
The Cost of Flexibility in Systems on a Chip Design for
Signal Processing Applications

Ning Zhang
Atheros Communications, Inc.

and
 Robert W. Brodersen

Berkeley Wireless Research Center
University of California, Berkeley

Abstract

Providing flexibility into a system on a chip design is sometimes required and generally

always desirable. However the cost of providing this flexibility in terms of energy

consumption and silicon area is not well understood. This cost can range over many

orders of magnitude depending on the architecture and implementation strategy. To

quantify this cost, efficiency metrics are introduced for energy (MOPS/mW) and area

(MOPS/mm2) and are used to compare a variety of designs and architectures for signal

processing applications. It is found that the critical architectural parameters are the

amount of flexibility, the granularity of the architecture in providing this flexibility and

the amount of parallelism. A range of architectural solutions which tradeoff these

parameters are presented and applied to example applications.

I. Introduction
The tradeoff of various types of architectures to implement digital signal processing

(DSP) algorithms has been a subject of investigation since the initial development of the

theory [1]. Recently, however the application of these algorithms to systems that require

low cost and the lowest possible energy consumption has placed a new emphasis on

defining the most appropriate solutions. For example, advanced communication

algorithms which exploit frequency and spatial diversities to combat wireless channel

impairments and cancel multi-user interference for higher spectral efficiency (data rate /

bandwidth) have extremely high computational complexity (10’s-100’s of billions of

operations/second), and thus require the highest possible level of optimization.

 1

In order to compare various architectures for these complex applications it is necessary to

define design metrics which capture the most critical characteristics relating to energy

and area efficiency as a function of the flexibility of the implementation. Flexibility in

implementing various applications after the hardware has been fabricated is a desirable

feature, and as will be shown it is the most critical criteria in determining the energy and

area efficiency of the design. However, it is found that there is a range of multiple orders

of magnitude differences in these efficiencies depending on the architecture used to

provide various levels of flexibility. Therefore, it is important to understand the cost of

flexibility and choose an architecture which provides the required amount at the highest

possible efficiency.

Consequently, the flexibility consideration becomes a new dimension in the

algorithm/architecture co-design space. Often the approach to flexibility has been to

provide an unlimited amount through software programmability on a Von Neumann

architecture. This approach was based on hardware technology assumptions which

assumed hardware was expensive and the power consumption was not critical so that

time multiplexing was employed to provide maximum sharing of the hardware resources.

The situation now for highly integrated “system-on-a chip” implementations is

fundamentally different: hardware is cheap with potentially 1000’s of multipliers and

ALU’s on a chip and the energy consumption is a critical design constraint in many

portable applications. Even in the case of applications that have an unlimited energy

source, we are now beginning to move into an era of power constrained performance for

the highest performance processors since heat removal requires the processor to operate

at lower clock rates than dictated by the logic delays.

The importance of architecture design is further underscored by the ever and faster

increasing algorithm complexity, and purely relying on technology scaling many DSP

architectures will fall short of computational capability for more advanced algorithms

demanded by future systems. An efficient and flexible implementation of high-

performance digital signal processing algorithms therefore relies on architecture

optimization. Unfortunately, the lack of a systematic design approach and consistent

metrics currently prevents the exploration of various realizations over a broad range of

 2

architectural options. The focus of this paper is to investigate the issues of flexibility and

architecture design together with system and algorithm design and technology to get a

better understanding of the key trade-offs and the costs of important architecture

parameters and thus more insight in digital signal processing architecture optimization for

high-performance and energy-sensitive portable applications.

Section II introduces the design metrics used for architecture evaluation and comparison

with an analysis of the relationship between key architecture parameters and design

metrics. Section III uses an example to compare two extreme architectures: software

programmable and dedicated hardware implementation, which result in orders of

magnitude difference in design metrics. The architectural factors that contribute to the

difference are also identified and quantified. Section IV focus on intermediate

architectures and introduces an architecture approach to provide function-specific

flexibility with high efficiency. This approach is demonstrated through a design example

and the result is compared to other architectures.

II. Architectural Design Space and Design Metrics

A. Architecture Space
The architectures being considered range from completely flexible software based

processors including both general purpose as well as those optimized for digital signal

processing (DSP’s), to inflexible designs using hardware dedicated to a single

application. In addition architectures will be investigated which lie between these

extremes.

Flexibility is achieved in a given architecture either through reconfiguration of the

interconnect between computational blocks (e.g. FPGA or reconfigurable datapaths) or

by designing computational blocks that has logic that can be programmed by control

signals to perform different functions (e.g. microprocessor datapath). The granularity is

the size of these computational blocks and can range from up to single or multiple

datapaths as shown in Figure 1. In general, the larger the granularity, the less the

flexibility an architecture can provide since the interconnection within the processing unit

is pre-defined at fabrication time.

