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Abstract 

Providing flexibility into a system on a chip design is sometimes required and generally 

always desirable. However the cost of providing this flexibility in terms of energy 

consumption and silicon area is not well understood. This cost can range over many 

orders of magnitude depending on the architecture and implementation strategy. To 

quantify this cost, efficiency metrics are introduced for energy (MOPS/mW) and area 

(MOPS/mm2) and are used to compare a variety of designs and architectures for signal 

processing applications. It is found that the critical architectural parameters are the 

amount of flexibility, the granularity of the architecture in providing this flexibility and 

the amount of parallelism. A range of architectural solutions which tradeoff these 

parameters are presented and applied to example applications. 

I. Introduction 
The tradeoff of various types of architectures to implement digital signal processing 

(DSP) algorithms has been a subject of investigation since the initial development of the 

theory [1]. Recently, however the application of these algorithms to systems that require 

low cost and the lowest possible energy consumption has placed a new emphasis on 

defining the most appropriate solutions. For example, advanced communication 

algorithms which exploit frequency and spatial diversities to combat wireless channel 

impairments and cancel multi-user interference for higher spectral efficiency (data rate / 

bandwidth) have extremely high computational complexity (10’s-100’s of billions of 

operations/second), and thus require the highest possible level of optimization.  
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In order to compare various architectures for these complex applications it is necessary to 

define design metrics which capture the most critical characteristics relating to energy 

and area efficiency as a function of the flexibility of the implementation. Flexibility in 

implementing various applications after the hardware has been fabricated is a desirable 

feature, and as will be shown it is the most critical criteria in determining the energy and 

area efficiency of the design. However, it is found that there is a range of multiple orders 

of magnitude differences in these efficiencies depending on the architecture used to 

provide various levels of flexibility. Therefore, it is important to understand the cost of 

flexibility and choose an architecture which provides the required amount at the highest 

possible efficiency.  

Consequently, the flexibility consideration becomes a new dimension in the 

algorithm/architecture co-design space. Often the approach to flexibility has been to 

provide an unlimited amount through software programmability on a Von Neumann 

architecture. This approach was based on hardware technology assumptions which 

assumed hardware was expensive and the power consumption was not critical so that 

time multiplexing was employed to provide maximum sharing of the hardware resources.  

The situation now for highly integrated “system-on-a chip” implementations is 

fundamentally different: hardware is cheap with potentially 1000’s of multipliers and 

ALU’s on a chip and the energy consumption is a critical design constraint in many 

portable applications. Even in the case of applications that have an unlimited energy 

source, we are now beginning to move into an era of power constrained performance for 

the highest performance processors since heat removal requires the processor to operate 

at lower clock rates than dictated by the logic delays.  

The importance of architecture design is further underscored by the ever and faster 

increasing algorithm complexity, and purely relying on technology scaling many DSP 

architectures will fall short of computational capability for more advanced algorithms 

demanded by future systems. An efficient and flexible implementation of high-

performance digital signal processing algorithms therefore relies on architecture 

optimization. Unfortunately, the lack of a systematic design approach and consistent 

metrics currently prevents the exploration of various realizations over a broad range of 
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architectural options. The focus of this paper is to investigate the issues of flexibility and 

architecture design together with system and algorithm design and technology to get a 

better understanding of the key trade-offs and the costs of important architecture 

parameters and thus more insight in digital signal processing architecture optimization for 

high-performance and energy-sensitive portable applications. 

Section II introduces the design metrics used for architecture evaluation and comparison 

with an analysis of the relationship between key architecture parameters and design 

metrics. Section III uses an example to compare two extreme architectures: software 

programmable and dedicated hardware implementation, which result in orders of 

magnitude difference in design metrics. The architectural factors that contribute to the 

difference are also identified and quantified. Section IV focus on intermediate 

architectures and introduces an architecture approach to provide function-specific 

flexibility with high efficiency. This approach is demonstrated through a design example 

and the result is compared to other architectures. 

II. Architectural Design Space and Design Metrics 

A. Architecture Space  
The architectures being considered range from completely flexible software based 

processors including both general purpose as well as those optimized for digital signal 

processing (DSP’s), to inflexible designs using hardware dedicated to a single 

application. In addition architectures will be investigated which lie between these 

extremes.  

