
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321809469
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321809469
https://plusone.google.com/share?url=http://www.informit.com/title/9780321809469
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321809469
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321809469/Free-Sample-Chapter

The CUDA Handbook

Wilt_Book.indb i 5/22/13 11:57 AM

This page intentionally left blank

The CUDA Handbook

A Comprehensive Guide
to GPU Programming

Nicholas Wilt

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Wilt_Book.indb iii 5/22/13 11:57 AM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content partic-
ular to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Cataloging in Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-80946-9
ISBN-10: 0-321-80946-7
Text printed in the United States on recycled paper at RR Donelley in Crawfordsville, Indiana.
First printing, June 2013.

Wilt_Book.indb iv 5/22/13 11:57 AM

For Robin

Wilt_Book.indb v 5/22/13 11:57 AM

This page intentionally left blank

vii

Contents

Preface . xxi

Acknowledgments . xxiii

About the Author . xxv

PART I 1

Chapter 1: Background . 3

 1.1 Our Approach . 5

 1.2 Code . 6

1.2.1 Microbenchmarks . 6

1.2.2 Microdemos . 7

1.2.3 Optimization Journeys . 7

 1.3 Administrative Items . 7

1.3.1 Open Source . 7

1.3.2 CUDA Handbook Library (chLib) . 8

1.3.3 Coding Style . 8

1.3.4 CUDA SDK . 8

 1.4 Road Map . 8

Chapter 2: Hardware Architecture 11

 2.1 CPU Configurations . 11

2.1.1 Front-Side Bus . 12

Wilt_Book.indb vii 5/22/13 11:57 AM

CONTENTS

viii

2.1.2 Symmetric Multiprocessors . 13

2.1.3 Nonuniform Memory Access . 14

2.1.4 PCI Express Integration . 17

 2.2 Integrated GPUs . 17

 2.3 Multiple GPUs . 19

 2.4 Address Spaces in CUDA . 22

2.4.1 Virtual Addressing: A Brief History 22

2.4.2 Disjoint Address Spaces . 26

2.4.3 Mapped Pinned Memory . 28

2.4.4 Portable Pinned Memory . 29

2.4.5 Unified Addressing . 30

2.4.6 Peer-to-Peer Mappings . 31

 2.5 CPU/GPU Interactions . 32

2.5.1 Pinned Host Memory and Command Buffers 32

2.5.2 CPU/GPU Concurrency . 35

2.5.3 The Host Interface and Intra-GPU Synchronization 39

2.5.4 Inter-GPU Synchronization . 41

 2.6 GPU Architecture . 41

2.6.1 Overview . 42

2.6.2 Streaming Multiprocessors . 46

 2.7 Further Reading . 50

Chapter 3: Software Architecture 51

 3.1 Software Layers . 51

3.1.1 CUDA Runtime and Driver . 53

3.1.2 Driver Models . 54

3.1.3 nvcc, PTX, and Microcode . 57

Wilt_Book.indb viii 5/22/13 11:57 AM

ix

 CONTENTS

 3.2 Devices and Initialization . 59

3.2.1 Device Count . 60

3.2.2 Device Attributes . 60

3.2.3 When CUDA Is Not Present . 63

 3.3 Contexts . 67

3.3.1 Lifetime and Scoping . 68

3.3.2 Preallocation of Resources . 68

3.3.3 Address Space . 69

3.3.4 Current Context Stack . 69

3.3.5 Context State . 71

 3.4 Modules and Functions . 71

 3.5 Kernels (Functions) . 73

 3.6 Device Memory . 75

 3.7 Streams and Events . 76

3.7.1 Software Pipelining . 76

3.7.2 Stream Callbacks . 77

3.7.3 The NULL Stream . 77

3.7.4 Events . 78

 3.8 Host Memory . 79

3.8.1 Pinned Host Memory . 80

3.8.2 Portable Pinned Memory . 81

3.8.3 Mapped Pinned Memory . 81

3.8.4 Host Memory Registration . 81

 3.9 CUDA Arrays and Texturing . 82

3.9.1 Texture References . 82

3.9.2 Surface References . 85

Wilt_Book.indb ix 5/22/13 11:57 AM

CONTENTS

x

 3.10 Graphics Interoperability . 86

 3.11 The CUDA Runtime and CUDA Driver API 87

Chapter 4: Software Environment 93

 4.1 nvcc—CUDA Compiler Driver . 93

 4.2 ptxas—the PTX Assembler . 100

 4.3 cuobjdump . 105

 4.4 nvidia-smi . 106

 4.5 Amazon Web Services . 109

4.5.1 Command-Line Tools . 110

4.5.2 EC2 and Virtualization . 110

4.5.3 Key Pairs . 111

4.5.4 Availability Zones (AZs) and Regions 112

4.5.5 S3 . 112

4.5.6 EBS . 113

4.5.7 AMIs . 113

4.5.8 Linux on EC2 . 114

4.5.9 Windows on EC2 . 115

PART II 119

Chapter 5: Memory . 121

 5.1 Host Memory . 122

5.1.1 Allocating Pinned Memory . 122

5.1.2 Portable Pinned Memory . 123

5.1.3 Mapped Pinned Memory . 124

5.1.4 Write-Combined Pinned Memory 124

Wilt_Book.indb x 5/22/13 11:57 AM

xi

 CONTENTS

5.1.5 Registering Pinned Memory . 125

5.1.6 Pinned Memory and UVA . 126

5.1.7 Mapped Pinned Memory Usage 127

5.1.8 NUMA, Thread Affinity, and Pinned Memory 128

 5.2 Global Memory . 130

5.2.1 Pointers . 131

5.2.2 Dynamic Allocations . 132

5.2.3 Querying the Amount of Global Memory 137

5.2.4 Static Allocations . 138

5.2.5 Memset APIs . 139

5.2.6 Pointer Queries . 140

5.2.7 Peer-to-Peer Access . 143

5.2.8 Reading and Writing Global Memory 143

5.2.9 Coalescing Constraints . 143

5.2.10 Microbenchmarks: Peak Memory Bandwidth 147

5.2.11 Atomic Operations . 152

5.2.12 Texturing from Global Memory 155

5.2.13 ECC (Error Correcting Codes) 155

 5.3 Constant Memory . 156

5.3.1 Host and Device __constant__ Memory 157

5.3.2 Accessing __constant__ Memory 157

 5.4 Local Memory . 158

 5.5 Texture Memory . 162

 5.6 Shared Memory . 162

5.6.1 Unsized Shared Memory Declarations 163

5.6.2 Warp-Synchronous Coding . 164

5.6.3 Pointers to Shared Memory . 164

Wilt_Book.indb xi 5/22/13 11:57 AM

CONTENTS

xii

 5.7 Memory Copy . 164

5.7.1 Synchronous versus Asynchronous Memcpy 165

5.7.2 Unified Virtual Addressing . 166

5.7.3 CUDA Runtime . 166

5.7.4 Driver API . 169

Chapter 6: Streams and Events 173

 6.1 CPU/GPU Concurrency: Covering Driver Overhead 174

6.1.1 Kernel Launches . 174

 6.2 Asynchronous Memcpy . 178

6.2.1 Asynchronous Memcpy: Host�Device 179

6.2.2 Asynchronous Memcpy: Device�Host 181

6.2.3 The NULL Stream and Concurrency Breaks 181

 6.3 CUDA Events: CPU/GPU Synchronization 183

6.3.1 Blocking Events . 186

6.3.2 Queries . 186

 6.4 CUDA Events: Timing . 186

 6.5 Concurrent Copying and Kernel Processing 187

6.5.1 concurrencyMemcpyKernel.cu 189

6.5.2 Performance Results . 194

6.5.3 Breaking Interengine Concurrency 196

 6.6 Mapped Pinned Memory . 197

 6.7 Concurrent Kernel Processing . 199

 6.8 GPU/GPU Synchronization: cudaStreamWaitEvent() 202

6.8.1 Streams and Events on Multi-GPU: Notes and Limitations . . . 202

 6.9 Source Code Reference . 202

Wilt_Book.indb xii 5/22/13 11:57 AM

xiii

 CONTENTS

Chapter 7: Kernel Execution 205

 7.1 Overview . 205

 7.2 Syntax . 206

7.2.1 Limitations . 208

7.2.2 Caches and Coherency . 209

7.2.3 Asynchrony and Error Handling 209

7.2.4 Timeouts . 210

7.2.5 Local Memory . 210

7.2.6 Shared Memory . 211

 7.3 Blocks, Threads, Warps, and Lanes . 211

7.3.1 Grids of Blocks . 211

7.3.2 Execution Guarantees . 215

7.3.3 Block and Thread IDs . 216

 7.4 Occupancy . 220

 7.5 Dynamic Parallelism . 222

7.5.1 Scoping and Synchronization . 223

7.5.2 Memory Model . 224

7.5.3 Streams and Events . 225

7.5.4 Error Handling . 225

7.5.5 Compiling and Linking . 226

7.5.6 Resource Management . 226

7.5.7 Summary . 228

Chapter 8: Streaming Multiprocessors 231

 8.1 Memory . 233

8.1.1 Registers . 233

8.1.2 Local Memory . 234

Wilt_Book.indb xiii 5/22/13 11:57 AM

CONTENTS

xiv

8.1.3 Global Memory . 235

8.1.4 Constant Memory . 237

8.1.5 Shared Memory . 237

8.1.6 Barriers and Coherency . 240

 8.2 Integer Support . 241

8.2.1 Multiplication . 241

8.2.2 Miscellaneous (Bit Manipulation) 242

8.2.3 Funnel Shift (SM 3.5) . 243

 8.3 Floating-Point Support . 244

8.3.1 Formats . 244

8.3.2 Single Precision (32-Bit) . 250

8.3.3 Double Precision (64-Bit) . 253

8.3.4 Half Precision (16-Bit) . 253

8.3.5 Case Study: float�half Conversion 253

8.3.6 Math Library . 258

8.3.7 Additional Reading . 266

 8.4 Conditional Code . 267

8.4.1 Predication . 267

8.4.2 Divergence and Convergence . 268

8.4.3 Special Cases: Min, Max and Absolute Value 269

 8.5 Textures and Surfaces . 269

 8.6 Miscellaneous Instructions . 270

8.6.1 Warp-Level Primitives . 270

8.6.2 Block-Level Primitives . 272

8.6.3 Performance Counter . 272

8.6.4 Video Instructions . 272

Wilt_Book.indb xiv 5/22/13 11:57 AM

xv

 CONTENTS

8.6.5 Special Registers . 275

 8.7 Instruction Sets . 275

Chapter 9: Multiple GPUs . 287

 9.1 Overview . 287

 9.2 Peer-to-Peer . 288

9.2.1 Peer-to-Peer Memcpy . 288

9.2.2 Peer-to-Peer Addressing . 289

 9.3 UVA: Inferring Device from Address 291

 9.4 Inter-GPU Synchronization . 292

 9.5 Single-Threaded Multi-GPU . 294

9.5.1 Current Context Stack . 294

9.5.2 N-Body . 296

 9.6 Multithreaded Multi-GPU . 299

Chapter 10: Texturing . 305

 10.1 Overview . 305

10.1.1 Two Use Cases . 306

 10.2 Texture Memory . 306

10.2.1 Device Memory . 307

10.2.2 CUDA Arrays and Block Linear Addressing 308

10.2.3 Device Memory versus CUDA Arrays 313

 10.3 1D Texturing . 314

10.3.1 Texture Setup . 314

 10.4 Texture as a Read Path . 317

10.4.1 Increasing Effective Address Coverage 318

10.4.2 Texturing from Host Memory 321

Wilt_Book.indb xv 5/22/13 11:57 AM

CONTENTS

xvi

 10.5 Texturing with Unnormalized Coordinates 323

 10.6 Texturing with Normalized Coordinates 331

 10.7 1D Surface Read/Write . 333

 10.8 2D Texturing . 335

10.8.1 Microdemo: tex2d_opengl.cu 335

 10.9 2D Texturing: Copy Avoidance . 338

10.9.1 2D Texturing from Device Memory 338

10.9.2 2D Surface Read/Write . 340

 10.10 3D Texturing . 340

 10.11 Layered Textures . 342

10.11.1 1D Layered Textures . 343

10.11.2 2D Layered Textures . 343

 10.12 Optimal Block Sizing and Performance 343

10.12.1 Results . 344

 10.13 Texturing Quick References . 345

10.13.1 Hardware Capabilities . 345

10.13.2 CUDA Runtime . 347

10.13.3 Driver API . 349

PART III 351

Chapter 11: Streaming Workloads 353

 11.1 Device Memory . 355

 11.2 Asynchronous Memcpy . 358

 11.3 Streams . 359

 11.4 Mapped Pinned Memory . 361

 11.5 Performance and Summary . 362

Wilt_Book.indb xvi 5/22/13 11:57 AM

xvii

 CONTENTS

Chapter 12: Reduction . 365

 12.1 Overview . 365

 12.2 Two-Pass Reduction . 367

 12.3 Single-Pass Reduction . 373

 12.4 Reduction with Atomics . 376

 12.5 Arbitrary Block Sizes . 377

 12.6 Reduction Using Arbitrary Data Types 378

 12.7 Predicate Reduction . 382

 12.8 Warp Reduction with Shuffle . 382

Chapter 13: Scan . 385

 13.1 Definition and Variations . 385

 13.2 Overview . 387

 13.3 Scan and Circuit Design . 390

 13.4 CUDA Implementations . 394

13.4.1 Scan-Then-Fan . 394

13.4.2 Reduce-Then-Scan (Recursive) 400

13.4.3 Reduce-Then-Scan (Two Pass) 403

 13.5 Warp Scans . 407

13.5.1 Zero Padding . 408

13.5.2 Templated Formulations . 409

13.5.3 Warp Shuffle . 410

13.5.4 Instruction Counts . 412

 13.6 Stream Compaction . 414

 13.7 References (Parallel Scan Algorithms) 418

 13.8 Further Reading (Parallel Prefix Sum Circuits) 419

Wilt_Book.indb xvii 5/22/13 11:57 AM

CONTENTS

xviii

Chapter 14: N-Body . 421

 14.1 Introduction . 423

14.1.1 A Matrix of Forces . 424

 14.2 Naïve Implementation . 428

 14.3 Shared Memory . 432

 14.4 Constant Memory . 434

 14.5 Warp Shuffle . 436

 14.6 Multiple GPUs and Scalability . 438

 14.7 CPU Optimizations . 439

 14.8 Conclusion . 444

 14.9 References and Further Reading . 446

Chapter 15: Image Processing: Normalized Correlation . . 449

 15.1 Overview . 449

 15.2 Naïve Texture-Texture Implementation 452

 15.3 Template in Constant Memory . 456

 15.4 Image in Shared Memory . 459

 15.5 Further Optimizations . 463

15.5.1 SM-Aware Coding . 463

15.5.2. Loop Unrolling . 464

 15.6 Source Code . 465

 15.7 Performance and Further Reading . 466

 15.8 Further Reading . 469

Appendix A The CUDA Handbook Library 471

 A.1 Timing . 471

 A.2 Threading . 472

Wilt_Book.indb xviii 5/22/13 11:57 AM

xix

 CONTENTS

 A.3 Driver API Facilities . 474

 A.4 Shmoos . 475

 A.5 Command Line Parsing . 476

 A.6 Error Handling . 477

Glossary / TLA Decoder . 481

Index . 487

Wilt_Book.indb xix 5/22/13 11:57 AM

This page intentionally left blank

xxi

Preface

If you are reading this book, I probably don’t have to sell you on CUDA. Readers
of this book should already be familiar with CUDA from using NVIDIA’s SDK
materials and documentation, taking a course on parallel programming, or
reading the excellent introductory book CUDA by Example (Addison-Wesley, 2011)
by Jason Sanders and Edward Kandrot.