 3

Digital signal processing systems typically have throughput requirements to meet hard

real-time requirements. Throughput will be defined as the product of the average number

of operations per clock cycle, Nop, and the clock frequency, fclk. The key architectural

feature to provide throughput is the degree of parallelism, which is measured by Nop. The

more parallel hardware in an architecture, the more operations can be executed in a clock

cycle, which implies a lower level of time-multiplexing and thus lower clock frequency

necessary to meet a given throughput requirement.

Therefore there are two key architectural parameters: the granularity of data-path unit and

the degree of parallelism. Figure 1 depicts qualitatively the relative positions of different

architectures in this two-dimensional space. Due to the energy and area overheads

associated with small granularity and time multiplexing architectures, this large design

space provides a wide range of trade-offs between flexibility, energy efficiency and area

efficiency.

Degree of Parallelism, Nop
(operations per clock cycle)

Granularity
(gates) 10000

Clusters of data-paths
100

Bit-level operations

DSP with
application specific

Extensions

Time-Multiplexing
Dedicated Hardware or

Function-Specific
Reconfigurable

1000
Data-path operations

Fully Parallel
Direct Mapped

Hardware

Hardware
Reconfigurable

Processors

Digital Signal
Processors

Data-Path
Reconfigurable

Processors

10
Gates

1000

100

1

10

Microprocessors

Fully Parallel
Implementation on

Field Programmable
Gate Array

Less
Flexibility

Figure 1: The architectural space covering granularity of data-path unit and the degree of

parallelism

B. Design Metrics
Design metrics are defined to be able to compare different architectures. Energy

efficiency and cost are two of the most stringent requirements of portable systems. The

basic parameters of importance are performance, power (or energy) and area (or cost).

All of these parameters can be traded off, so to reduce the degrees of freedom we will

 4

compare the power and area required for various architectural solutions for a given level

of throughput.

Throughput will be characterized, as the number of operations per second as MOPS

(Millions of operations per second). For signal processing systems, to make fair

comparison across different architecture families, an operation is often defined as

algorithmically interesting computation. For a specific application where the operation

mix is known, a basic operation is further defined as a 16-bit addition to normalize all

other operations (shift, multiplication, data access, etc.).

While this approach works for signal processing computation, it is not as appropriate for

applications implemented on general-purpose microprocessors. For comparison with

these architectures we will define operation as being equivalent to an instruction, in spite

of the fact that a number of instructions may be required to implement an algorithmically

interesting operation. This will provide a conservative over estimate of the performance

achievable from general-purpose processors, and thus will just further substantiate the

observations about relative architectural efficiency that will be made in later sections.

Energy Efficiency Metric

The streaming nature of signal processing applications and the associated hard real-time

constraints usually makes it possible to define a basic block of repetitive computation.

This makes it possible to define an average number of operations per clock cycle, Nop

with the average energy required to implement these operations being given by Eop. A

useful energy efficiency metric is therefore the average number of operations per unit

energy, εE, which can be defined as the ratio of Nop to Eop:

εE = Number of operations/Energy required = Nop / Eop (1)

The architectural exploration problem is to determine the approach which has the highest

energy efficiency, while meeting the real-time constraints of completing the signal

processing kernel.

 5

For the situation in which the processor is connected to an unlimited energy source there

is a related problem in that the performance may be limited by the difficulty and cost of

dissipating the generated heat. In fact this has become such an issue that the highest

performance general-purpose processors are now operating in a power limited mode, in

which the maximum clock rates are limited by heat dissipation rather than logic speed.

The relevant metric for this case is the power required to sustain a given level of

throughput or the throughput to power ratio. Using the above variables the average

throughput or number of operations per second is given by Nops/Tclk with the power

required being given by Eops/Tclk. The throughput to power ratio is then found to be the

same as the energy efficiency metric, εE , defined in Eq. 1,

εE = Throughput/Power = (Nop/Tclk) / (Eop / Tclk) = Nop / Eop (2)

If the throughput is expressed in MOPS and power in milliWatts, the efficiency, εE, will

have units of MOPS/mW and it is these units that we will use when presenting the

efficiency comparisons.

Area Efficiency Metric

While the εE metric is relevant for both energy and power limited operation, it does not

incorporate the other major constraint, which is the cost of the design as expressed by the

area of the silicon required to sustain a given level of throughput. The relevant metric for

this consideration is therefore the throughput to area ratio given by,

εA = (Nops/Tclk) / Aop , (3)

where Aop is the integrated circuit area required for the logic and memory to support the

computation of Nop operations. If the units for area are chosen to be square millimeters

and throughput again is expressed in MOPS, εA has units of MOPS/mm2, which measures

computation per unit area. It is a well-known low-power design technique [2] to trade-

 6

off area efficiency for energy efficiency, thus these two metrics need to be considered

together.

Metric Comparisons

In fixed function architectures, the operation count is straightforward, which is not the

case in comparisons with processors that are flexible. In this case depending on the

benchmark different possible throughputs can be achieved. When making comparisons of

architectures for different applications we will use the highest possible throughput

numbers that can be achieved in a given architecture. In sections III and IV we will

compare various architectures for the same application.