Flexibility is achieved in a given architecture either through reconfiguration of the 

interconnect between computational blocks  (e.g. FPGA or reconfigurable datapaths) or 

by designing computational blocks that has logic that can be programmed by control 

signals to perform different functions (e.g. microprocessor datapath).  The granularity is 

the size of these computational blocks and can range from up to single or multiple 

datapaths as shown in Figure 1. In general, the larger the granularity, the less the 

flexibility an architecture can provide since the interconnection within the processing unit 

is pre-defined at fabrication time.  
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Digital signal processing systems typically have throughput requirements to meet hard 

real-time requirements. Throughput will be defined as the product of the average number 

of operations per clock cycle, Nop, and the clock frequency, fclk. The key architectural 

feature to provide throughput is the degree of parallelism, which is measured by Nop. The 

more parallel hardware in an architecture, the more operations can be executed in a clock 

cycle, which implies a lower level of time-multiplexing and thus lower clock frequency 

necessary to meet a given throughput requirement.  

Therefore there are two key architectural parameters: the granularity of data-path unit and 

the degree of parallelism. Figure 1 depicts qualitatively the relative positions of different 

architectures in this two-dimensional space. Due to the energy and area overheads 

associated with small granularity and time multiplexing architectures, this large design 

space provides a wide range of trade-offs between flexibility, energy efficiency and area 

efficiency.  
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Figure 1: The architectural space covering granularity of data-path unit and the degree of 

parallelism 

B. Design Metrics 
Design metrics are defined to be able to compare different architectures. Energy 

efficiency and cost are two of the most stringent requirements of portable systems. The 

basic parameters of importance are performance, power (or energy) and area (or cost). 

All of these parameters can be traded off, so to reduce the degrees of freedom we will 
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compare the power and area required for various architectural solutions for a given level 

of throughput.  

Throughput will be characterized, as the number of operations per second as MOPS 

(Millions of operations per second). For signal processing systems, to make fair 

comparison across different architecture families, an operation is often defined as 

algorithmically interesting computation. For a specific application where the operation 

mix is known, a basic operation is further defined as a 16-bit addition to normalize all 

other operations (shift, multiplication, data access, etc.).  

While this approach works for signal processing computation, it is not as appropriate for 

applications implemented on general-purpose microprocessors. For comparison with 

these architectures we will define operation as being equivalent to an instruction, in spite 

of the fact that a number of instructions may be required to implement an algorithmically 

interesting operation. This will provide a conservative over estimate of the performance 

achievable from general-purpose processors, and thus will just further substantiate the 

observations about relative architectural efficiency that will be made in later sections.   

Energy Efficiency Metric 

The streaming nature of signal processing applications and the associated hard real-time 

constraints usually makes it possible to define a basic block of repetitive computation. 

This makes it possible to define an average number of operations per clock cycle, Nop 

with the average energy required to implement these operations being given by Eop. A 

useful energy efficiency metric is therefore the average number of operations per unit 

energy, εE, which can be defined as the ratio of Nop to Eop: 

εE = Number of operations/Energy required = Nop / Eop                                              (1) 

The architectural exploration problem is to determine the approach which has the highest 

energy efficiency, while meeting the real-time constraints of completing the signal 

processing kernel.  
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For the situation in which the processor is connected to an unlimited energy source there 

is a related problem in that the performance may be limited by the difficulty and cost of 

dissipating the generated heat. In fact this has become such an issue that the highest 

performance general-purpose processors are now operating in a power limited mode, in 

which the maximum clock rates are limited by heat dissipation rather than logic speed. 

The relevant metric for this case is the power required to sustain a given level of 

throughput or the throughput to power ratio. Using the above variables the average 

throughput or number of operations per second is given by Nops/Tclk with the power 

required being given by Eops/Tclk. The throughput to power ratio is then found to be the 

same as the energy efficiency metric, εE , defined in Eq. 1,  

εE = Throughput/Power =  (Nop/Tclk) / (Eop / Tclk)   = Nop / Eop                     (2)                        

If the throughput is expressed in MOPS and power in milliWatts, the efficiency, εE, will 

have units of MOPS/mW and it is these units that we will use when presenting the 

efficiency comparisons. 

