The Culture of Your Wound Culture

Derrick Adams, DO, FAOCD Private Practice Vita Dermatology Red Bluff, CA

No Conflicts of Interest

Today's Topics

- Problem
- Hx of culture/techniques
- Colonization vs Infection
- Microbiome
- Sequence testing vs Wound Cultures
- Chronic wounds
- Culture technique

Nature Reviews | Microbiology

The Problem Scenarios

- My antibiotic dilemma
- "Your culture was negative. There is no infection."
- "It just grew normal skin flora"
- "You should be really sick or dead based on your culture result"

Bacterial Cultures

- Standard since 1800's
- Detect roughly 1% of bacteria in chronic wounds
- Select for bacteria that thrive in nutritional and physical parameters set by a lab
- These organisms may not be relevant
- Reported organism outcompetes others
- Anaerobes cultivation is problematic
- Ignores all other life forms

"I just really hoped you'd have come up with something better by now."

> Van Leeuwenhoek Posthumous thoughts

The Great Plate Count Anomaly

 Observation that most environmental microorganisms seen in the microscope cannot be grown under laboratory conditions

Your Aerobic Wound Culture

- Gram stain
- Blood Agar
- Chocolate Agar
- CNA (gram +)
- MAC (gram -)
- Thiol

Your Anaerobic Wound Culture

- Gram stain
- Brucella blood agar
- CNA
- Laked Blood agar

*Both cultures – 24, 48, 72 hour reads

Wound Swabs

- Cotton, calcium alginate, Dacron-Rayon
- Collect < 0.1ml
- Tend to retain collected specimen
- Sterile loop is diluted (+1,+2,+3,+4)
- More testing = less material (aerobic, anaerobic, mycobacterial, and fungal)
- Transport dilemmas

Are Quantitative Bacterial Wound Cultures Useful?

George Kallstrom

Summa Health System, Department of Pathology, Akron, Ohio, USA

Determining if a nonhealing wound is infected can be difficult. The surface of a wound is not sterile and can be colonized with numerous commensal, environmental, and potentially pathogenic microorganisms. Different types of wounds have various clinical presentations, with some signs and symptoms more likely to be present than others depending on the type and location of the wound. Clinicians often order microbiology wound cultures to assist in determining if a nonhealing wound is infected. This minireview briefly summarizes the clinical microbiology of wound cultures, with an emphasis on the history and utility (or lack thereof) of the quantitative wound culture.

uantitative bacteriology cultures are an important part of the modern clinical microbiology laboratory. Quantitative cultures assist clinicians in determining the threshold above which the bacterial burden of a culture will likely demonstrate clinical significance. Bacterial growth below established thresholds in quantitative cultures typically represents "background noise" of subclinical colonization or inconsequential growth of normal commensal microbiota. The most frequently used quantitative bacterial cultures are urine cultures, where a calibrated inoculation loop is used to inoculate media in order to yield accurate quantitative culture per milliliter of urine. Other less commonly utilized quantitative culturing techniques may be routinely performed depending on the size and scope of the clinical laboratory and can include the use of high-quality liquid specimens such as protected bronchial brushings. Quantitative wound culture techniques were described in large part by research microbiology laboratories in the 1960s and 1970s and were adopted into clinical use thereafter. Quantitative culturing of wounds, particularly biopsy specimens of wounds, involves extensive processing techniques that can be difficult for most clinical microbiology laboratories. Therefore, most nonurine bacterial cultures, including wound cultures, are plated using a semiquantitative technique where cultures are inoculated onto media using a sterile loop that sequenlection, processing, and inoculation can often confuse the interpretation of quantitative wound culture results.

Some clinicians are reluctant to perform tissue biopsy procedures in order to minimize patient discomfort, while others fear complications such as introducing bacteria deeper into noninfected tissue, so swab specimens are submitted for culture. It has been my observation that it is not uncommon for clinicians to aspirate wounds producing a purulent drainage with a syringe (ideal specimens) and then inoculate the aspirate onto a swab (a less than ideal specimen) for culture submission. Traditional swabs are made from cotton, calcium alginate, and Dacron-Rayon. Swabs tend to collect a small fraction of a milliliter of specimen (<0.1 ml), which greatly reduces the amount of bacteria that can be recovered from the swab for bacterial culture. In addition to limited volume collection, traditional swabs tend to retain the collected specimen. A newer generation of swabs made from a flocking process which allows more-efficient specimen release has emerged over the past decade. However, flocked swabs share most of the collection limitations of traditional swabs as they do not collect adequate specimens for comprehensive clinical microbiology wound cultures. Swab culture yields are reduced as multiple types of cultures (aerobic, anaerobic, mycobacterial, and fungal) are requested from a single swab, thus requiring inoculation of many different types of media