Reviewing CUDA by Example, I am still struck by how much ground the book
covers. Assuming no special knowledge from the audience, the authors manage
to describe everything from memory types and their applications to graphics
interoperability and even atomic operations. It is an excellent introduction to
CUDA, but it is just that: an introduction. When it came to giving more detailed
descriptions of the workings of the platform, the GPU hardware, the compiler
driver nvcc, and important “building block” parallel algorithms like parallel
prefix sum (“scan”), Jason and Edward rightly left those tasks to others.

This book is intended to help novice to intermediate CUDA programmers
continue to elevate their game, building on the foundation laid by earlier work.
In addition, while introductory texts are best read from beginning to end, The
CUDA Handbook can be sampled. If you’re preparing to build or program a
new CUDA-capable platform, a review of Chapter 2 (“Hardware Architecture”)
might be in order. If you are wondering whether your application would benefit
from using CUDA streams for additional concurrency, take a look at Chap-
ter 6 (“Streams and Events”). Other chapters give detailed descriptions of the
software architecture, GPU subsystems such as texturing and the streaming
multiprocessors, and applications chosen according to their data access pattern
and their relative importance in the universe of parallel algorithms. The chap-
ters are relatively self-contained, though they do reference one another when
appropriate.

The latest innovations, up to and including CUDA 5.0, also are covered here. In
the last few years, CUDA and its target platforms have significantly evolved.

Wilt_Book.indb xxi 5/22/13 11:57 AM

PREFACE

xxii

When CUDA by Example was published, the GeForce GTX 280 (GT200) was new,
but since then, two generations of CUDA-capable hardware have become avail-
able. So besides more detailed discussions of existing features such as mapped
pinned memory, this book also covers new instructions like Fermi’s “ballot” and
Kepler’s “shuffle” and features such as 64-bit and unified virtual addressing and
dynamic parallelism. We also discuss recent platform innovations, such as the
integration of the PCI Express bus controller into Intel’s “Sandy Bridge” CPUs.

However you choose to read the book—whether you read it straight through or
keep it by your keyboard and consult it periodically—it’s my sincerest hope that
you will enjoy reading it as much as I enjoyed writing it.

Wilt_Book.indb xxii 5/22/13 11:57 AM

xxiii

Acknowledgments

I would like to take this opportunity to thank the folks at NVIDIA who have been
patient enough to answer my questions, review my work, and give constructive
feedback. Mark Harris, Norbert Juffa, and Lars Nyland deserve special thanks.

My reviewers generously took the time to examine the work before submis-
sion, and their comments were invaluable in improving the quality, clarity, and
correctness of this work. I am especially indebted to Andre Brodtkorb, Scott
Le Grand, Allan MacKinnon, Romelia Salomon-Ferrer, and Patrik Tennberg for
their feedback.

My editor, the inimitable Peter Gordon, has been extraordinarily patient and
supportive during the course of this surprisingly difficult endeavor. Peter’s
assistant, Kim Boedigheimer, set the standard for timeliness and professional-
ism in helping to complete the project. Her efforts at soliciting and coordinating
review feedback and facilitating uploads to the Safari Web site are especially
appreciated.

My wife Robin and my sons Benjamin, Samuel, and Gregory have been patient
and supportive while I brought this project across the finish line.

Wilt_Book.indb xxiii 5/22/13 11:57 AM

This page intentionally left blank

xxv

About the Author

Nicholas Wilt has been programming computers professionally for more than
twenty-five years in a variety of areas, including industrial machine vision,
graphics, and low-level multimedia software. While at Microsoft, he served
as the development lead for Direct3D 5.0 and 6.0, built the prototype for the
Windows Desktop Manager, and did early GPU computing work. At NVIDIA, he
worked on CUDA from the beginning, designing and often implementing most
of CUDA’s low-level abstractions. Now at Amazon, Mr. Wilt is working in cloud
computing technologies relating to GPUs.

Wilt_Book.indb xxv 5/22/13 11:57 AM

This page intentionally left blank

231

Chapter 8

Streaming

Multiprocessors

The streaming multiprocessors (SMs) are the part of the GPU that runs our
CUDA kernels. Each SM contains the following.

• Thousands of registers that can be partitioned among threads of execution

• Several caches:

 – Shared memory for fast data interchange between threads

 – Constant cache for fast broadcast of reads from constant memory

 – Texture cache to aggregate bandwidth from texture memory

 – L1 cache to reduce latency to local or global memory

• Warp schedulers that can quickly switch contexts between threads and issue
instructions to warps that are ready to execute

• Execution cores for integer and floating-point operations:

 – Integer and single-precision floating point operations

 – Double-precision floating point

 – Special Function Units (SFUs) for single-precision floating-point transcen-
dental functions

Wilt_Book.indb 231 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

232

The reason there are many registers and the reason the hardware can context
switch between threads so efficiently are to maximize the throughput of the
hardware. The GPU is designed to have enough state to cover both execution
latency and the memory latency of hundreds of clock cycles that it may take for
data from device memory to arrive after a read instruction is executed.

The SMs are general-purpose processors, but they are designed very differently
than the execution cores in CPUs: They target much lower clock rates; they
support instruction-level parallelism, but not branch prediction or speculative
execution; and they have less cache, if they have any cache at all. For suitable
workloads, the sheer computing horsepower in a GPU more than makes up for
these disadvantages.

The design of the SM has been evolving rapidly since the introduction of the first
CUDA-capable hardware in 2006, with three major revisions, codenamed Tesla,
Fermi, and Kepler. Developers can query the compute capability by calling
cudaGetDeviceProperties() and examining cudaDeviceProp.major
and cudaDeviceProp.minor, or by calling the driver API function cuDevice-
ComputeCapability(). Compute capability 1.x, 2.x, and 3.x correspond to
Tesla-class, Fermi-class, and Kepler-class hardware, respectively. Table 8.1
summarizes the capabilities added in each generation of the SM hardware.

Table 8.1 SM Capabilities

COMPUTE

LEVEL INTRODUCED . . .

SM 1.1 Global memory atomics; mapped pinned memory; debuggable (e.g., breakpoint instruction)

SM 1.2 Relaxed coalescing constraints; warp voting (any() and all() intrinsics); atomic operations
on shared memory

SM 1.3 Double precision support

SM 2.0 64-bit addressing; L1 and L2 cache; concurrent kernel execution; configurable 16K or 48K
shared memory; bit manipulation instructions (__clz(), __popc(), __ffs(), __brev()
intrinsics); directed rounding for single-precision floating-point values; fused multiply-add;
64-bit clock counter; surface load/store; 64-bit global atomic add, exchange, and compare-
and-swap; global atomic add for single-precision floating-point values; warp voting (bal-
lot() intrinsic); assertions and formatted output (printf).

SM 2.1 Function calls and indirect calls in kernels

Wilt_Book.indb 232 5/22/13 11:58 AM

233

 8.1 MEMORY

In Chapter 2, Figures 2.29 through 2.32 show block diagrams of different SMs.
CUDA cores can execute integer and single-precision floating-point instructions;
one double-precision unit implements double-precision support, if available;
and Special Function Units implement reciprocal, recriprocal square root, sine/
cosine, and logarithm/exponential functions. Warp schedulers dispatch instruc-
tions to these execution units as the resources needed to execute the instruction
become available.

This chapter focuses on the instruction set capabilities of the SM. As such, it
sometimes refers to the “SASS” instructions, the native instructions into which
ptxas or the CUDA driver translate intermediate PTX code. Developers are not
able to author SASS code directly; instead, NVIDIA has made these instructions
visible to developers through the cuobjdump utility so they can direct optimiza-
tions of their source code by examining the compiled microcode.

 8.1 Memory

8.1.1 REGISTERS

Each SM contains thousands of 32-bit registers that are allocated to threads as
specified when the kernel is launched. Registers are both the fastest and most
plentiful memory in the SM. As an example, the Kepler-class (SM 3.0) SMX con-
tains 65,536 registers or 256K, while the texture cache is only 48K.

CUDA registers can contain integer or floating-point data; for hardware capable
of performing double-precision arithmetic (SM 1.3 and higher), the operands are
contained in even-valued register pairs. On SM 2.0 and higher hardware, regis-
ter pairs also can hold 64-bit addresses.

Table 8.1 SM Capabilities (Continued)

COMPUTE

LEVEL INTRODUCED . . .

SM 3.0 Increase maximum grid size; warp shuffle; permute; 32K/32K shared memory configuration;
configurable shared memory (32- or 64-bit mode) Bindless textures (“texture objects”); faster
global atomics

SM 3.5 64-bit atomic min, max, AND, OR, and XOR; 64-bit funnel shift; read global memory via texture;
dynamic parallelism

Wilt_Book.indb 233 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

234

CUDA hardware also supports wider memory transactions: The built-in int2/
float2 and int4/float4 data types, residing in aligned register pairs or
quads, respectively, may be read or written using single 64- or 128-bit-wide
loads or stores. Once in registers, the individual data elements can be refer-
enced as .x/.y (for int2/float2) or .x/.y/.z/.w (for int4/float4).

Developers can cause nvcc to report the number of registers used by a kernel
by specifying the command-line option --ptxas-options -–verbose. The
number of registers used by a kernel affects the number of threads that can
fit in an SM and often must be tuned carefully for optimal performance. The
 maximum number of registers used for a compilation may be specified with
--ptxas-options --maxregcount N.

Register Aliasing
Because registers can hold floating-point or integer data, some intrinsics serve
only to coerce the compiler into changing its view of a variable. The __int_
as_float() and __float_as_int() intrinsics cause a variable to “change
personalities” between 32-bit integer and single-precision floating point.

float __int_as_float(int i);
int __float_as_int(float f);

The __double2loint(), __double2hiint(), and __hiloint2double()
intrinsics similarly cause registers to change personality (usually in-place).
__double_as_longlong() and __longlong_as_double() coerce register
pairs in-place; __double2loint() and __double2hiint() return the least
and the most significant 32 bits of the input operand, respectively; and
__hiloint2double() constructs a double out of the high and low halves.

int double2loint(double d);
int double2hiint(double d);
int hiloint2double(int hi, int lo);
double long_as_double(long long int i);
long long int __double_as_longlong(double d);

8.1.2 LOCAL MEMORY

Local memory is used to spill registers and also to hold local variables that are
indexed and whose indices cannot be computed at compile time. Local memory
is backed by the same pool of device memory as global memory, so it exhibits
the same latency characteristics and benefits as the L1 and L2 cache hierarchy
on Fermi and later hardware. Local memory is addressed in such a way that
the memory transactions are automatically coalesced. The hardware includes

Wilt_Book.indb 234 5/22/13 11:58 AM

235

 8.1 MEMORY

special instructions to load and store local memory: The SASS variants are
LLD/LST for Tesla and LDL/STL for Fermi and Kepler.

8.1.3 GLOBAL MEMORY

The SMs can read or write global memory using GLD/GST instructions (on
Tesla) and LD/ST instructions (on Fermi and Kepler). Developers can use
standard C operators to compute and dereference addresses, including pointer
arithmetic and the dereferencing operators *, [], and ->. Operating on 64- or
128-bit built-in data types (int2/float2/int4/float4) automatically causes
the compiler to issue 64- or 128-bit load and store instructions. Maximum
memory performance is achieved through coalescing of memory transactions,
described in Section 5.2.9.

Tesla-class hardware (SM 1.x) uses special address registers to hold pointers;
later hardware implements a load/store architecture that uses the same reg-
ister file for pointers; integer and floating-point values; and the same address
space for constant memory, shared memory, and global memory.1

Fermi-class hardware includes several features not available on older
hardware.

• 64-bit addressing is supported via “wide” load/store instructions in which
addresses are held in even-numbered register pairs. 64-bit addressing is not
supported on 32-bit host platforms; on 64-bit host platforms, 64-bit address-
ing is enabled automatically. As a result, code generated for the same kernels
compiled for 32- and 64-bit host platforms may have different register counts
and performance.

• The L1 cache may be configured to be 16K or 48K in size.2 (Kepler added the
ability to split the cache as 32K L1/32K shared.) Load instructions can include
cacheability hints (to tell the hardware to pull the read into L1 or to bypass
the L1 and keep the data only in L2). These may be accessed via inline PTX or
through the command line option –X ptxas –dlcm=ca (cache in L1 and L2,
the default setting) or –X ptxas –dlcm=cg (cache only in L2).

Atomic operations (or just “atomics”) update a memory location in a way that
works correctly even when multiple GPU threads are operating on the same

1. Both constant and shared memory exist in address windows that enable them to be referenced
by 32-bit addresses even on 64-bit architectures.

2. The hardware can change this configuration per kernel launch, but changing this state is expen-
sive and will break concurrency for concurrent kernel launches.

Wilt_Book.indb 235 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

236

memory location. The hardware enforces mutual exclusion on the memory
location for the duration of the operation. Since the order of operations is not
guaranteed, the operators supported generally are associative.3

Atomics first became available for global memory for SM 1.1 and greater and for
shared memory for SM 1.2 and greater. Until the Kepler generation of hardware,
however, global memory atomics were too slow to be useful.

The global atomic intrinsics, summarized in Table 8.2, become automatically
available when the appropriate architecture is specified to nvcc via --gpu-
architecture. All of these intrinsics can operate on 32-bit integers. 64-bit
support for atomicAdd(), atomicExch(), and atomicCAS() was added

3. The only exception is single-precision floating-point addition. Then again, floating-point code
generally must be robust in the face of the lack of associativity of floating-point operations;
porting to different hardware, or even just recompiling the same code with different compiler
options, can change the order of floating-point operations and thus the result.

Table 8.2 Atomic Operations

MNEMONIC DESCRIPTION

atomicAdd Addition

atomicSub Subtraction

atomicExch Exchange

atomicMin Minimum

atomicMax Maximum

atomicInc Increment (add 1)

atomicDec Decrement (subtract 1)

atomicCAS Compare and swap

atomicAnd AND

atomicOr OR

atomicXor XOR

Wilt_Book.indb 236 5/22/13 11:58 AM

237

 8.1 MEMORY

in SM 1.2. atomicAdd() of 32-bit floating-point values (float) was added
in SM 2.0. 64-bit support for atomicMin(), atomicMax(), atomicAnd(),
 atomicOr(), and atomicXor() was added in SM 3.5.

NOTE

Because atomic operations are implemented using hardware in the GPU’s
integrated memory controller, they do not work across the PCI Express
bus and thus do not work correctly on device memory pointers that corre-
spond to host memory or peer memory.

At the hardware level, atomics come in two forms: atomic operations that return
the value that was at the specified memory location before the operator was
performed, and reduction operations that the developer can “fire and forget” at
the memory location, ignoring the return value. Since the hardware can perform
the operation more efficiently if there is no need to return the old value, the
compiler detects whether the return value is used and, if it is not, emits different
instructions. In SM 2.0, for example, the instructions are called ATOM and RED,
respectively.

8.1.4 CONSTANT MEMORY

Constant memory resides in device memory, but it is backed by a different,
read-only cache that is optimized to broadcast the results of read requests to
threads that all reference the same memory location. Each SM contains a small,
latency-optimized cache for purposes of servicing these read requests. Making
the memory (and the cache) read-only simplifies cache management, since the
hardware has no need to implement write-back policies to deal with memory
that has been updated.

SM 2.x and subsequent hardware includes a special optimization for memory
that is not denoted as constant but that the compiler has identified as (1) read-
only and (2) whose address is not dependent on the block or thread ID. The “load
uniform” (LDU) instruction reads memory using the constant cache hierarchy
and broadcasts the data to the threads.

