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Preface

If you are reading this book, I probably don’t have to sell you on CUDA. Readers 
of this book should already be familiar with CUDA from using NVIDIA’s SDK 
materials and documentation, taking a course on parallel programming, or 
reading the excellent introductory book CUDA by Example (Addison-Wesley, 2011) 
by Jason Sanders and Edward Kandrot.

Reviewing CUDA by Example, I am still struck by how much ground the book 
covers. Assuming no special knowledge from the audience, the authors manage 
to describe everything from memory types and their applications to graphics 
interoperability and even atomic operations. It is an excellent introduction to 
CUDA, but it is just that: an introduction. When it came to giving more detailed 
descriptions of the workings of the platform, the GPU hardware, the compiler 
driver nvcc, and important “building block” parallel algorithms like parallel 
prefix sum (“scan”), Jason and Edward rightly left those tasks to others.

This book is intended to help novice to intermediate CUDA programmers 
continue to elevate their game, building on the foundation laid by earlier work. 
In addition, while introductory texts are best read from beginning to end, The 
CUDA Handbook can be sampled. If you’re preparing to build or program a 
new CUDA-capable platform, a review of Chapter 2 (“Hardware Architecture”) 
might be in order. If you are wondering whether your application would benefit 
from using CUDA streams for additional concurrency, take a look at Chap-
ter 6 (“Streams and Events”). Other chapters give detailed descriptions of the 
software architecture, GPU subsystems such as texturing and the streaming 
multiprocessors, and applications chosen according to their data access pattern 
and their relative importance in the universe of parallel algorithms. The chap-
ters are relatively self-contained, though they do reference one another when 
appropriate.

The latest innovations, up to and including CUDA 5.0, also are covered here. In 
the last few years, CUDA and its target platforms have significantly evolved. 
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When CUDA by Example was published, the GeForce GTX 280 (GT200) was new, 
but since then, two generations of CUDA-capable hardware have become avail-
able. So besides more detailed discussions of existing features such as mapped 
pinned memory, this book also covers new instructions like Fermi’s “ballot” and 
Kepler’s “shuffle” and features such as 64-bit and unified virtual addressing and 
dynamic parallelism. We also discuss recent platform innovations, such as the 
integration of the PCI Express bus controller into Intel’s “Sandy Bridge” CPUs.

However you choose to read the book—whether you read it straight through or 
keep it by your keyboard and consult it periodically—it’s my sincerest hope that 
you will enjoy reading it as much as I enjoyed writing it.
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Chapter 8 

Streaming 

Multiprocessors

The streaming multiprocessors (SMs) are the part of the GPU that runs our 
CUDA kernels. Each SM contains the following.

• Thousands of registers that can be partitioned among threads of execution 

• Several caches:

 – Shared memory for fast data interchange between threads 

 – Constant cache for fast broadcast of reads from constant memory

 – Texture cache to aggregate bandwidth from texture memory

 – L1 cache to reduce latency to local or global memory

• Warp schedulers that can quickly switch contexts between threads and issue 
instructions to warps that are ready to execute

• Execution cores for integer and floating-point operations:

 – Integer and single-precision floating point operations

 – Double-precision floating point

 – Special Function Units (SFUs) for single-precision floating-point transcen-
dental functions
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The reason there are many registers and the reason the hardware can context 
switch between threads so efficiently are to maximize the throughput of the 
hardware. The GPU is designed to have enough state to cover both execution 
latency and the memory latency of hundreds of clock cycles that it may take for 
data from device memory to arrive after a read instruction is executed.

The SMs are general-purpose processors, but they are designed very differently 
than the execution cores in CPUs: They target much lower clock rates; they 
support instruction-level parallelism, but not branch prediction or speculative 
execution; and they have less cache, if they have any cache at all. For suitable 
workloads, the sheer computing horsepower in a GPU more than makes up for 
these disadvantages.

The design of the SM has been evolving rapidly since the introduction of the first 
CUDA-capable hardware in 2006, with three major revisions, codenamed Tesla, 
Fermi, and Kepler. Developers can query the compute capability by calling 
cudaGetDeviceProperties() and examining cudaDeviceProp.major 
and cudaDeviceProp.minor, or by calling the driver API function cuDevice-
ComputeCapability(). Compute capability 1.x, 2.x, and 3.x correspond to 
Tesla-class, Fermi-class, and Kepler-class hardware, respectively. Table 8.1 
summarizes the capabilities added in each generation of the SM hardware.

Table 8.1 SM Capabilities

COMPUTE 

LEVEL INTRODUCED . . . 

SM 1.1 Global memory atomics; mapped pinned memory; debuggable (e.g., breakpoint instruction)

SM 1.2 Relaxed coalescing constraints; warp voting (any() and all() intrinsics); atomic operations 
on shared memory

SM 1.3 Double precision support

SM 2.0 64-bit addressing; L1 and L2 cache; concurrent kernel execution; configurable 16K or 48K 
shared memory; bit manipulation instructions ( __clz(), __popc(), __ffs(), __brev() 
intrinsics); directed rounding for single-precision floating-point values; fused multiply-add; 
64-bit clock counter; surface load/store; 64-bit global atomic add, exchange, and compare-
and-swap; global atomic add for single-precision floating-point values; warp voting (bal-
lot() intrinsic); assertions and formatted output (printf).

SM 2.1 Function calls and indirect calls in kernels
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In Chapter 2, Figures 2.29 through 2.32 show block diagrams of different SMs. 
CUDA cores can execute integer and single-precision floating-point instructions; 
one double-precision unit implements double-precision support, if available; 
and Special Function Units implement reciprocal, recriprocal square root, sine/
cosine, and logarithm/exponential functions. Warp schedulers dispatch instruc-
tions to these execution units as the resources needed to execute the instruction 
become available.

This chapter focuses on the instruction set capabilities of the SM. As such, it 
sometimes refers to the “SASS” instructions, the native instructions into which 
ptxas or the CUDA driver translate intermediate PTX code. Developers are not 
able to author SASS code directly; instead, NVIDIA has made these instructions 
visible to developers through the cuobjdump utility so they can direct optimiza-
tions of their source code by examining the compiled microcode.

 8.1 Memory

8.1.1 REGISTERS

Each SM contains thousands of 32-bit registers that are allocated to threads as 
specified when the kernel is launched. Registers are both the fastest and most 
plentiful memory in the SM. As an example, the Kepler-class (SM 3.0) SMX con-
tains 65,536 registers or 256K, while the texture cache is only 48K.

CUDA registers can contain integer or floating-point data; for hardware capable 
of performing double-precision arithmetic (SM 1.3 and higher), the operands are 
contained in even-valued register pairs. On SM 2.0 and higher hardware, regis-
ter pairs also can hold 64-bit addresses.

Table 8.1 SM Capabilities (Continued )

COMPUTE 

LEVEL INTRODUCED . . . 

SM 3.0 Increase maximum grid size; warp shuffle; permute; 32K/32K shared memory configuration; 
configurable shared memory (32- or 64-bit mode) Bindless textures (“texture objects”); faster 
global atomics

SM 3.5 64-bit atomic min, max, AND, OR, and XOR; 64-bit funnel shift; read global memory via texture; 
dynamic parallelism
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CUDA hardware also supports wider memory transactions: The built-in int2/
float2 and int4/float4 data types, residing in aligned register pairs or 
quads, respectively, may be read or written using single 64- or 128-bit-wide 
loads or stores. Once in registers, the individual data elements can be refer-
enced as .x/.y (for int2/float2) or .x/.y/.z/.w (for int4/float4). 

Developers can cause nvcc to report the number of registers used by a kernel 
by specifying the command-line option --ptxas-options -–verbose. The 
number of registers used by a kernel affects the number of threads that can 
fit in an SM and often must be tuned carefully for optimal performance. The 
 maximum number of registers used for a compilation may be specified with 
--ptxas-options --maxregcount N. 

Register Aliasing
Because registers can hold floating-point or integer data, some intrinsics serve 
only to coerce the compiler into changing its view of a variable. The __int_
as_float() and __float_as_int() intrinsics cause a variable to “change 
personalities” between 32-bit integer and single-precision floating point.

float __int_as_float( int i );
int __float_as_int( float f );

The __double2loint(), __double2hiint(), and __hiloint2double() 
intrinsics similarly cause registers to change personality (usually in-place). 
__double_as_longlong() and __longlong_as_double() coerce register 
pairs in-place; __double2loint() and __double2hiint() return the least 
and the most significant 32 bits of the input operand, respectively; and 
__hiloint2double() constructs a double out of the high and low halves.

int double2loint( double d );
int double2hiint( double d );
int hiloint2double( int hi, int lo );
double long_as_double(long long int i );
long long int __double_as_longlong( double d );

8.1.2 LOCAL MEMORY

Local memory is used to spill registers and also to hold local variables that are 
indexed and whose indices cannot be computed at compile time. Local memory 
is backed by the same pool of device memory as global memory, so it exhibits 
the same latency characteristics and benefits as the L1 and L2 cache hierarchy 
on Fermi and later hardware. Local memory is addressed in such a way that 
the memory transactions are automatically coalesced. The hardware includes 
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special instructions to load and store local memory: The SASS variants are 
LLD/LST for Tesla and LDL/STL for Fermi and Kepler.

8.1.3 GLOBAL MEMORY

The SMs can read or write global memory using GLD/GST instructions (on 
Tesla) and LD/ST instructions (on Fermi and Kepler). Developers can use 
standard C operators to compute and dereference addresses, including pointer 
arithmetic and the dereferencing operators *, [], and ->. Operating on 64- or 
128-bit built-in data types (int2/float2/int4/float4) automatically causes 
the compiler to issue 64- or 128-bit load and store instructions. Maximum 
memory performance is achieved through coalescing of memory transactions, 
described in Section 5.2.9.

Tesla-class hardware (SM 1.x) uses special address registers to hold pointers; 
later hardware implements a load/store architecture that uses the same reg-
ister file for pointers; integer and floating-point values; and the same address 
space for constant memory, shared memory, and global memory.1

Fermi-class hardware includes several features not available on older 
hardware.

• 64-bit addressing is supported via “wide” load/store instructions in which 
addresses are held in even-numbered register pairs. 64-bit addressing is not 
supported on 32-bit host platforms; on 64-bit host platforms, 64-bit address-
ing is enabled automatically. As a result, code generated for the same kernels 
compiled for 32- and 64-bit host platforms may have different register counts 
and performance.

• The L1 cache may be configured to be 16K or 48K in size.2 (Kepler added the 
ability to split the cache as 32K L1/32K shared.) Load instructions can include 
cacheability hints (to tell the hardware to pull the read into L1 or to bypass 
the L1 and keep the data only in L2). These may be accessed via inline PTX or 
through the command line option –X ptxas –dlcm=ca (cache in L1 and L2, 
the default setting) or –X ptxas –dlcm=cg (cache only in L2).

Atomic operations (or just “atomics”) update a memory location in a way that 
works correctly even when multiple GPU threads are operating on the same 

1.  Both constant and shared memory exist in address windows that enable them to be referenced 
by 32-bit addresses even on 64-bit architectures.

2.  The hardware can change this configuration per kernel launch, but changing this state is expen-
sive and will break concurrency for concurrent kernel launches.
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memory location. The hardware enforces mutual exclusion on the memory 
location for the duration of the operation. Since the order of operations is not 
guaranteed, the operators supported generally are associative.3

Atomics first became available for global memory for SM 1.1 and greater and for 
shared memory for SM 1.2 and greater. Until the Kepler generation of hardware, 
however, global memory atomics were too slow to be useful.

The global atomic intrinsics, summarized in Table 8.2, become automatically 
available when the appropriate architecture is specified to nvcc via --gpu- 
architecture. All of these intrinsics can operate on 32-bit integers. 64-bit 
support for atomicAdd(), atomicExch(), and atomicCAS() was added 

3.  The only exception is single-precision floating-point addition. Then again, floating-point code 
generally must be robust in the face of the lack of associativity of floating-point operations; 
porting to different hardware, or even just recompiling the same code with different compiler 
options, can change the order of floating-point operations and thus the result.

Table 8.2 Atomic Operations

MNEMONIC DESCRIPTION

atomicAdd Addition

atomicSub Subtraction

atomicExch Exchange 

atomicMin Minimum

atomicMax Maximum

atomicInc Increment (add 1)

atomicDec Decrement (subtract 1)

atomicCAS Compare and swap

atomicAnd AND

atomicOr OR

atomicXor XOR
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in SM 1.2. atomicAdd() of 32-bit floating-point values (float) was added 
in SM 2.0. 64-bit support for atomicMin(), atomicMax(), atomicAnd(), 
 atomicOr(), and atomicXor() was added in SM 3.5.

NOTE

Because atomic operations are implemented using hardware in the GPU’s 
integrated memory controller, they do not work across the PCI Express 
bus and thus do not work correctly on device memory pointers that corre-
spond to host memory or peer memory.

At the hardware level, atomics come in two forms: atomic operations that return 
the value that was at the specified memory location before the operator was 
performed, and reduction operations that the developer can “fire and forget” at 
the memory location, ignoring the return value. Since the hardware can perform 
the operation more efficiently if there is no need to return the old value, the 
compiler detects whether the return value is used and, if it is not, emits different 
instructions. In SM 2.0, for example, the instructions are called ATOM and RED, 
respectively.