Colonization vs Infection

• Infection is your diagnosis. Not the lab's

Organisms cultured from wounds do not define infection

• Antibiotics can have lasting effects

C. Diff Risk with Antibiotic

antibiotic

- Flouroquinolones
- Clindamycin
- 3rd Gen Cephal
- Penicillins
- Macrolids
- TMP-SMX
- Proton inhibitors
- Doxycycline

Odds of CDI

- 2.8-5.2
- 2.8-20.3
- 3.2-4.6
- 1.75
- 1.4
- 1.78
- 1.7-2.2
- 0.91

J Antimicrob Chemother (2014)69(4)881-2

Distinguishing Colonization from Infection

Colonization

Microbial Co-habitation on or in host tissue without significant disruption to host tissue function

Infection

Microbial *invasion* of viable host tissue with consequent *injury as a result* of the microbe and microbe-specific host response

Healthy Skin

Chronic Wounds

Infection/Inflammation

Phylogenetic Diversity

Sequenced Based Testing 16S rRNA

- "gold standard" among microbiologists
- >500,000 in public database (NCBI)
- Reportedly > 2 million in private database
- GreenGenes, EZ-Taxon e, Ribosomal Database
 Project, SILVA

16S rRNA

- 16S rRNA present in prokaryotes
- Encodes part of a ribosome
- Allows for identification and amplification (PCR)
- Slow rate of evolution

1) Extract DNA from wound sample

 Amplify bacterial DNA using 16S rRNA. gene primers

3) Sequence the PCR products

 a) Identify the microbial taxa by querying the sequenced amplicons against 16S rRNA gene databases

 b) Measure similarity between wound microbiomes by analyzing shared phylogeny

 c) Analyze microbial community membership, structure, and diversity

Nucleotide

The Nucleotide database is a collection of sequences from several sources, including GenBank, RefSeq, TPA and PDB. Genome, gene and transcript sequence data provide the foundation for biomedical research and discovery.

Using Nucleotide	Nucleotide Tools	Other Resources
Quick Start Guide	Submit to GenBank	GenBank Home
FAQ	LinkOut	RefSeq Home
<u>Help</u>	<u>E-Utilities</u>	Gene Home
GenBank FTP	BLAST	SRA Home
RefSeq FTP	Batch Entrez	INSDC
		2:55 PM

Pros and Cons of DNA/RNA sequencing

Pros

- Eliminates bias of culture techniques
- Not limited to bacteria
- Microbial load
- Microbial diversity
- Identifies "Pathogens"
- Cost is reasonable
- Primer tailored

Cons

- Possible human contamination
- Viable vs non-viable
- ID'd organism may not be clinically relevant
- "Chain of Evidence"
- Primer bias*

Mycobateria (acid-fast)

- Good for slow growers
- Rapidly growing mycobacteria (RGM)- 65-KDa heat shock protein and RNA polymerase Beta subunit genes*

*Differentiate between *M. abscessus, M. chelonae, M. bolletii,* and *M. massiliense*.

Yeasts & Molds

- Phenotypic testing can be difficult
- Phenotypic variation within species*
- Can take weeks
- 26S ribosomal RNA (rRNA) and Internal Transcribed Spacer 1 and 2 regions (ITS1 & ITS2)

Culture-based and Sequence-based

- Who is there?
- Not what's going on

Skin & Soft Tissue Infections (SSTI) by Real-Time PCR

- Bacteroides fragilis,
- Enterococcus faecalis,
- Escherichia coli,
- Group A Streptococcus,
- Group B Streptococcus,
- Klebsiella
- Prevotella Groups 1 & 2,
- Proteus mirabilis,
- Pseudomonas aeruginosa,
- Staphylococcus aureus,
- MRSA

Skin & Soft Tissue Infections (SSTI) by Real-Time PCR

- Bacteroides
- Enterococcu
- Escherichia
- Group A Str
- Group B Stre
- Klebsiella
- Prevotella G
- Proteus mir
- Pseudomon
- Staphylococcus aurcus,
- MRSA

PRIMER BIAS!

We are...