8.1.5 SHARED MEMORY

Shared memory is very fast, on-chip memory in the SM that threads can use for
data interchange within a thread block. Since it is a per-SM resource, shared

Wilt_Book.indb 237 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

238

memory usage can affect occupancy, the number of warps that the SM can keep
resident. SMs load and store shared memory with special instructions: G2R/
R2G on SM 1.x, and LDS/STS on SM 2.x and later.

Shared memory is arranged as interleaved banks and generally is optimized for
32-bit access. If more than one thread in a warp references the same bank, a
bank conflict occurs, and the hardware must handle memory requests consec-
utively until all requests have been serviced. Typically, to avoid bank conflicts,
applications access shared memory with an interleaved pattern based on the
thread ID, such as the following.

extern __shared__ float shared[];
float data = shared[BaseIndex + threadIdx.x];

Having all threads in a warp read from the same 32-bit shared memory location
also is fast. The hardware includes a broadcast mechanism to optimize for this
case. Writes to the same bank are serialized by the hardware, reducing perfor-
mance. Writes to the same address cause race conditions and should be avoided.

For 2D access patterns (such as tiles of pixels in an image processing kernel),
it’s good practice to pad the shared memory allocation so the kernel can ref-
erence adjacent rows without causing bank conflicts. SM 2.x and subsequent
hardware has 32 banks,4 so for 2D tiles where threads in the same warp may
access the data by row, it is a good strategy to pad the tile size to a multiple of
33 32-bit words.

On SM 1.x hardware, shared memory is about 16K in size;5 on later hardware,
there is a total of 64K of L1 cache that may be configured as 16K or 48K of
shared memory, of which the remainder is used as L1 cache.6

Over the last few generations of hardware, NVIDIA has improved the hardware’s
handling of operand sizes other than 32 bits. On SM 1.x hardware, 8- and 16-bit
reads from the same bank caused bank conflicts, while SM 2.x and later hard-
ware can broadcast reads of any size out of the same bank. Similarly, 64-bit
operands (such as double) in shared memory were so much slower than 32-bit
operands on SM 1.x that developers sometimes had to resort to storing the
data as separate high and low halves. SM 3.x hardware adds a new feature for

4. SM 1.x hardware had 16 banks (memory traffic from the first 16 threads and the second 16
threads of a warp was serviced separately), but strategies that work well on subsequent hard-
ware also work well on SM 1.x.

5. 256 bytes of shared memory was reserved for parameter passing; in SM 2.x and later, parame-
ters are passed via constant memory.

6. SM 3.x hardware adds the ability to split the cache evenly as 32K L1/32K shared.

Wilt_Book.indb 238 5/22/13 11:58 AM

239

 8.1 MEMORY

kernels that predominantly use 64-bit operands in shared memory: a mode that
increases the bank size to 64 bits.

Atomics in Shared Memory
SM 1.2 added the ability to perform atomic operations in shared memory. Unlike
global memory, which implements atomics using single instructions (either
GATOM or GRED, depending on whether the return value is used), shared mem-
ory atomics are implemented with explicit lock/unlock semantics, and the com-
piler emits code that causes each thread to loop over these lock operations until
the thread has performed its atomic operation.

Listing 8.1 gives the source code to atomic32Shared.cu, a program spe-
cifically intended to be compiled to highlight the code generation for shared
 memory atomics. Listing 8.2 shows the resulting microcode generated for SM
2.0. Note how the LDSLK (load shared with lock) instruction returns a predi-
cate that tells whether the lock was acquired, the code to perform the update
is predicated, and the code loops until the lock is acquired and the update
performed.

The lock is performed per 32-bit word, and the index of the lock is determined
by bits 2–9 of the shared memory address. Take care to avoid contention, or the
loop in Listing 8.2 may iterate up to 32 times.

Listing 8.1. atomic32Shared.cu.
__global__ void
Return32(int *sum, int *out, const int *pIn)
{
 extern __shared__ int s[];
 s[threadIdx.x] = pIn[threadIdx.x];
 __syncthreads();
 (void) atomicAdd(&s[threadIdx.x], *pIn);
 __syncthreads();
 out[threadIdx.x] = s[threadIdx.x];
}

Listing 8.2 atomic32Shared.cubin (microcode compiled for SM 2.0).
code for sm_20
 Function : _Z8Return32PiS_PKi
/*0000*/ MOV R1, c [0x1] [0x100];
/*0008*/ S2R R0, SR_Tid_X;
/*0010*/ SHL R3, R0, 0x2;
/*0018*/ MOV R0, c [0x0] [0x28];
/*0020*/ IADD R2, R3, c [0x0] [0x28];

Wilt_Book.indb 239 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

240

/*0028*/ IMAD.U32.U32 RZ, R0, R1, RZ;
/*0030*/ LD R2, [R2];
/*0038*/ STS [R3], R2;
/*0040*/ SSY 0x80;
/*0048*/ BAR.RED.POPC RZ, RZ;
/*0050*/ LD R0, [R0];
/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;
/*0078*/ NOP.S CC.T;
/*0080*/ BAR.RED.POPC RZ, RZ;
/*0088*/ LDS R0, [R3];
/*0090*/ IADD R2, R3, c [0x0] [0x24];
/*0098*/ ST [R2], R0;
/*00a0*/ EXIT;

8.1.6 BARRIERS AND COHERENCY

The familiar __syncthreads() intrinsic waits until all the threads in the
thread block have arrived before proceeding. It is needed to maintain coher-
ency of shared memory within a thread block.7 Other, similar memory barrier
instructions can be used to enforce some ordering on broader scopes of mem-
ory, as described in Table 8.3.

7. Note that threads within a warp run in lockstep, sometimes enabling developers to write so-called
“warp synchronous” code that does not call __syncthreads(). Section 7.3 describes thread and
warp execution in detail, and Part III includes several examples of warp synchronous code.

Table 8.3 Memory Barrier Intrinsics

INTRINSIC DESCRIPTION

__syncthreads() Waits until all shared memory accesses made by the calling thread are visi-
ble to all threads in the threadblock

threadfence_block() Waits until all global and shared memory accesses made by the calling
thread are visible to all threads in the threadblock

threadfence() Waits until all global and shared memory accesses made by the calling
thread are visible to

• All threads in the threadblock for shared memory accesses

• All threads in the device for global memory accesses

Wilt_Book.indb 240 5/22/13 11:58 AM

241

 8.2 INTEGER SUPPORT

 8.2 Integer Support
The SMs have the full complement of 32-bit integer operations.

• Addition with optional negation of an operand for subtraction

• Multiplication and multiply-add

• Integer division

• Logical operations

• Condition code manipulation

• Conversion to/from floating point

• Miscellaneous operations (e.g., SIMD instructions for narrow integers, popu-
lation count, find first zero)

CUDA exposes most of this functionality through standard C operators. Non-
standard operations, such as 24-bit multiplication, may be accessed using inline
PTX assembly or intrinsic functions.

8.2.1 MULTIPLICATION

Multiplication is implemented differently on Tesla- and Fermi-class hardware.
Tesla implements a 24-bit multiplier, while Fermi implements a 32-bit multi-
plier. As a consequence, full 32-bit multiplication on SM 1.x hardware requires
four instructions. For performance-sensitive code targeting Tesla-class

Table 8.3 Memory Barrier Intrinsics (Continued)

INTRINSIC DESCRIPTION

threadfence_system()
(SM 2.x only)

Waits until all global and shared memory accesses made by the calling
thread are visible to

• All threads in the threadblock for shared memory accesses

• All threads in the device for global memory accesses

• Host threads for page-locked host memory accesses

Wilt_Book.indb 241 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

242

hardware, it is a performance win to use the intrinsics for 24-bit multiply.8
Table 8.4 shows the intrinsics related to multiplication.

8.2.2 MISCELLANEOUS (BIT MANIPULATION)

The CUDA compiler implements a number of intrinsics for bit manipulation, as
summarized in Table 8.5. On SM 2.x and later architectures, these intrinsics

8. Using __mul24() or __umul24() on SM 2.x and later hardware, however, is a performance
penalty.

Table 8.4 Multiplication Intrinsics

INTRINSIC DESCRIPTION

__[u]mul24 Returns the least significant 32 bits of the product of the 24 least significant bits of the
integer parameters. The 8 most significant bits of the inputs are ignored.

__[u]mulhi Returns the most significant 32 bits of the product of the inputs.

__[u]mul64hi Returns the most significant 64 bits of the products of the 64-bit inputs.

Table 8.5 Bit Manipulation Intrinsics

INTRINSIC SUMMARY DESCRIPTION

__brev(x) Bit reverse Reverses the order of bits in a word

__byte_perm(x,y,s) Permute bytes Returns a 32-bit word whose bytes were selected from
the two inputs according to the selector parameter s

__clz(x) Count leading zeros Returns number of zero bits (0–32) before most signif-
icant set bit

__ffs(x) Find first sign bit Returns the position of the least significant set bit.
The least significant bit is position 1. For an input of 0,
__ffs() returns 0.

__popc(x) Population count Returns the number of set bits

__[u]sad(x,y,z) Sum of absolute
differences

Adds |x-y| to z and returns the result

Wilt_Book.indb 242 5/22/13 11:58 AM

243

 8.2 INTEGER SUPPORT

map to single instructions. On pre-Fermi architectures, they are valid but may
compile into many instructions. When in doubt, disassemble and look at the
microcode! 64-bit variants have “ll” (two ells for “long long”) appended to the
intrinsic name __clzll(), ffsll(), popcll(), brevll().

8.2.3 FUNNEL SHIFT (SM 3.5)

GK110 added a 64-bit “funnel shift” instruction that concatenates two 32-bit
values together (the least significant and most significant halves are specified as
separate 32-bit inputs, but the hardware operates on an aligned register pair),
shifts the resulting 64-bit value left or right, and then returns the most signifi-
cant (for left shift) or least significant (for right shift) 32 bits.

Funnel shift may be accessed with the intrinsics given in Table 8.6. These intrin-
sics are implemented as inline device functions (using inline PTX assembler) in
sm_35_intrinsics.h. By default, the least significant 5 bits of the shift count
are masked off; the _lc and _rc intrinsics clamp the shift value to the range
0..32.

Applications for funnel shift include the following.

• Multiword shift operations

• Memory copies between misaligned buffers using aligned loads and stores

• Rotate

Table 8.6 Funnel Shift Intrinsics

INTRINSIC DESCRIPTION

__funnelshift_l(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it left by (sh&31)
bits, and returns the most significant 32 bits

__funnelshift_lc(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it left by
min(sh,32) bits, and returns the most significant 32 bits

__funnelshift_r(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it right by
(sh&31) bits, and returns the least significant 32 bits

__funnelshift_rc(hi, lo, sh) Concatenates [hi:lo] into a 64-bit quantity, shifts it right by
min(sh,32) bits, and returns the least significant 32 bits

Wilt_Book.indb 243 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

244

To right-shift data sizes greater than 64 bits, use repeated __ funnelshift_r()
calls, operating from the least significant to the most significant word. The most
significant word of the result is computed using operator>>, which shifts
in zero or sign bits as appropriate for the integer type. To left-shift data sizes
greater than 64 bits, use repeated __funnelshift_l() calls, operating from
the most significant to the least significant word. The least significant word of
the result is computed using operator<<. If the hi and lo parameters are the
same, the funnel shift effects a rotate operation.

 8.3 Floating-Point Support
Fast native floating-point hardware is the raison d’être for GPUs, and in many
ways they are equal to or superior to CPUs in their floating-point implemen-
tation. Denormals are supported at full speed,9 directed rounding may be
specified on a per-instruction basis, and the Special Function Units deliver
high-performance approximation functions to six popular single-precision
transcendentals. In contrast, x86 CPUs implement denormals in microcode
that runs perhaps 100x slower than operating on normalized floating-point
operands. Rounding direction is specified by a control word that takes dozens of
clock cycles to change, and the only transcendental approximation functions in
the SSE instruction set are for reciprocal and reciprocal square root, which give
12-bit approximations that must be refined with a Newton-Raphson iteration
before being used.

Since GPUs’ greater core counts are offset somewhat by their lower clock
frequencies, developers can expect at most a 10x (or thereabouts) speedup on
a level playing field. If a paper reports a 100x or greater speedup from porting
an optimized CPU implementation to CUDA, chances are one of the above-
described “instruction set mismatches” played a role.

8.3.1 FORMATS

Figure 8.2 depicts the three (3) IEEE standard floating-point formats supported
by CUDA: double precision (64-bit), single precision (32-bit), and half precision
(16-bit). The values are divided into three fields: sign, exponent, and mantissa.

9. With the exception that single-precision denormals are not supported at all on SM 1.x hardware.

Wilt_Book.indb 244 5/22/13 11:58 AM

245

 8.3 FLOATING-POINT SUPPORT

For double, single, and half, the exponent fields are 11, 8, and 5 bits in size,
respectively; the corresponding mantissa fields are 52, 23, and 10 bits.

The exponent field changes the interpretation of the floating-point value. The
most common (“normal”) representation encodes an implicit 1 bit into the
mantissa and multiplies that value by 2e-bias, where bias is the value added to the
actual exponent before encoding into the floating-point representation. The bias
for single precision, for example, is 127.

Table 8.7 summarizes how floating-point values are encoded. For most exponent
values (so-called “normal” floating-point values), the mantissa is assumed to
have an implicit 1, and it is multiplied by the biased value of the exponent. The
maximum exponent value is reserved for infinity and Not-A-Number values.
Dividing by zero (or overflowing a division) yields infinity; performing an invalid
operation (such as taking the square root or logarithm of a negative number)
yields a NaN. The minimum exponent value is reserved for values too small to
represent with the implicit leading 1. As the so-called denormals10 get closer
to zero, they lose bits of effective precision, a phenomenon known as gradual
underflow. Table 8.8 gives the encodings and values of certain extreme values for
the three formats.

10. Sometimes called subnormals.

Double

Sign

Exponent (11 bits)

Mantissa (52 bits)

Single

Sign

Exponent (8 bits)

Mantissa (23 bits)

Half

Sign

Exponent (5 bits)

Mantissa (10 bits)

Figure 8.2 Floating-point formats.

Wilt_Book.indb 245 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

246

Table 8.7 Floating-Point Representations

DOUBLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-1022(0.mantissa) Denormal

1 to 2046 Any ±2e-1023(1.mantissa) Normal

2047 0 ±� Infinity

2047 Nonzero Not-A-Number

SINGLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-126(0.mantissa) Denormal

1 to 254 Any ±2e-127(1.mantissa) Normal

255 0 ±� Infinity

255 Nonzero Not-A-Number

HALF PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 ±0 Zero

0 Nonzero ±2-14(0.mantissa) Denormal

1 to 30 Any ±2e-15(1.mantissa) Normal

31 0 ±� Infinity

31 Nonzero Not-A-Number

Wilt_Book.indb 246 5/22/13 11:58 AM

247

 8.3 FLOATING-POINT SUPPORT

Table 8.8 Floating-Point Extreme Values

DOUBLE PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 0...0001 2-1074

Largest denormal 000F...F 2-1022(1-2-52)

Smallest normal 0010...0 2-1022

1.0 3FF0...0 1

Maximum integer 4340...0 253

Largest normal 7F7FFFFF 21024(1-2-53)

Infinity 7FF00000 Infinity

SINGLE PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 00000001 2-149

Largest denormal 007FFFFF 2-126(1-2-23)

Smallest normal 00800000 2-126

1.0 3F800000 1

Maximum integer 4B800000 224

Largest normal 7F7FFFFF 2128(1-2-24)

Infinity 7F800000 Infinity

continues

Wilt_Book.indb 247 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

248

Rounding
The IEEE standard provides for four (4) round modes.