8.1.4 CONSTANT MEMORY

Constant memory resides in device memory, but it is backed by a different, 
read-only cache that is optimized to broadcast the results of read requests to 
threads that all reference the same memory location. Each SM contains a small, 
latency-optimized cache for purposes of servicing these read requests. Making 
the memory (and the cache) read-only simplifies cache management, since the 
hardware has no need to implement write-back policies to deal with memory 
that has been updated.

SM 2.x and subsequent hardware includes a special optimization for memory 
that is not denoted as constant but that the compiler has identified as (1) read-
only and (2) whose address is not dependent on the block or thread ID. The “load 
uniform” (LDU) instruction reads memory using the constant cache hierarchy 
and broadcasts the data to the threads.

8.1.5 SHARED MEMORY

Shared memory is very fast, on-chip memory in the SM that threads can use for 
data interchange within a thread block. Since it is a per-SM resource, shared 
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memory usage can affect occupancy, the number of warps that the SM can keep 
resident. SMs load and store shared memory with special instructions: G2R/
R2G on SM 1.x, and LDS/STS on SM 2.x and later.

Shared memory is arranged as interleaved banks and generally is optimized for 
32-bit access. If more than one thread in a warp references the same bank, a 
bank conflict occurs, and the hardware must handle memory requests consec-
utively until all requests have been serviced. Typically, to avoid bank conflicts, 
applications access shared memory with an interleaved pattern based on the 
thread ID, such as the following. 

extern __shared__ float shared[];
float data = shared[BaseIndex + threadIdx.x];

Having all threads in a warp read from the same 32-bit shared memory location 
also is fast. The hardware includes a broadcast mechanism to optimize for this 
case. Writes to the same bank are serialized by the hardware, reducing perfor-
mance. Writes to the same address cause race conditions and should be avoided.

For 2D access patterns (such as tiles of pixels in an image processing kernel), 
it’s good practice to pad the shared memory allocation so the kernel can ref-
erence adjacent rows without causing bank conflicts. SM 2.x and subsequent 
hardware has 32 banks,4 so for 2D tiles where threads in the same warp may 
access the data by row, it is a good strategy to pad the tile size to a multiple of 
33 32-bit words.

On SM 1.x hardware, shared memory is about 16K in size;5 on later hardware, 
there is a total of 64K of L1 cache that may be configured as 16K or 48K of 
shared memory, of which the remainder is used as L1 cache.6 

Over the last few generations of hardware, NVIDIA has improved the hardware’s 
handling of operand sizes other than 32 bits. On SM 1.x hardware, 8- and 16-bit 
reads from the same bank caused bank conflicts, while SM 2.x and later hard-
ware can broadcast reads of any size out of the same bank. Similarly, 64-bit 
operands (such as double) in shared memory were so much slower than 32-bit 
operands on SM 1.x that developers sometimes had to resort to storing the 
data as separate high and low halves. SM 3.x hardware adds a new feature for 

4.  SM 1.x hardware had 16 banks (memory traffic from the first 16 threads and the second 16 
threads of a warp was serviced separately), but strategies that work well on subsequent hard-
ware also work well on SM 1.x.

5.  256 bytes of shared memory was reserved for parameter passing; in SM 2.x and later, parame-
ters are passed via constant memory.

6.  SM 3.x hardware adds the ability to split the cache evenly as 32K L1/32K shared.
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kernels that predominantly use 64-bit operands in shared memory: a mode that 
increases the bank size to 64 bits. 

Atomics in Shared Memory
SM 1.2 added the ability to perform atomic operations in shared memory. Unlike 
global memory, which implements atomics using single instructions (either 
GATOM or GRED, depending on whether the return value is used), shared mem-
ory atomics are implemented with explicit lock/unlock semantics, and the com-
piler emits code that causes each thread to loop over these lock operations until 
the thread has performed its atomic operation.

Listing 8.1 gives the source code to atomic32Shared.cu, a program spe-
cifically intended to be compiled to highlight the code generation for shared 
 memory atomics. Listing 8.2 shows the resulting microcode generated for SM 
2.0. Note how the LDSLK (load shared with lock) instruction returns a predi-
cate that tells whether the lock was acquired, the code to perform the update 
is  predicated, and the code loops until the lock is acquired and the update 
performed.

The lock is performed per 32-bit word, and the index of the lock is determined 
by bits 2–9 of the shared memory address. Take care to avoid contention, or the 
loop in Listing 8.2 may iterate up to 32 times.

Listing 8.1. atomic32Shared.cu.
__global__ void
Return32( int *sum, int *out, const int *pIn )
{
    extern __shared__ int s[];
    s[threadIdx.x] = pIn[threadIdx.x];
    __syncthreads();
    (void) atomicAdd( &s[threadIdx.x], *pIn );
    __syncthreads();
    out[threadIdx.x] = s[threadIdx.x];
}

Listing 8.2 atomic32Shared.cubin (microcode compiled for SM 2.0).
code for sm_20
    Function : _Z8Return32PiS_PKi
/*0000*/     MOV R1, c [0x1] [0x100];
/*0008*/     S2R R0, SR_Tid_X;
/*0010*/     SHL R3, R0, 0x2;
/*0018*/     MOV R0, c [0x0] [0x28];
/*0020*/     IADD R2, R3, c [0x0] [0x28];
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/*0028*/     IMAD.U32.U32 RZ, R0, R1, RZ;
/*0030*/     LD R2, [R2];
/*0038*/     STS [R3], R2;
/*0040*/     SSY 0x80;
/*0048*/     BAR.RED.POPC RZ, RZ;
/*0050*/     LD R0, [R0];
/*0058*/     LDSLK P0, R2, [R3];
/*0060*/     @P0 IADD R2, R2, R0;
/*0068*/     @P0 STSUL [R3], R2;
/*0070*/     @!P0 BRA 0x58;
/*0078*/     NOP.S CC.T;
/*0080*/     BAR.RED.POPC RZ, RZ;
/*0088*/     LDS R0, [R3];
/*0090*/     IADD R2, R3, c [0x0] [0x24];
/*0098*/     ST [R2], R0;
/*00a0*/     EXIT;
    ...................................

8.1.6 BARRIERS AND COHERENCY

The familiar __syncthreads() intrinsic waits until all the threads in the 
thread block have arrived before proceeding. It is needed to maintain coher-
ency of shared memory within a thread block.7 Other, similar memory barrier 
instructions can be used to enforce some ordering on broader scopes of mem-
ory, as described in Table 8.3.

7.  Note that threads within a warp run in lockstep, sometimes enabling developers to write so-called 
“warp synchronous” code that does not call __syncthreads(). Section 7.3 describes thread and 
warp execution in detail, and Part III includes several examples of warp synchronous code.

Table 8.3 Memory Barrier Intrinsics

INTRINSIC DESCRIPTION

__syncthreads() Waits until all shared memory accesses made by the calling thread are visi-
ble to all threads in the threadblock

threadfence_block() Waits until all global and shared memory accesses made by the calling 
thread are visible to all threads in the threadblock

threadfence() Waits until all global and shared memory accesses made by the calling 
thread are visible to

• All threads in the threadblock for shared memory accesses

• All threads in the device for global memory accesses
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 8.2 Integer Support
The SMs have the full complement of 32-bit integer operations.

• Addition with optional negation of an operand for subtraction

• Multiplication and multiply-add

• Integer division

• Logical operations

• Condition code manipulation

• Conversion to/from floating point 

• Miscellaneous operations (e.g., SIMD instructions for narrow integers, popu-
lation count, find first zero)

CUDA exposes most of this functionality through standard C operators. Non-
standard operations, such as 24-bit multiplication, may be accessed using inline 
PTX assembly or intrinsic functions.

8.2.1 MULTIPLICATION

Multiplication is implemented differently on Tesla- and Fermi-class hardware. 
Tesla implements a 24-bit multiplier, while Fermi implements a 32-bit multi-
plier. As a consequence, full 32-bit multiplication on SM 1.x hardware requires 
four instructions. For performance-sensitive code targeting Tesla-class 

Table 8.3 Memory Barrier Intrinsics (Continued )

INTRINSIC DESCRIPTION

threadfence_system()
(SM 2.x only)

Waits until all global and shared memory accesses made by the calling 
thread are visible to

• All threads in the threadblock for shared memory accesses

• All threads in the device for global memory accesses

• Host threads for page-locked host memory accesses
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hardware, it is a performance win to use the intrinsics for 24-bit multiply.8 
Table 8.4 shows the intrinsics related to multiplication.

8.2.2 MISCELLANEOUS (BIT MANIPULATION)

The CUDA compiler implements a number of intrinsics for bit manipulation, as 
summarized in Table 8.5. On SM 2.x and later architectures, these intrinsics 

8.  Using __mul24() or __umul24() on SM 2.x and later hardware, however, is a performance 
penalty.

Table 8.4 Multiplication Intrinsics

INTRINSIC DESCRIPTION

__[u]mul24 Returns the least significant 32 bits of the product of the 24 least significant bits of the 
integer parameters. The 8 most significant bits of the inputs are ignored.

__[u]mulhi Returns the most significant 32 bits of the product of the inputs.

__[u]mul64hi Returns the most significant 64 bits of the products of the 64-bit inputs.

Table 8.5 Bit Manipulation Intrinsics

INTRINSIC SUMMARY DESCRIPTION

__brev(x) Bit reverse Reverses the order of bits in a word

__byte_perm(x,y,s) Permute bytes Returns a 32-bit word whose bytes were selected from 
the two inputs according to the selector parameter s

__clz(x) Count leading zeros Returns number of zero bits (0–32) before most signif-
icant set bit

__ffs(x) Find first sign bit Returns the position of the least significant set bit. 
The least significant bit is position 1. For an input of 0, 
__ffs() returns 0.

__popc(x) Population count Returns the number of set bits

__[u]sad(x,y,z) Sum of absolute 
differences

Adds |x-y| to z and returns the result
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map to single instructions. On pre-Fermi architectures, they are valid but may 
compile into many instructions. When in doubt, disassemble and look at the 
microcode! 64-bit variants have “ll” (two ells for “long long”) appended to the 
intrinsic name __clzll(), ffsll(), popcll(), brevll().

8.2.3 FUNNEL SHIFT (SM 3.5)

GK110 added a 64-bit “funnel shift” instruction that concatenates two 32-bit 
values together (the least significant and most significant halves are specified as 
separate 32-bit inputs, but the hardware operates on an aligned register pair), 
shifts the resulting 64-bit value left or right, and then returns the most signifi-
cant (for left shift) or least significant (for right shift) 32 bits.

Funnel shift may be accessed with the intrinsics given in Table 8.6. These intrin-
sics are implemented as inline device functions (using inline PTX assembler) in 
sm_35_intrinsics.h. By default, the least significant 5 bits of the shift count 
are masked off; the _lc and _rc intrinsics clamp the shift value to the range 
0..32.

Applications for funnel shift include the following.

• Multiword shift operations 

• Memory copies between misaligned buffers using aligned loads and stores

• Rotate

Table 8.6 Funnel Shift Intrinsics

INTRINSIC DESCRIPTION

__funnelshift_l(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it left by (sh&31) 
bits, and returns the most significant 32 bits 

__funnelshift_lc(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it left by 
min(sh,32) bits, and returns the most significant 32 bits

__funnelshift_r(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it right by 
(sh&31) bits, and returns the least significant 32 bits

__funnelshift_rc(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it right by 
min(sh,32) bits, and returns the least significant 32 bits
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To right-shift data sizes greater than 64 bits, use repeated __ funnelshift_r() 
calls, operating from the least significant to the most significant word. The most 
significant word of the result is computed using operator>>, which shifts 
in zero or sign bits as appropriate for the integer type. To left-shift data sizes 
greater than 64 bits, use repeated __funnelshift_l() calls, operating from 
the most significant to the least significant word. The least significant word of 
the result is computed using operator<<. If the hi and lo parameters are the 
same, the funnel shift effects a rotate operation. 

 8.3 Floating-Point Support
Fast native floating-point hardware is the raison d’être for GPUs, and in many 
ways they are equal to or superior to CPUs in their floating-point implemen-
tation. Denormals are supported at full speed,9 directed rounding may be 
specified on a per-instruction basis, and the Special Function Units deliver 
high-performance approximation functions to six popular single-precision 
transcendentals. In contrast, x86 CPUs implement denormals in microcode 
that runs perhaps 100x slower than operating on normalized floating-point 
operands. Rounding direction is specified by a control word that takes dozens of 
clock cycles to change, and the only transcendental approximation functions in 
the SSE instruction set are for reciprocal and reciprocal square root, which give 
12-bit approximations that must be refined with a Newton-Raphson iteration 
before being used.

Since GPUs’ greater core counts are offset somewhat by their lower clock 
frequencies, developers can expect at most a 10x (or thereabouts) speedup on 
a level playing field. If a paper reports a 100x or greater speedup from porting 
an optimized CPU implementation to CUDA, chances are one of the above- 
described “instruction set mismatches” played a role.