An estimate can be made of the maximum achievable energy and area efficiencies for the

basic 16 bit add operation for a given technology and clock rate if we assume that we can

fill an entire integrated circuit with 16 bit adders (our basic operation) and achieve a

throughput corresponding to every adder operating in parallel. In Table I, the energy and

area values are given along with the associated calculated energy and area efficiencies for

.25 micron technology for two different supply voltages. The minimum clock period is

assumed to be taken somewhat arbitrarily as approximately 2 times the delay through an

adder, which is consistent with the example circuits presented below. As can be seen

from equations (2) and (3) the area efficiency scales directly with the clock rate, while the

energy efficiency is independent of it if the voltage is not changed.

Supply Voltage

Adder Area

Adder Energy

Logic
Delay

εE
(MOPS/mW) Basic

Operation

 εA
(MOPS/mm2) Basic

Operation
1.0 Volt

(fclk = 35 MHz)
.006 mm2 .53 pJ 14 nS 1900 5800

2.5 Volts
(fclk = 120 MHz)

.006 mm2 3.1 pJ 4.3 nS 300 20000

Table I: The energy and area efficiency of the basic operation (a 16 bit add) in .25 micron
technology

For a given application, the basic operation rate can be obtained by profiling the

algorithm and it can be used together with the energy and area efficiencies of a basic

 7

operation to determine the lower bound of average power consumption of an algorithm.

This lower bound of power and area for fixed throughput, or higher bound of efficiencies,

not only provides an implementation feasibility measure to algorithm developers, but also

provides a comparison base to evaluate any implementation.

Comparison of Architectures assuming Maximum Throughput

Figure 2 shows the efficiency metrics for a number of chips chosen from the International

Solid State Circuits Conference from 1998-2002 under the criteria that they were in a

technology that ranged from .18 - .25 micron and that all the information was available to

do a first order technology scaling and to calculate the energy and area efficiencies.

Though this is relatively small sample of circuits it is believed that the trends and relative

relationships are accurate representations of the various architectures being compared

because of the remarkable consistency of the results. Table II gives a summary of all the

circuits that were used in the comparison.

CHIP # YEAR PAPER # DESCRIPTION CHIP # YEAR PAPER # DESCRIPTION

1 1997 10.3 µP - S/390 11 1998 18.1 DSP -Graphics

2 2000 5.2 µP – PPC (SOI) 12 1998 18.2 DSP - Multimedia

3 1999 5.2 µP - G5 13 2000 14.6 DSP –
Multimedia

4 2000 5.6 µP - G6 15 2002 22.1 DSP -MPEG
Decoder

5 2000 5.1 µP - Alpha 14 1998 18.3 DSP –
Multimedia

6 1998 15.4 µP - P6 16 2001 21.2 Encryption
Processor

7 1998 18.4 µP - Alpha 17 2000 14.5 Hearing Aid
Processor

8 1999 5.6 µP – PPC 18 2000 4.7 FIR for Disk Read
Head

9 1998 18.6 µP - StrongArm 19 1998 2.1 MPEG Encoder

10 2000 4.2 DSP – Comm 20 2002 7.2 802.11a Baseband

Table II: Description of chips used in the analysis from the International Solid State
Circuits Conference

 8

In the table and in the figures the designs were sorted according to their energy efficiency

and very surprisingly this sorting also resulted in their being grouped into the three basic

architectural categories. Chips 1-9 were general purpose microprocessors, with chips 10-

15 optimized for DSP but still software programmable and chips 16-20 being dedicated

signal processing designs with only a very limited amount of flexibility in comparison to

the full flexibility of the microprocessors and DSP’s.

As seen in Figure 2, the energy efficiency varies by 1-2 orders of magnitude between

each group with an overall range of 4 orders of magnitude between the most flexible

solutions and the most dedicated. It is not surprising that the efficiency decreases as the

flexibility is increased, but it is the enormous amount of this cost that should be noted.

The area efficiencies have a similar range, with the exception of a few designs that had

low clock rates set by the application for which they were designed. As mentioned

previously the energy efficiency is independent of clock rate whereas the area efficiency

is directly proportional to it. It should be re-emphasized that the strategy for counting

operations was to use the maximum possible throughput for the software processor

solutions, while the dedicated designs used the actual useful operations required for the

application. In a later section a comparison will be made for the same application which

allows a more consistent comparison of operation counts.