• Round-to-nearest-even (also called “round-to-nearest”)

• Round toward zero (also called “truncate” or “chop”)

• Round down (or “round toward negative infinity”)

• Round up (or “round toward positive infinity”)

Round-to-nearest, where intermediate values are rounded to the nearest repre-
sentable floating-point value after each operation, is by far the most commonly
used round mode. Round up and round down (the “directed rounding modes”)
are used for interval arithmetic, where a pair of floating-point values are used to
bracket the intermediate result of a computation. To correctly bracket a result,
the lower and upper values of the interval must be rounded toward negative
infinity (“down”) and toward positive infinity (“up”), respectively.

The C language does not provide any way to specify round modes on a per-
instruction basis, and CUDA hardware does not provide a control word to implic-
itly specify rounding modes. Consequently, CUDA provides a set of intrinsics to
specify the round mode of an operation, as summarized in Table 8.9.

HALF PRECISION

HEXADECIMAL EXACT VALUE

Smallest denormal 0001 2-24

Largest denormal 07FF 2-14(1-2-10)

Smallest normal 0800 2-14

1.0 3c00 1

Maximum integer 6800 211

Largest normal 7BFF 216(1-2-11)

Infinity 7C00 Infinity

Table 8.8 Floating-Point Extreme Values (Continued)

Wilt_Book.indb 248 5/22/13 11:58 AM

249

 8.3 FLOATING-POINT SUPPORT

Conversion
In general, developers can convert between different floating-point representa-
tions and/or integers using standard C constructs: implicit conversion or explicit
typecasts. If necessary, however, developers can use the intrinsics listed in
Table 8.10 to perform conversions that are not in the C language specification,
such as those with directed rounding.

Because half is not standardized in the C programming language, CUDA
uses unsigned short in the interfaces for __half2float() and
__float2half(). __float2half() only supports the round-to-nearest
rounding mode.

float __half2float(unsigned short);
unsigned short __float2half(float);

Table 8.9 Intrinsics for Rounding

INTRINSIC OPERATION

__fadd_[rn|rz|ru|rd] Addition

__fmul_[rn|rz|ru|rd] Multiplication

__fmaf_[rn|rz|ru|rd] Fused multiply-add

__frcp_[rn|rz|ru|rd] Recriprocal

__fdiv_[rn|rz|ru|rd] Division

__fsqrt_[rn|rz|ru|rd] Square root

__dadd_[rn|rz|ru|rd] Addition

__dmul_[rn|rz|ru|rd] Multiplication

__fma_[rn|rz|ru|rd] Fused multiply-add

__drcp_[rn|rz|ru|rd] Reciprocal

__ddiv_[rn|rz|ru|rd] Division

__dsqrt_[rn|rz|ru|rd] Square root

Wilt_Book.indb 249 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

250

8.3.2 SINGLE PRECISION (32-BIT)

Single-precision floating-point support is the workhorse of GPU computation.
GPUs have been optimized to natively deliver high performance on this data

Table 8.10 Intrinsics for Conversion

INTRINSIC OPERATION

__float2int_[rn|rz|ru|rd] float to int

__float2uint_[rn|rz|ru|rd] float to unsigned int

__int2float_[rn|rz|ru|rd] int to float

__uint2float_[rn|rz|ru|rd] unsigned int to float

__float2ll_[rn|rz|ru|rd] float to 64-bit int

__ll2float_[rn|rz|ru|rd] 64-bit int to float

__ull2float_[rn|rz|ru|rd] unsigned 64-bit int to float

__double2float_[rn|rz|ru|rd] double to float

__double2int_[rn|rz|ru|rd] double to int

__double2uint_[rn|rz|ru|rd] double to unsigned int

__double2ll_[rn|rz|ru|rd] double to 64-bit int

__double2ull_[rn|rz|ru|rd] double to 64-bit unsigned int

__int2double_rn int to double

__uint2double_rn unsigned int to double

__ll2double_[rn|rz|ru|rd] 64-bit int to double

__ull2double_[rn|rz|ru|rd] unsigned 64-bit int to double

Wilt_Book.indb 250 5/22/13 11:58 AM

251

 8.3 FLOATING-POINT SUPPORT

type,11 not only for core standard IEEE operations such as addition and multiplica-
tion, but also for nonstandard operations such as approximations to transcenden-
tals such as sin() and log(). The 32-bit values are held in the same register file
as integers, so coercion between single-precision floating-point values and 32-bit
integers (with __float_as_int() and __int_as_float()) is free.

Addition, Multiplication, and Multiply-Add
The compiler automatically translates +, –, and * operators on floating-point values
into addition, multiplication, and multiply-add instructions. The __fadd_rn() and
__fmul_rn() intrinsics may be used to suppress fusion of addition and multipli-
cation operations into multiply-add instructions.

Reciprocal and Division
For devices of compute capability 2.x and higher, the division operator is IEEE-
compliant when the code is compiled with --prec-div=true. For devices of com-
pute capability 1.x or for devices of compute capability 2.x when the code is compiled
with --prec-div=false, the division operator and __fdividef(x,y) have the
same accuracy, but for 2126<y<2128, __fdividef(x,y) delivers a result of zero,
whereas the division operator delivers the correct result. Also, for 2126<y<2128, if x is
infinity, __fdividef(x,y) returns NaN, while the division operator returns infinity.

Transcendentals (SFU)
The Special Function Units (SFUs) in the SMs implement very fast versions of six
common transcendental functions.

• Sine and cosine

• Logarithm and exponential

• Reciprocal and reciprocal square root

Table 8.11, excerpted from the paper on the Tesla architecture12 summarizes the
supported operations and corresponding precision. The SFUs do not implement
full precision, but they are reasonably good approximations of these functions
and they are fast. For CUDA ports that are significantly faster than an optimized
CPU equivalent (say, 25x or more), the code most likely relies on the SFUs.

11. In fact, GPUs had full 32-bit floating-point support before they had full 32-bit integer support.
As a result, some early GPU computing literature explained how to implement integer math
with floating-point hardware!

12. Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, March–April 2008, p. 47.

Wilt_Book.indb 251 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

252

The SFUs are accessed with the intrinsics given in Table 8.12. Specifying the
--fast-math compiler option will cause the compiler to substitute conven-
tional C runtime calls with the corresponding SFU intrinsics listed above.

Table 8.11 SFU Accuracy

FUNCTION ACCURACY (GOOD BITS) ULP ERROR

1/x 24.02 0.98

1/sqrt(x) 23.40 1.52

2x 22.51 1.41

log2x 22.57 n/a

sin/cos 22.47 n/a

Table 8.12 SFU Intrinsics

INTRINSIC OPERATION

__cosf(x) cos x

__exp10f(x) 10x

__expf(x) ex

__fdividef(x,y) x⁄y

__logf(x) ln x

__log2f(x) log
2
 x

__log10f(x) log
10
 x

__powf(x,y) xy

__sinf(x) sin x

__sincosf(x,sptr,cptr) *s=sin(x);
*c=cos(x);

__tanf(x) tan x

Wilt_Ch08.indd 252 5/23/13 2:45 PM

253

 8.3 FLOATING-POINT SUPPORT

Miscellaneous
__saturate(x) returns 0 if x<0, 1 if x>1, and x otherwise.

8.3.3 DOUBLE PRECISION (64-BIT)

Double-precision floating-point support was added to CUDA with SM 1.3 (first
implemented in the GeForce GTX 280), and much improved double-precision
support (both functionality and performance) became available with SM 2.0.
CUDA’s hardware support for double precision features full-speed denormals
and, starting in SM 2.x, a native fused multiply-add instruction (FMAD), compli-
ant with IEEE 754 c. 2008, that performs only one rounding step. Besides being
an intrinsically useful operation, FMAD enables full accuracy on certain func-
tions that are converged with the Newton-Raphson iteration.

As with single-precision operations, the compiler automatically translates stan-
dard C operators into multiplication, addition, and multiply-add instructions. The
__dadd_rn() and __dmul_rn() intrinsics may be used to suppress fusion of
addition and multiplication operations into multiply-add instructions.

8.3.4 HALF PRECISION (16-BIT)

With 5 bits of exponent and 10 bits of significand, half values have enough pre-
cision for HDR (high dynamic range) images and can be used to hold other types
of values that do not require float precision, such as angles. Half precision
values are intended for storage, not computation, so the hardware only provides
instructions to convert to/from 32-bit.13 These instructions are exposed as the
__halftofloat() and __floattohalf() intrinsics.

float __halftofloat(unsigned short);
unsigned short __floattohalf(float);

These intrinsics use unsigned short because the C language has not stan-
dardized the half floating-point type.

8.3.5 CASE STUDY: float�half CONVERSION

Studying the float�half conversion operation is a useful way to learn the
details of floating-point encodings and rounding. Because it’s a simple unary

13. half floating-point values are supported as a texture format, in which case the TEX intrinsics
return float and the conversion is automatically performed by the texture hardware.

Wilt_Book.indb 253 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

254

operation, we can focus on the encoding and rounding without getting distracted
by the details of floating-point arithmetic and the precision of intermediate
representations.

When converting from float to half, the correct output for any float too large
to represent is half infinity. Any float too small to represent as a half (even
a denormal half) must be clamped to 0.0. The maximum float that rounds
to half 0.0 is 0x32FFFFFF, or 2.98-8, while the smallest float that rounds
to half infinity is 65520.0. float values inside this range can be converted to
half by propagating the sign bit, rebiasing the exponent (since float has an 8-bit
exponent biased by 127 and half has a 5-bit exponent biased by 15), and rounding
the float mantissa to the nearest half mantissa value. Rounding is straight-
forward in all cases except when the input value falls exactly between the two
possible output values. When this is the case, the IEEE standard specifies round-
ing to the “nearest even” value. In decimal arithmetic, this would mean rounding
1.5 to 2.0, but also rounding 2.5 to 2.0 and (for example) rounding 0.5 to 0.0.

Listing 8.3 shows a C routine that exactly replicates the float-to-half con-
version operation, as implemented by CUDA hardware. The variables exp and
mag contain the input exponent and “magnitude,” the mantissa and exponent
together with the sign bit masked off. Many operations, such as comparisons
and rounding operations, can be performed on the magnitude without separat-
ing the exponent and mantissa.

The macro LG_MAKE_MASK, used in Listing 8.3, creates a mask with a given
bit count: #define LG_MAKE_MASK(bits) ((1<<bits)-1). A volatile
union is used to treat the same 32-bit value as float and unsigned int;
idioms such as *((float *) (&u)) are not portable. The routine first propa-
gates the input sign bit and masks it off the input.

After extracting the magnitude and exponent, the function deals with the special
case when the input float is INF or NaN, and does an early exit. Note that INF
is signed, but NaN has a canonical unsigned value. Lines 50–80 clamp the input
float value to the minimum or maximum values that correspond to represent-
able half values and recompute the magnitude for clamped values. Don’t be
fooled by the elaborate code constructing f32MinRInfin and f32MaxRf16_
zero; those are constants with the values 0x477ff000 and 0x32ffffff,
respectively.

The remainder of the routine deals with the cases of output normal and denor-
mal (input denormals are clamped in the preceding code, so mag corresponds to
a normal float). As with the clamping code, f32Minf16Normal is a constant,
and its value is 0x38ffffff.

Wilt_Book.indb 254 5/22/13 11:58 AM

255

 8.3 FLOATING-POINT SUPPORT

To construct a normal, the new exponent must be computed (lines 92 and 93)
and the correctly rounded 10 bits of mantissa shifted into the output. To con-
struct a denormal, the implicit 1 must be OR’d into the output mantissa and the
resulting mantissa shifted by the amount corresponding to the input exponent.
For both normals and denormals, the rounding of the output mantissa is accom-
plished in two steps. The rounding is accomplished by adding a mask of 1’s that
ends just short of the output’s LSB, as seen in Figure 8.3.

This operation increments the output mantissa if bit 12 of the input is set; if the
input mantissa is all 1’s, the overflow causes the output exponent to correctly
increment. If we added one more 1 to the MSB of this adjustment, we’d have ele-
mentary school–style rounding where the tiebreak goes to the larger number.
Instead, to implement round-to-nearest even, we conditionally increment the
output mantissa if the LSB of the 10-bit output is set (Figure 8.4). Note that these
steps can be performed in either order or can be reformulated in many different
ways.

Listing 8.3 ConvertToHalf().
/*
 * exponent shift and mantissa bit count are the same.
 * When we are shifting, we use [f16|f32]ExpShift
 * When referencing the number of bits in the mantissa,
 * we use [f16|f32]MantissaBits
 */

Round-to-nearest

1 1 1 1 1 1 1 1 1 1 11

10-bit field

Figure 8.3 Rounding mask (half).

Increment mantissa if output LSB is 1

10-bit field

Figure 8.4 Round-to-nearest-even (half).

Wilt_Book.indb 255 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

256

const int f16ExpShift = 10;
const int f16MantissaBits = 10;

const int f16ExpBias = 15;
const int f16MinExp = -14;
const int f16MaxExp = 15;
const int f16SignMask = 0x8000;

const int f32ExpShift = 23;
const int f32MantissaBits = 23;
const int f32ExpBias = 127;
const int f32SignMask = 0x80000000;

unsigned short
ConvertFloatToHalf(float f)
{
 /*
 * Use a volatile union to portably coerce
 * 32-bit float into 32-bit integer
 */
 volatile union {
 float f;
 unsigned int u;
 } uf;
 uf.f = f;

 // return value: start by propagating the sign bit.
 unsigned short w = (uf.u >> 16) & f16SignMask;

 // Extract input magnitude and exponent
 unsigned int mag = uf.u & ~f32SignMask;
 int exp = (int) (mag >> f32ExpShift) - f32ExpBias;

 // Handle float32 Inf or NaN
 if (exp == f32ExpBias+1) { // INF or NaN

 if (mag & LG_MAKE_MASK(f32MantissaBits))
 return 0x7fff; // NaN

 // INF - propagate sign
 return w|0x7c00;
 }

 /*
 * clamp float32 values that are not representable by float16
 */
 {
 // min float32 magnitude that rounds to float16 infinity

 unsigned int f32MinRInfin = (f16MaxExp+f32ExpBias) <<
 f32ExpShift;
 f32MinRInfin |= LG_MAKE_MASK(f16MantissaBits+1) <<
 (f32MantissaBits-f16MantissaBits-1);

 if (mag > f32MinRInfin)
 mag = f32MinRInfin;
 }

Wilt_Book.indb 256 5/22/13 11:58 AM

257

 8.3 FLOATING-POINT SUPPORT

 {
 // max float32 magnitude that rounds to float16 0.0

 unsigned int f32MaxRf16_zero = f16MinExp+f32ExpBias-
 (f32MantissaBits-f16MantissaBits-1);
 f32MaxRf16_zero <<= f32ExpShift;
 f32MaxRf16_zero |= LG_MAKE_MASK(f32MantissaBits);

 if (mag < f32MaxRf16_zero)
 mag = f32MaxRf16_zero;
 }

 /*
 * compute exp again, in case mag was clamped above
 */
 exp = (mag >> f32ExpShift) - f32ExpBias;

 // min float32 magnitude that converts to float16 normal
 unsigned int f32Minf16Normal = ((f16MinExp+f32ExpBias)<<
 f32ExpShift);
 f32Minf16Normal |= LG_MAKE_MASK(f32MantissaBits);
 if (mag >= f32Minf16Normal) {
 //
 // Case 1: float16 normal
 //

 // Modify exponent to be biased for float16, not float32
 mag += (unsigned int) ((f16ExpBias-f32ExpBias)<<
 f32ExpShift);

 int RelativeShift = f32ExpShift-f16ExpShift;

 // add rounding bias
 mag += LG_MAKE_MASK(RelativeShift-1);

 // round-to-nearest even
 mag += (mag >> RelativeShift) & 1;

 w |= mag >> RelativeShift;
 }
 else {
 /*
 * Case 2: float16 denormal
 */

 // mask off exponent bits - now fraction only
 mag &= LG_MAKE_MASK(f32MantissaBits);

 // make implicit 1 explicit
 mag |= (1<<f32ExpShift);

 int RelativeShift = f32ExpShift-f16ExpShift+f16MinExp-exp;

 // add rounding bias
 mag += LG_MAKE_MASK(RelativeShift-1);

Wilt_Book.indb 257 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

258

 // round-to-nearest even
 mag += (mag >> RelativeShift) & 1;

 w |= mag >> RelativeShift;
 }
 return w;
}

In practice, developers should convert float to half by using the
__floattohalf() intrinsic, which the compiler translates to a single F2F
machine instruction. This sample routine is provided purely to aid in under-
standing floating-point layout and rounding; also, examining all the special-case
code for INF/NAN and denormal values helps to illustrate why these features of
the IEEE spec have been controversial since its inception: They make hardware
slower, more costly, or both due to increased silicon area and engineering effort
for validation.