Area Efficiency Metric 

While the εE metric is relevant for both energy and power limited operation, it does not 

incorporate the other major constraint, which is the cost of the design as expressed by the 

area of the silicon required to sustain a given level of throughput. The relevant metric for 

this consideration is therefore the throughput to area ratio given by, 

εA = (Nops/Tclk )  /  Aop  ,                                                        (3)                              

where Aop is the integrated circuit area required for the logic and memory to support the 

computation of Nop operations. If the units for area are chosen to be square millimeters 

and throughput again is expressed in MOPS, εA has units of MOPS/mm2, which measures 

computation per unit area.  It is a well-known low-power design technique [2] to trade-
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off area efficiency for energy efficiency, thus these two metrics need to be considered 

together. 

Metric Comparisons 

In fixed function architectures, the operation count is straightforward, which is not the 

case in comparisons with processors that are flexible. In this case depending on the 

benchmark different possible throughputs can be achieved. When making comparisons of 

architectures for different applications we will use the highest possible throughput 

numbers that can be achieved in a given architecture. In sections III and IV we will 

compare various architectures for the same application. 

An estimate can be made of the maximum achievable energy and area efficiencies for the 

basic 16 bit add operation for a given technology and clock rate if we assume that we can 

fill an entire integrated circuit with 16 bit adders (our basic operation) and achieve a 

throughput corresponding to every adder operating in parallel. In Table I, the energy and 

area values are given along with the associated calculated energy and area efficiencies for 

.25 micron technology for two different supply voltages. The minimum clock period is 

assumed to be taken somewhat arbitrarily as approximately 2 times the delay through an 

adder, which is consistent with the example circuits presented below. As can be seen 

from equations (2) and (3) the area efficiency scales directly with the clock rate, while the 

energy efficiency is independent of it if the voltage is not changed.  

 
Supply Voltage 

 
Adder Area 

 
Adder Energy 

 

 
Logic 
Delay 

εE  
(MOPS/mW) Basic 

Operation 

         εA 
(MOPS/mm2) Basic 

Operation  
1.0 Volt 

(fclk = 35 MHz) 
.006 mm2 .53 pJ  14 nS 1900  5800 

2.5 Volts 
(fclk = 120 MHz) 

.006 mm2 3.1 pJ 4.3 nS 300 20000 

Table I: The energy and area efficiency of the basic operation (a 16 bit add) in .25 micron 
technology 

For a given application, the basic operation rate can be obtained by profiling the 

algorithm and it can be used together with the energy and area efficiencies of a basic 
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operation to determine the lower bound of average power consumption of an algorithm. 

This lower bound of power and area for fixed throughput, or higher bound of efficiencies, 

not only provides an implementation feasibility measure to algorithm developers, but also 

provides a comparison base to evaluate any implementation.  

Comparison of Architectures assuming Maximum Throughput 

Figure 2 shows the efficiency metrics for a number of chips chosen from the International 

Solid State Circuits Conference from 1998-2002 under the criteria that they were in a 

technology that ranged from .18 - .25 micron and that all the information was available to 

do a first order technology scaling and to calculate the energy and area efficiencies. 

Though this is relatively small sample of circuits it is believed that the trends and relative 

relationships are accurate representations of the various architectures being compared 

because of the remarkable consistency of the results. Table II gives a summary of all the 

circuits that were used in the comparison. 

CHIP # YEAR PAPER # DESCRIPTION  CHIP # YEAR PAPER # DESCRIPTION 

1 1997 10.3 µP - S/390   11 1998 18.1 DSP -Graphics 

2 2000 5.2 µP – PPC  (SOI)  12 1998 18.2 DSP - Multimedia 

3 1999 5.2 µP - G5   13 2000 14.6 DSP – 
Multimedia 

4 2000 5.6 µP - G6   15 2002 22.1 DSP -MPEG 
Decoder 

5 2000 5.1 µP - Alpha   14 1998 18.3 DSP – 
Multimedia 

6 1998 15.4 µP - P6   16 2001 21.2 Encryption 
Processor 

7 1998 18.4 µP - Alpha   17 2000 14.5 Hearing Aid 
Processor 

8 1999 5.6 µP – PPC  18 2000 4.7 FIR for Disk Read 
Head 

9 1998 18.6 µP -  StrongArm  19 1998 2.1 MPEG Encoder 

10 2000 4.2 DSP – Comm  20 2002 7.2 802.11a Baseband 

Table II: Description of chips used in the analysis from the International Solid State 
Circuits Conference 
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In the table and in the figures the designs were sorted according to their energy efficiency 

and very surprisingly this sorting also resulted in their being grouped into the three basic 

architectural categories. Chips 1-9 were general purpose microprocessors, with chips 10-

15 optimized for DSP but still software programmable and chips 16-20 being dedicated 

signal processing designs with only a very limited amount of flexibility in comparison to 

the full flexibility of the microprocessors and DSP’s.   