- 2 -5 lbs of bacteria
- 90% bacteria, 10% human by cell count
- 99% bacteria, 1% human by genes
- Largely ignorant of our microbiome
- 99.6% of human microbiome species cannot be cultured

Square CM of Your Skin

- Hundreds of distinct species
- Estimated 1 million bacteria
- Very site specific
- Quite resilient to change (*forehead licking)
- May affect immunity
- May affect physiology of keratinocytes

Human Microbiome

- 2007 NIH
- 242 healthy adults
- Gut
- Genitourinary
- Skin
- Spatial niches

NIH HUMAN MICROBIOME PROJECT

🔹 athenaCollector v16.7 CA - Las: 🗙 🔯 Human Microbic	ome Project DA	× OHow t	o take a screenshot in any X	Include No.					Derrick - 🗊 🛁
← → C ♠ hmpdacc.org/catalog/	/grid.php?c	dataset=ge	nomic&hmp_isolation_body_site=sl	kin					€ ☆
🗰 Apps 🖒 Suggested Sites 🗀 Imported From IE 🜔 C	Lanvas OCC 🔞	Places Atlas O	ibscura 🗋 ucsf pathology						
	N B				▼ Lo	gin		٩	
H	OVERVI	EW	REFERENCE MICROBIOM GENOMES ANALYSIS	e healti Ethio	H & RESC	DURCES OUTF	EACH	DATA BROWSER	
NIH HUMAN	nome > j	project catalo	9						
	Datas	et: HMP	reference genomes						
	😡 Help	D							
PROJECT	HMP	GOLD ID	Organism Name	Domain	NCBI Superking	HMP Isolation Body	Project Status	Current Finishing	
	12	Gi03421	Acinetobacter calcoaceticus RUH22	BACTERIAL	Bacteria	skin	Complete	Level 2: High- ^	
Current News	13	Gi03424	Acinetobacter sp. SH024	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
• June 2016	14	Gi03423	Acinetobacter sp. RUH2624	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
Poster and Booth at ASM 2016	16	Gi03420	Acinetobacter johnsonii SH046	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
 January 2015 	17	Gi03418	Acinetobacter Iwoffii SH145	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
Metagenome Analysis Workshop March 3-6	19	Gi03900	Acinetobacter radioresistens SK82	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
	20	Gi03494	Acinetobacter baumannii 6013113	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
 September 2014 IHMC 2015 from Mar. 31 to Apr. 2 	21	Gi03495	Acinetobacter baumannii 6013150	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
	22	Gi03496	Acinetobacter baumannii 6014059	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
More News Items	23	Gi02599	Acinetobacter sp. ATCC 27244	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
Publications	78	Gi03600	Anaerococcus vaginalis ATCC 51170	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
Publications	282	Gi03352	Corynebacterium amycolatum SK46	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
 GABA-producing Bifidobacterium dentium modulates visceral 	290	Gi02701	Corynebacterium efficiens YS-314 D	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
sensitivity	311	Gi03351	Corynebacterium tuberculostearicu	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
 Mobile genes in the human 	321	Gi04154	Dermacoccus sp. Ellin185	BACTERIAL	Bacteria	skin	Complete	Level 5: Non-	
global to ind	337	Gi03490	Enhydrobacter aerosaccus SK60	BACTERIAL	Bacteria	skin	Complete	Level 6: Finist	
 Correlation detection strategies in 	357	Gi02731	Erysipelothrix rhusiopathiae ATCC 1	BACTERIAL	Bacteria	skin	Complete	Level 2: High-	
microbial data cate vary widely mpdacc.org/catalog/grid.php?dataset=genomic&hmp_isolation_bo	ody_site=skin#	0.00220	Misrobostorium lacticum SK124	BACTERIAL	Bacteria	skin	In Progress	N/A	
🔁 SSTLpdf									Show all downloads

📀 📀

6

0

02 W

Top 4 Skin Phyla

- Actinobacteria
- Firmicutes
- Bacteroidetes
- Proteobacteria

Top 4 Skin Phyla

- Actinobacteria *Propionibacterium Mycobacterium, Corynebacterium, Nocardia*
- Firmicutes *clostridium, staph, strep*
- Bacteroidetes- *b.fragilis, prevotella*
- Proteobacteria *e.coli, pseudomonas*

Palm Microbiome

- 51 healthy subjects
- 4742 distinct species
- Average 158 species coexisting on single palm

Fierer, et al. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 2008;105:17994-9

The Belly Button Biodiversity Project

• Hulcr J, Latimer AM, Henley JB, Rountree NR, Fierer N, et al. (2012) A Jungle in There: Bacteria in Belly Buttons are Highly Diverse, but Predictable. PLoS ONE 7(11): e47712. doi:10.1371/journal.pone.0047712

Generalities

- *Propionibacterium* sebaceous areas
- *Stapylococcus* moist areas/intertriginous
- Corynebacterium- same as staph
- Antecubidal fossa highest diversity among subjects
- Partially occluded sites (axilla/inguinal)- more stable

Human Microbiome Consortium: Srucutre, function and diveristy of the healthy human microbiome. Naure 2012;486:207-14

Grice, et al. Topographical and temporal diveristy of the human skin microbiome. Science 2009;324:1190-2

Surprise!