In the code accompanying this book, the ConvertFloatToHalf() routine in
Listing 8.3 is incorporated into a program called float_to_float16.cu that
tests its output for every 32-bit floating-point value.

8.3.6 MATH LIBRARY

CUDA includes a built-in math library modeled on the C runtime library, with
a few small differences: CUDA hardware does not include a rounding mode
register (instead, the round mode is encoded on a per-instruction basis),14 so
functions such as rint() that reference the current rounding mode always
round-to-nearest. Additionally, the hardware does not raise floating-point
exceptions; results of aberrant operations, such as taking the square root of a
negative number, are encoded as NaNs.

Table 8.13 lists the math library functions and the maximum error in ulps for
each function. Most functions that operate on float have an “f” appended to
the function name—for example, the functions that compute the sine function
are as follows.

double sin(double angle);
float sinf(float angle);

These are denoted in Table 8.13 as, for example, sin[f].

14. Encoding a round mode per instruction and keeping it in a control register are not irreconcil-
able. The Alpha processor had a 2-bit encoding to specify the round mode per instruction, one
setting of which was to use the rounding mode specified in a control register! CUDA hardware
just uses a 2-bit encoding for the four round modes specified in the IEEE specification.

Wilt_Book.indb 258 5/22/13 11:58 AM

259

 8.3 FLOATING-POINT SUPPORT

Table 8.13 Math Library

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

x+y Addition x+y 01 0

x*y Multiplication x*y 01 0

x/y Division x/y 22 0

1/x Reciprocal 1/x 12 0

acos[f](x) Inverse cosine cos–1 x 3 2

acosh[f](x) Inverse hyperbolic cosine
ln x x 12()+ +

4 2

asin[f](x) Inverse sine sin–1 x 4 2

asinh[f](x) Inverse hyperbolic sine
sign(x) ln | x | 1 x2()+ +

3 2

atan[f](x) Inverse tangent tan–1 x 2 2

atan2[f](y,x) Inverse tangent of y/x

tan x
y

x

1 ⎛
⎝⎜

⎞
⎠⎟

−

3 2

atanh[f](x) Inverse hyperbolic tangent tanh–1 3 2

cbrt[f](x) Cube root
x3

1 1

ceil[f](x) “Ceiling,” nearest integer greater than
or equal to x x⎡⎢ ⎤⎥

0

copysign[f](x,y) Sign of y, magnitude of x n/a

cos[f](x) Cosine cos x 2 1

cosh[f](x) Hyperbolic cosine e e

2

x x+ − 2

cospi[f](x) Cosine, scaled by � cos �x 2

continues

Wilt_Book.indb 259 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

260

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

erf[f](x) Error function 2
e t

0

x 2

∫
π

−
3 2

erfc[f](x) Complementary error function
1

2
e t

0

x 2

∫−
π

−
6 4

erfcinv[f](y) Inverse complementary error
function

Return x
for which
y=1-erff(x)

7 8

erfcx[f](x) Scaled error function
ex

2

 (erff(x))
6 3

erfinv[f](y) Inverse error function Return x
for which
y=erff(x)

3 5

exp[f](x) Natural exponent ex 2 1

exp10[f](x) Exponent (base 10) 10x 2 1

exp2[f](x) Exponent (base 2) 2x 2 1

expm1[f](x) Natural exponent, minus one ex – 1 1 1

fabs[f](x) Absolute value |x| 0 0

fdim[f](x,y) Positive difference
x y, x y

0, x y

NAN, x or y NaN

⎧

⎨
⎪

⎩
⎪

− >

+ ≤

0 0

floor[f](x) “Floor,” nearest integer less than or
equal to x x⎢⎣ ⎥⎦

0 0

fma[f](x,y,z) Multiply-add xy + z 0 0

fmax[f](x,y) Maximum
x, x y or isNaN(y)

y, otherwise

⎧
⎨
⎩

>
0 0

Table 8.13 Math Library (Continued)

Wilt_Book.indb 260 5/22/13 11:58 AM

261

 8.3 FLOATING-POINT SUPPORT

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

fmin[f](x,y) Minimum
x, x y or isNaN(y)

y, otherwise

⎧
⎨
⎩

<
0 0

fmod[f](x,y) Floating-point remainder 0 0

frexp[f](x,exp) Fractional component 0 0

hypot[f](x,y) Length of hypotenuse
x y2 2+

3 2

ilogb[f](x) Get exponent 0 0

isfinite(x) Nonzero if x is not ±INF n/a

isinf(x) Nonzero if x is ±INF n/a

isnan(x) Nonzero if x is a NaN n/a

j0[f](x) Bessel function of the first kind (n=0) J0(x) 93 73

j1[f](x) Bessel function of the first kind (n=1) J1(x) 93 73

jn[f](n,x) Bessel function of the first kind Jn(x) *

ldexp[f](x,exp) Scale by power of 2 x2exp 0 0

lgamma[f](x) Logarithm of gamma function
ln (x)()Γ

64 44

llrint[f](x) Round to long long 0 0

llround[f](x) Round to long long 0 0

lrint[f](x) Round to long 0 0

lround[f](x) Round to long 0 0

log[f](x) Natural logarithm ln(x) 1 1

log10[f](x) Logarithm (base 10) log10 x 3 1

log1p[f](x) Natural logarithm of x+1 ln(x + 1) 2 1

continues

Table 8.13 Math Library (Continued)

Wilt_Book.indb 261 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

262

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

log2[f](x) Logarithm (base 2) log2 x 3 1

logb[f](x) Get exponent 0 0

modff(x,iptr) Split fractional and integer parts 0 0

nan[f](cptr) Returns NaN NaN n/a

nearbyint[f](x) Round to integer 0 0

nextafter[f](x,y) Returns the FP value closest to x in
the direction of y

n/a

normcdf[f](x) Normal cumulative distribution 6 5

normcdinv[f](x) Inverse normal cumulative
distribution

5 8

pow[f](x,y) Power function xy 8 2

rcbrt[f](x) Inverse cube root
1

x3

2 1

remainder[f](x,y) Remainder 0 0

remquo[f]
(x,y,iptr)

Remainder (also returns quotient) 0 0

rsqrt[f](x) Reciprocal
1

x

2 1

rint[f](x) Round to nearest int 0 0

round[f](x) Round to nearest int 0 0

scalbln[f](x,n) Scale x by 2n (n is long int) x2n 0 0

scalbn[f](x,n) Scale x by 2n (n is int) x2n 0 0

signbit(x) Nonzero if x is negative n/a 0

sin[f](x) Sine sin x 2 1

Table 8.13 Math Library (Continued)

Wilt_Book.indb 262 5/22/13 11:58 AM

263

 8.3 FLOATING-POINT SUPPORT

ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64

sincos[f](x,s,c) Sine and cosine *s=sin(x);

*c=cos(x);

2 1

sincospi[f](x,s,c) Sine and cosine *s=sin(πx);

*c=cos(πx);

2 1

sinh[f](x) Hyperbolic sine
e e

2

x x− − 3 1

sinpi[f](x) Sine, scaled by � sin �x 2 1

sqrt[f](x) Square root
x

35 0

tan[f](x) Tangent tan x 4 2

tanh[f](x) Hyperbolic tangent sinh x

cosh x

2 1

tgamma[f](x) True gamma function �(x) 11 8

trunc[f](x) Truncate (round to integer toward
zero)

0 0

y0[f](x) Bessel function of the second kind
(n=0)

Y0(x) 93 73

y1[f](x) Bessel function of the second kind
(n=1)

Y1(x) 93 73

yn[f](n,x) Bessel function of the second kind Yn(x) **

* For the Bessel functions jnf(n,x) and jn(n,x), for n=128 the maximum absolute error is 2.2×10-6 and 5×10-12, respectively.

** For the Bessel function ynf(n,x), the error is 2 2.5n⎡⎢ ⎤⎥+ for |x|; otherwise, the maximum absolute error is 2.2×10-6
for n=128. For yn(n,x), the maximum absolute error is 5×10-12.

1. On SM 1.x class hardware, the precision of addition and multiplication operation that are merged into FMAD instructions will
suffer due to truncation of the intermediate mantissa.

2. On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying --prec-div=true.

3. For float, the error is 9 ulps for |x|<8; otherwise, the maximum absolute error is 2.2×10-6. For double, the error is 7 ulps for
|x|<8; otherwise, the maximum absolute error is 5×10-12.

4. The error for lgammaf() is greater than 6 inside the interval –10.001, –2.264. The error for lgamma() is greater than 4 inside
the interval –11.001, –2.2637.

5. On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying --prec-sqrt=true.

Table 8.13 Math Library (Continued)

Wilt_Book.indb 263 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

264

Conversion to Integer
According to the C runtime library definition, the nearbyint() and rint()
functions round a floating-point value to the nearest integer using the “current
rounding direction,” which in CUDA is always round-to-nearest-even. In the C
runtime, nearbyint() and rint() differ only in their handling of the INEXACT
exception. But since CUDA does not raise floating-point exceptions, the func-
tions behave identically.

round() implements elementary school–style rounding: For floating-point
values halfway between integers, the input is always rounded away from zero.
NVIDIA recommends against using this function because it expands to eight (8)
instructions as opposed to one for rint() and its variants. trunc() truncates
or “chops” the floating-point value, rounding toward zero. It compiles to a single
instruction.

Fractions and Exponents
float frexpf(float x, int *eptr);

frexpf() breaks the input into a floating-point significand in the range [0.5, 1.0)
and an integral exponent for 2, such that

x Significand 2Exponent= ⋅

float logbf(float x);

logbf() extracts the exponent from x and returns it as a floating-point value.
It is equivalent to floorf(log2f(x)), except it is faster. If x is a denormal,
logbf() returns the exponent that x would have if it were normalized.

float ldexpf(float x, int exp);
float scalbnf(float x, int n);
float scanblnf(float x, long n);

ldexpf(), scalbnf(), and scalblnf() all compute x2n by direct manipula-
tion of floating-point exponents.

Floating-Point Remainder
modff() breaks the input into fractional and integer parts.

float modff(float x, float *intpart);

The return value is the fractional part of x, with the same sign.

Wilt_Book.indb 264 5/22/13 11:58 AM

265

 8.3 FLOATING-POINT SUPPORT

remainderf(x,y) computes the floating-point remainder of dividing x by y.
The return value is x-n*y, where n is x/y, rounded to the nearest integer. If |x –
ny| = 0.5, n is chosen to be even.

float remquof(float x, float y, int *quo);

computes the remainder and passes back the lower bits of the integral quotient
x/y, with the same sign as x/y.

Bessel Functions
The Bessel functions of order n relate to the differential equation

x d y
dx

x dy
dx

x n y() 02
2

2
2 2+ + − =

n can be a real number, but for purposes of the C runtime, it is a nonnegative
integer.

The solution to this second-order ordinary differential equation combines Bes-
sel functions of the first kind and of the second kind.

y x c J x c Y x() () ()n n1 2
= +

The math runtime functions jn[f]() and yn[f]() compute Jn(x) and Yn(x),
respectively. j0f(), j1f(), y0f(), and y1f() compute these functions for the
special cases of n=0 and n=1.

Gamma Function
The gamma function � is an extension of the factorial function, with its argu-
ment shifted down by 1, to real numbers. It has a variety of definitions, one of
which is as follows.

x e t dt() t x 1
0∫Γ = − −∞

The function grows so quickly that the return value loses precision for rel-
atively small input values, so the library provides the lgamma() function,
which returns the natural logarithm of the gamma function, in addition to the
tgamma() (“true gamma”) function.

Wilt_Book.indb 265 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

266

8.3.7 ADDITIONAL READING

Goldberg’s survey (with the captivating title “What Every Computer Scientist
Should Know About Floating Point Arithmetic”) is a good introduction to the
topic.

http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

Nathan Whitehead and Alex Fit-Florea of NVIDIA have coauthored a white paper
entitled “Precision & Performance: Floating Point and IEEE 754 Compliance for
NVIDIA GPUs.”

http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-
Floating-Point.pdf

Increasing Effective Precision
Dekker and Kahan developed methods to almost double the effective preci-
sion of floating-point hardware using pairs of numbers in exchange for a slight
reduction in exponent range (due to intermediate underflow and overflow at the
far ends of the range). Some papers on this topic include the following.

Dekker, T.J. Point technique for extending the available precision. Numer. Math.
18, 1971, pp. 224–242.

Linnainmaa, S. Software for doubled-precision floating point computations. ACM
TOMS 7, pp. 172–283 (1981).

Shewchuk, J.R. Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete & Computational Geometry 18, 1997, pp. 305–363.

Some GPU-specific work on this topic has been done by Andrew Thall, Da Graça,
and Defour.

Guillaume, Da Graça, and David Defour. Implementation of float-float operators
on graphics hardware, 7th Conference on Real Numbers and Computers, RNC7
(2006).

http://hal.archives-ouvertes.fr/docs/00/06/33/56/PDF/float-float.pdf

Thall, Andrew. Extended-precision floating-point numbers for GPU computa-
tion. 2007.

http://andrewthall.org/papers/df64_qf128.pdf

Wilt_Book.indb 266 5/22/13 11:58 AM

http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://hal.archives-ouvertes.fr/docs/00/06/33/56/PDF/float-float.pdf
http://andrewthall.org/papers/df64_qf128.pdf

267

 8.4 CONDITIONAL CODE

 8.4 Conditional Code
The hardware implements “condition code” or CC registers that contain the usual
4-bit state vector (sign, carry, zero, overflow) used for integer comparison. These
CC registers can be set using comparison instructions such as ISET, and they
can direct the flow of execution via predication or divergence. Predication allows
(or suppresses) the execution of instructions on a per-thread basis within a warp,
while divergence is the conditional execution of longer instruction sequences.
Because the processors within an SM execute instructions in SIMD fashion at
warp granularity (32 threads at a time), divergence can result in fewer instruc-
tions executed, provided all threads within a warp take the same code path.

8.4.1 PREDICATION

Due to the additional overhead of managing divergence and convergence, the
compiler uses predication for short instruction sequences. The effect of most
instructions can be predicated on a condition; if the condition is not TRUE, the
instruction is suppressed. This suppression occurs early enough that predi-
cated execution of instructions such as load/store and TEX inhibits the memory
traffic that the instruction would otherwise generate. Note that predication has
no effect on the eligibility of memory traffic for global load/store coalescing.
The addresses specified to all load/store instructions in a warp must reference
consecutive memory locations, even if they are predicated.

Predication is used when the number of instructions that vary depending on
a condition is small; the compiler uses heuristics that favor predication up to
about 7 instructions. Besides avoiding the overhead of managing the branch
synchronization stack described below, predication also gives the compiler
more optimization opportunities (such as instruction scheduling) when emitting
microcode. The ternary operator in C (? :) is considered a compiler hint to favor
predication.