8.3.1 FORMATS

Figure 8.2 depicts the three (3) IEEE standard floating-point formats supported 
by CUDA: double precision (64-bit), single precision (32-bit), and half precision 
(16-bit). The values are divided into three fields: sign, exponent, and mantissa. 

9.  With the exception that single-precision denormals are not supported at all on SM 1.x hardware.
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For double, single, and half, the exponent fields are 11, 8, and 5 bits in size, 
respectively; the corresponding mantissa fields are 52, 23, and 10 bits. 

The exponent field changes the interpretation of the floating-point value. The 
most common (“normal”) representation encodes an implicit 1 bit into the 
mantissa and multiplies that value by 2e-bias, where bias is the value added to the 
actual exponent before encoding into the floating-point representation. The bias 
for single precision, for example, is 127.

Table 8.7 summarizes how floating-point values are encoded. For most exponent 
values (so-called “normal” floating-point values), the mantissa is assumed to 
have an implicit 1, and it is multiplied by the biased value of the exponent. The 
maximum exponent value is reserved for infinity and Not-A-Number values. 
Dividing by zero (or overflowing a division) yields infinity; performing an invalid 
operation (such as taking the square root or logarithm of a negative number) 
yields a NaN. The minimum exponent value is reserved for values too small to 
represent with the implicit leading 1. As the so-called denormals10 get closer 
to zero, they lose bits of effective precision, a phenomenon known as gradual 
underflow. Table 8.8 gives the encodings and values of certain extreme values for 
the three formats.

10.  Sometimes called subnormals.

Double

Sign

Exponent (11 bits)

Mantissa (52 bits)

Single

Sign

Exponent (8 bits)

Mantissa (23 bits)

Half

Sign

Exponent (5 bits)

Mantissa (10 bits)

Figure 8.2 Floating-point formats.
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Table 8.7 Floating-Point Representations

DOUBLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-1022(0.mantissa) Denormal

1 to 2046 Any  ±2e-1023(1.mantissa) Normal

2047 0 ±� Infinity

2047 Nonzero Not-A-Number

SINGLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-126(0.mantissa) Denormal

1 to 254 Any  ±2e-127(1.mantissa) Normal

255 0 ±� Infinity

255 Nonzero Not-A-Number

HALF PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-14(0.mantissa) Denormal

1 to 30 Any  ±2e-15(1.mantissa) Normal

31 0 ±� Infinity

31 Nonzero Not-A-Number
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Table 8.8 Floating-Point Extreme Values 

DOUBLE PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 0...0001 2-1074

Largest denormal 000F...F 2-1022(1-2-52)

Smallest normal 0010...0 2-1022

1.0 3FF0...0 1

Maximum integer 4340...0 253

Largest normal 7F7FFFFF 21024(1-2-53)

Infinity 7FF00000 Infinity

SINGLE PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 00000001 2-149

Largest denormal 007FFFFF 2-126(1-2-23)

Smallest normal 00800000 2-126

1.0 3F800000 1

Maximum integer 4B800000 224

Largest normal 7F7FFFFF 2128(1-2-24)

Infinity 7F800000 Infinity

continues

Wilt_Book.indb   247 5/22/13   11:58 AM



STREAMING MULTIPROCESSORS

248

Rounding
The IEEE standard provides for four (4) round modes. 

• Round-to-nearest-even (also called “round-to-nearest”)

• Round toward zero (also called “truncate” or “chop”)

• Round down (or “round toward negative infinity”)

• Round up (or “round toward positive infinity”)

Round-to-nearest, where intermediate values are rounded to the nearest repre-
sentable floating-point value after each operation, is by far the most commonly 
used round mode. Round up and round down (the “directed rounding modes”) 
are used for interval arithmetic, where a pair of floating-point values are used to 
bracket the intermediate result of a computation. To correctly bracket a result, 
the lower and upper values of the interval must be rounded toward negative 
infinity (“down”) and toward positive infinity (“up”), respectively.

The C language does not provide any way to specify round modes on a per- 
instruction basis, and CUDA hardware does not provide a control word to implic-
itly specify rounding modes. Consequently, CUDA provides a set of intrinsics to 
specify the round mode of an operation, as summarized in Table 8.9.

HALF PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 0001 2-24

Largest denormal 07FF 2-14(1-2-10)

Smallest normal 0800 2-14

1.0 3c00 1

Maximum integer 6800 211

Largest normal 7BFF 216(1-2-11)

Infinity 7C00 Infinity

Table 8.8 Floating-Point Extreme Values (Continued )
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Conversion
In general, developers can convert between different floating-point representa-
tions and/or integers using standard C constructs: implicit conversion or explicit 
typecasts. If necessary, however, developers can use the intrinsics listed in 
Table 8.10 to perform conversions that are not in the C language specification, 
such as those with directed rounding.

Because half is not standardized in the C programming language, CUDA 
uses unsigned short in the interfaces for __half2float() and 
__float2half(). __float2half() only supports the round-to-nearest 
rounding mode.

float __half2float( unsigned short );
unsigned short __float2half( float );

Table 8.9 Intrinsics for Rounding

INTRINSIC OPERATION

__fadd_[rn|rz|ru|rd] Addition

__fmul_[rn|rz|ru|rd] Multiplication

__fmaf_[rn|rz|ru|rd] Fused multiply-add

__frcp_[rn|rz|ru|rd] Recriprocal

__fdiv_[rn|rz|ru|rd] Division

__fsqrt_[rn|rz|ru|rd] Square root

__dadd_[rn|rz|ru|rd] Addition

__dmul_[rn|rz|ru|rd] Multiplication

__fma_[rn|rz|ru|rd] Fused multiply-add

__drcp_[rn|rz|ru|rd] Reciprocal

__ddiv_[rn|rz|ru|rd] Division

__dsqrt_[rn|rz|ru|rd] Square root
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8.3.2 SINGLE PRECISION (32-BIT)

Single-precision floating-point support is the workhorse of GPU computation. 
GPUs have been optimized to natively deliver high performance on this data 

Table 8.10 Intrinsics for Conversion

INTRINSIC OPERATION

__float2int_[rn|rz|ru|rd] float to int

__float2uint_[rn|rz|ru|rd] float to unsigned int

__int2float_[rn|rz|ru|rd] int to float

__uint2float_[rn|rz|ru|rd] unsigned int to float

__float2ll_[rn|rz|ru|rd] float to 64-bit int

__ll2float_[rn|rz|ru|rd] 64-bit int to float

__ull2float_[rn|rz|ru|rd] unsigned 64-bit int to float

__double2float_[rn|rz|ru|rd] double to float

__double2int_[rn|rz|ru|rd] double to int

__double2uint_[rn|rz|ru|rd] double to unsigned int

__double2ll_[rn|rz|ru|rd] double to 64-bit int

__double2ull_[rn|rz|ru|rd] double to 64-bit unsigned int

__int2double_rn int to double

__uint2double_rn unsigned int to double

__ll2double_[rn|rz|ru|rd] 64-bit int to double

__ull2double_[rn|rz|ru|rd] unsigned 64-bit int to double
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type,11 not only for core standard IEEE operations such as addition and multiplica-
tion, but also for nonstandard operations such as approximations to transcenden-
tals such as sin() and log(). The 32-bit values are held in the same register file 
as integers, so coercion between single-precision floating-point values and 32-bit 
integers (with __float_as_int() and __int_as_float()) is free.

Addition, Multiplication, and Multiply-Add
The compiler automatically translates +, –, and * operators on floating-point values 
into addition, multiplication, and multiply-add instructions. The __fadd_rn() and 
__fmul_rn() intrinsics may be used to suppress fusion of addition and multipli-
cation operations into multiply-add instructions.

Reciprocal and Division
For devices of compute capability 2.x and higher, the division operator is IEEE- 
compliant when the code is compiled with --prec-div=true. For devices of com-
pute capability 1.x or for devices of compute capability 2.x when the code is compiled 
with --prec-div=false, the division operator and __fdividef(x,y) have the 
same accuracy, but for 2126<y<2128, __fdividef(x,y) delivers a result of zero, 
whereas the division operator delivers the correct result. Also, for 2126<y<2128, if x is 
infinity, __fdividef(x,y) returns NaN, while the division operator returns infinity.

Transcendentals (SFU)
The Special Function Units (SFUs) in the SMs implement very fast versions of six 
common transcendental functions. 

• Sine and cosine 

• Logarithm and exponential 

• Reciprocal and reciprocal square root

Table 8.11, excerpted from the paper on the Tesla architecture12 summarizes the 
supported operations and corresponding precision. The SFUs do not implement 
full precision, but they are reasonably good approximations of these functions 
and they are fast. For CUDA ports that are significantly faster than an optimized 
CPU equivalent (say, 25x or more), the code most likely relies on the SFUs.

11.  In fact, GPUs had full 32-bit floating-point support before they had full 32-bit integer support. 
As a result, some early GPU computing literature explained how to implement integer math 
with floating-point hardware!

12.  Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified 
graphics and computing architecture. IEEE Micro, March–April 2008, p. 47.
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The SFUs are accessed with the intrinsics given in Table 8.12. Specifying the 
--fast-math compiler option will cause the compiler to substitute conven-
tional C runtime calls with the corresponding SFU intrinsics listed above.

Table 8.11 SFU Accuracy

FUNCTION ACCURACY (GOOD BITS) ULP ERROR

1/x 24.02 0.98

1/sqrt(x) 23.40 1.52

2x 22.51 1.41

log2x 22.57 n/a

sin/cos 22.47 n/a

Table 8.12 SFU Intrinsics

INTRINSIC OPERATION

__cosf(x) cos x

__exp10f(x) 10x

__expf(x) ex

__fdividef(x,y) x⁄y

__logf(x) ln x

__log2f(x) log
2
 x

__log10f(x) log
10
 x

__powf(x,y) xy

__sinf(x) sin x

__sincosf(x,sptr,cptr) *s=sin(x);
*c=cos(x);

__tanf(x) tan x
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Miscellaneous
__saturate(x) returns 0 if x<0, 1 if x>1, and x otherwise.

8.3.3 DOUBLE PRECISION (64-BIT)

Double-precision floating-point support was added to CUDA with SM 1.3 (first 
implemented in the GeForce GTX 280), and much improved double-precision 
support (both functionality and performance) became available with SM 2.0. 
CUDA’s hardware support for double precision features full-speed denormals 
and, starting in SM 2.x, a native fused multiply-add instruction (FMAD), compli-
ant with IEEE 754 c. 2008, that performs only one rounding step. Besides being 
an intrinsically useful operation, FMAD enables full accuracy on certain func-
tions that are converged with the Newton-Raphson iteration.

As with single-precision operations, the compiler automatically translates stan-
dard C operators into multiplication, addition, and multiply-add instructions. The 
__dadd_rn() and __dmul_rn() intrinsics may be used to suppress fusion of 
addition and multiplication operations into multiply-add instructions.

8.3.4 HALF PRECISION (16-BIT)

With 5 bits of exponent and 10 bits of significand, half values have enough pre-
cision for HDR (high dynamic range) images and can be used to hold other types 
of values that do not require float precision, such as angles. Half precision 
values are intended for storage, not computation, so the hardware only provides 
instructions to convert to/from 32-bit.13 These instructions are exposed as the 
__halftofloat() and __floattohalf() intrinsics.

float __halftofloat( unsigned short );
unsigned short __floattohalf( float );

These intrinsics use unsigned short because the C language has not stan-
dardized the half floating-point type.

8.3.5 CASE STUDY: float�half CONVERSION

Studying the float�half conversion operation is a useful way to learn the 
details of floating-point encodings and rounding. Because it’s a simple unary 

13.  half floating-point values are supported as a texture format, in which case the TEX intrinsics 
return float and the conversion is automatically performed by the texture hardware.
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operation, we can focus on the encoding and rounding without getting distracted 
by the details of floating-point arithmetic and the precision of intermediate 
representations.

When converting from float to half, the correct output for any float too large 
to represent is half infinity. Any float too small to represent as a half (even 
a denormal half) must be clamped to 0.0. The maximum float that rounds 
to half 0.0 is 0x32FFFFFF, or 2.98-8, while the smallest float that rounds 
to half infinity is 65520.0. float values inside this range can be converted to 
half by propagating the sign bit, rebiasing the exponent (since float has an 8-bit 
exponent biased by 127 and half has a 5-bit exponent biased by 15), and rounding 
the float mantissa to the nearest half mantissa value. Rounding is straight-
forward in all cases except when the input value falls exactly between the two 
possible output values. When this is the case, the IEEE standard specifies round-
ing to the “nearest even” value. In decimal arithmetic, this would mean rounding 
1.5 to 2.0, but also rounding 2.5 to 2.0 and (for example) rounding 0.5 to 0.0.

Listing 8.3 shows a C routine that exactly replicates the float-to-half con-
version operation, as implemented by CUDA hardware. The variables exp and 
mag contain the input exponent and “magnitude,” the mantissa and exponent 
together with the sign bit masked off. Many operations, such as comparisons 
and rounding operations, can be performed on the magnitude without separat-
ing the exponent and mantissa.

The macro LG_MAKE_MASK, used in Listing 8.3, creates a mask with a given 
bit count: #define LG_MAKE_MASK(bits) ((1<<bits)-1). A volatile 
union is used to treat the same 32-bit value as float and unsigned int; 
idioms such as *((float *) (&u)) are not portable. The routine first propa-
gates the input sign bit and masks it off the input.