- Gram-negatives found in dry areas (forearm and legs)
- Not always fecal contaminant

Chen, Tsao. The skin Microbiome: Current perspectives and future challenges. Journ Amer Acad Derm. 2013; 143-52

 Low-abundance species may be "linchpins" of the skin ecosystem (soil fungal studies)

Baldrain, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 2012;6:248-58

Phylogenetic Diversity

- "Culture Everything!"
- Microbial Load
- Sensitivity Data
- Biofilm analysis
- Reasonable cost

CRIME SCENE INVESTIGATION

In a First, Test of DNA Finds Root of Illness

No CARL COMPANY. ADDI-1, DOI:

Andrea Distanti and allo for trade in College Green Was, solit for higher, 1924 Udanci, Antrop adfress Benemoling in the basis, but trate, a sphall by said a biograp sent transmittation, site, the sen-

Joshua Orborn, 44, by in a coma at American Family Children's Hospital in Medicon, 145: For works his beam had been swelling with fluid, and a hartery of tests had failed to await the cause.

The doctors told his parents, clark and Jule, that they wanted to run our more test with an experimental new technology, forentists would search Joshus's conductopinal fluid for pieces of DNA, forms of them might belong to the pathogen courses his enceptaints.

The Orbonia agreed, although they were sheptical that the test would succeed where so many others had failed. But in the first procedure of its kind, researchers at the University of California, Ian Francisco, managed to pinpoint the cause of Joshua's problem — within all hours. He had been infected with an obscure species of Insteria. Once identified, it will minduated within days.

The case, seported on Wednesday in The New England Journal of Medicine signals an important advance in the science of diagonois. For years, scientists have been negoencing 201A to identify pathogens. But until now, the process has been too cumberscore to yield uneful information about an individual patient to a life Gaustinning emergency.

"This is an absolutely great story - it's a treatmendous tous de form," said Tous

Wound culture: Pseudomonas

Level 1Q Results	Amount	Level 2 Results		Additional Information
Bacterial Load(High)	> 10 ⁷	Detected Bacteria: Eusobacterium ulcerans	63%	
Pseudomonas aeruginosa	3.6 x 10 ⁶	Bacteroides ovatus Porphyromonas somerae Pseudomonas aeruginosa Clostridium bolteae Bacteroides stercoris Bacteroides xylanisolvens Clostridium ramosum Peptostreptococcus anaerobius Prevotella nanceiensis Anaerococcus lactolyticus	8% 5% 2% 1% 1% 1% 1% 1%	

Virtually all bacteria/fungi are screened for and the most predominant populations are reported.

Level 1 Swab Results	Amount (N/A)	Level 2 Results				
Total Bacterial Load	Med	Detected Bacteria: Stanbulococcus opidermidis 42%				
Enterococcus faecalis Klebsietla pneumoniae Streptococcus agalactiae Streptococcus pyogenes Vancomycin resistance Candida albicans Enterococcus faecium Pseudomonas aeruginosa Staphylococcus aureus Serratia marcescens Methicillin resistance	Low Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected	Staphylococcus faecalis 42% Enterococcus faecalis 24% Staphylococcus hominis 24% Staphylococcus lugdunensis 4% Corynebacterium tuberculostearicum 4% NO FUNGAL SPECIES DETECTED 1				

Only relative Level 1 Quantitation is obtainable from swab samples.

Antibiotics Report On Attached Sheet

Clinical erythrasma

DISCLAIMER: () This test was developed and performance characteristics have been determined by Southwest Regional PCR Laboratory. It has not been cleared or approved by the U.S. Facebook and Dave Administry (TDA), because the PDA has determined that such descence or as several to be approved. This test is used for clinical perposes, its use should not

Level 1 Swab Results	Amount (N/A)	Level 2 Results
Total Bacterial Load Enterococcus faecalis Klebsiella pneumoniae Streptococcus agaiactiae Streptococcus pyogenes Vancomycin resistance Candida albicans Enterococcus faecium Pseudomonas aeruginosa Staphylococcus aureus Serratia marcescens Methicillin resistance	(N/A) High Not Detected Not Detected	Level 2 Results Detected Bacteria: 78% Proteus mirabilis 78% Staphylococcus aureus 13% Proteus vulgaris 2% NO FUNGAL SPECIES DETECTED
		Wound culture: "normal skin flora"

Only relative Level 1 Quantitation is obtainable from swab samples.