Listing 8.2 gives an excellent example of predication, as expressed in micro-
code. When performing an atomic operation on a shared memory location, the
compiler emits code that loops over the shared memory location until it has
successfully performed the atomic operation. The LDSLK (load shared and lock)
instruction returns a condition code that tells whether the lock was acquired.
The instructions to perform the operation then are predicated on that condition
code.

Wilt_Book.indb 267 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

268

/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;

This code fragment also highlights how predication and branching sometimes
work together. The last instruction, a conditional branch to attempt to reacquire
the lock if necessary, also is predicated.

8.4.2 DIVERGENCE AND CONVERGENCE

Predication works well for small fragments of conditional code, especially if
statements with no corresponding else. For larger amounts of conditional
code, predication becomes inefficient because every instruction is executed,
regardless of whether it will affect the computation. When the larger number of
instructions causes the costs of predication to exceed the benefits, the compiler
will use conditional branches. When the flow of execution within a warp takes
different paths depending on a condition, the code is called divergent.

NVIDIA is close-mouthed about the details of how their hardware supports diver-
gent code paths, and it reserves the right to change the hardware implementa-
tion between generations. The hardware maintains a bit vector of active threads
within each warp. For threads that are marked inactive, execution is suppressed
in a way similar to predication. Before taking a branch, the compiler executes a
special instruction to push this active-thread bit vector onto a stack. The code is
then executed twice, once for threads for which the condition was TRUE, then for
threads for which the predicate was FALSE. This two-phased execution is man-
aged with a branch synchronization stack, as described by Lindholm et al.15

If threads of a warp diverge via a data-dependent conditional branch, the warp
serially executes each branch path taken, disabling threads that are not on that
path, and when all paths complete, the threads reconverge to the original execu-
tion path. The SM uses a branch synchronization stack to manage independent
threads that diverge and converge. Branch divergence only occurs within a warp;
different warps execute independently regardless of whether they are executing
common or disjoint code paths.

The PTX specification makes no mention of a branch synchronization stack, so
the only publicly available evidence of its existence is in the disassembly output
of cuobjdump. The SSY instruction pushes a state such as the program counter
and active thread mask onto the stack; the .S instruction prefix pops this state

15. Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, March–April 2008, pp. 39–55.

Wilt_Book.indb 268 5/22/13 11:58 AM

269

 8.5 TEXTURES AND SURFACES

and, if any active threads did not take the branch, causes those threads to exe-
cute the code path whose state was snapshotted by SSY.

SSY/.S is only necessary when threads of execution may diverge, so if the
compiler can guarantee that threads will stay uniform in a code path, you may
see branches that are not bracketed by SSY/.S. The important thing to realize
about branching in CUDA is that in all cases, it is most efficient for all threads
within a warp to follow the same execution path.

The loop in Listing 8.2 also includes a good self-contained example of diver-
gence and convergence. The SSY instruction (offset 0x40) and NOP.S instruction
(offset 0x78) bracket the points of divergence and convergence, respectively.
The code loops over the LDSLK and subsequent predicated instructions, retiring
active threads until the compiler knows that all threads will have converged and
the branch synchronization stack can be popped with the NOP.S instruction.

/*0040*/ SSY 0x80;
/*0048*/ BAR.RED.POPC RZ, RZ;
/*0050*/ LD R0, [R0];
/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;
/*0078*/ NOP.S CC.T;

8.4.3 SPECIAL CASES: MIN, MAX, AND ABSOLUTE VALUE

Some conditional operations are so common that they are supported natively
by the hardware. Minimum and maximum operations are supported for both
integer and floating-point operands and are translated to a single instruction.
Additionally, floating-point instructions include modifiers that can negate or take
the absolute value of a source operand.

The compiler does a good job of detecting when min/max operations are being
expressed, but if you want to take no chances, call the min()/max() intrinsics
for integers or fmin()/fmax() for floating-point values.

 8.5 Textures and Surfaces
The instructions that read and write textures and surfaces refer to much more
implicit state than do other instructions; parameters such as the base address,
dimensions, format, and interpretation of the texture contents are contained in

Wilt_Book.indb 269 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

270

a header, an intermediate data structure whose software abstraction is called a
texture reference or surface reference. As developers manipulate the texture or
surface references, the CUDA runtime and driver must translate those changes
into the headers, which the texture or surface instruction references as an
index.16

Before launching a kernel that operates on textures or surfaces, the driver must
ensure that all this state is set correctly on the hardware. As a result, launching
such kernels may take longer. Texture reads are serviced through a specialized
cache subsystem that is separate from the L1/L2 caches in Fermi, and also sep-
arate from the constant cache. Each SM has an L1 texture cache, and the TPCs
(texture processor clusters) or GPCs (graphics processor clusters) each addi-
tionally have L2 texture cache. Surface reads and writes are serviced through
the same L1/L2 caches that service global memory traffic.

Kepler added two technologies of note with respect to textures: the ability to
read from global memory via the texture cache hierarchy without binding a tex-
ture reference, and the ability to specify a texture header by address rather than
by index. The latter technology is known as “bindless textures.”

On SM 3.5 and later hardware, reading global memory via the texture cache can
be requested by using const __restrict pointers or by explicitly invoking the
ldg() intrinsics in sm_35_intrinsics.h.

 8.6 Miscellaneous Instructions
8.6.1 WARP-LEVEL PRIMITIVES

It did not take long for the importance of warps as a primitive unit of execution
(naturally residing between threads and blocks) to become evident to CUDA pro-
grammers. Starting with SM 1.x, NVIDIA began adding instructions that specifi-
cally operate on warps.

Vote
That CUDA architectures are 32-bit and that warps are comprised of 32 threads
made an irresistible match to instructions that can evaluate a condition and

16. SM 3.x added texture objects, which enable texture and surface headers to be referenced by
address rather than an index. Previous hardware generations could reference at most 128
textures or surfaces in a kernel, but with SM 3.x the number is limited only by memory.

Wilt_Book.indb 270 5/22/13 11:58 AM

271

 8.6 MISCELLANEOUS INSTRUCTIONS

broadcast a 1-bit result to every thread in the warp. The VOTE instruction
(first available in SM 1.2) evaluates a condition and broadcasts the result to all
threads in the warp. The __any() intrinsic returns 1 if the predicate is true for
any of the 32 threads in the warp. The __all() intrinsic returns 1 if the predi-
cate is true for all of the 32 threads in the warp.

The Fermi architecture added a new variant of VOTE that passes back the pred-
icate result for every thread in the warp. The __ballot() intrinsic evaluates
a condition for all threads in the warp and returns a 32-bit value where each bit
gives the condition for the corresponding thread in the warp.

Shuffle
Kepler added shuffle instructions that enable data interchange between threads
within a warp without staging the data through shared memory. Although these
instructions execute with the same latency as shared memory, they have the
benefit of doing the exchange without performing both a read and a write, and
they can reduce shared memory usage.

The following instruction is wrapped in a number of device functions that use
inline PTX assembly defined in sm_30_intrinsics.h.

int __shfl(int var, int srcLane, int width=32);
int __shfl_up(int var, unsigned int delta, int width=32);
int __shfl_down(int var, unsigned int delta, int width=32);
int __shfl_xor(int var, int laneMask, int width=32);

The width parameter, w hich defaults to the warp width of 32, must be a power
of 2 in the range 2..32. It enables subdivision of the warp into segments; if
width<32, each subsection of the warp behaves as a separate entity with a
starting logical lane ID of 0. A thread may only exchange data with other threads
in its subsection.

__shfl() returns the value of var held by the thread whose ID is given by
srcLane. If srcLane is outside the range 0..width-1, the thread’s own value
of var is returned. This variant of the instruction can be used to broadcast
values within a warp. __shfl_up() calculates a source lane ID by subtracting
delta from the caller’s lane ID and clamping to the range 0..width-1.
__shfl_down() calculates a source lane ID by adding delta to the caller’s
lane ID.

__shfl_up()and __shfl_down()enable warp-level scan and reverse
scan operations, respectively. __shfl_xor() calculates a source lane ID by
performing a bitwise XOR of the caller’s lane ID with laneMask; the value of
var held by the resulting lane ID is returned. This variant can be used to do a

Wilt_Book.indb 271 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

272

reduction across the warps (or subwarps); each thread computes the reduction
using a differently ordered series of the associative operator.

8.6.2 BLOCK-LEVEL PRIMITIVES

The __syncthreads() intrinsic serves as a barrier. It causes all threads to
wait until every thread in the threadblock has arrived at the __syncthreads().
The Fermi instruction set (SM 2.x) added several new block-level barriers that
aggregate information about the threads in the threadblock.

• __syncthreads_count(): evaluates a predicate and returns the sum of
threads for which the predicate was true

• __syncthreads_or(): returns the OR of all the inputs across the
threadblock

• __syncthreads_and(): returns the AND of all the inputs across the
threadblock

8.6.3 PERFORMANCE COUNTER

Developers can define their own set of performance counters and increment
them in live code with the __prof_trigger() intrinsic.

void __prof_trigger(int counter);

Calling this function increments the corresponding counter by 1 per warp.
counter must be in the range 0..7; counters 8..15 are reserved. The value of the
counters may be obtained by listing prof_trigger_00..prof_trigger_07
in the profiler configuration file.

8.6.4 VIDEO INSTRUCTIONS

The video instructions described in this section are accessible only via the inline
PTX assembler. Their basic functionality is described here to help developers to
decide whether they might be beneficial for their application. Anyone intending
to use these instructions, however, should consult the PTX ISA specification.

Scalar Video Instructions
The scalar video instructions, added with SM 2.0 hardware, enable efficient
operations on the short (8- and 16-bit) integer types needed for video

Wilt_Book.indb 272 5/22/13 11:58 AM

273

 8.6 MISCELLANEOUS INSTRUCTIONS

processing. As described in the PTX 3.1 ISA Specification, the format of these
instructions is as follows.

vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel};
vop.dtype.atype.btype{.sat}.secop d, a{.asel}, b{.bsel}, c;

The source and destination operands are all 32-bit registers. dtype, atype,
and btype may be .u32 or .s32 for unsigned and signed 32-bit integers,
respectively. The asel/bsel specifiers select which 8- or 16-bit value to
extract from the source operands: b0, b1, b2, and b3 select bytes (numbering
from the least significant), and h0/h1 select the least significant and most sig-
nificant 16 bits, respectively.

Once the input values are extracted, they are sign- or zero-extended internally
to signed 33-bit integers, and the primary operation is performed, producing a
34-bit intermediate result whose sign depends on dtype. Finally, the result is
clamped to the output range, and one of the following operations is performed.

1. Apply a second operation (add, min or max) to the intermediate result and a
third operand.

2. Truncate the intermediate result to an 8- or 16-bit value and merge into a
specified position in the third operand to produce the final result.

The lower 32 bits are then written to the destination operand.

The vset instruction performs a comparison between the 8-, 16-, or 32-bit input
operands and generates the corresponding predicate (1 or 0) as output. The PTX
scalar video instructions and the corresponding operations are given in Table 8.14.

Table 8.14 Scalar Video Instructions.

MNEMONIC OPERATION

vabsdiff abs(a-b)

vadd a+b

vavrg (a+b)/2

vmad a*b+c

vmax max(a,b)

continues

Wilt_Book.indb 273 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

274

Vector Video Instructions (SM 3.0 only)
These instructions, added with SM 3.0, are similar to the scalar video instructions
in that they promote the inputs to a canonical integer format, perform the core
operation, and then clamp and optionally merge the output. But they deliver higher
performance by operating on pairs of 16-bit values or quads of 8-bit values.

Table 8.15 summarizes the PTX instructions and corresponding operations
implemented by these instructions. They are most useful for video processing
and certain image processing operations (such as the median filter).

Table 8.14 Scalar Video Instructions. (Continued)

MNEMONIC OPERATION

vmin min(a,b)

vset Compare a and b

vshl a<<b

vshr a>>b

vsub a-b

Table 8.15 Vector Video Instructions

MNEMONIC OPERATION

vabsdiff[2|4] abs(a-b)

vadd[2|4] a+b

vavrg[2|4] (a+b)/2

vmax[2|4] max(a,b)

vmin[2|4] min(a,b)

vset[2|4] Compare a and b

vsub[2|4] a-b

Wilt_Book.indb 274 5/22/13 11:58 AM

275

 8.7 INSTRUCTION SETS

8.6.5 SPECIAL REGISTERS

Many special registers are accessed by referencing the built-in variables
threadIdx, blockIdx, blockDim, and gridDim. These pseudo-variables,
described in detail in Section 7.3, are 3-dimensional structures that specify the
thread ID, block ID, thread count, and block count, respectively.

Besides those, another special register is the SM’s clock register, which incre-
ments with each clock cycle. This counter can be read with the __clock() or
__clock64() intrinsic. The counters are separately tracked for each SM and,
like the time stamp counters on CPUs, are most useful for measuring relative
performance of different code sequences and best avoided when trying to calcu-
late wall clock times.

 8.7 Instruction Sets
NVIDIA has developed three major architectures: Tesla (SM 1.x), Fermi (SM 2.x),
and Kepler (SM 3.x). Within those families, new instructions have been added as
NVIDIA updated their products. For example, global atomic operations were not
present in the very first Tesla-class processor (the G80, which shipped in 2006
as the GeForce GTX 8800), but all subsequent Tesla-class GPUs included them.
So when querying the SM version via cuDeviceComputeCapability(), the
major and minor versions will be 1.0 for G80 and 1.1 (or greater) for all other
Tesla-class GPUs. Conversely, if the SM version is 1.1 or greater, the application
can use global atomics.

Table 8.16 gives the SASS instructions that may be printed by cuobjdump when
disassembling microcode for Tesla-class (SM 1.x) hardware. The Fermi and
Kepler instruction sets closely resemble each other, with the exception of the
instructions that support surface load/store, so their instruction sets are given
together in Table 8.17. In both tables, the middle column specifies the first SM
version to support a given instruction.

Wilt_Book.indb 275 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

276

Table 8.16 SM 1.x Instruction Set

OPCODE SM DESCRIPTION

FLOATING POINT

COS 1.0 Cosine

DADD 1.3 Double-precision floating-point add

DFMA 1.3 Double-precision floating-point fused multiply-add

DMAX 1.3 Double-precision floating-point maximum

DMIN 1.3 Double-precision floating-point minimum

DMUL 1.3 Double-precision floating-point multiply

DSET 1.3 Double-precision floating-point condition set

EX2 1.0 Exponential (base 2)

FADD/FADD32/FADD32I 1.0 Single-precision floating-point add

FCMP 1.0 Single-precision floating-point compare

FMAD/FMAD32/FMAD32I 1.0 Single-precision floating-point multiply-add

FMAX 1.0 Single-precision floating-point maximum

FMIN 1.0 Single-precision floating-point minimum

FMUL/FMUL32/FMUL32I 1.0 Single-precision floating-point multiply

FSET 1.0 Single-precision floating-point conditional set

LG2 1.0 Single-precision floating-point logarithm (base 2)

RCP 1.0 Single-precision floating-point reciprocal

RRO 1.0 Range reduction operator (used before SIN/COS)

RSQ 1.0 Reciprocal square root

SIN 1.0 Sine

Wilt_Book.indb 276 5/22/13 11:58 AM

277

 8.7 INSTRUCTION SETS

OPCODE SM DESCRIPTION

FLOW CONTROL

BAR 1.0 Barrier synchronization/ __syncthreads()

BRA 1.0 Conditional branch

BRK 1.0 Conditional break from loop

BRX 1.0 Fetch an address from constant memory and branch to it

C2R 1.0 Condition code to data register

CAL 1.0 Unconditional subroutine call

RET 1.0 Conditional return from subroutine

SSY 1.0 Set synchronization point; used before potentially divergent
instructions

DATA CONVERSION

F2F 1.0 Copy floating-point value with conversion to floating point

F2I 1.0 Copy floating-point value with conversion to integer

I2F 1.0 Copy integer value to floating-point with conversion

I2I 1.0 Copy integer value to integer with conversion

INTEGER

IADD/ IADD32/ IADD32I 1.0 Integer addition

IMAD/ IMAD32/ IMAD32I 1.0 Integer multiply-add

IMAX 1.0 Integer maximum

IMIN 1.0 Integer minimum

IMUL/ IMUL32/ IMUL32I 1.0 Integer multiply

ISAD/ ISAD32 1.0 Integer sum of absolute difference

continues

Table 8.16 SM 1.x Instruction Set (Continued)

Wilt_Book.indb 277 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

278

OPCODE SM DESCRIPTION

ISET 1.0 Integer conditional set

SHL 1.0 Shift left

SHR 1.0 Shift right

MEMORY OPERATIONS

A2R 1.0 Move address register to data register

ADA 1.0 Add immediate to address register

G2R 1.0 Move from shared memory to register. The .LCK suffix, used
to implement shared memory atomics, causes the bank to be
locked until an R2G.UNL has been performed.

