as parts and material 
which are used in many products, should be forecasted using statistical methods since the 
demand for them is the result of the demand for many different products, each of which 
may be facing changing final demand conditions. 
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Demand for New Items 

New product introductions present a special problem in that there is no historical 
time series available for estimating a model. At issue is not only the estimation of the 
sales at every future period but also, for example, estimates of the time it takes to reach 
certain sales volumes. 

In this and other contexts where there is no reliable historical time series or when 
there are reasons to believe that future patterns will be very different from historical ones, 
qualitative methods and judgment are used. Unfortunately, many market research 
procedures, which are based on questionnaires and interviews of potential customers, 
notoriously over-estimate the demand since most respondents have no stake in the 
outcome. Data can also be collected from marketing and sales personnel, who are in 
touch with customers and can have an intuition regarding the demand for some products. 
Other sources of informed opinions are channel partners, such as distributors, retailers, 
and direct sales organizations. 

The growth rates of similar products may also provide some guidelines, particularly, 
if the analysis is coupled with comparative analyses of each of the other products' 
attributes, the market conditions at product launch, and the competitive products at the 
time. All of these factors should be contrasted with the product being launched in the 
current environment, and a composite forecast should be developed based on the 
weighted sales rates of past products. 

Among the formal methods, causal models play a special role in cases where a 
historical time series is not available. Disaggregate demand models can be used to 
formally capture the probability of purchase given a set of product attributes and the 
characteristics of the target population. Collecting disaggregate data is, however, 
expensive and the analysis requires some expertise. Alternatively, multiple regression 
models can be used to analyze the initial sale patterns of other products, which can be 
characterized by their attributes and the population's characteristics. The new product 
attributes are then applied using the estimated parameters. 

Any formal time series procedure can only be used after a few observations 
become available. The parameters of such a forecasting model should be "aggressive", 
that is, using only a few observations in a moving average, or a high value of the 
smoothing constant in a simple exponential smoothing model. Once more information 
becomes available these parameters can be re-set to a typical value. 

Collaborative Forecasting 

Many firms have moved beyond the integration of their internal logistics processes 
and decision-making and have begun to focus on the close integration of logistics 
processes with their trading partners both backwards and forwards in the distribution 
channel. This inter-organizational logistics focus has come to be called Supply Chain 
Management. In Supply Chain Management, firms attempt to improve the efficiency of 
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their logistics efforts through joint, cooperative efforts to manage the flow of goods in a 
"seamless", organic way throughout the channel. Each firm attempts to share useful data 
and to coordinate all important logistics decisions. One logistics process that could benefit 
dramatically from this kind of cooperation is demand forecasting. Many firms are now 
working on cooperative forecasting techniques, and this general idea has come to be 
called collaborative forecasting. 

Consider the traditional distribution system relationships between the manufacturer 
of a consumer packaged good and the retailers who sell the product to the public. Each 
retailer must forecast demand for each SKU at the store level. Based on these forecasts 
and on a consideration of available inventory, warehouse stocks, lead times, promotion 
plans, and other factors, each retailer than develops an "order plan" which contains the 
timing and size of the stock replenishment orders that the retailer intends to place on the 
manufacturer.  While this is going on, the manufacturer is also forecasting its demand for 
each item by time period. In effect, the manufacturer is trying to forecast, time period by 
time period, the effective sum of the order plans from all of the retailers. In traditional 
practice, the manufacturer forecasts this total demand independently, with no input from 
the retailers. In collaborative forecasting, the retailers would share their demand forecasts 
and their current order plans with the manufacturer, and the manufacturer would 
aggregate these data to construct and verify its forecasts. Discrepancies between the 
retail order plans and the manufacturer forecasts would be identified and resolved. The 
final result would be improved forecast accuracy, less total inventory in the system, and a 
smoother deployment of the goods into the retail channel. 

The central premise of collaborative forecasting has great merit, but there are a 
number of potential problems that must be solved to gain the promised benefits. First, 
there is an issue with the level of aggregation of the forecasts being shared. Second, there 
is a communications issue involving the transfer of these data between firms. Finally, 
there is an issue with the sheer volume of data that would be processed in such a system. 