 9

gure

0.01

0.1

1

10

100

1000

10000

1 2 3

En
er

gy
 a

nd
 A

re
a

Ef
fic

ie
nc

ie
s

Energy Efficiency (MOPS/mW) Area Efficiency (MOPS/mm2)

General

Due to the lack of

shown that FPGA’s

of magnitude less

Section IV. Althou

hardware, the ineff

basic functional un

(CLB). The area

granularity is subst

a Xilinx XC4003A

clocks and I/O. The

C. Relationshi
To attempt to un

architecture famili

components. To do

Microprocessors
 2: Energy and area efficiency of different architectur

4 5 6 7 8 9 10 11 12 13 14 15 16 1
Chip Number (see Table II)

Purpose
DSP’s

reference designs, FPGA’s are not included in Figu

 are about 2 orders magnitude less energy efficient a

area efficient than dedicated designs. An example

gh FGPA designs have a high degree of parallelism

iciency comes from the fine granularity of the fun

it in a FPGA is a bit-processing element, or Configu

and energy overhead of the interconnect network

antial. For example, one study [12] showed 65% of

 FPGA is due to the wires, and another 21% and

 CLB’s are responsible for only 5% of the total ener

p Between Architecture and Design M
derstand the enormous energy efficiency gaps b

es, we will break down the energy efficiency

 this we start with the average power, Pave, as:

10
Dedicated
Designs
Fi
es

7 18 19 20

re 2. Studies have

nd about 3 orders

 will be given in

 as the dedicated

ctional units. The

rable Logic Block

 due to the fine

the total energy in

 9% are taken by

gy consumption.

etrics
etween the three

metric into three

Pave = Achip * Csw * Vdd
2 * fclk (4)

where Achip is the total area of the chip, Vdd is the supply voltage, fclk is the clock rate

and Csw is the average switched capacitance per unit area that includes both the transition

activity as well as the capacitance being switched averaged over the entire chip. It can be

found since all the other variables in Eq. 4 are available from the data. Substituting Pave

into Eq. 2 we find,

εE = Throughput/Power = (Nops/Tclk) / Pave = 1/(Aop*Csw*Vdd
2) (5)

where Aop is the average area of each operation per cycle found from the total area of the

chip divided by the number of operations per clock cycle, i.e. Aop = Achip/Nop.

 MICROPROCESSOR DSP DEDICATED

Fclk Range
Average

450-1000 MHz
550 MHz

50-300 MHz
170 MHz

2.5-275 MHz
90 MHz

Csw Range
Average

40-100 pF/mm2
70 pF/mm2

10-60 pF/mm2
30 pF/mm2

10-45 pF/mm2
20 pF/mm2

Nop Range
Average

1-6 op/clk
2 op/clk

7-32 op/clk
14 op/clk

460 op/clk
16-1580 op/clk

Table III: The average and ranges of design parameters for the 3 architectural groups

As seen in Table III the value of the switched capacitance doesn’t vary widely across the

design examples. However, the fact that it is larger for the software based processors (the

microprocessor and DSP columns) and not substantially lower than the dedicated designs

is somewhat counter-intuitive since these processors contain a significant amount of

circuitry (particularly in the memories) that is not switching on every clock cycle. It is the

opposite case in the dedicated designs, which typically have a very large percentage of

their logic switching, since the designs are optimized to fully utilize as much hardware as

possible.

The primary reason for the high Csw in the processors is the elevated clock rates (average

of 550 MHz) compared to what is required for the more parallel dedicated chips (90 MHz

average). The high clock rates require more capacitance in the clocking networks as well

 11

as in the high density custom designed logic and memory which is necessary to achieve

low values of delay. The high clock rates come from the relatively low level of

parallelism in the software processors which then necessitates high levels of time

multiplexing (e.g. higher clock rates) to achieve the necessary throughput. This is clearly

demonstrated by the range of values for the parallelism parameter, Nop, the number of

operations per clock cycle, as seen in Figure 3. It is seen that the level of parallelism in

dedicated designs ranges up to 3 orders of magnitude higher than that achieved by some

software processors.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chip Number (see Table II)

N
op

s
(O

pe
ra

tio
ns

 p
er

 c
lo

ck
 c

yc
le

)

Figure 3: The amount of parallelism as determined from the number of
operation

General
Purpose
DSP’s

The fundamental reason that the microprocessors have a low level of

difficulty of exploiting a parallel architecture when the specificat

sequential (e.g. in C). As seen in Figure 3 the DSP software processor

parallelism, but at a considerable cost in increased programming co

because of the difficulty of compiling for the parallel DSP architectures

sequential description, the programming of the critical computation k

manually performed at the assembly level.

 12
Dedicated
Designs
Microprocessors
17 18 19 20

clock cycles per

 parallelism is the

ion is inherently

s do achieve more

mplexity. In fact

 from a high level

ernels is typically

The supply voltage also doesn’t vary widely across all of the designs, ranging from 1.5 V

to 2.5 V, with no significant difference for any of the architecture groups. It is therefore

the variation in Aop, the area per operation which is plotted in Figure 4, that contains the

explanation for the wide variation in efficiencies. It can be seen form this figure that it

ranges from 100’s of mm2 for the microprocessors to less than .1 mm2 for some of the

dedicated designs. It should be noted that while .1 mm2 seems quite small, it still is more

than 10 times the size of a 16 bit add (see Table I). The primary reason for the large

values of Aop is that the relatively small computational blocks and datapaths are

surrounded by the large control and memory circuits that are used to provide full

flexibility and high degree of time-multiplexing.