After extracting the magnitude and exponent, the function deals with the special 
case when the input float is INF or NaN, and does an early exit. Note that INF 
is signed, but NaN has a canonical unsigned value. Lines 50–80 clamp the input 
float value to the minimum or maximum values that correspond to represent-
able half values and recompute the magnitude for clamped values. Don’t be 
fooled by the elaborate code constructing f32MinRInfin and f32MaxRf16_
zero; those are constants with the values 0x477ff000 and 0x32ffffff, 
respectively.

The remainder of the routine deals with the cases of output normal and denor-
mal (input denormals are clamped in the preceding code, so mag corresponds to 
a normal float). As with the clamping code, f32Minf16Normal is a constant, 
and its value is 0x38ffffff.
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To construct a normal, the new exponent must be computed (lines 92 and 93) 
and the correctly rounded 10 bits of mantissa shifted into the output. To con-
struct a denormal, the implicit 1 must be OR’d into the output mantissa and the 
resulting mantissa shifted by the amount corresponding to the input exponent. 
For both normals and denormals, the rounding of the output mantissa is accom-
plished in two steps. The rounding is accomplished by adding a mask of 1’s that 
ends just short of the output’s LSB, as seen in Figure 8.3.

This operation increments the output mantissa if bit 12 of the input is set; if the 
input mantissa is all 1’s, the overflow causes the output exponent to correctly 
increment. If we added one more 1 to the MSB of this adjustment, we’d have ele-
mentary school–style rounding where the tiebreak goes to the larger number. 
Instead, to implement round-to-nearest even, we conditionally increment the 
output mantissa if the LSB of the 10-bit output is set (Figure 8.4). Note that these 
steps can be performed in either order or can be reformulated in many different 
ways.

Listing 8.3 ConvertToHalf().
/*
 * exponent shift and mantissa bit count are the same.
 *    When we are shifting, we use [f16|f32]ExpShift
 *    When referencing the number of bits in the mantissa, 
 *        we use [f16|f32]MantissaBits
 */

Round-to-nearest

1 1 1 1 1 1 1 1 1 1 11

10-bit field

Figure 8.3 Rounding mask (half).

Increment mantissa if output LSB is 1

10-bit field

Figure 8.4 Round-to-nearest-even (half).
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const int f16ExpShift = 10;
const int f16MantissaBits = 10;

const int f16ExpBias = 15;
const int f16MinExp = -14;
const int f16MaxExp = 15;
const int f16SignMask = 0x8000;

const int f32ExpShift = 23;
const int f32MantissaBits = 23;
const int f32ExpBias = 127;
const int f32SignMask = 0x80000000;

unsigned short 
ConvertFloatToHalf( float f ) 
{
    /*
     * Use a volatile union to portably coerce 
     * 32-bit float into 32-bit integer
     */
    volatile union {
        float f;
        unsigned int u;
    } uf;
    uf.f = f;

    // return value: start by propagating the sign bit.
    unsigned short w = (uf.u >> 16) & f16SignMask;
    
    // Extract input magnitude and exponent
    unsigned int mag = uf.u & ~f32SignMask;
    int exp = (int) (mag >> f32ExpShift) - f32ExpBias;

    // Handle float32 Inf or NaN
    if ( exp == f32ExpBias+1 ) {    // INF or NaN

        if ( mag & LG_MAKE_MASK(f32MantissaBits) )
            return 0x7fff; // NaN

        // INF - propagate sign
        return w|0x7c00;
    }

    /*
     * clamp float32 values that are not representable by float16
     */
    {
        // min float32 magnitude that rounds to float16 infinity

        unsigned int f32MinRInfin = (f16MaxExp+f32ExpBias) << 
            f32ExpShift;
        f32MinRInfin |= LG_MAKE_MASK( f16MantissaBits+1 ) << 
            (f32MantissaBits-f16MantissaBits-1);

        if (mag > f32MinRInfin)
            mag = f32MinRInfin;
    }
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    {
        // max float32 magnitude that rounds to float16 0.0

        unsigned int f32MaxRf16_zero = f16MinExp+f32ExpBias-
            (f32MantissaBits-f16MantissaBits-1);
        f32MaxRf16_zero <<= f32ExpShift;
        f32MaxRf16_zero |= LG_MAKE_MASK( f32MantissaBits );

        if (mag < f32MaxRf16_zero) 
            mag = f32MaxRf16_zero;
    }
    
    /*
     * compute exp again, in case mag was clamped above
     */
    exp = (mag >> f32ExpShift) - f32ExpBias;

    // min float32 magnitude that converts to float16 normal
    unsigned int f32Minf16Normal = ((f16MinExp+f32ExpBias)<<
        f32ExpShift);
    f32Minf16Normal |= LG_MAKE_MASK( f32MantissaBits );
    if ( mag >= f32Minf16Normal ) { 
        //
        // Case 1: float16 normal
        //

        // Modify exponent to be biased for float16, not float32
        mag += (unsigned int) ((f16ExpBias-f32ExpBias)<<
            f32ExpShift);

        int RelativeShift = f32ExpShift-f16ExpShift;

        // add rounding bias
        mag += LG_MAKE_MASK(RelativeShift-1);

        // round-to-nearest even
        mag += (mag >> RelativeShift) & 1;

        w |= mag >> RelativeShift; 
    } 
    else { 
        /*
         * Case 2: float16 denormal
         */

        // mask off exponent bits - now fraction only
        mag &= LG_MAKE_MASK(f32MantissaBits);

        // make implicit 1 explicit
        mag |= (1<<f32ExpShift);

        int RelativeShift = f32ExpShift-f16ExpShift+f16MinExp-exp; 

        // add rounding bias
        mag += LG_MAKE_MASK(RelativeShift-1);
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        // round-to-nearest even
        mag += (mag >> RelativeShift) & 1;

        w |= mag >> RelativeShift;
    } 
    return w; 
}

In practice, developers should convert float to half by using the 
__floattohalf() intrinsic, which the compiler translates to a single F2F 
machine instruction. This sample routine is provided purely to aid in under-
standing floating-point layout and rounding; also, examining all the special-case 
code for INF/NAN and denormal values helps to illustrate why these features of 
the IEEE spec have been controversial since its inception: They make hardware 
slower, more costly, or both due to increased silicon area and engineering effort 
for validation.

In the code accompanying this book, the ConvertFloatToHalf() routine in 
Listing 8.3 is incorporated into a program called float_to_float16.cu that 
tests its output for every 32-bit floating-point value.

8.3.6 MATH LIBRARY

CUDA includes a built-in math library modeled on the C runtime library, with 
a few small differences: CUDA hardware does not include a rounding mode 
register (instead, the round mode is encoded on a per-instruction basis),14 so 
functions such as rint() that reference the current rounding mode always 
round-to-nearest. Additionally, the hardware does not raise floating-point 
exceptions; results of aberrant operations, such as taking the square root of a 
negative number, are encoded as NaNs.

Table 8.13 lists the math library functions and the maximum error in ulps for 
each function. Most functions that operate on float have an “f” appended to 
the function name—for example, the functions that compute the sine function 
are as follows.

double sin( double angle );
float sinf( float angle );

These are denoted in Table 8.13 as, for example, sin[f].

14.  Encoding a round mode per instruction and keeping it in a control register are not irreconcil-
able. The Alpha processor had a 2-bit encoding to specify the round mode per instruction, one 
setting of which was to use the rounding mode specified in a control register! CUDA hardware 
just uses a 2-bit encoding for the four round modes specified in the IEEE specification.
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Table 8.13 Math Library

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

x+y Addition x+y 01 0

x*y Multiplication x*y 01 0

x/y Division x/y 22 0

1/x Reciprocal 1/x 12 0

acos[f](x) Inverse cosine cos–1 x 3 2

acosh[f](x) Inverse hyperbolic cosine
ln x x 12( )+ +

4 2

asin[f](x) Inverse sine sin–1 x 4 2

asinh[f](x) Inverse hyperbolic sine 
sign(x) ln | x | 1 x2( )+ +

3 2

atan[f](x) Inverse tangent tan–1 x 2 2

atan2[f](y,x) Inverse tangent of y/x

tan x
y

x

1 ⎛
⎝⎜

⎞
⎠⎟

−

3 2

atanh[f](x) Inverse hyperbolic tangent tanh–1 3 2

cbrt[f](x) Cube root
x3

1 1

ceil[f](x) “Ceiling,” nearest integer greater than 
or equal to x x⎡⎢ ⎤⎥

0

copysign[f](x,y) Sign of y, magnitude of x n/a

cos[f](x) Cosine cos x 2 1

cosh[f](x) Hyperbolic cosine e e

2

x x+ − 2

cospi[f](x) Cosine, scaled by � cos �x 2

continues
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

erf[f](x) Error function 2
e t

0

x 2

∫
π

−
3 2

erfc[f](x) Complementary error function
1

2
e t

0

x 2

∫−
π

−
6 4

erfcinv[f](y) Inverse complementary error 
function

Return x 
for which 
y=1-erff(x)

7 8

erfcx[f](x) Scaled error function
ex

2

 (erff(x))
6 3

erfinv[f](y) Inverse error function Return x 
for which 
y=erff(x)

3 5

exp[f](x) Natural exponent ex 2 1

exp10[f](x) Exponent (base 10) 10x 2 1

exp2[f](x) Exponent (base 2) 2x 2 1

expm1[f](x) Natural exponent, minus one ex – 1 1 1

fabs[f](x) Absolute value |x| 0 0

fdim[f](x,y) Positive difference
x y, x y

0, x y

NAN, x or y NaN

⎧

⎨
⎪

⎩
⎪

− >

+ ≤

0 0

floor[f](x) “Floor,” nearest integer less than or 
equal to x x⎢⎣ ⎥⎦

0 0

fma[f](x,y,z) Multiply-add xy + z 0 0

fmax[f](x,y) Maximum
x, x y or isNaN(y)

y, otherwise

⎧
⎨
⎩

>
0 0

Table 8.13 Math Library (Continued )
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

fmin[f](x,y) Minimum
x, x y or isNaN(y)

y, otherwise

⎧
⎨
⎩

<
0 0

fmod[f](x,y) Floating-point remainder 0 0

frexp[f](x,exp) Fractional component 0 0

hypot[f](x,y) Length of hypotenuse
x y2 2+

3 2

ilogb[f](x) Get exponent 0 0

isfinite(x) Nonzero if x is not  ±INF n/a

isinf(x) Nonzero if x is  ±INF n/a

isnan(x) Nonzero if x is a NaN n/a

j0[f](x) Bessel function of the first kind (n=0) J0(x) 93 73

j1[f](x) Bessel function of the first kind (n=1) J1(x) 93 73

jn[f](n,x) Bessel function of the first kind Jn(x) *

ldexp[f](x,exp) Scale by power of 2 x2exp 0 0

lgamma[f](x) Logarithm of gamma function
ln (x)( )Γ

64 44

llrint[f](x) Round to long long 0 0

llround[f](x) Round to long long 0 0

lrint[f](x) Round to long 0 0

lround[f](x) Round to long 0 0

log[f](x) Natural logarithm ln(x) 1 1

log10[f](x) Logarithm (base 10) log10 x 3 1

log1p[f](x) Natural logarithm of x+1 ln(x + 1) 2 1

continues

Table 8.13 Math Library (Continued )
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

log2[f](x) Logarithm (base 2) log2 x 3 1

logb[f](x) Get exponent 0 0

modff(x,iptr) Split fractional and integer parts 0 0

nan[f](cptr) Returns NaN NaN n/a

nearbyint[f](x) Round to integer 0 0

nextafter[f](x,y) Returns the FP value closest to x in 
the direction of y

n/a

normcdf[f](x) Normal cumulative distribution 6 5

normcdinv[f](x) Inverse normal cumulative 
distribution

5 8

pow[f](x,y) Power function xy 8 2

rcbrt[f](x) Inverse cube root
1

x3

2 1

remainder[f](x,y) Remainder 0 0

remquo[f]
(x,y,iptr)

Remainder (also returns quotient) 0 0

rsqrt[f](x) Reciprocal
1

x

2 1

rint[f](x) Round to nearest int 0 0

round[f](x) Round to nearest int 0 0

scalbln[f](x,n) Scale x by 2n (n is long int) x2n 0 0

scalbn[f](x,n) Scale x by 2n (n is int) x2n 0 0

signbit(x) Nonzero if x is negative n/a 0

sin[f](x) Sine sin x 2 1

Table 8.13 Math Library (Continued )
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

sincos[f](x,s,c) Sine and cosine *s=sin(x);

*c=cos(x);

2 1

sincospi[f](x,s,c) Sine and cosine *s=sin(πx);

*c=cos(πx);

2 1

sinh[f](x) Hyperbolic sine
e e

2

x x− − 3 1

sinpi[f](x) Sine, scaled by � sin �x 2 1

sqrt[f](x) Square root
x

35 0

tan[f](x) Tangent tan x 4 2

tanh[f](x) Hyperbolic tangent sinh x

cosh x

2 1

tgamma[f](x) True gamma function �(x) 11 8

trunc[f](x) Truncate (round to integer toward 
zero)

0 0

y0[f](x) Bessel function of the second kind 
(n=0)

Y0(x) 93 73

y1[f](x) Bessel function of the second kind 
(n=1)

Y1(x) 93 73

yn[f](n,x) Bessel function of the second kind Yn(x) **

*  For the Bessel functions jnf(n,x) and jn(n,x), for n=128 the maximum absolute error is 2.2×10-6 and 5×10-12, respectively.