As seen in Figure 2, the energy efficiency varies by 1-2 orders of magnitude between 

each group with an overall range of 4 orders of magnitude between the most flexible 

solutions and the most dedicated.  It is not surprising that the efficiency decreases as the 

flexibility is increased, but it is the enormous amount of this cost that should be noted. 

The area efficiencies have a similar range, with the exception of a few designs that had 

low clock rates set by the application for which they were designed. As mentioned 

previously the energy efficiency is independent of clock rate whereas the area efficiency 

is directly proportional to it. It should be re-emphasized that the strategy for counting 

operations was to use the maximum possible throughput for the software processor 

solutions, while the dedicated designs used the actual useful operations required for the 

application. In a later section a comparison will be made for the same application which 

allows a more consistent comparison of operation counts. 
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Pave = Achip * Csw * Vdd
2 * fclk                                                     (4)  

where Achip is the total area of the chip, Vdd is the supply voltage, fclk  is the clock rate  

and Csw is the average switched capacitance per unit area that includes both the transition 

activity as well as the capacitance being switched averaged over the entire chip. It can be 

found since all the other variables in Eq. 4 are available from the data.  Substituting Pave 

into Eq. 2 we find,  

εE = Throughput/Power = (Nops/Tclk) / Pave = 1/(Aop*Csw*Vdd
2)                  (5) 

where Aop is the average area of each operation per cycle found from the total area of the 

chip divided by the number of operations per clock cycle, i.e. Aop = Achip/Nop.  

  MICROPROCESSOR DSP DEDICATED 

Fclk Range 
Average 

450-1000 MHz 
550 MHz 

50-300 MHz 
170 MHz 

2.5-275 MHz  
90 MHz 

Csw Range 
Average 

40-100 pF/mm2 
70 pF/mm2 

10-60 pF/mm2 
30 pF/mm2 

10-45 pF/mm2 
20 pF/mm2 

Nop Range 
Average 

1-6 op/clk 
2 op/clk 

7-32 op/clk 
14 op/clk 

460 op/clk  
16-1580 op/clk 

Table III: The average and ranges of design parameters for the 3 architectural groups 

As seen in Table III the value of the switched capacitance doesn’t vary widely across the 

design examples. However, the fact that it is larger for the software based processors (the 

microprocessor and DSP columns) and not substantially lower than the dedicated designs 

is somewhat counter-intuitive since these processors contain a significant amount of 

circuitry (particularly in the memories) that is not switching on every clock cycle. It is the 

opposite case in the dedicated designs, which typically have a very large percentage of 

their logic switching, since the designs are optimized to fully utilize as much hardware as 

possible.  

The primary reason for the high Csw in the processors is the elevated clock rates (average 

of 550 MHz) compared to what is required for the more parallel dedicated chips (90 MHz 

average). The high clock rates require more capacitance in the clocking networks as well 
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as in the high density custom designed logic and memory which is necessary to achieve 

low values of delay. The high clock rates come from the relatively low level of 

parallelism in the software processors which then necessitates high levels of time 

multiplexing (e.g. higher clock rates) to achieve the necessary throughput. This is clearly 

demonstrated by the range of values for the parallelism parameter, Nop, the number of 

operations per clock cycle, as seen in Figure 3. It is seen that the level of parallelism in 

dedicated designs ranges up to 3 orders of magnitude higher than that achieved by some 

software processors. 
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because of the difficulty of compiling for the parallel DSP architectures
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manually performed at the assembly level.   
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The supply voltage also doesn’t vary widely across all of the designs, ranging from 1.5 V 

to 2.5 V, with no significant difference for any of the architecture groups. It is therefore 

the variation in Aop, the area per operation which is plotted in Figure 4, that contains the 

explanation for the wide variation in efficiencies. It can be seen form this figure that it 

ranges from 100’s of mm2 for the microprocessors to less than .1 mm2 for some of the 

dedicated designs.  It should be noted that while .1 mm2 seems quite small, it still is more 

than 10 times the size of a 16 bit add (see Table I). The primary reason for the large 

values of Aop is that the relatively small computational blocks and datapaths are 

surrounded by the large control and memory circuits that are used to provide full 

flexibility and high degree of time-multiplexing. 