To see the problem we look at the two designs which have a single time-multiplexed data

path (chips1 & 2), so that Nop = 1 as seen in Figure 3. To achieve the average throughput

of the dedicated chips with this lack of parallelism, the datapath on these chips must be

time multiplexed approximately 460 times in the period of one clock of the dedicated

design (see Table III). Also, since full flexibility is required the datapath needs to be fully

reconfigured 460 times by control circuitry. The breakdown of the factors due to this time

multiplexing, which result in such an enormous level of overhead in Aop, will be given in

Section III.

The range in Aop directly relates to Eop or the energy required per operation. Since as

noted earlier the capacitance being switched, Csw, per unit area is larger for the high clock

rate architectures, the energy per operation Csw*Aop*Vdd
2 will have an even larger range

as seen in Figure 2.

 13

Figure 4: The silicon area per operation

0 .0 1

0 .1

1

1 0

1 0 0

1 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
C h ip N u m b e r (s e e T a b le I)

A
op

 (m
m

2 p
er

 o
pe

ra
tio

n)

General
Purpose
DSP’s

III. Software Implementation vs. Hardware
Implementation for the Same Application
The previous section compared a variety of architectures under th

maximum possible throughput. This section will use a single application

insight into the reasons for the wide variation in efficiency.

Four multi-user detection schemes were evaluated in [3], that can be use

synchronous DS-CDMA system. The blind adaptive MMSE multi-user

was one of those algorithms analyzed, will be used in this section since

trade-off between system performance and computational complexity.

requires a word-length of 12-bits, has 13000 MOPS (an operation is de

operation of 12-bit add), and at a clock rate of 25 MHz has a lower

consumption of 5 mW.

1). Digital Signal Processor
Data from one of the lowest-power DSP’s reported in a .25 µm tech

chosen for analyzing the efficiencies of a software implementation. It is

16-bit fixed-point DSP designed specifically for energy-efficient operatio

cycle multiply accumulator and an enhanced Harvard architecture. Its o

includes a 6K x 16b SRAM and 48K x 16b ROM.

 14
Dedicated
Designs
Microprocessors
1 7 1 8 1 9 2 0

e condition of

 to give further

d in a wideband

 detector, which

it gives the best

 This algorithm

fined as a basic

bound of power

nology [4] was

 a 1 V, 63 MHz,

n. It has a single

n-chip memory

C code describing the algorithms was compiled using performance optimizations because

it was found that the shortest sequence typically consumes the lowest energy. This

guideline is further justified by the results of instruction level analysis [5, 6], where it was

found that the variation of energy consumption for any instruction is relatively small. The

explanation for the observation lies in the fact that there is a large underlying energy

dissipation common to the execution of any instruction, independent of the functionality

of the instruction. This is the energy associated with clock, instruction fetching and

control, which means the overhead associated with instruction level control and

centralized memory storage dominates the energy consumption. Performance and power

consumption results are based on benchmarking compiled assembly code. Further

investigation of the software implementation showed by optimizing the assembly code

through better register usage and memory allocation, utilization of special parallel

instructions, etc. an improvement of 35% in performance and energy-efficiency was

achieved.

To execute the design example, the arithmetic instructions only take about 30% of the

total execution time and power, memory accesses take about 30%, and data movement

and control take the remainder 40%. A hardware component breakdown shows that 26%

of total power goes to clocking, 18% to instruction fetching and control, 38% to memory,

and 18% to arithmetic execution.

2). DSP Extension
Improvement on software-based implementation can be made through supporting

application-specific instructions and adding accelerating co-processors. For the design

example, it was observed that the algorithm operates on complex values, one way to

improve efficiency is to modify the data-path to directly operate and store complex

numbers. Also, this algorithm does not need all the memory provided on the DSP, two

256 x 32 bit SRAM banks for data memory and a 256 x 16 bit SRAM for instruction

memory are sufficient (this memory structure already doubles the actual requirements of

this algorithm).

 15

Potential energy saving comes from reduction of instruction fetching and decoding,

reduction of memory access count and large memory overhead, and optimization of

arithmetic execution units. The main idea behind this approach is that due to the large

power overhead associated with each instruction, packing instructions or adding more

complicated execution units reduces the relative overhead. For example, for a complex

multiplication

Y_real = A_real * B_real – A_imag * B_imag; Y_imag = A_real * B_imag + A_imag * B_real;

this architecture only needs to read A and B from memory once instead of twice as in the

original DSP architecture.

This architecture increases the granularity of data-path unit to reduce the energy overhead

and cuts unnecessary memory to reduce the area overhead. As the result, this architecture

is less flexible since it is optimized only for computations with complex inputs and

applications with limited memory requirements.

3). Direct-Mapped Dedicated Hardware
A direct-mapped implementation maps each function in the data flow graph of the

algorithm into a dedicated hardware block. Figure 5 depicts the block diagram of the

example algorithm and the corresponding layout view of its dedicated implementation.