**  For the Bessel function ynf(n,x), the error is 2 2.5n⎡⎢ ⎤⎥+  for |x|; otherwise, the maximum absolute error is 2.2×10-6 
for n=128. For yn(n,x), the maximum absolute error is 5×10-12.

1.  On SM 1.x class hardware, the precision of addition and multiplication operation that are merged into FMAD instructions will 
suffer due to truncation of the intermediate mantissa.

2.  On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying --prec-div=true.

3.  For float, the error is 9 ulps for |x|<8; otherwise, the maximum absolute error is 2.2×10-6. For double, the error is 7 ulps for 
|x|<8; otherwise, the maximum absolute error is 5×10-12.

4.  The error for lgammaf() is greater than 6 inside the interval –10.001, –2.264. The error for lgamma() is greater than 4 inside 
the interval –11.001, –2.2637.

5.  On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying --prec-sqrt=true.

Table 8.13 Math Library (Continued )
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Conversion to Integer
According to the C runtime library definition, the nearbyint() and rint() 
functions round a floating-point value to the nearest integer using the “current 
rounding direction,” which in CUDA is always round-to-nearest-even. In the C 
runtime, nearbyint() and rint() differ only in their handling of the INEXACT 
exception. But since CUDA does not raise floating-point exceptions, the func-
tions behave identically.

round() implements elementary school–style rounding: For floating-point 
values halfway between integers, the input is always rounded away from zero. 
NVIDIA recommends against using this function because it expands to eight (8) 
instructions as opposed to one for rint() and its variants. trunc() truncates 
or “chops” the floating-point value, rounding toward zero. It compiles to a single 
instruction.

Fractions and Exponents
float frexpf(float x, int *eptr);

frexpf() breaks the input into a floating-point significand in the range [0.5, 1.0) 
and an integral exponent for 2, such that

x Significand 2Exponent= ⋅

float logbf( float x );

logbf() extracts the exponent from x and returns it as a floating-point value. 
It is equivalent to floorf(log2f(x)), except it is faster. If x is a denormal, 
logbf() returns the exponent that x would have if it were normalized.

float ldexpf( float x, int exp );
float scalbnf( float x, int n );
float scanblnf( float x, long n );

ldexpf(), scalbnf(), and scalblnf() all compute x2n by direct manipula-
tion of floating-point exponents. 

Floating-Point Remainder
modff() breaks the input into fractional and integer parts.

float modff( float x, float *intpart );

The return value is the fractional part of x, with the same sign.
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remainderf(x,y) computes the floating-point remainder of dividing x by y. 
The return value is x-n*y, where n is x/y, rounded to the nearest integer. If |x –
ny| = 0.5, n is chosen to be even.

float remquof(float x, float y, int *quo);

computes the remainder and passes back the lower bits of the integral quotient 
x/y, with the same sign as x/y.

Bessel Functions
The Bessel functions of order n relate to the differential equation

x d y
dx

x dy
dx

x n y( ) 02
2

2
2 2+ + − =

n can be a real number, but for purposes of the C runtime, it is a nonnegative 
integer.

The solution to this second-order ordinary differential equation combines Bes-
sel functions of the first kind and of the second kind.

y x c J x c Y x( ) ( ) ( )n n1 2
= +

The math runtime functions jn[f]() and yn[f]() compute Jn(x) and Yn(x), 
respectively. j0f(), j1f(), y0f(), and y1f() compute these functions for the 
special cases of n=0 and n=1.

Gamma Function
The gamma function � is an extension of the factorial function, with its argu-
ment shifted down by 1, to real numbers. It has a variety of definitions, one of 
which is as follows.

x e t dt( ) t x 1
0∫Γ = − −∞

The function grows so quickly that the return value loses precision for rel-
atively small input values, so the library provides the lgamma() function, 
which returns the natural logarithm of the gamma function, in addition to the 
tgamma() (“true gamma”) function.
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8.3.7 ADDITIONAL READING

Goldberg’s survey (with the captivating title “What Every Computer Scientist 
Should Know About Floating Point Arithmetic”) is a good introduction to the 
topic.

http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

Nathan Whitehead and Alex Fit-Florea of NVIDIA have coauthored a white paper 
entitled “Precision & Performance: Floating Point and IEEE 754 Compliance for 
NVIDIA GPUs.”

http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-
Floating-Point.pdf

Increasing Effective Precision
Dekker and Kahan developed methods to almost double the effective preci-
sion of floating-point hardware using pairs of numbers in exchange for a slight 
reduction in exponent range (due to intermediate underflow and overflow at the 
far ends of the range). Some papers on this topic include the following.

Dekker, T.J. Point technique for extending the available precision. Numer. Math. 
18, 1971, pp. 224–242.

Linnainmaa, S. Software for doubled-precision floating point computations. ACM 
TOMS 7, pp. 172–283 (1981).

Shewchuk, J.R. Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete & Computational Geometry 18, 1997, pp. 305–363.

Some GPU-specific work on this topic has been done by Andrew Thall, Da Graça, 
and Defour.

Guillaume, Da Graça, and David Defour. Implementation of float-float operators 
on graphics hardware, 7th Conference on Real Numbers and Computers, RNC7 
(2006).

http://hal.archives-ouvertes.fr/docs/00/06/33/56/PDF/float-float.pdf 

Thall, Andrew. Extended-precision floating-point numbers for GPU computa-
tion. 2007.

http://andrewthall.org/papers/df64_qf128.pdf
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 8.4 Conditional Code
The hardware implements “condition code” or CC registers that contain the usual 
4-bit state vector (sign, carry, zero, overflow) used for integer comparison. These 
CC registers can be set using comparison instructions such as ISET, and they 
can direct the flow of execution via predication or divergence. Predication allows 
(or suppresses) the execution of instructions on a per-thread basis within a warp, 
while divergence is the conditional execution of longer instruction sequences. 
Because the processors within an SM execute instructions in SIMD fashion at 
warp granularity (32 threads at a time), divergence can result in fewer instruc-
tions executed, provided all threads within a warp take the same code path.

8.4.1 PREDICATION

Due to the additional overhead of managing divergence and convergence, the 
compiler uses predication for short instruction sequences. The effect of most 
instructions can be predicated on a condition; if the condition is not TRUE, the 
instruction is suppressed. This suppression occurs early enough that predi-
cated execution of instructions such as load/store and TEX inhibits the memory 
traffic that the instruction would otherwise generate. Note that predication has 
no effect on the eligibility of memory traffic for global load/store coalescing. 
The addresses specified to all load/store instructions in a warp must reference 
consecutive memory locations, even if they are predicated.

Predication is used when the number of instructions that vary depending on 
a condition is small; the compiler uses heuristics that favor predication up to 
about 7 instructions. Besides avoiding the overhead of managing the branch 
synchronization stack described below, predication also gives the compiler 
more optimization opportunities (such as instruction scheduling) when emitting 
microcode. The ternary operator in C (? :) is considered a compiler hint to favor 
predication.

Listing 8.2 gives an excellent example of predication, as expressed in micro-
code. When performing an atomic operation on a shared memory location, the 
compiler emits code that loops over the shared memory location until it has 
successfully performed the atomic operation. The LDSLK (load shared and lock) 
instruction returns a condition code that tells whether the lock was acquired. 
The instructions to perform the operation then are predicated on that condition 
code.
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/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;

This code fragment also highlights how predication and branching sometimes 
work together. The last instruction, a conditional branch to attempt to reacquire 
the lock if necessary, also is predicated. 

8.4.2 DIVERGENCE AND CONVERGENCE

Predication works well for small fragments of conditional code, especially if 
statements with no corresponding else. For larger amounts of conditional 
code, predication becomes inefficient because every instruction is executed, 
regardless of whether it will affect the computation. When the larger number of 
instructions causes the costs of predication to exceed the benefits, the compiler 
will use conditional branches. When the flow of execution within a warp takes 
different paths depending on a condition, the code is called divergent.

NVIDIA is close-mouthed about the details of how their hardware supports diver-
gent code paths, and it reserves the right to change the hardware implementa-
tion between generations. The hardware maintains a bit vector of active threads 
within each warp. For threads that are marked inactive, execution is suppressed 
in a way similar to predication. Before taking a branch, the compiler executes a 
special instruction to push this active-thread bit vector onto a stack. The code is 
then executed twice, once for threads for which the condition was TRUE, then for 
threads for which the predicate was FALSE. This two-phased execution is man-
aged with a branch synchronization stack, as described by Lindholm et al.15

If threads of a warp diverge via a data-dependent conditional branch, the warp 
serially executes each branch path taken, disabling threads that are not on that 
path, and when all paths complete, the threads reconverge to the original execu-
tion path. The SM uses a branch synchronization stack to manage independent 
threads that diverge and converge. Branch divergence only occurs within a warp; 
different warps execute independently regardless of whether they are executing 
common or disjoint code paths.

The PTX specification makes no mention of a branch synchronization stack, so 
the only publicly available evidence of its existence is in the disassembly output 
of cuobjdump. The SSY instruction pushes a state such as the program counter 
and active thread mask onto the stack; the .S instruction prefix pops this state 

15.  Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified 
graphics and computing architecture. IEEE Micro, March–April 2008, pp. 39–55.
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and, if any active threads did not take the branch, causes those threads to exe-
cute the code path whose state was snapshotted by SSY.

SSY/.S is only necessary when threads of execution may diverge, so if the 
compiler can guarantee that threads will stay uniform in a code path, you may 
see branches that are not bracketed by SSY/.S. The important thing to realize 
about branching in CUDA is that in all cases, it is most efficient for all threads 
within a warp to follow the same execution path.

The loop in Listing 8.2 also includes a good self-contained example of diver-
gence and convergence. The SSY instruction (offset 0x40) and NOP.S instruction 
(offset 0x78) bracket the points of divergence and convergence, respectively. 
The code loops over the LDSLK and subsequent predicated instructions, retiring 
active threads until the compiler knows that all threads will have converged and 
the branch synchronization stack can be popped with the NOP.S instruction.

/*0040*/ SSY 0x80;
/*0048*/ BAR.RED.POPC RZ, RZ;
/*0050*/ LD R0, [R0];
/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;
/*0078*/ NOP.S CC.T;

8.4.3 SPECIAL CASES: MIN, MAX, AND ABSOLUTE VALUE

Some conditional operations are so common that they are supported natively 
by the hardware. Minimum and maximum operations are supported for both 
integer and floating-point operands and are translated to a single instruction. 
Additionally, floating-point instructions include modifiers that can negate or take 
the absolute value of a source operand.

The compiler does a good job of detecting when min/max operations are being 
expressed, but if you want to take no chances, call the min()/max() intrinsics 
for integers or fmin()/fmax() for floating-point values.

 8.5 Textures and Surfaces
The instructions that read and write textures and surfaces refer to much more 
implicit state than do other instructions; parameters such as the base address, 
dimensions, format, and interpretation of the texture contents are contained in 
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a header, an intermediate data structure whose software abstraction is called a 
texture reference or surface reference. As developers manipulate the texture or 
surface references, the CUDA runtime and driver must translate those changes 
into the headers, which the texture or surface instruction references as an 
index.16

Before launching a kernel that operates on textures or surfaces, the driver must 
ensure that all this state is set correctly on the hardware. As a result, launching 
such kernels may take longer. Texture reads are serviced through a specialized 
cache subsystem that is separate from the L1/L2 caches in Fermi, and also sep-
arate from the constant cache. Each SM has an L1 texture cache, and the TPCs 
(texture processor clusters) or GPCs (graphics processor clusters) each addi-
tionally have L2 texture cache. Surface reads and writes are serviced through 
the same L1/L2 caches that service global memory traffic.

Kepler added two technologies of note with respect to textures: the ability to 
read from global memory via the texture cache hierarchy without binding a tex-
ture reference, and the ability to specify a texture header by address rather than 
by index. The latter technology is known as “bindless textures.”

On SM 3.5 and later hardware, reading global memory via the texture cache can 
be requested by using const __restrict pointers or by explicitly invoking the 
ldg() intrinsics in sm_35_intrinsics.h.

 8.6 Miscellaneous Instructions
8.6.1 WARP-LEVEL PRIMITIVES

It did not take long for the importance of warps as a primitive unit of execution 
(naturally residing between threads and blocks) to become evident to CUDA pro-
grammers. Starting with SM 1.x, NVIDIA began adding instructions that specifi-
cally operate on warps.

Vote
That CUDA architectures are 32-bit and that warps are comprised of 32 threads 
made an irresistible match to instructions that can evaluate a condition and 

16.  SM 3.x added texture objects, which enable texture and surface headers to be referenced by 
address rather than an index. Previous hardware generations could reference at most 128 
textures or surfaces in a kernel, but with SM 3.x the number is limited only by memory.
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broadcast a 1-bit result to every thread in the warp. The VOTE instruction 
(first available in SM 1.2) evaluates a condition and broadcasts the result to all 
threads in the warp. The __any() intrinsic returns 1 if the predicate is true for 
any of the 32 threads in the warp. The __all() intrinsic returns 1 if the predi-
cate is true for all of the 32 threads in the warp.