GATOM.IADD/ EXCH/ CAS/
IMIN/ IMAX/ INC/ DEC/
IAND/ IOR/ IXOR

1.2 Global memory atomic operations; performs an atomic opera-
tion and returns the original value.

GLD 1.0 Load from global memory

GRED.IADD/ IMIN/ IMAX/
INC/ DEC/ IAND/ IOR/ IXOR

1.2 Global memory reduction operations; performs an atomic
operation with no return value.

GST 1.0 Store to global memory

LLD 1.0 Load from local memory

LST 1.0 Store to local memory

LOP 1.0 Logical operation (AND/OR/XOR)

MOV/ MOV32 1.0 Move source to destination

MVC 1.0 Move from constant memory

MVI 1.0 Move immediate

R2A 1.0 Move register to address register

R2C 1.0 Move data register to condition code

R2G 1.0 Store to shared memory. When used with the .UNL suffix,
releases a previously held lock on that shared memory bank.

Table 8.16 SM 1.x Instruction Set (Continued)

Wilt_Book.indb 278 5/22/13 11:58 AM

279

 8.7 INSTRUCTION SETS

OPCODE SM DESCRIPTION

MISCELLANEOUS

NOP 1.0 No operation

TEX/ TEX32 1.0 Texture fetch

VOTE 1.2 Warp-vote primitive.

S2R 1.0 Move special register (e.g., thread ID) to register

Table 8.16 SM 1.x Instruction Set (Continued)

Table 8.17 SM 2.x and SM 3.x Instruction Sets

OPCODE SM DESCRIPTION

FLOATING POINT

DADD 2.0 Double-precision add

DMUL 2.0 Double-precision multiply

DMNMX 2.0 Double-precision minimum/maximum

DSET 2.0 Double-precision set

DSETP 2.0 Double-precision predicate

DFMA 2.0 Double-precision fused multiply-add

FFMA 2.0 Single-precision fused multiply-add

FADD 2.0 Single-precision floating-point add

FCMP 2.0 Single-precision floating-point compare

FMUL 2.0 Single-precision floating-point multiply

FMNMX 2.0 Single-precision floating-point minimum/maximum

FSWZ 2.0 Single-precision floating-point swizzle

continues

Wilt_Book.indb 279 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

280

OPCODE SM DESCRIPTION

FSET 2.0 Single-precision floating-point set

FSETP 2.0 Single-precision floating-point set predicate

MUFU 2.0 MultiFunk (SFU) operator

RRO 2.0 Range reduction operator (used before MUFU sin/cos)

INTEGER

BFE 2.0 Bit field extract

BFI 2.0 Bit field insert

FLO 2.0 Find leading one

IADD 2.0 Integer add

ICMP 2.0 Integer compare and select

IMAD 2.0 Integer multiply-add

IMNMX 2.0 Integer minimum/maximum

IMUL 2.0 Integer multiply

ISAD 2.0 Integer sum of absolute differences

ISCADD 2.0 Integer add with scale

ISET 2.0 Integer set

ISETP 2.0 Integer set predicate

LOP 2.0 Logical operation (AND/OR/XOR)

SHF 3.5 Funnel shift

SHL 2.0 Shift left

SHR 2.0 Shift right

POPC 2.0 Population count

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

Wilt_Book.indb 280 5/22/13 11:58 AM

281

 8.7 INSTRUCTION SETS

OPCODE SM DESCRIPTION

DATA CONVERSION

F2F 2.0 Floating point to floating point

F2I 2.0 Floating point to integer

I2F 2.0 Integer to floating point

I2I 2.0 Integer to integer

SCALAR VIDEO

VABSDIFF 2.0 Scalar video absolute difference

VADD 2.0 Scalar video add

VMAD 2.0 Scalar video multiply-add

VMAX 2.0 Scalar video maximum

VMIN 2.0 Scalar video minimum

VSET 2.0 Scalar video set

VSHL 2.0 Scalar video shift left

VSHR 2.0 Scalar video shift right

VSUB 2.0 Scalar video subtract

VECTOR (SIMD) VIDEO

VABSDIFF2(4) 3.0 Vector video 2x16-bit (4x8-bit) absolute difference

VADD2(4) 3.0 Vector video 2x16-bit (4x8-bit) addition

VAVRG2(4) 3.0 Vector video 2x16-bit (4x8-bit) average

VMAX2(4) 3.0 Vector video 2x16-bit (4x8-bit) maximum

VMIN2(4) 3.0 Vector video 2x16-bit (4x8-bit) minimum

VSET2(4) 3.0 Vector video 2x16-bit (4x8-bit) set

VSUB2(4) 3.0 Vector video 2x16-bit (4x8-bit) subtraction

continues

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

Wilt_Book.indb 281 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

282

OPCODE SM DESCRIPTION

DATA MOVEMENT

MOV 2.0 Move

PRMT 2.0 Permute

SEL 2.0 Select (conditional move)

SHFL 3.0 Warp shuffle

PREDICATE/CONDITION CODES

CSET 2.0 Condition code set

CSETP 2.0 Condition code set predicate

P2R 2.0 Predicate to register

R2P 2.0 Register to predicate

PSET 2.0 Predicate set

PSETP 2.0 Predicate set predicate

TEXTURE

TEX 2.0 Texture fetch

TLD 2.0 Texture load

TLD4 2.0 Texture load 4 texels

TXQ 2.0 Texture query

MEMORY OPERATIONS

ATOM 2.0 Atomic memory operation

CCTL 2.0 Cache control

CCTLL 2.0 Cache control (local)

LD 2.0 Load from memory

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

Wilt_Book.indb 282 5/22/13 11:58 AM

283

 8.7 INSTRUCTION SETS

OPCODE SM DESCRIPTION

LDC 2.0 Load constant

LDG 3.5 Noncoherence global load (reads via texture cache)

LDL 2.0 Load from local memory

LDLK 2.0 Load and lock

LDS 2.0 Load from shared memory

LDSLK 2.0 Load from shared memory and lock

LDU 2.0 Load uniform

LD_LDU 2.0 Combines generic load LD with a load uniform LDU

LDS_LDU 2.0 Combines shared memory load LDS with a load uniform LDU

MEMBAR 2.0 Memory barrier

RED 2.0 Atomic memory reduction operation

ST 2.0 Store to memory

STL 2.0 Store to local memory

STUL 2.0 Store and unlock

STS 2.0 Store to shared memory

STSUL 2.0 Store to shared memory and unlock

SURFACE MEMORY (FERMI)

SULD 2.0 Surface load

SULEA 2.0 Surface load effective address

SUQ 2.0 Surface query

SURED 2.0 Surface reduction

SUST 2.0 Surface store

continues

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

Wilt_Book.indb 283 5/22/13 11:58 AM

STREAMING MULTIPROCESSORS

284

OPCODE SM DESCRIPTION

SURFACE MEMORY (KEPLER)

SUBFM 3.0 Surface bit field merge

SUCLAMP 3.0 Surface clamp

SUEAU 3.0 Surface effective address

SULDGA 3.0 Surface load generic address

SUSTGA 3.0 Surface store generic address

FLOW CONTROL

BRA 2.0 Branch to relative address

BPT 2.0 Breakpoint/trap

BRK 2.0 Break from loop

BRX 2.0 Branch to relative indexed address

CAL 2.0 Call to relative address

CONT 2.0 Continue in loop

EXIT 2.0 Exit program

JCAL 2.0 Call to absolute address

JMP 2.0 Jump to absolute address

JMX 2.0 Jump to absolute indexed address

LONGJMP 2.0 Long jump

PBK 2.0 Pre–break relative address

PCNT 2.0 Pre–continue relative address

PLONGJMP 2.0 Pre–long jump relative address

PRET 2.0 Pre–return relative address

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

Wilt_Book.indb 284 5/22/13 11:58 AM

285

 8.7 INSTRUCTION SETS

OPCODE SM DESCRIPTION

RET 2.0 Return from call

SSY 2.0 Set synchronization point; used before potentially divergent
instructions

MISCELLANEOUS

B2R 2.0 Barrier to register

BAR 2.0 Barrier synchronization

LEPC 2.0 Load effective program counter

NOP 2.0 No operation

S2R 2.0 Special register to register (used to read, for example, the
thread or block ID)

VOTE 2.0 Query condition across warp

Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

Wilt_Book.indb 285 5/22/13 11:58 AM

This page intentionally left blank

487

64-bit addressing, xxii
device pointers, 132
and UVA, 30–31

A

Absolute value, 260
Address spaces, 22–32
Adobe CS5, 5
Affinity, 15–16, 128–130
__all() intrinsic, 271
Amazon Machine Image (AMI), 113–114
Amazon Web Services, 109–117
AMBER molecular modeling package, 427
Amdahl’s Law, 35–36, 188, 195
AMI, see Amazon Machine Image
__any() intrinsic, 271
ARM, 19
Array of structures (AOS), 429–430
Arrays, CUDA, see CUDA Arrays
Asynchronous operations

kernel launch, 205–206, 209
memory copy, 178–181

atomicAdd()intrinsic, 201, 236
and reduction, 376–377
and single-pass reduction, 373–376

atomicAnd()intrinsic, 151, 236
atomicCAS()intrinsic, 152, 236
atomicExch()intrinsic, 153, 236
atomicOr()intrinsic, 200, 236
Atomic operations

in global memory, 152–155, 216
in host memory, 237
and reduction, 367, 373–377
in shared memory, 239–240

Availability zones, 112
AWS, see Amazon Web Services

B

Ballot instruction, xxii, 271
Barriers, memory, 240–241
Bit reversal, 242

Block ID, 212–213, 275
Block-level primitives, 272
blockDim, 213, 275
blockIdx, 213, 275
Blocking waits, 79, 186
Block-level primitives, 272
Block linear addressing, 308–309
Boids, 421, 447
__brev() intrinsic, 242
Bridge chip, PCI Express, 19–21
Brook, 5
BSD license, 7, 471
Buck, Ian, 5
__byte_perm() intrinsic, 242

C

Cache coherency, 209
Cache configuration, 75
Callbacks, stream, 77
chLib, see CUDA Handbook Library
chTimerGetTime(), 175, 471–472
Clock register, 275
__clock() intrinsic, 275
__clock64() intrinsic, 275
__clz() intrinsic, 242
Coalescing constraints, 143–147
Coherency, 209
Command buffers, 32–35
Concurrency

CPU/GPU, 174–178
inter-engine, 187–196
inter-GPU, 202,
kernel execution, 199–201

Condition codes, 267
Constant memory, 156–158

and dynamic parallelism, 224
and N-body, 434–436
and normalized cross-correlation, 456–459

Contexts, 67–71
Convergence, 268–269
Copy-on-write, 25

Index

Wilt_Book.indb 487 5/22/13 11:58 AM

INDEX

488

cuArray3DGetDescriptor(), 313
cuArray3DCreate(), 312
cuArrayCreate(), 312
cuCtxAttach(), 70
cuCtxCreate(),

and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124

cuCtxDestroy(), 70, 202
cuCtxDetach(), 70
cuCtxGetLimit(), 71
cuCtxPopCurrent(), 70, 294–296
cuCtxPushCurrent(), 70, 294–296
cuCtxSetCacheConfig(), 71, 75
cuCtxSetLimit(), 71
cuCtxSynchronize(), 77, 209
CUDA arrays, 82, 308–313

vs. device memory, 313
CUDA By Example, xxi-xxii
CUDA Handbook Library, 471–479

Command line parsing, 476–477
Driver API support, 474–475
Error handling, 477–479
Shmoos, 475–476
Threading, 472–474
Timing, 471–472

CUDA runtime
lazy initialization, 53
memory copies, 166–169
vs. driver API, 87–92

CUDA_MEMCPY3D structure, 92
cudaBindTexture(), 85, 155, 315
cudaBindTexture2D(), 85, 315, 338
cudaBindTextureToArray(), 85, 315
cudaDeviceProp structure, 61–63

asyncEngineCount member, 166
integrated member, 18
kernelExecTimeoutEnabled member, 210
maxTexture1DLayered member, 343
maxTexture2DLayered member, 343
maxTexture3D member, 210
totalGlobalMem member, 75, 137
unifiedAddressing member, 127

cudaDeviceReset(), 202
cudaDeviceSetCacheConfig(), 75, 162–163
cudaDeviceSynchronize(), 77, 209

device runtime, 223
in multi-GPU N-body, 297–299

cudaEventCreate(),
and blocking waits, 39
and disabling timing, 225

cudaEventCreateWithFlags(), 89–90
cudaEventQuery(), 186
cudaEventRecord(), 183–184, 359
cudaEventSynchonize(), 89–90, 183–184
cudaExtent structure, 135, 168, 311
cudaFree(), 133

and deferred initialization, 67
cudaFree(0), 67
cudaFuncSetCacheConfig(), 75, 162–163
cudaGetDeviceCount(), 60
cudaGetLastError(), 210

and device runtime, 225
cudaGetSymbolAddress(), 139, 157, 201

and scan, 405
cudaHostAlloc(), 81
cudaHostGetDevicePointer(), 81
cudaHostRegister(), 81, 126
cudaHostUnregister(), 81, 126
cudaMalloc(), 133
cudaMalloc3D(), 75, 134
cudaMalloc3DArray(), 341–343

and layered textures, 343
cudaMallocArray(), 309–310, 341–342
cudaMallocPitch(), 134, 339
cudaMemcpy(), 31, 166
cudaMemcpyAsync(), 165, 359–361
cudaMemcpy3DParms structure, 92, 168
cudaMemcpyFromSymbol(), 138, 157
cudaMemcpyKind enumeration, 164
cudaMemcpyToSymbol(), 138, 157

and notrmalized cross-correlation,
456–458

cudaMemcpyToSymbolAsync()
and N-body computations, 435–436

cudaMemset(), 139
cudaMemset2D(), 139
cudaPitchedPtr structure, 134, 342
cudaPointerAttributes structure, 141,