The architecture is directly mapped from the algorithm with the maximum possible level

of parallelism which allowed 1 V operation at clock rate of 25 MHz. The fixed point

word lengths were optimized throughout the architecture with 12-bit word length being

the most common.

 16

Conj/Shift

Add

-

S Reg

MAC1

MAC2

X Reg

Add Add Mult2

Mult1 ys

Zm
e

cm

-

µo yx
ZS

ZX

sm

y

Mult2

Mac2Mult1 Mac1

S reg X reg Add,
Sub,
Shift

Figure 5: Direct mapped implementation of a multi-user detection algorithm

4). Architecture Comparison and Analysis
The comparisons of architectural implementations are shown in Table IV and the

breakdowns are depicted in Figure 6. For the DSP implementations, since one processor

cannot meet the throughput requirement, parallel processors are assumed and the

overhead of splitting the algorithm into a number of processors is neglected for the upper

efficiency bound of the software solutions. Notice the DSP extension can achieve

considerable savings in both power consumption and area by increasing the data-path

granularity and reducing memory size. The dedicated hardware achieves the highest

efficiency as expected, with the ratios of 30-50 times the DSP processor and 10 times the

processor with the application specific extensions.

 17

Low-Power DSP

Compiled Optimized

DSP Extension Dedicated
Hardware

Upper Bound
(12-bit Basic Operation,

fclk=25 MHz)

Energy Efficiency
(MOPS/mW)

43 65 190 1900 2500

Normalized Energy
Efficiency

0.02 0.03 0.1 1 1.3

Area Efficiency
(MOPS/mm2)

25 38 160 4300 5600

Normalized Area
Efficiency

0.01 0.01 0.04 1 1.3

Table IV: Architectural implementation comparisons of multi-user detection

 Power (mW)

0

50

100

150

200

250

D
SP

D
SP

E
xt

en
si

on

D
ed

ic
at

ed
H

ar
dw

ar
e

Execution
Memory
Control
Clocking

Area (mm^2)

D
SP

D
SP

E
xt

en
si

on

D
ed

ic
at

ed
H

ar
dw

ar
e

 200

 67

7

345

83

3

Figure 6: Power consumption and area breakdown of different architectural

implementations of multi-user detection

The optimized DSP implementation requires at least 15 parallel processors to meet the

throughput requirement. This shows that adding parallel processing elements without an

architecture matched to the target computation is not sufficient. The parallel processor

approach only avoids the energy overhead associated with a higher clock rate, without

fundamentally changing the structure of small data-path granularity required to provide

flexibility and resultant high degree of time-multiplexing to achieve throughput. As seen

in Figure 2 DSP’s have efficiencies 1-2 orders of magnitude below that of dedicated

hardware, this difference comes from the following components:

 18

a). Execution units: a factor of 6 is attributed to the overhead hardware required to build a

fully programmable ALU and register bank in addition to the basic adder, shifter, and

registers, which performs the required computation [7]. The dedicated hardware can also

use the shortest possible word-length, such as a 12-bit data-path instead of 16-bit in this

design example, and it can preserve data correlation. These application–specific low-

power design techniques save another factor of 2 in energy consumption [8].

b). Instruction fetching and control: a factor of 5 in the energy overhead is due to

hardware support for instruction fetches, branches, loads, stores, and other instruction-

specific functionalities [7]. In the design example, control circuits consume about the

same energy as execution units.

c). Memory access: it is a significant source of energy consumption in a DSP due to its

highly time-multiplexed architecture, which requires a large amount of memory accesses

per useful computation. In this design example, 40% of total energy consumption is from

memory. Also, in order to provide flexibility, the memory is usually over-designed to

accommodate different algorithms, which adds extra overhead since energy per memory

access increases with memory size. It also causes the area overhead of large on-chip

memories of a typical processor. In the example DSP, the CPU only occupies about 25%

of the area. Consequently, memory accounts for another factor of 5-10 overhead in

energy consumption for a DSP. For example, the energy efficiency of a FFT processor

was improved by 16 times through memory structure optimization [9].

d). Other factors: In this design example, 30% of the energy consumption of the DSP is

from a fast clocking scheme required by the time-multiplexing. Due to its large area,

global busses and interconnects also contribute to the overall overhead.

IV. Intermediate Architectures
One of the main problems with dedicated hardware design preventing it being more

commonly used is the lack of flexibility. This section presents our method to attack the

problem. Flexibility is a desirable feature in many portable systems. For example, one

characteristic of wireless systems is diverse and evolving application requirements (e.g.,

data rate and bit error rate) and changing parameters of the available communication link

(e.g., bandwidth and channel parameters), which directly impact the choices of system

 19

design parameters. Consequently it is desirable for wireless receivers to adapt their

operation rather than only be targeted for a fixed or worst-case scenario. These receivers

will have to be flexible enough to accommodate various operation conditions and their

computational requirements while simultaneously achieving the lowest possible power

consumption required for portable devices.