To see the problem we look at the two designs which have a single time-multiplexed data 

path (chips1 & 2), so that Nop = 1 as seen in Figure 3. To achieve the average throughput 

of the dedicated chips with this lack of parallelism, the datapath on these chips must be 

time multiplexed approximately 460 times in the period of one clock of the dedicated 

design (see Table III). Also, since full flexibility is required the datapath needs to be fully 

reconfigured 460 times by control circuitry. The breakdown of the factors due to this time 

multiplexing, which result in such an enormous level of overhead in Aop, will be given in 

Section III. 

The range in Aop directly relates to Eop or the energy required per operation. Since as 

noted earlier the capacitance being switched, Csw, per unit area is larger for the high clock 

rate architectures, the energy per operation Csw*Aop*Vdd
2 will have an even larger range 

as seen in Figure 2.   
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Figure 4: The silicon area per operation 
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III. Software Implementation vs. Hardware 
Implementation for the Same Application 
The previous section compared a variety of architectures under th

maximum possible throughput. This section will use a single application

insight into the reasons for the wide variation in efficiency.  

Four multi-user detection schemes were evaluated in [3], that can be use

synchronous DS-CDMA system. The blind adaptive MMSE multi-user

was one of those algorithms analyzed, will be used in this section since 

trade-off between system performance and computational complexity.

requires a word-length of 12-bits, has 13000 MOPS (an operation is de

operation of 12-bit add), and at a clock rate of 25 MHz has a lower 

consumption of 5 mW.   

1). Digital Signal Processor 
Data from one of the lowest-power DSP’s reported in a .25 µm tech

chosen for analyzing the efficiencies of a software implementation. It is

16-bit fixed-point DSP designed specifically for energy-efficient operatio

cycle multiply accumulator and an enhanced Harvard architecture. Its o

includes a 6K x 16b SRAM and 48K x 16b ROM. 
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C code describing the algorithms was compiled using performance optimizations because 

it was found that the shortest sequence typically consumes the lowest energy. This 

guideline is further justified by the results of instruction level analysis [5, 6], where it was 

found that the variation of energy consumption for any instruction is relatively small. The 

explanation for the observation lies in the fact that there is a large underlying energy 

dissipation common to the execution of any instruction, independent of the functionality 

of the instruction. This is the energy associated with clock, instruction fetching and 

control, which means the overhead associated with instruction level control and 

centralized memory storage dominates the energy consumption. Performance and power 

consumption results are based on benchmarking compiled assembly code. Further 

investigation of the software implementation showed by optimizing the assembly code 

through better register usage and memory allocation, utilization of special parallel 

instructions, etc. an improvement of 35% in performance and energy-efficiency was 

achieved.  

To execute the design example, the arithmetic instructions only take about 30% of the 

total execution time and power, memory accesses take about 30%, and data movement 

and control take the remainder 40%. A hardware component breakdown shows that 26% 

of total power goes to clocking, 18% to instruction fetching and control, 38% to memory, 

and 18% to arithmetic execution.   

2). DSP Extension 
Improvement on software-based implementation can be made through supporting 

application-specific instructions and adding accelerating co-processors. For the design 

example, it was observed that the algorithm operates on complex values, one way to 

improve efficiency is to modify the data-path to directly operate and store complex 

numbers. Also, this algorithm does not need all the memory provided on the DSP, two 

256 x 32 bit SRAM banks for data memory and a 256 x 16 bit SRAM for instruction 

memory are sufficient (this memory structure already doubles the actual requirements of 

this algorithm).  
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Potential energy saving comes from reduction of instruction fetching and decoding, 

reduction of memory access count and large memory overhead, and optimization of 

arithmetic execution units. The main idea behind this approach is that due to the large 

power overhead associated with each instruction, packing instructions or adding more 

complicated execution units reduces the relative overhead. For example, for a complex 

multiplication  

Y_real = A_real * B_real – A_imag * B_imag; Y_imag = A_real * B_imag + A_imag * B_real; 

this architecture only needs to read A and B from memory once instead of twice as in the 

original DSP architecture. 