The Fermi architecture added a new variant of VOTE that passes back the pred-
icate result for every thread in the warp. The __ballot() intrinsic evaluates 
a condition for all threads in the warp and returns a 32-bit value where each bit 
gives the condition for the corresponding thread in the warp. 

Shuffle
Kepler added shuffle instructions that enable data interchange between threads 
within a warp without staging the data through shared memory. Although these 
instructions execute with the same latency as shared memory, they have the 
benefit of doing the exchange without performing both a read and a write, and 
they can reduce shared memory usage.

The following instruction is wrapped in a number of device functions that use 
inline PTX assembly defined in sm_30_intrinsics.h.

int __shfl(int var, int srcLane, int width=32);
int __shfl_up(int var, unsigned int delta, int width=32);
int __shfl_down(int var, unsigned int delta, int width=32);
int __shfl_xor(int var, int laneMask, int width=32);

The width parameter, w hich defaults to the warp width of 32, must be a power 
of 2 in the range 2..32. It enables subdivision of the warp into segments; if 
width<32, each subsection of the warp behaves as a separate entity with a 
starting logical lane ID of 0. A thread may only exchange data with other threads 
in its subsection.

__shfl() returns the value of var held by the thread whose ID is given by 
srcLane. If srcLane is outside the range 0..width-1, the thread’s own value 
of var is returned. This variant of the instruction can be used to broadcast 
values within a warp.   __shfl_up() calculates a source lane ID by subtracting 
delta from the caller’s lane ID and clamping to the range 0..width-1. 
__shfl_down() calculates a source lane ID by adding delta to the caller’s 
lane ID.

__shfl_up()and __shfl_down()enable warp-level scan and reverse 
scan operations, respectively. __shfl_xor() calculates a source lane ID by 
performing a bitwise XOR of the caller’s lane ID with laneMask; the value of 
var held by the resulting lane ID is returned. This variant can be used to do a 
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reduction across the warps (or subwarps); each thread computes the reduction 
using a differently ordered series of the associative operator. 

8.6.2 BLOCK-LEVEL PRIMITIVES

The __syncthreads() intrinsic serves as a barrier. It causes all threads to 
wait until every thread in the threadblock has arrived at the __syncthreads(). 
The Fermi instruction set (SM 2.x) added several new block-level barriers that 
aggregate information about the threads in the threadblock.

• __syncthreads_count(): evaluates a predicate and returns the sum of 
threads for which the predicate was true

• __syncthreads_or(): returns the OR of all the inputs across the 
threadblock

• __syncthreads_and(): returns the AND of all the inputs across the 
threadblock

8.6.3 PERFORMANCE COUNTER

Developers can define their own set of performance counters and increment 
them in live code with the __prof_trigger() intrinsic.

void __prof_trigger(int counter);

Calling this function increments the corresponding counter by 1 per warp. 
counter must be in the range 0..7; counters 8..15 are reserved. The value of the 
counters may be obtained by listing prof_trigger_00..prof_trigger_07 
in the profiler configuration file.

8.6.4 VIDEO INSTRUCTIONS

The video instructions described in this section are accessible only via the inline 
PTX assembler. Their basic functionality is described here to help developers to 
decide whether they might be beneficial for their application. Anyone intending 
to use these instructions, however, should consult the PTX ISA specification. 

Scalar Video Instructions
The scalar video instructions, added with SM 2.0 hardware, enable  efficient 
operations on the short (8- and 16-bit) integer types needed for video 
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processing. As described in the PTX 3.1 ISA Specification, the format of these 
instructions is as follows. 

vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel}; 
vop.dtype.atype.btype{.sat}.secop d, a{.asel}, b{.bsel}, c; 

The source and destination operands are all 32-bit registers. dtype, atype, 
and btype may be .u32 or .s32 for unsigned and signed 32-bit integers, 
respectively. The asel/bsel specifiers select which 8- or 16-bit value to 
extract from the source operands: b0, b1, b2, and b3 select bytes (numbering 
from the least significant), and h0/h1 select the least significant and most sig-
nificant 16 bits, respectively.

Once the input values are extracted, they are sign- or zero-extended internally 
to signed 33-bit integers, and the primary operation is performed, producing a 
34-bit intermediate result whose sign depends on dtype. Finally, the result is 
clamped to the output range, and one of the following operations is performed.

1. Apply a second operation (add, min or max) to the intermediate result and a 
third operand. 

2. Truncate the intermediate result to an 8- or 16-bit value and merge into a 
specified position in the third operand to produce the final result. 

The lower 32 bits are then written to the destination operand.

The vset instruction performs a comparison between the 8-, 16-, or 32-bit input 
operands and generates the corresponding predicate (1 or 0) as output. The PTX 
scalar video instructions and the corresponding operations are given in Table 8.14.

Table 8.14 Scalar Video Instructions.

MNEMONIC OPERATION

vabsdiff abs(a-b)

vadd a+b

vavrg (a+b)/2

vmad a*b+c

vmax max(a,b)

continues
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Vector Video Instructions (SM 3.0 only)
These instructions, added with SM 3.0, are similar to the scalar video instructions 
in that they promote the inputs to a canonical integer format, perform the core 
operation, and then clamp and optionally merge the output. But they deliver higher 
performance by operating on pairs of 16-bit values or quads of 8-bit values.

Table 8.15 summarizes the PTX instructions and corresponding operations 
implemented by these instructions. They are most useful for video processing 
and certain image processing operations (such as the median filter).

Table 8.14 Scalar Video Instructions. (Continued )

MNEMONIC OPERATION

vmin min(a,b)

vset Compare a and b

vshl a<<b

vshr a>>b

vsub a-b

Table 8.15 Vector Video Instructions

MNEMONIC OPERATION

vabsdiff[2|4] abs(a-b)

vadd[2|4] a+b

vavrg[2|4] (a+b)/2

vmax[2|4] max(a,b)

vmin[2|4] min(a,b)

vset[2|4] Compare a and b

vsub[2|4] a-b

Wilt_Book.indb   274 5/22/13   11:58 AM



275

   8.7 INSTRUCTION SETS 

8.6.5 SPECIAL REGISTERS

Many special registers are accessed by referencing the built-in variables 
threadIdx, blockIdx, blockDim, and gridDim. These pseudo-variables, 
described in detail in Section 7.3, are 3-dimensional structures that specify the 
thread ID, block ID, thread count, and block count, respectively. 

Besides those, another special register is the SM’s clock register, which incre-
ments with each clock cycle. This counter can be read with the __clock() or 
__clock64() intrinsic. The counters are separately tracked for each SM and, 
like the time stamp counters on CPUs, are most useful for measuring relative 
performance of different code sequences and best avoided when trying to calcu-
late wall clock times.

 8.7 Instruction Sets
NVIDIA has developed three major architectures: Tesla (SM 1.x), Fermi (SM 2.x), 
and Kepler (SM 3.x). Within those families, new instructions have been added as 
NVIDIA updated their products. For example, global atomic operations were not 
present in the very first Tesla-class processor (the G80, which shipped in 2006 
as the GeForce GTX 8800), but all subsequent Tesla-class GPUs included them. 
So when querying the SM version via cuDeviceComputeCapability(), the 
major and minor versions will be 1.0 for G80 and 1.1 (or greater) for all other 
Tesla-class GPUs. Conversely, if the SM version is 1.1 or greater, the application 
can use global atomics. 

Table 8.16 gives the SASS instructions that may be printed by cuobjdump when 
disassembling microcode for Tesla-class (SM 1.x) hardware. The Fermi and 
Kepler instruction sets closely resemble each other, with the exception of the 
instructions that support surface load/store, so their instruction sets are given 
together in Table 8.17. In both tables, the middle column specifies the first SM 
version to support a given instruction.
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Table 8.16 SM 1.x Instruction Set

OPCODE SM DESCRIPTION

FLOATING POINT

COS 1.0 Cosine

DADD 1.3 Double-precision floating-point add

DFMA 1.3 Double-precision floating-point fused multiply-add

DMAX 1.3 Double-precision floating-point maximum

DMIN 1.3 Double-precision floating-point minimum

DMUL 1.3 Double-precision floating-point multiply

DSET 1.3 Double-precision floating-point condition set

EX2 1.0 Exponential (base 2)

FADD/FADD32/FADD32I 1.0 Single-precision floating-point add

FCMP 1.0 Single-precision floating-point compare

FMAD/FMAD32/FMAD32I 1.0 Single-precision floating-point multiply-add

FMAX 1.0 Single-precision floating-point maximum

FMIN 1.0 Single-precision floating-point minimum

FMUL/FMUL32/FMUL32I 1.0 Single-precision floating-point multiply

FSET 1.0 Single-precision floating-point conditional set

LG2 1.0 Single-precision floating-point logarithm (base 2)

RCP 1.0 Single-precision floating-point reciprocal

RRO 1.0 Range reduction operator (used before SIN/COS)

RSQ 1.0 Reciprocal square root

SIN 1.0 Sine
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OPCODE SM DESCRIPTION

FLOW CONTROL

BAR 1.0 Barrier synchronization/ __syncthreads()

BRA 1.0 Conditional branch

BRK 1.0 Conditional break from loop

BRX 1.0 Fetch an address from constant memory and branch to it

C2R 1.0 Condition code to data register

CAL 1.0 Unconditional subroutine call

RET 1.0 Conditional return from subroutine

SSY 1.0 Set synchronization point; used before potentially divergent 
instructions

DATA CONVERSION

F2F 1.0 Copy floating-point value with conversion to floating point

F2I 1.0 Copy floating-point value with conversion to integer

I2F 1.0 Copy integer value to floating-point with conversion

I2I 1.0 Copy integer value to integer with conversion

INTEGER

IADD/ IADD32/ IADD32I 1.0 Integer addition

IMAD/ IMAD32/ IMAD32I 1.0 Integer multiply-add

IMAX 1.0 Integer maximum

IMIN 1.0 Integer minimum

IMUL/ IMUL32/ IMUL32I 1.0 Integer multiply

ISAD/ ISAD32 1.0 Integer sum of absolute difference

continues

Table 8.16 SM 1.x Instruction Set (Continued )
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OPCODE SM DESCRIPTION

ISET 1.0 Integer conditional set

SHL 1.0 Shift left

SHR 1.0 Shift right

MEMORY OPERATIONS

A2R 1.0 Move address register to data register

ADA 1.0 Add immediate to address register

G2R 1.0 Move from shared memory to register. The .LCK suffix, used 
to implement shared memory atomics, causes the bank to be 
locked until an R2G.UNL has been performed.

GATOM.IADD/ EXCH/ CAS/ 
IMIN/ IMAX/ INC/ DEC/ 
IAND/ IOR/ IXOR

1.2 Global memory atomic operations; performs an atomic opera-
tion and returns the original value.

GLD 1.0 Load from global memory

GRED.IADD/ IMIN/ IMAX/ 
INC/ DEC/ IAND/ IOR/ IXOR

1.2 Global memory reduction operations; performs an atomic 
operation with no return value.

GST 1.0 Store to global memory

LLD 1.0 Load from local memory

LST 1.0 Store to local memory

LOP 1.0 Logical operation (AND/OR/XOR)

MOV/ MOV32 1.0 Move source to destination

MVC 1.0 Move from constant memory

MVI 1.0 Move immediate

R2A 1.0 Move register to address register

R2C 1.0 Move data register to condition code

R2G 1.0 Store to shared memory. When used with the .UNL suffix, 
releases a previously held lock on that shared memory bank.

Table 8.16 SM 1.x Instruction Set (Continued )
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OPCODE SM DESCRIPTION

MISCELLANEOUS

NOP 1.0 No operation

TEX/ TEX32 1.0 Texture fetch

VOTE 1.2 Warp-vote primitive.