291–292
cudaPos structure, 169, 342
cudaSetDevice(), 288
cudaSetDeviceFlags()

and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124

Wilt_Book.indb 488 5/22/13 11:58 AM

489

 INDEX

cudaDeviceSetLimit(), 135–136
input values, 227–228
and malloc() in kernels, 136
and synchronization depth, 222, 226–227

cudaStreamCreate()
and device runtime, 225
nonblocking streams, 225

cudaStreamQuery(), 186–187
and kernel thunks, 56

cudaStreamWaitEvent(), 41, 202,
292–293

cuDeviceComputeCapability(), 60
cuDeviceGet(), 60, 66
cuDeviceGetAttribute(), 60

asynchronous engine count, 166
integrated GPU, 18
kernel execution timeout, 210
texturing dimensions, 341
unified addressing, 127

cuDeviceGetCount(), 60, 66
cuDeviceGetName(), 66
cuDeviceTotalMem(), 138
cuDriverGetVersion(), 53
cuEventCreate(), 184

and blocking waits, 39
cuFuncGetAttribute(), 74

and local memory usage, 158
cuFuncSetCacheConfig(), 75, 163
cuInit(), 59, 65–67
cuLaunchGrid(), 210
cuLaunchKernel(), 73–74, 207–208
cuMemAlloc(), 76, 133
cuMemAllocPitch(), 135

and coalescing, 145
cuMemcpy(), 31, 166
cuMemcpy3D(), 91, 166
cuMemcpyDtoD(), 164
cuMemcpyDtoH(), 164
cuMemcpyHtoD(), 164
cuMemcpyHtoDAsync(), 165
cuMemFree(), 76, 133
cuMemGetAddressRange(), 141
cuMemGetInfo(), 76
cuMemHostAlloc(), 124–125, 135

and mapped pinned memory, 124
and write combining memory, 125

cuMemHostGetDevicePointer(), 124
cuMemHostGetFlags(), 80

cuMemHostRegister(), 81, 126
and UVA, 31, 126

cuMemset*(), 139–140
cuModuleGetFunction(), 73
cuModuleGetGlobal(), 73, 139, 157
cuModuleGetTexRef(), 73
cuModuleLoadDataEx(), 103–104
cuobjdump, 105–106, 275
cuPointerGetAttribute(), 142, 291
Current context stack, 69–70
cuStreamAddCallback(), 77
cuStreamCreate(), 89
cuStreamQuery(),

and kernel thunks, 56
cuStreamSynchronize(), 89
cuTexRefSetAddress(), 85, 155

and state changes, 332
cuTexRefSetAddress2D(), 85
cuTexRefSetArray(), 85

and state changes, 332
cuTexRefSetFormat(), 316–317

D

__dadd_rn() intrinsic, 249
suppressing multiply-add, 253

Demand paging, 25
Device memory

vs. CUDA arrays, 313
Devices, 59–63
dim3 structure, 207
Direct memory access, 27–28,79–80
Direct3D, 3, 86–87
Divergence, 267–269
DMA, see Direct Memory Access
__dmul_rn() intrinsic, 249

suppressing multiply-add, 253
__double2hiint() intrinsic, 234
__double2loint() intrinsic, 234
__double_as_long_long() intrinsic, 234
Driver API

vs. CUDA runtime, 87–92
facilities, 474–475
memory copies, 169–171

Driver models
User mode client driver, 54–55
WDDM (Windows Display Driver Model), 55–56
XPDDM (Windows XP Driver Model), 55

Dynamic parallelism, xxii, 222–230

Wilt_Book.indb 489 5/22/13 11:58 AM

INDEX

490

E

EBS, see Elastic Block Storage
EC2, see Elastic Compute Cloud
ECC, see Error correcting codes
Elastic Block Storage, 113
Elastic Compute Cloud, 109–117
Error correcting codes (ECC), 155–156
Events, 78–79

and CPU/CPU concurrency, 183
queries, 186
and timing, 186–187

Extreme values, floating point, 247–248

F

__fadd_rn() intrinsic, 249
suppressing multiply-add, 251

False sharing, 15–16
__fdividef_rn() intrinsic, 251
Fermi

comparison with Tesla, 43–46
instruction set, 279–285

__ffs() intrinsic
__float_as_int() intrinsic, 234, 251
float2 structure, 235
float4 structure, 235, 318
_float2half() intrinsic, 253
Floating point

conversion, 249–250
double precision, 253,
extreme values, 247–248
formats, 245
half precision, 253
intrinsics for conversion, 250
intrinsics for rounding, 249
library, 259–265
representations, 245
rounding, 248–249
single precision, 250–253
streaming multiprocessor support, 244–265

__fmul_rn() intrinsic, 249
suppressing multiply-add, 251

Front-side bus, 12–13
Functions (CUfunction), 73–75
Funnel shift, 243–244

G

Gelsinger, Pat, 4
GL Utility Library, 335

Global memory
allocating, 132–137
and dynamic parallelism, 224
pointers, 131–132
querying total amount, 75–76
static allocations, 138–139

Glossary, 481–486
GLUT, see GL Utility Library
GPGPU (general-purpose GPU programming), 5
Graphics interoperability, 86–87
gridDim, 213, 275

H

__halftofloat() intrinsic, 253
__hiloint2double() intrinsic, 234
Host interface, 39–41
Host memory

allocating, 122–123
mapped, 28–29, 81, 124, 127
pinned, 27–28, 80, 122–123
portable, 29–30, 81, 123–124, 287–288
registering, 81, 125–126
and UVA, 126–127

Host memory registration, see Registration
HT, see HyperTransport
Hyper-Q, 77
HyperTransport, 14–15

I

Integrated GPUs, 17–19
Interleaving, see Memory interleaving

Intra-GPU synchronization, 39–40
Inter-GPU synchronization, 41
Intrinsics

for block-level primitives, 272
for floating point conversion, 250
for rounding, 249
for SFU, 252
for warp shuffle, 271

int2 structure, 235
int4 structure, 235, 319
__int_as_float() intrinsic, 234, 251
I/O hub, 14–17
__isglobal()intrinsic, 142, 224
isochronous bandwidth, 12

K

Kandrot, Edwards, xxi

Wilt_Book.indb 490 5/22/13 11:58 AM

491

 INDEX

Kepler
instruction set, 279–285

Kernel mode
vs. user mode, 26

Kernel thunk, 26
and stream and event queries, 186
and WDDM, 55–56

Kernels, 73–75
declaring, 73
launch overhead, 174–178
launching, 206–208

L

Lanes, PCI Express, 12
Lanes, thread, 213
Layered textures, 342–343
Lazy allocation, 25
Linux

driver model, 54–55
in EC2, 114

Local memory, 158–161
and context creation, 159
and dynamic parallelism, 224–225

__long_as_double() intrinsic, 234
Loop unrolling, 430–431

M

make_cudaPitchedPtr function, 342
Mapped file I/O, 25
Mapped pinned memory, 81, 124, 361–362
Math library, floating point, 259–265
Maximum, 269
Memset, see Memory set
Memory copy, 27–28, 164–171

asynchronous,165–166
CUDA runtime v. driver API, 90–92
driver overhead, 179–180
functions, CUDA runtime, 166–169
functions, driver API, 169–170
pageable, 80, 183–184
peer-to-peer, 288–289, 293–296

Memory interleaving, 16
Memory set, 139–140
Microbenchmarks, 6

Kernel launch overhead, 174–178
Memory allocation, 135–137
Memory copy overhead (device®host), 181
Memory copy overhead (host®device), 179–180

Global memory bandwidth, 147–151
Register spilling, 159–161

Microdemos, 7
Concurrency, CPU/GPU, 183–186
concurrency, inter-engine, 189–196
concurrency, intra-GPU, 189–196
concurrency, kernel execution, 199–201
float®half conversion, 253–258
pageable memcpy, 183–186
peer-to-peer memcpy, 293–294
spin locks, 152–155
surface read/write, 1D, 333–335
surface read/write, 2D, 340
texturing: 9-bit interpolation, 329–331
texturing: addressing modes, 335–333
texturing: increasing address space coverage,

318–321
texturing: unnormalized coordinates, 325–328
thread ID, 216–220

Minimum, 269
Modules, 71–73
Moore’s Law, 4
__mul24() intrinsic, 44, 242
__mul64hi() intrinsic, 242
__mulhi() intrinsic, 242
Multiple GPU programming

with current context stack, 294–296
and multiple CPU threads, 299–303
and inter-GPU synchronization, 292–294
hardware, 19–22
and N-body, 296–302
scalability, 438
and single CPU thread, 294–299

Multithreading
and N-body, 442–444

N

name mangling, 74
N-body, 421–447

and constant memory, 434–436
and multiple GPUs, 296–302
and shared memory, 432–434

Nehalem (Intel i7), 15
Newton-Raphson iteration, 440
Nonblocking streams, 183, 225
Nonuniform memory access (NUMA)

hardware, 14–17
software, 128–130

Wilt_Book.indb 491 5/22/13 11:58 AM

INDEX

492

Normalized cross-correlation, 449–452
Northbridge, 12–14
NULL stream, 77–78, 178–182

and concurrency breaks, 181, 196
and nonblocking streams, 183

NUMA, see Nonuniform memory access
nvcc, 57–58, 93–100

code generation options, 99–100
compilation trajectories, 94–95
compiler/linker options, 96–97
environment options, 95–96
miscellaneous options, 97–98
passthrough options, 97

nvidia-smi, 106–109

O

Occupancy, 220–222
OpenGL, 86–87, 335–337
Open source, 7–8, 471
Opteron, 14
Optimization journeys, 7

N-body, 428–434
normalized cross-correlation, 452–464
reduction, 367–372
SAXPY (host memory), 358–363
Scan, 394–407

P

Page, memory, 23–24
Page table, 24–25
Page table entry (PTE), 23–25
Parallel prefix sum, see Scan
PCIe, see PCI Express
PCI Express, 12

integration with CPUs, 17
Peer-to-peer, 21, 143

mappings, 31–32
memory copies, 288–289

Performance counters, 272
Pinned memory, 27–28

registering, 125–126
Pitch, 133–135, 307–308
__popc() intrinsic, 242
Pointers, 131–132
Pointer queries, 140–142
Population count, 242
Portable pinned memory, 81, 123–124, 288
__prof_trigger() intrinsic, 272

PTE, see page table entry
PTX (parallel thread execution), 57–59, 100–104,

411
ptxas, the PTX assembler, 100–104

command line options, 101–103

Q

QPI, see QuickPath Interconnect
Queries

amount of global memory, 75–76
device attributes, 60–63
event, 186
pointer, 140–142
stream, 56, 186

QuickPath Interconnect, 14–15

R

RDTSC instruction, 78
Reciprocal, 251
Reciprocal square root, 251–252, 440

accuracy by SFU, 252
Reduction, 365–383

of arbitrary data types, 378–381
with atomics, 376–377
of predicates, 382
single-pass 373–376
two-pass, 367–372
warps, 382–383

Registers, 233–234
Registration, host memory, 28, 31, 81, 125–126
Rotation (bitwise), 243–244

S

S3, see Simple Storage Service
__sad() intrinsic
__saturate() intrinsic, 253
Sanders, Jason, xxi
SASS, see Streaming Assembly
__saturate() intrinsic, 253
SAXPY (scaled vector addition), 354–363
Scalable Link Interface (SLI), 19–21
Scan (parallel prefix sum), 385–419

and circuit design, 390–393
exclusive v. inclusive, 386, 391
reduce-then-scan (recursive), 400–403
reduce-then-scan (single pass), 403–407
scan-then-fan, 394–400
and stream compaction, 414–417

Wilt_Book.indb 492 5/22/13 11:58 AM

493

 INDEX

warp scan, 407–414
and warp shuffle, 410–414

SDK (Software Development Kit)
SFU, see Special Function Unit
Shared memory, 162–164

atomic operations, 239–240
and dynamic parallelism, 242
and N-body, 432–434
and normalized cross-correlation, 459–460
pointers, 164
and Scan, 395–396
unsized declarations, 163
and the volatile keyword, 164
and warp synchronous code, 164

__shfl() intrinsics, 271–272
Shmoo, 475–477

and kernel concurrency, 191
Shuffle instruction, 271
Simple Storage Service (S3), 112–113
SLI, see Scalable Link Interface
SOC, see System on a Chip
Software pipelining of streams, 76–77, 192–193
Special Function Unit, 251–252
Spin locks, 152–154
SSE, see Streaming SIMD Extensions
Stream callbacks, 77
Stream compaction, 414–417

Streaming Assembly (SASS), 105, 275–285
for warp scan, 412–414

Streaming Multiprocessors, (SMs), 46–50,
231–285

Streaming SIMD Extensions (SSE), 4
and N-body, 440–441

Streaming workloads, 353–363
in device memory, 355–357
and mapped pinned memory, 361–362
and streams, 359–361

Streams, 76–78
and software pipelining, 76–77, 359–361
NULL stream, 77–78, 181, 196
queries, 56, 186

string literals
to reference kernels and symbols, 74, 138–139

Structure of Arrays (SOA), 429
Surface load/store

1D, 333–335
2D, 340
SASS instructions, 283–284

Surface references, 85–86,
1D, 333–334
2D, 340

Stream callbacks, 77
Streaming workloads, 353–363
Sum of absolute differences, 242
surf1Dread() intrinsic, 333
surf1Dwrite() intrinsic, 333–335
Synchronous operations

Memory copy, 165–166
__syncthreads() intrinsic, 163, 240

avoiding – see warp synchronous code
and reduction, 368–369
and scan, 395–397

__syncthreads_and() intrinsic, 272
__syncthreads_count() intrinsic, 272, 365
__syncthreads_or() intrinsic, 272
Symmetric multiprocessors, 13–14
System on a chip (SOC), 19

T

TCC, see Tesla Compute Cluster driver
TDR, see Timeout Detection and Recovery
Tesla

comparison with Fermi, 43–46
instruction set, 276–279

Tesla Compute Cluster driver, 57
Texture references, 82–85
tex1Dfetch() intrinsic, 318
Texturing, 305–349,

1D, 314–317
2D, 335–339
3D, 340–342
and coalescing constraints, 317–318
and normalized cross-correlation, 452–456
from device memory, 155, 338–339
hardware capabilities, 345–347
from host memory, 321–323
from layered textures, 342–343
with normalized coordinates, 331–332
quick reference, 345–350
with unnormalized coordinates, 323–331

Thread affinity, 128–131
__threadfence() intrinsic, 240
__threadfence_block() intrinsic, 240
__threadfence_system() intrinsic, 241
Thread ID, 216
threadIdx, 213, 275

Wilt_Book.indb 493 5/22/13 11:58 AM

INDEX

494

Threads, CPU,
and affinity, 128–129
library support, 472–474

Threads, GPU, 213
Timeout Detection and Recovery (TDR), 56–57
Timing, CPU-based, 471–472
Timing, GPU-based

CUDA events, 78–79
hardware, 39

TLB, see Translation Lookaside Buffer
Translation Lookaside Buffer, 25

U

__umul24() intrinsic, 463
__umul64hi() intrinsic, 463
__umulhi() intrinsic, 463
Unified virtual addressing (UVA), xxii, 30–31, 55,

69, 126–127
and mapped pinned memory, 124, 125
and memcpy functions, 166
inferring device from address, 291–292

__usad() intrinsic, 242
User mode v. kernel mode, 26
UVA, see unified virtual addressing

V

valloc(), 126
Video instructions, scalar, 272–274

Video instructions, vector, 273–274
VirtualAlloc(), 126
VirtualAllocExNuma(), 130
VirtualFreeEx(), 130
volatile keyword

and shared memory, 164

W

Warp-level primitives, 270–272
Warp shuffle, xxii, 271–272

and N-body, 436–437
and reduction, 382–383
and scan, 410–412

Warp synchronous code, 164
for reduction, 369–372
and the volatile keyword, 174

Warps, 213
and occupancy, 220

WDDM, see Windows Display Driver Model
Width-in-bytes, see Pitch
Windows, 55–57, 64–67
Windows Display Driver Model, 55–56
Write combining memory, 18, 124–125

Z

Zero-copy, 19, 361–362

Wilt_Book.indb 494 5/22/13 11:58 AM

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 8: Streaming Multiprocessors
	8.1 Memory
	8.2 Integer Support
	8.3 Floating-Point Support
	8.4 Conditional Code
	8.5 Textures and Surfaces
	8.6 Miscellaneous Instructions
	8.7 Instruction Sets

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