This architecture increases the granularity of data-path unit to reduce the energy overhead 

and cuts unnecessary memory to reduce the area overhead. As the result, this architecture 

is less flexible since it is optimized only for computations with complex inputs and 

applications with limited memory requirements. 

3). Direct-Mapped Dedicated Hardware  
A direct-mapped implementation maps each function in the data flow graph of the 

algorithm into a dedicated hardware block. Figure 5 depicts the block diagram of the 

example algorithm and the corresponding layout view of its dedicated implementation. 

The architecture is directly mapped from the algorithm with the maximum possible level 

of parallelism which allowed 1 V operation at clock rate of 25 MHz. The fixed point 

word lengths were optimized throughout the architecture with 12-bit word length being 

the most common.  
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Figure 5: Direct mapped implementation of a multi-user detection algorithm 

4). Architecture Comparison and Analysis 
The comparisons of architectural implementations are shown in Table IV and the 

breakdowns are depicted in Figure 6.  For the DSP implementations, since one processor 

cannot meet the throughput requirement, parallel processors are assumed and the 

overhead of splitting the algorithm into a number of processors is neglected for the upper 

efficiency bound of the software solutions. Notice the DSP extension can achieve 

considerable savings in both power consumption and area by increasing the data-path 

granularity and reducing memory size. The dedicated hardware achieves the highest 

efficiency as expected, with the ratios of 30-50 times the DSP processor and 10 times the 

processor with the application specific extensions. 
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Low-Power DSP  

Compiled Optimized 

DSP Extension Dedicated 
Hardware 

Upper Bound 
(12-bit Basic Operation, 

fclk=25 MHz) 

Energy Efficiency 
(MOPS/mW) 

43 65 190 1900 2500 

Normalized Energy 
Efficiency 

0.02 0.03 0.1 1 1.3 

Area Efficiency 
(MOPS/mm2) 

25 38 160 4300 5600 

Normalized Area 
Efficiency 

0.01 0.01 0.04 1 1.3 

Table IV: Architectural implementation comparisons of multi-user detection 
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Figure 6: Power consumption and area breakdown of different architectural 

implementations of multi-user detection  

The optimized DSP implementation requires at least 15 parallel processors to meet the 

throughput requirement. This shows that adding parallel processing elements without an 

architecture matched to the target computation is not sufficient. The parallel processor 

approach only avoids the energy overhead associated with a higher clock rate, without 

fundamentally changing the structure of small data-path granularity required to provide 

flexibility and resultant high degree of time-multiplexing to achieve throughput. As seen 

in Figure 2 DSP’s have efficiencies 1-2 orders of magnitude below that of dedicated 

hardware, this difference comes from the following components:  
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a). Execution units: a factor of 6 is attributed to the overhead hardware required to build a 

fully programmable ALU and register bank in addition to the basic adder, shifter, and 

registers, which performs the required computation [7]. The dedicated hardware can also 

use the shortest possible word-length, such as a 12-bit data-path instead of 16-bit in this 

design example, and it can preserve data correlation. These application–specific low-

power design techniques save another factor of 2 in energy consumption [8]. 

b). Instruction fetching and control: a factor of 5 in the energy overhead is due to 

hardware support for instruction fetches, branches, loads, stores, and other instruction-

specific functionalities [7]. In the design example, control circuits consume about the 

same energy as execution units.  

c). Memory access: it is a significant source of energy consumption in a DSP due to its 

highly time-multiplexed architecture, which requires a large amount of memory accesses 

per useful computation. In this design example, 40% of total energy consumption is from 

memory. Also, in order to provide flexibility, the memory is usually over-designed to 

accommodate different algorithms, which adds extra overhead since energy per memory 

access increases with memory size. It also causes the area overhead of large on-chip 

memories of a typical processor. In the example DSP, the CPU only occupies about 25% 

of the area. Consequently, memory accounts for another factor of 5-10 overhead in 

energy consumption for a DSP. For example, the energy efficiency of a FFT processor 

was improved by 16 times through memory structure optimization [9].  

d). Other factors: In this design example, 30% of the energy consumption of the DSP is 

from a fast clocking scheme required by the time-multiplexing. Due to its large area, 

global busses and interconnects also contribute to the overall overhead. 