S2R 1.0 Move special register (e.g., thread ID) to register

Table 8.16 SM 1.x Instruction Set (Continued )

Table 8.17 SM 2.x and SM 3.x Instruction Sets

OPCODE SM DESCRIPTION

FLOATING POINT

DADD 2.0 Double-precision add

DMUL 2.0 Double-precision multiply

DMNMX 2.0 Double-precision minimum/maximum

DSET 2.0 Double-precision set

DSETP 2.0 Double-precision predicate

DFMA 2.0 Double-precision fused multiply-add

FFMA 2.0 Single-precision fused multiply-add

FADD 2.0 Single-precision floating-point add

FCMP 2.0 Single-precision floating-point compare

FMUL 2.0 Single-precision floating-point multiply

FMNMX 2.0 Single-precision floating-point minimum/maximum

FSWZ 2.0 Single-precision floating-point swizzle

continues
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OPCODE SM DESCRIPTION

FSET 2.0 Single-precision floating-point set

FSETP 2.0 Single-precision floating-point set predicate

MUFU 2.0 MultiFunk (SFU) operator 

RRO 2.0 Range reduction operator (used before MUFU sin/cos)

INTEGER

BFE 2.0 Bit field extract

BFI 2.0 Bit field insert

FLO 2.0 Find leading one

IADD 2.0 Integer add

ICMP 2.0 Integer compare and select

IMAD 2.0 Integer multiply-add

IMNMX 2.0 Integer minimum/maximum

IMUL 2.0 Integer multiply

ISAD 2.0 Integer sum of absolute differences

ISCADD 2.0 Integer add with scale

ISET 2.0 Integer set

ISETP 2.0 Integer set predicate

LOP 2.0 Logical operation (AND/OR/XOR)

SHF 3.5 Funnel shift

SHL 2.0 Shift left

SHR 2.0 Shift right

POPC 2.0 Population count

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

DATA CONVERSION

F2F 2.0 Floating point to floating point

F2I 2.0 Floating point to integer

I2F 2.0 Integer to floating point

I2I 2.0 Integer to integer

SCALAR VIDEO

VABSDIFF 2.0 Scalar video absolute difference

VADD 2.0 Scalar video add

VMAD 2.0 Scalar video multiply-add

VMAX 2.0 Scalar video maximum

VMIN 2.0 Scalar video minimum

VSET 2.0 Scalar video set

VSHL 2.0 Scalar video shift left

VSHR 2.0 Scalar video shift right

VSUB 2.0 Scalar video subtract

VECTOR (SIMD) VIDEO

VABSDIFF2(4) 3.0 Vector video 2x16-bit (4x8-bit) absolute difference

VADD2(4) 3.0 Vector video 2x16-bit (4x8-bit) addition

VAVRG2(4) 3.0 Vector video 2x16-bit (4x8-bit) average

VMAX2(4) 3.0 Vector video 2x16-bit (4x8-bit) maximum

VMIN2(4) 3.0 Vector video 2x16-bit (4x8-bit) minimum

VSET2(4) 3.0 Vector video 2x16-bit (4x8-bit) set

VSUB2(4) 3.0 Vector video 2x16-bit (4x8-bit) subtraction

continues

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

DATA MOVEMENT

MOV 2.0 Move

PRMT 2.0 Permute

SEL 2.0 Select (conditional move)

SHFL 3.0 Warp shuffle

PREDICATE/CONDITION CODES

CSET 2.0 Condition code set

CSETP 2.0 Condition code set predicate

P2R 2.0 Predicate to register

R2P 2.0 Register to predicate

PSET 2.0 Predicate set

PSETP 2.0 Predicate set predicate

TEXTURE

TEX 2.0 Texture fetch

TLD 2.0 Texture load

TLD4 2.0 Texture load 4 texels

TXQ 2.0 Texture query

MEMORY OPERATIONS

ATOM 2.0 Atomic memory operation

CCTL 2.0 Cache control

CCTLL 2.0 Cache control (local)

LD 2.0 Load from memory

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

LDC 2.0 Load constant

LDG 3.5 Noncoherence global load (reads via texture cache)

LDL 2.0 Load from local memory

LDLK 2.0 Load and lock

LDS 2.0 Load from shared memory

LDSLK 2.0 Load from shared memory and lock

LDU 2.0 Load uniform

LD_LDU 2.0 Combines generic load LD with a load uniform LDU

LDS_LDU 2.0 Combines shared memory load LDS with a load uniform LDU

MEMBAR 2.0 Memory barrier

RED 2.0 Atomic memory reduction operation

ST 2.0 Store to memory

STL 2.0 Store to local memory

STUL 2.0 Store and unlock

STS 2.0 Store to shared memory

STSUL 2.0 Store to shared memory and unlock

SURFACE MEMORY (FERMI)

SULD 2.0 Surface load

SULEA 2.0 Surface load effective address

SUQ 2.0 Surface query

SURED 2.0 Surface reduction

SUST 2.0 Surface store

continues

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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OPCODE SM DESCRIPTION

SURFACE MEMORY (KEPLER)

SUBFM 3.0 Surface bit field merge

SUCLAMP 3.0 Surface clamp

SUEAU 3.0 Surface effective address

SULDGA 3.0 Surface load generic address

SUSTGA 3.0 Surface store generic address

FLOW CONTROL

BRA 2.0 Branch to relative address

BPT 2.0 Breakpoint/trap

BRK 2.0 Break from loop

BRX 2.0 Branch to relative indexed address

CAL 2.0 Call to relative address

CONT 2.0 Continue in loop

EXIT 2.0 Exit program

JCAL 2.0 Call to absolute address

JMP 2.0 Jump to absolute address

JMX 2.0 Jump to absolute indexed address

LONGJMP 2.0 Long jump

PBK 2.0 Pre–break relative address

PCNT 2.0 Pre–continue relative address

PLONGJMP 2.0 Pre–long jump relative address

PRET 2.0 Pre–return relative address

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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   8.7 INSTRUCTION SETS 

OPCODE SM DESCRIPTION

RET 2.0 Return from call

SSY 2.0 Set synchronization point; used before potentially divergent 
instructions

MISCELLANEOUS

B2R 2.0 Barrier to register

BAR 2.0 Barrier synchronization

LEPC 2.0 Load effective program counter

NOP 2.0 No operation

S2R 2.0 Special register to register (used to read, for example, the 
thread or block ID)

VOTE 2.0 Query condition across warp

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued )
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64-bit addressing, xxii
device pointers, 132
and UVA, 30–31

A

Absolute value, 260
Address spaces, 22–32
Adobe CS5, 5
Affinity, 15–16, 128–130
__all() intrinsic, 271
Amazon Machine Image (AMI), 113–114
Amazon Web Services, 109–117
AMBER molecular modeling package, 427
Amdahl’s Law, 35–36, 188, 195
AMI, see Amazon Machine Image
__any() intrinsic, 271
ARM, 19
Array of structures (AOS), 429–430
Arrays, CUDA, see CUDA Arrays
Asynchronous operations

kernel launch, 205–206, 209
memory copy, 178–181

atomicAdd()intrinsic, 201, 236
and reduction, 376–377
and single-pass reduction, 373–376

atomicAnd()intrinsic, 151, 236
atomicCAS()intrinsic, 152, 236
atomicExch()intrinsic, 153, 236
atomicOr()intrinsic, 200, 236
Atomic operations

in global memory, 152–155, 216
in host memory, 237
and reduction, 367, 373–377
in shared memory, 239–240

Availability zones, 112
AWS, see Amazon Web Services

B

Ballot instruction, xxii, 271
Barriers, memory, 240–241
Bit reversal, 242

Block ID, 212–213, 275
Block-level primitives, 272
blockDim, 213, 275
blockIdx, 213, 275
Blocking waits, 79, 186
Block-level primitives, 272
Block linear addressing, 308–309
Boids, 421, 447
__brev() intrinsic, 242
Bridge chip, PCI Express, 19–21
Brook, 5
BSD license, 7, 471
Buck, Ian, 5
__byte_perm() intrinsic, 242

C

Cache coherency, 209
Cache configuration, 75
Callbacks, stream, 77
chLib, see CUDA Handbook Library
chTimerGetTime(), 175, 471–472
Clock register, 275
__clock() intrinsic, 275
__clock64() intrinsic, 275
__clz() intrinsic, 242
Coalescing constraints, 143–147
Coherency, 209
Command buffers, 32–35
Concurrency

CPU/GPU, 174–178
inter-engine, 187–196
inter-GPU, 202, 
kernel execution, 199–201

Condition codes, 267
Constant memory, 156–158

and dynamic parallelism, 224
and N-body, 434–436
and normalized cross-correlation, 456–459

Contexts, 67–71
Convergence, 268–269
Copy-on-write, 25

Index
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cuArray3DGetDescriptor(), 313
cuArray3DCreate(), 312
cuArrayCreate(), 312
cuCtxAttach(), 70
cuCtxCreate(), 

and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124

cuCtxDestroy(), 70, 202
cuCtxDetach(), 70
cuCtxGetLimit(), 71
cuCtxPopCurrent(), 70, 294–296
cuCtxPushCurrent(), 70, 294–296
cuCtxSetCacheConfig(), 71, 75
cuCtxSetLimit(), 71
cuCtxSynchronize(), 77, 209
CUDA arrays, 82, 308–313

vs. device memory, 313
CUDA By Example, xxi-xxii
CUDA Handbook Library, 471–479

Command line parsing, 476–477
Driver API support, 474–475
Error handling, 477–479
Shmoos, 475–476
Threading, 472–474
Timing, 471–472

CUDA runtime
lazy initialization, 53
memory copies, 166–169
vs. driver API, 87–92

CUDA_MEMCPY3D structure, 92
cudaBindTexture(), 85, 155, 315
cudaBindTexture2D(), 85, 315, 338
cudaBindTextureToArray(), 85, 315
cudaDeviceProp structure, 61–63

asyncEngineCount member, 166
integrated member, 18
kernelExecTimeoutEnabled member, 210
maxTexture1DLayered member, 343
maxTexture2DLayered member, 343
maxTexture3D member, 210
totalGlobalMem member, 75, 137
unifiedAddressing member, 127

cudaDeviceReset(), 202
cudaDeviceSetCacheConfig(), 75, 162–163
cudaDeviceSynchronize(), 77, 209

device runtime, 223
in multi-GPU N-body, 297–299

cudaEventCreate(), 
and blocking waits, 39
and disabling timing, 225

cudaEventCreateWithFlags(), 89–90
cudaEventQuery(), 186
cudaEventRecord(), 183–184, 359
cudaEventSynchonize(), 89–90, 183–184
cudaExtent  structure, 135, 168, 311
cudaFree(), 133

and deferred initialization, 67
cudaFree(0), 67
cudaFuncSetCacheConfig(), 75, 162–163
cudaGetDeviceCount(), 60
cudaGetLastError(), 210

and device runtime, 225
cudaGetSymbolAddress(), 139, 157, 201

and scan, 405
cudaHostAlloc(), 81
cudaHostGetDevicePointer(), 81
cudaHostRegister(), 81, 126
cudaHostUnregister(), 81, 126
cudaMalloc(), 133
cudaMalloc3D(), 75, 134
cudaMalloc3DArray(), 341–343

and layered textures, 343
cudaMallocArray(), 309–310, 341–342
cudaMallocPitch(), 134, 339
cudaMemcpy(), 31, 166
cudaMemcpyAsync(), 165, 359–361
cudaMemcpy3DParms structure, 92, 168
cudaMemcpyFromSymbol(), 138, 157
cudaMemcpyKind enumeration, 164
cudaMemcpyToSymbol(), 138, 157

and notrmalized cross-correlation, 
456–458

cudaMemcpyToSymbolAsync()
and N-body computations, 435–436

cudaMemset(), 139
cudaMemset2D(), 139
cudaPitchedPtr  structure, 134, 342
cudaPointerAttributes structure, 141, 

291–292
cudaPos structure, 169, 342
cudaSetDevice(), 288
cudaSetDeviceFlags()

and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124
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cudaDeviceSetLimit(), 135–136
input values, 227–228
and malloc() in kernels, 136
and synchronization depth, 222, 226–227

cudaStreamCreate()
and device runtime, 225
nonblocking streams, 225

cudaStreamQuery(), 186–187
and kernel thunks, 56

cudaStreamWaitEvent(), 41, 202, 
292–293

cuDeviceComputeCapability(), 60
cuDeviceGet(), 60, 66
cuDeviceGetAttribute(), 60

asynchronous engine count, 166
integrated GPU, 18
kernel execution timeout, 210
texturing dimensions, 341
unified addressing, 127

cuDeviceGetCount(), 60, 66
cuDeviceGetName(), 66
cuDeviceTotalMem(), 138
cuDriverGetVersion(), 53
cuEventCreate(), 184

and blocking waits, 39
cuFuncGetAttribute(), 74

and local memory usage, 158
cuFuncSetCacheConfig(), 75, 163
cuInit(), 59, 65–67
cuLaunchGrid(), 210
cuLaunchKernel(), 73–74, 207–208
cuMemAlloc(), 76, 133
cuMemAllocPitch(), 135

and coalescing, 145
cuMemcpy(), 31, 166
cuMemcpy3D(), 91, 166
cuMemcpyDtoD(), 164
cuMemcpyDtoH(), 164
cuMemcpyHtoD(), 164
cuMemcpyHtoDAsync(), 165
cuMemFree(), 76, 133
cuMemGetAddressRange(), 141
cuMemGetInfo(), 76
cuMemHostAlloc(), 124–125, 135

and mapped pinned memory, 124
and write combining memory, 125

cuMemHostGetDevicePointer(), 124
cuMemHostGetFlags(), 80

cuMemHostRegister(), 81, 126
and UVA, 31, 126

cuMemset*(), 139–140
cuModuleGetFunction(), 73
cuModuleGetGlobal(), 73, 139, 157
cuModuleGetTexRef(), 73
cuModuleLoadDataEx(), 103–104
cuobjdump, 105–106, 275
cuPointerGetAttribute(), 142, 291
Current context stack, 69–70
cuStreamAddCallback(), 77
cuStreamCreate(), 89
cuStreamQuery(), 

and kernel thunks, 56
cuStreamSynchronize(), 89
cuTexRefSetAddress(), 85, 155

and state changes, 332
cuTexRefSetAddress2D(), 85
cuTexRefSetArray(), 85

and state changes, 332
cuTexRefSetFormat(), 316–317

D

__dadd_rn() intrinsic, 249
suppressing multiply-add, 253

Demand paging, 25
Device memory

vs. CUDA arrays, 313
Devices, 59–63
dim3 structure, 207
Direct memory access, 27–28,79–80
Direct3D, 3, 86–87
Divergence, 267–269
DMA, see Direct Memory Access
__dmul_rn() intrinsic, 249

suppressing multiply-add, 253
__double2hiint() intrinsic, 234
__double2loint() intrinsic, 234
__double_as_long_long() intrinsic, 234
Driver API

vs. CUDA runtime, 87–92
facilities, 474–475
memory copies, 169–171

Driver models
User mode client driver, 54–55
WDDM (Windows Display Driver Model), 55–56
XPDDM (Windows XP Driver Model), 55