As shown in Figure 1, flexibility in an implementation can be achieved at different

granularities. An FPGA provides reconfigurability at bit level and typically uses a mesh

network for the interconnect structure. For data-path intensive applications this approach

often leads to an energy-inefficient solution since it implicitly carries an extensive energy

overhead and its reconfiguration granularity is not matched to data-path, which is

typically composed of bus-wide arithmetic modules, such as adders, shifters, registers.

On the other hand, DSP and data-path processors match the programming granularity of

data-path intensive signal processing applications. DSP achieves programmability

through a set of instructions that dynamically modify the behavior of otherwise statically

connected modules. It relies on the shared busses for the transfer of control and data and

time-shares a few data-path units (ALU’s and multipliers).

A reconfigurable data-path processor is a more parallel architecture with arrays of data-

path units, memories and word-wide interconnect busses. In order to map different

algorithms, the data-path units need to be configurable for any operation and the

interconnect network needs to support full connectivity. So again the overhead associated

with configuration control and interconnect is considerable and moreover, since the mix

of different components is fixed, it cannot optimally fit all algorithms. For example, the

pre-chosen memory allocation might become the bottleneck for mapping certain

algorithms.

By increasing the reconfiguration granularity to the function level and only providing the

flexibility necessary to satisfy the system requirements, the associated reconfiguration

overhead can be minimized – resulting in “function-specific reconfiguration”. This

approach is based on the observation that signal processing applications typically have a

 20

few dominating computational kernels with high regularity, which allows the algorithm to

be decomposed to patterns of computation, memory access and interconnection. A pattern

can be directly mapped to a function-specific component, which is a combination of

dedicated data-path units and specially partitioned and accessed memory blocks

connected by dedicated links. Control and reconfigurable interconnect overhead is

reduced since they are not needed within the components. Basically, this approach starts

with most efficient dedicated hardware and adds in flexibility support when necessary.

Example: FFT
A comparison was made of 5 different programmable or reconfigurable architectures,

ranging from software programmable DSP’s to function-specific reconfigurable

hardware, to see the range of costs of flexibility. The results are based on FFT

implementations on those architectures.

Xilinx’s high-performance and high-density Virtex-E family was chosen as an example of

FPGA architecture. The Xilinx CORE Generator system was used to generate optimized

cores. Performance benchmarks were based on post-layout timing analysis. Two

commonly used fixed-point DSP’s from Texas Instruments were chosen for this

comparison: the TMS320C6000 platform is an example of high-performance VLIW DSP,

and the TMS320C5000 platform is optimized for power efficiency. Performance was

evaluated based on optimized assembly programs and benchmarks published by the

vendor. Chameleon Systems CS2000 family was chosen as a reconfigurable data-path

processor. The performance and energy consumption results were based on Chameleon

Systems preliminary measurements and estimates. In addition, the upper bound of energy

efficiency for a given technology is used as a comparison base. In order to make fair and

meaningful architectural comparisons, the results were scaled to a common technology

(.18 µm). The scaling factors for delay and energy consumption are taken from circuit

simulations.

A pipelined FFT architecture based on a single-path delay feedback structure is used for

the function-specific reconfigurable implementation [10]. Flexibility in the length of the

FFT, from 16 to 512 points, is achieved by changing the length of the shift registers and

 21

simple muxing of the I/O blocks as shown in Figure 7. With a clock frequency at the

input sample rate the entire range of FFT’s can be accommodated by either directly

mapping to hardware and disabling unneeded blocks for the shorter length FFT’s or by

folding the processing stages and time-sharing the hardware for the longer (but lower

symbol rate) cases.

64128 256

64128

8 4 2 1

N=16
16 8 4 2 1

N=32

16 8 4 2 1 32

N=64
16 8 4 2 1

32 64

N=128

N=256

16 8 4 2 1 32

16 8 4 2 1 32

N=512

N FIFO of length N

CM: Multiplication with)j1(
2
2

−

BF1: Additive radix-2 butterfly

BF2: Additive radix-2 butterfly plus
multiplication with -j

Complex multiplier (one input coming from ROM)

Figure 7: Pipelined FFT schemes for N=16, … 512

The design has an area of 1.03 mm2 in a .25 µm technology. Table V lists the maximum

input sample rate supported for the entire range with a 1V supply voltage. (High

performance wireless systems, such as IEEE 802.11a, have a basic symbol rate of about

20 MHz.) The word length is up to 12 bits, if less precision is needed, the lower side bits

can be disabled to avoid wasteful switching activity.