IV. Intermediate Architectures 
One of the main problems with dedicated hardware design preventing it being more 

commonly used is the lack of flexibility. This section presents our method to attack the 

problem. Flexibility is a desirable feature in many portable systems. For example, one 

characteristic of wireless systems is diverse and evolving application requirements (e.g., 

data rate and bit error rate) and changing parameters of the available communication link 

(e.g., bandwidth and channel parameters), which directly impact the choices of system 
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design parameters. Consequently it is desirable for wireless receivers to adapt their 

operation rather than only be targeted for a fixed or worst-case scenario. These receivers 

will have to be flexible enough to accommodate various operation conditions and their 

computational requirements while simultaneously achieving the lowest possible power 

consumption required for portable devices.  

As shown in Figure 1, flexibility in an implementation can be achieved at different 

granularities. An FPGA provides reconfigurability at bit level and typically uses a mesh 

network for the interconnect structure. For data-path intensive applications this approach 

often leads to an energy-inefficient solution since it implicitly carries an extensive energy 

overhead and its reconfiguration granularity is not matched to data-path, which is 

typically composed of bus-wide arithmetic modules, such as adders, shifters, registers.  

On the other hand, DSP and data-path processors match the programming granularity of 

data-path intensive signal processing applications. DSP achieves programmability 

through a set of instructions that dynamically modify the behavior of otherwise statically 

connected modules. It relies on the shared busses for the transfer of control and data and 

time-shares a few data-path units (ALU’s and multipliers).  

A reconfigurable data-path processor is a more parallel architecture with arrays of data-

path units, memories and word-wide interconnect busses. In order to map different 

algorithms, the data-path units need to be configurable for any operation and the 

interconnect network needs to support full connectivity. So again the overhead associated 

with configuration control and interconnect is considerable and moreover, since the mix 

of different components is fixed, it cannot optimally fit all algorithms. For example, the 

pre-chosen memory allocation might become the bottleneck for mapping certain 

algorithms.  

By increasing the reconfiguration granularity to the function level and only providing the 

flexibility necessary to satisfy the system requirements, the associated reconfiguration 

overhead can be minimized – resulting in “function-specific reconfiguration”. This 

approach is based on the observation that signal processing applications typically have a 
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few dominating computational kernels with high regularity, which allows the algorithm to 

be decomposed to patterns of computation, memory access and interconnection. A pattern 

can be directly mapped to a function-specific component, which is a combination of 

dedicated data-path units and specially partitioned and accessed memory blocks 

connected by dedicated links. Control and reconfigurable interconnect overhead is 

reduced since they are not needed within the components. Basically, this approach starts 

with most efficient dedicated hardware and adds in flexibility support when necessary. 

Example: FFT 
A comparison was made of 5 different programmable or reconfigurable architectures, 

ranging from software programmable DSP’s to function-specific reconfigurable 

hardware, to see the range of costs of flexibility. The results are based on FFT 

implementations on those architectures. 

Xilinx’s high-performance and high-density Virtex-E family was chosen as an example of 

FPGA architecture. The Xilinx CORE Generator system was used to generate optimized 

cores. Performance benchmarks were based on post-layout timing analysis. Two 

commonly used fixed-point DSP’s from Texas Instruments were chosen for this 

comparison: the TMS320C6000 platform is an example of high-performance VLIW DSP, 

and the TMS320C5000 platform is optimized for power efficiency. Performance was 

evaluated based on optimized assembly programs and benchmarks published by the 

vendor. Chameleon Systems CS2000 family was chosen as a reconfigurable data-path 

processor. The performance and energy consumption results were based on Chameleon 

Systems preliminary measurements and estimates. In addition, the upper bound of energy 

efficiency for a given technology is used as a comparison base. In order to make fair and 

meaningful architectural comparisons, the results were scaled to a common technology 

(.18 µm). The scaling factors for delay and energy consumption are taken from circuit 

simulations. 