Dynamic parallelism, xxii, 222–230
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E

EBS, see Elastic Block Storage
EC2, see Elastic Compute Cloud
ECC, see Error correcting codes
Elastic Block Storage, 113
Elastic Compute Cloud, 109–117
Error correcting codes (ECC), 155–156
Events, 78–79

and CPU/CPU concurrency, 183
queries, 186
and timing, 186–187

Extreme values, floating point, 247–248

F

__fadd_rn() intrinsic, 249
suppressing multiply-add, 251

False sharing, 15–16
__fdividef_rn() intrinsic, 251
Fermi

comparison with Tesla, 43–46
instruction set, 279–285

__ffs() intrinsic
__float_as_int() intrinsic, 234, 251
float2 structure, 235
float4 structure, 235, 318
_float2half() intrinsic, 253
Floating point

conversion, 249–250
double precision, 253, 
extreme values, 247–248
formats, 245
half precision, 253
intrinsics for conversion, 250
intrinsics for rounding, 249
library, 259–265
representations, 245
rounding, 248–249
single precision, 250–253
streaming multiprocessor support, 244–265

__fmul_rn() intrinsic, 249
suppressing multiply-add, 251

Front-side bus, 12–13
Functions (CUfunction), 73–75
Funnel shift, 243–244

G

Gelsinger, Pat, 4
GL Utility Library, 335

Global memory
allocating, 132–137
and dynamic parallelism, 224
pointers, 131–132
querying total amount, 75–76
static allocations, 138–139

Glossary, 481–486
GLUT, see GL Utility Library
GPGPU (general-purpose GPU programming), 5
Graphics interoperability, 86–87
gridDim, 213, 275

H

__halftofloat() intrinsic, 253
__hiloint2double() intrinsic, 234
Host interface, 39–41
Host memory

allocating, 122–123
mapped, 28–29, 81, 124, 127
pinned, 27–28, 80, 122–123
portable, 29–30, 81, 123–124, 287–288
registering, 81, 125–126
and UVA, 126–127

Host memory registration, see Registration
HT, see HyperTransport
Hyper-Q, 77
HyperTransport, 14–15

I

Integrated GPUs, 17–19
Interleaving, see Memory interleaving

Intra-GPU synchronization, 39–40
Inter-GPU synchronization, 41
Intrinsics

for block-level primitives, 272
for floating point conversion, 250
for rounding, 249
for SFU, 252
for warp shuffle, 271

int2 structure, 235
int4 structure, 235, 319
__int_as_float() intrinsic, 234, 251
I/O hub, 14–17
__isglobal()intrinsic, 142, 224
isochronous bandwidth, 12

K

Kandrot, Edwards, xxi
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Kepler
instruction set, 279–285

Kernel mode
vs. user mode, 26

Kernel thunk, 26
and stream and event queries, 186
and WDDM, 55–56

Kernels, 73–75
declaring, 73
launch overhead, 174–178
launching, 206–208

L

Lanes, PCI Express, 12
Lanes, thread, 213
Layered textures, 342–343
Lazy allocation, 25
Linux

driver model, 54–55
in EC2, 114

Local memory, 158–161
and context creation, 159
and dynamic parallelism, 224–225

__long_as_double() intrinsic, 234
Loop unrolling, 430–431

M

make_cudaPitchedPtr  function, 342
Mapped file I/O, 25
Mapped pinned memory, 81, 124, 361–362
Math library, floating point, 259–265
Maximum, 269
Memset, see Memory set
Memory copy, 27–28, 164–171

asynchronous,165–166
CUDA runtime v. driver API, 90–92 
driver overhead, 179–180
functions, CUDA runtime, 166–169
functions, driver API, 169–170
pageable, 80, 183–184
peer-to-peer, 288–289, 293–296

Memory interleaving, 16
Memory set, 139–140
Microbenchmarks, 6

Kernel launch overhead, 174–178
Memory allocation, 135–137
Memory copy overhead (device®host), 181
Memory copy overhead (host®device), 179–180

Global memory bandwidth, 147–151
Register spilling, 159–161

Microdemos, 7
Concurrency, CPU/GPU, 183–186
concurrency, inter-engine, 189–196
concurrency, intra-GPU, 189–196
concurrency, kernel execution, 199–201
float®half conversion, 253–258
pageable memcpy, 183–186
peer-to-peer memcpy, 293–294
spin locks, 152–155
surface read/write, 1D, 333–335
surface read/write, 2D, 340
texturing: 9-bit interpolation, 329–331
texturing: addressing modes, 335–333
texturing: increasing address space coverage, 

318–321
texturing: unnormalized coordinates, 325–328
thread ID, 216–220

Minimum, 269
Modules, 71–73
Moore’s Law, 4
__mul24() intrinsic, 44, 242
__mul64hi() intrinsic, 242
__mulhi() intrinsic, 242
Multiple GPU programming

with current context stack, 294–296
and multiple CPU threads, 299–303
and inter-GPU synchronization, 292–294
hardware, 19–22
and N-body, 296–302
scalability, 438
and single CPU thread, 294–299

Multithreading
and N-body, 442–444

N

name mangling, 74
N-body, 421–447

and constant memory, 434–436
and multiple GPUs, 296–302
and shared memory, 432–434

Nehalem (Intel i7), 15
Newton-Raphson iteration, 440
Nonblocking streams, 183, 225
Nonuniform memory access (NUMA)

hardware, 14–17
software, 128–130
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Normalized cross-correlation, 449–452
Northbridge, 12–14
NULL stream, 77–78, 178–182

and concurrency breaks, 181, 196
and nonblocking streams, 183

NUMA, see Nonuniform memory access
nvcc, 57–58, 93–100

code generation options, 99–100
compilation trajectories, 94–95
compiler/linker options, 96–97
environment options, 95–96
miscellaneous options, 97–98
passthrough options, 97

nvidia-smi, 106–109

O

Occupancy, 220–222
OpenGL, 86–87, 335–337
Open source, 7–8, 471
Opteron, 14
Optimization journeys, 7

N-body, 428–434
normalized cross-correlation, 452–464
reduction, 367–372
SAXPY (host memory), 358–363
Scan, 394–407

P

Page, memory, 23–24
Page table, 24–25
Page table entry (PTE), 23–25
Parallel prefix sum, see Scan
PCIe, see PCI Express
PCI Express, 12

integration with CPUs, 17
Peer-to-peer, 21, 143

mappings, 31–32
memory copies, 288–289

Performance counters, 272
Pinned memory, 27–28

registering, 125–126
Pitch, 133–135, 307–308
__popc() intrinsic, 242
Pointers, 131–132
Pointer queries, 140–142
Population count, 242
Portable pinned memory, 81, 123–124, 288
__prof_trigger() intrinsic, 272

PTE, see page table entry
PTX (parallel thread execution), 57–59, 100–104, 

411
ptxas, the PTX assembler, 100–104

command line options, 101–103

Q

QPI, see QuickPath Interconnect
Queries

amount of global memory, 75–76
device attributes, 60–63
event, 186
pointer, 140–142
stream, 56, 186

QuickPath Interconnect, 14–15

R

RDTSC instruction, 78
Reciprocal, 251
Reciprocal square root, 251–252, 440

accuracy by SFU, 252
Reduction, 365–383

of arbitrary data types, 378–381
with atomics, 376–377
of predicates, 382
single-pass 373–376
two-pass, 367–372
warps, 382–383

Registers, 233–234
Registration, host memory, 28, 31, 81, 125–126
Rotation (bitwise), 243–244

S

S3, see Simple Storage Service
__sad() intrinsic
__saturate() intrinsic, 253
Sanders, Jason, xxi
SASS, see Streaming Assembly
__saturate() intrinsic, 253
SAXPY (scaled vector addition), 354–363
Scalable Link Interface (SLI), 19–21
Scan (parallel prefix sum), 385–419

and circuit design, 390–393
exclusive v. inclusive, 386, 391
reduce-then-scan (recursive), 400–403
reduce-then-scan (single pass), 403–407
scan-then-fan, 394–400
and stream compaction, 414–417
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warp scan, 407–414
and warp shuffle, 410–414

SDK (Software Development Kit)
SFU, see Special Function Unit
Shared memory, 162–164

atomic operations, 239–240
and dynamic parallelism, 242
and N-body, 432–434
and normalized cross-correlation, 459–460
pointers, 164
and Scan, 395–396
unsized declarations, 163
and the volatile keyword, 164
and warp synchronous code, 164

__shfl() intrinsics, 271–272
Shmoo, 475–477

and kernel concurrency, 191
Shuffle instruction, 271
Simple Storage Service (S3), 112–113
SLI, see Scalable Link Interface
SOC, see System on a Chip
Software pipelining of streams, 76–77, 192–193
Special Function Unit, 251–252 
Spin locks, 152–154
SSE, see Streaming SIMD Extensions
Stream callbacks, 77
Stream compaction, 414–417

Streaming Assembly (SASS), 105, 275–285
for warp scan, 412–414

Streaming Multiprocessors, (SMs),  46–50, 
231–285

Streaming SIMD Extensions (SSE), 4
and N-body, 440–441

Streaming workloads, 353–363
in device memory, 355–357
and mapped pinned memory, 361–362
and streams, 359–361

Streams, 76–78
and software pipelining, 76–77, 359–361
NULL stream, 77–78, 181, 196
queries, 56, 186

string literals
to reference kernels and symbols, 74, 138–139

Structure of Arrays (SOA), 429
Surface load/store

1D, 333–335
2D, 340
SASS instructions, 283–284

Surface references, 85–86,
1D, 333–334
2D, 340

Stream callbacks, 77
Streaming workloads, 353–363
Sum of absolute differences, 242
surf1Dread() intrinsic, 333
surf1Dwrite() intrinsic, 333–335
Synchronous operations

Memory copy, 165–166
__syncthreads() intrinsic, 163, 240

avoiding – see warp synchronous code
and reduction, 368–369
and scan, 395–397

__syncthreads_and() intrinsic, 272
__syncthreads_count() intrinsic, 272, 365
__syncthreads_or() intrinsic, 272
Symmetric multiprocessors, 13–14
System on a chip (SOC), 19

T

TCC, see Tesla Compute Cluster driver
TDR, see Timeout Detection and Recovery
Tesla

comparison with Fermi, 43–46
instruction set, 276–279

Tesla Compute Cluster driver, 57
Texture references, 82–85
tex1Dfetch() intrinsic, 318
Texturing, 305–349, 

1D, 314–317
2D, 335–339
3D, 340–342
and coalescing constraints, 317–318
and normalized cross-correlation, 452–456
from device memory, 155, 338–339
hardware capabilities, 345–347
from host memory, 321–323
from layered textures, 342–343
with normalized coordinates, 331–332
quick reference, 345–350
with unnormalized coordinates, 323–331

Thread affinity, 128–131
__threadfence() intrinsic, 240
__threadfence_block() intrinsic, 240
__threadfence_system() intrinsic, 241
Thread ID, 216
threadIdx, 213, 275
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Threads, CPU, 
and affinity, 128–129
library support, 472–474

Threads, GPU, 213
Timeout Detection and Recovery (TDR), 56–57
Timing, CPU-based, 471–472
Timing, GPU-based

CUDA events, 78–79
hardware, 39

TLB, see Translation Lookaside Buffer
Translation Lookaside Buffer, 25

U

__umul24() intrinsic, 463
__umul64hi() intrinsic, 463
__umulhi() intrinsic, 463
Unified virtual addressing (UVA), xxii, 30–31, 55, 

69, 126–127
and mapped pinned memory, 124, 125
and memcpy functions, 166
inferring device from address, 291–292

__usad() intrinsic, 242
User mode v. kernel mode, 26
UVA, see unified virtual addressing

V

valloc(), 126
Video instructions, scalar, 272–274

Video instructions, vector, 273–274
VirtualAlloc(), 126
VirtualAllocExNuma(), 130
VirtualFreeEx(), 130
volatile keyword

and shared memory, 164

W

Warp-level primitives, 270–272
Warp shuffle, xxii, 271–272

and N-body, 436–437
and reduction, 382–383
and scan, 410–412

Warp synchronous code, 164
for reduction, 369–372
and the volatile keyword, 174

Warps, 213
and occupancy, 220

WDDM, see Windows Display Driver Model
Width-in-bytes, see Pitch
Windows, 55–57, 64–67
Windows Display Driver Model, 55–56
Write combining memory, 18, 124–125

Z

Zero-copy, 19, 361–362
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