The first issue is that of aggregation. While the retailer plans orders that represent 
demand or replenishment to its stores, the manufacturer often forecasts its demand in 
total. Suppose, for example, that a retailer shared with us that it planned to order 100,000 
units during a coming period. As the manufacturer, our prior forecast of our total demand 
for that same period was, let us say, 1,000,000 units. What would we do with this new, 
and presumably more accurate, information? Our previous estimate of this one retailer's 
probable order is somehow included in our total forecast, but this retailer's contribution to 
the total is not explicit due to the aggregation. For the collaboration strategy to be useful, 
the manufacturer must forecast demand at the level of the individual retailer, rather than at 
the level of total demand. If the manufacturer sells through a channel that consists of 
thousands of small independent retailers this will not be practical. However, suppose the 
retail level of the channel can be thought of as : (1.) WalMart, (2.) KMart, (3.) Target, and 
(4.) all other retailers. Given the ongoing concentration in the mass merchandizing sector 
of retailing, these four demand segments might have roughly equal sales volumes.  By 
forecasting demand at the level of these major segments, the manufacturer gains the 
ability to work with shared data from major trading partners. In practice, many 
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manufacturers are already forecasting demand at the level of their major retail customers 
because of the importance of these channel partners. 

The second implementation issue is that of data transmission. A collaborative 
forecasting scheme would involve passing large volumes of data between many firms. 
Common data standards will be essential to the success and widespread adoption of 
these tools. In 1998 the VICS (Voluntary Interindustry Commerce Standards) organization 
issued the "Collaborative Planning, Forecasting, and Replenishment (CPFR) Voluntary 
Guidelines". This document outlines a vision for implementing collaborative forecasting 
through the use of standard EDI transaction sets and commonly agreed upon business 
practices. To quote from the VICS guidelines: 

"How does CPFR work? It begins with an agreement between trading partners to 
develop a market specific plan based on sound category management principles. 
A key to success is that both partners agree to own the process and the plan. This 
plan fundamentally describes what is going to be sold, how it will be merchandised 
and promoted, in what marketplace, and during what time frame.  This plan 
becomes operational through each company's existing systems but is accessible by 
either party via existing VICS-approved communications standards. 

Either party can adjust the plan within established parameters.  Changes outside of 
the parameters require approval of the other party, which may require negotiations. 
The plan becomes the critical input to the forecast. The CPFR plans are rolled up, 
and the balance of the forecast (for non-CPFR participants) is arrived at through 
forecasting models. 

With CPFR, a forecast can become frozen in advance, and can be converted 
automatically into a shipping plan, avoiding the customary order processing which 
takes place today. CPFR systems also capture mission-critical information such as 
promotion timing and supply constraints that can eliminate days of inventory from 
the entire supply chain and avoid meaningless exception processing." 

Working within the framework of agreed upon data transmission standards should 
greatly simplify the problem of implementing a collaborative forecasting relationship, but 
there still remains the very serious problem of processing the enormous volume of data 
implied by the collaboration. Most firms have developed forecasting systems and 
software that focus on the problem from the perspective of the individual firm, working with 
one large set of forecasts. In a collaborative scheme, the emphasis shifts to the 
comparison and collation of alternative forecasts of the same demand activity as predicted 
by different channel partners. Analytic capability is needed to search for meaningful 
similarities and differences in the data being shared. Whole new classes of software are 
being developed to provide this capability. For example, Syncra Software, Inc. has 
developed tools that it describes as "BetweenWare" because these tools focus solely on 
trading partnerships and cross-functional relationships.  While recognizing that common 
data transmission standards are an essent ial first step, Syncra suggests that the larger 
problem remains: 
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"....And therein, as is common with all industry standards, is the problem. While the 
standards describing and enabling the exchange of business transaction data are 
quite clear, it is usually people, not systems that resolve supply chain tension.  The 
issues arising from the lack of a common 'view' to the information and the ability to 
filter 'actionable requirements' from among the billions of bits of data among the 
participants in a supply chain result in a daunting barrier to a widely deployable and 
implementable solution that can achieve 'critical mass' ". 

The software produced by Syncra and other firms are attempts to provide the firm with the 
data processing capabilities they will need to fully exploit the potential of the collaborative 
forecasting concept. 
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