A pipelined FFT architecture based on a single-path delay feedback structure is used for 

the function-specific reconfigurable implementation [10]. Flexibility in the length of the 

FFT, from 16 to 512 points, is achieved by changing the length of the shift registers and 
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simple muxing of the I/O blocks as shown in Figure 7. With a clock frequency at the 

input sample rate the entire range of FFT’s can be accommodated by either directly 

mapping to hardware and disabling unneeded blocks for the shorter length FFT’s or by 

folding the processing stages and time-sharing the hardware for the longer (but lower 

symbol rate) cases.  
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16 8 4 2 1 
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16 8 4 2 1 32 

N=64
16 8 4 2 1 

32 64 
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N=256 

16 8 4 2 1 32 

16 8 4 2 1 32 
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CM: Multiplication with )j1(
2
2

−  

BF1: Additive radix-2 butterfly 

BF2: Additive radix-2 butterfly plus 
multiplication with -j 

Complex multiplier (one input coming from ROM) 
 

Figure 7: Pipelined FFT schemes for N=16, … 512 

The design has an area of 1.03 mm2 in a .25 µm technology. Table V lists the maximum 

input sample rate supported for the entire range with a 1V supply voltage. (High 

performance wireless systems, such as IEEE 802.11a, have a basic symbol rate of about 

20 MHz.) The word length is up to 12 bits, if less precision is needed, the lower side bits 

can be disabled to avoid wasteful switching activity. 
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 N=512 N=256 N=128 N=64 N=32 N=16 

Max. input rate 25 MHz 25 MHz 25 MHz 50 MHz 50 MHz 50 MHz 

Power at max. 
speed 

5.1 mW 4.6 mW 4.0 mW 5.5 mW 4.9 mW 4.0 mW 

Table V: Implementation parameters of function-specific reconfigurable FFT 

The results of the architecture comparison are shown in Figure 8 and 9, which 

demonstrate the tremendous range of efficiencies for various architectural strategies. In 

Figure 8 the energy efficiency shows that the most efficient low-power DSP is more than 

2 orders of magnitude less efficient than the upper bound, with the FPGA, reconfigurable 

data-path architecture and high-performance VLIW even more inefficient. On the other 

hand, the approach that uses function-specific reconfigurability is within a factor of 2-3 

of the upper bound. Figure 9 presents the area efficiency. Again the reconfigurable data-

path, the various programmable processors and the FPGA are more than two orders of 

magnitude less efficient than the function-specific reconfigurable approach.  If a metric is 

used which combines both area and energy efficiencies, there is more than 4 orders of 

magnitude difference between the most efficient (function-specific reconfigurability) and 

the other common digital signal processing solutions. 

The function-specific reconfigurable hardware achieves highest efficiency since it has the 

least amount of time-multiplexing and largest data-path granularity among all the 

designs. This example suggests that there is a considerable opportunity for adding 

sufficient flexibility to application-specific hardware while achieving the energy 

dissipation close to the bound provided by the technology. Several general observations 

can be made from the comparisons. For example, if we compare the data-path 

reconfigurable processor to high-performance VLIW DSP in Figure 8, the data-path 

processor is more parallel or less time-multiplexed with about the same granularity and 

thus it achieves higher energy efficiency.  Also, Figure 9 shows the least area efficient 

architecture is FPGA due to its large overhead with fine granularity of computation. 

Similar results are obtained for other designs, such as a Viterbi decoder [10] and an 

encryption processor [11]. 
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Figure 8: Energy efficiency comparison of FFT implementations 

 
Figure 9: Area efficiency comparison of FFT implementations 

VI. Conclusion 
Digital signal processing systems typically have hard real-time (throughput) constraints 

with flexibility as a required or desirable feature. The cost of this flexibility has been 

investigated and through the introduction of energy and area metrics the impact of 

unlimited flexibility has been quantified. It is seen that there is a range of up to 3 orders 

of magnitude in the energy and area inefficiency when full flexibility is compared to fully 

dedicated architectures. The architectural factors that contribute to the difference have 
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been also identified and analyzed with the level of granularity and the amount of 

parallelism being the critical parameters. Architectures that have an intermediate level of 

flexibility are also shown and demonstrate that it is possible to achieve nearly the 

efficiencies of dedicated solutions once the requirement of unlimited flexibility is 

removed.   
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