 22

 N=512 N=256 N=128 N=64 N=32 N=16

Max. input rate 25 MHz 25 MHz 25 MHz 50 MHz 50 MHz 50 MHz

Power at max.
speed

5.1 mW 4.6 mW 4.0 mW 5.5 mW 4.9 mW 4.0 mW

Table V: Implementation parameters of function-specific reconfigurable FFT

The results of the architecture comparison are shown in Figure 8 and 9, which

demonstrate the tremendous range of efficiencies for various architectural strategies. In

Figure 8 the energy efficiency shows that the most efficient low-power DSP is more than

2 orders of magnitude less efficient than the upper bound, with the FPGA, reconfigurable

data-path architecture and high-performance VLIW even more inefficient. On the other

hand, the approach that uses function-specific reconfigurability is within a factor of 2-3

of the upper bound. Figure 9 presents the area efficiency. Again the reconfigurable data-

path, the various programmable processors and the FPGA are more than two orders of

magnitude less efficient than the function-specific reconfigurable approach. If a metric is

used which combines both area and energy efficiencies, there is more than 4 orders of

magnitude difference between the most efficient (function-specific reconfigurability) and

the other common digital signal processing solutions.

The function-specific reconfigurable hardware achieves highest efficiency since it has the

least amount of time-multiplexing and largest data-path granularity among all the

designs. This example suggests that there is a considerable opportunity for adding

sufficient flexibility to application-specific hardware while achieving the energy

dissipation close to the bound provided by the technology. Several general observations

can be made from the comparisons. For example, if we compare the data-path

reconfigurable processor to high-performance VLIW DSP in Figure 8, the data-path

processor is more parallel or less time-multiplexed with about the same granularity and

thus it achieves higher energy efficiency. Also, Figure 9 shows the least area efficient

architecture is FPGA due to its large overhead with fine granularity of computation.

Similar results are obtained for other designs, such as a Viterbi decoder [10] and an

encryption processor [11].

 23

Figure 8: Energy efficiency comparison of FFT implementations

Figure 9: Area efficiency comparison of FFT implementations

VI. Conclusion
Digital signal processing systems typically have hard real-time (throughput) constraints

with flexibility as a required or desirable feature. The cost of this flexibility has been

investigated and through the introduction of energy and area metrics the impact of

unlimited flexibility has been quantified. It is seen that there is a range of up to 3 orders

of magnitude in the energy and area inefficiency when full flexibility is compared to fully

dedicated architectures. The architectural factors that contribute to the difference have

 24

 25

been also identified and analyzed with the level of granularity and the amount of

parallelism being the critical parameters. Architectures that have an intermediate level of

flexibility are also shown and demonstrate that it is possible to achieve nearly the

efficiencies of dedicated solutions once the requirement of unlimited flexibility is

removed.

Acknowledgements

This work was sponsored by DARPA and the SIA under the MARCO focus centers

program as well as the sponsors of the Berkeley Wireless Research Center.

Reference
[1] B. Gold and C. M. Rader, Digital Processing of Signals, 1969.

[2] A.P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption in digital CMOS
circuit,” Proceedings of the IEEE, vol.83, no.4, p.498-523, April 1995.

[3] N. Zhang, A. Poon, D. Tse, R. W. Brodersen, and S. Verdu, "Trade-offs of Performance and Single
Chip Implementation of Indoor Wireless Multi-Access Receivers," Proc. IEEE Wireless
Communications and Networking Conference, September 1999.

[4] W. Lee, et al., “A 1-V Programmable DSP for Wireless Communications,” IEEE Journal of Solid-
State Circuits, November, p. 1766-1777, 1997.

[5] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction Level Power Analysis and Optimization of
Software,” Journal of VLSI Signal Processing, p. 1-18, 1996.

[6] C. Turner, “Calculation of TMS320LC54x Power Dissipation,” Technical Application Report
SPRA164, Texas Instruments, 1997.

[7] T. D. Burd, “Energy-Efficient Processor System Design,” Ph.D. Dissertation, U. C. Berkley, 2001.

[8] N. Zhang, “Implementation Issues in the Design of a CDMA Baseband Receiver,” Master thesis,
University of California, Berkeley, 1998.

[9] B. M. Baas, “A low-power, high-performance, 1024-point FFT processor,” IEEE Journal of Solid-
State Circuits, March 1999.

[10] N. Zhang and R. W. Brodersen, "Architectural Evaluation of Flexible Digital Signal Processing for
Wireless Receivers," Proc. Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, October 2000.

[11] J. Goodman and A. Chandrakasan, “An Energy Efgficient IEEE 1363-based Reconfigurable
Public-Key Cryptography Processor, 2001 ISSCC Technical Digest, pp. 330-331.

[12] E. Kusse, “Analysis and Circuit Design for Low Power Programmable Logic Modules,” Masters
Thesis, University of California, Berkeley, 1997.

	The Cost of Flexibility in Systems on a Chip Design for Signal Processing Applications
	I. Introduction
	II. Architectural Design Space and Design Metrics
	A. Architecture Space

	Figure 1: The architectural space covering granularity of data-path unit and the degree of parallelism
	B. Design Metrics
	C. Relationship Between Architecture and Design Metrics
	1). Digital Signal Processor
	2). DSP Extension
	3). Direct-Mapped Dedicated Hardware
	4). Architecture Comparison and Analysis

	IV. Intermediate Architectures
	Example: FFT

	VI. Conclusion
	Reference