Antibiotics Report On Attached Sheet

Finegoldia magna

Normal skin flora

methods are used to identify the pathogens' genetic signatures and the estimated percentage of organisms present in the specimen. Virtually all bacteria/fungi are screened for and the most predominant populations are reported.

Level 1 Swab Results	Amount (N/A)	Level 2 Results		Additional Information
Total Bacterial Load	Low	Detected Bacteria: Finegoldia magna Corynebacterium glucuronolyticum Streptococcus parasanguinis Veillonella atypica Corynebacterium tuberculostearicum Actinomyces neuii Staphylococcus warneri Peptoniphilus gorbachii NO FUNGAL SPECIES DETECTED	33% 22% 11% 6% 5% 3% 2% 2%	

Level 1Q Results	Amount per g	Level 2 Results	Additional Information	
Bacterial Load (Medium)	10 ⁵ -10 ⁷	Detected Bacteria: Brevibacterium Iuteolum Staphylocoocus warneri Corynebacterium jeikeium Staphylocoocus epidermidis Kocuria kristinae Kocuria rosea Staphylocoocus lugdunensis Brevibacterium paucivorans Corynebacterium tuberoulostearicum Detected Fungi: Debaryomyces hansenii Alternaria malorum Stagonosporopsis cucurbitacearum Candida smithsonii Malassezia restricta Pyrenochaeta acicola	37% 11% 9% 7% 7% 4% 3% 3% 2%	

nen.

Top 5 Nail Fungus by Next Gen Sequencing

- Trichophyton Rubrum 38%
- Leptosphaerulina chartarum 17%
- Cladosporium uredinicola 14%
- Epicoccum nigrum 13%
- Malassezia restricta 9%

National Human Genome Research Institute (fungal studies)

- Heel largest fungal diversity, 80 species
- Nail clippings 60 species
- Toe web 40 species

• (Head and trunk hosted between 2-10)

NIH/National Human Genome Research Institute. "First genomic survey of human skin fungal diversity." ScienceDaily. ScienceDaily, 22 May 2013.

"Normal Skin Flora?"

- Propionobacterium acnes orthopedic and neurosurgery infections
- Elaborate biofilms in nonunion open fractures
- Very difficult to culture

Nisbet M, Briggs S. (2007) Propionobacterium acnes: an under-appreciated cause of post-neurosurgical infection. J Antimicrob Chemother 60:1097-1103

100 Adults Toe Web Spaces

- Candida albicans
- Rhodotorula rubra
- Torulopsis and Trichosporon cutaneum
- Microsporum gypseum,
- Trichophyton rubrum
- Rhizopus stolonifer
- Trichosporon cutaneum
- Fusarium
- Scopulariopsis brevicaulis
- Curvularia
- Alternaria alternata
- Paecilomyces
- Aspergillus flavus
- Penicillium

Oyeka CA, Ugwu LO (2002). "Fungal flora of human toe webs". Mycoses 45 (11-12): 488–91. PMID 12472726. doi:10.1046/j.1439-0507.2002.00796.x.

Microbial Diversity in Venous Ulcers

Number of taxa identified by each analytic method

Taxon	No. identified by:								
	P	yrosequ	encing	Ibis T5000			Culture		
	Total	Range	Mean (SE)	Total	Range	Mean (SE)	Total	Range	Mean (SE)
Phylum	6	2-5	3.43 (0.25)	4	1-3	1.78 (0.19)	2	1-2	1.07 (0.18)
Class	11	3-7	4.64 (0.37)	8	1-5	2.29 (0.30)	3	1-2	1.07 (0.18)
Order	15	3-8	5.71 (0.51)	13	1-5	2.86 (0.36)	5	1-2	1.07 (0.18)
Family	27	3-12	7.86 (0.78)	15	1-5	2.93 (0.37)	7	1-2	1 (0.20)
Genus	43	3-17	9.64 (1.04)	20	1-8	3.50 (0.52)	7	1-2	1 (0.20)
Specie	55	4-15	8.78 (0.87)	29	1-7	3.29 (0.50)	ڰ	1-2	1 (0.20)

J. Clin. Microbiol. November 2011 vol. 49 no. 11 3812-3819

Two Faces of Same Microbe

Planktonic

- Acute infections
- Grows easily

Biofilm

- Chronic infections
- Difficult to grow & treat
- Express a radically different phenotype than planktonic
- Only diagnostic tool is molecular

Top 10 Chronic Wound Genera

Take your Sample

- "Garbage in. Garbage out"
- Surface or deep?
- Are they on antibiotics?
- Immune status?
- How old is the wound?
- What are you looking for?
- Who is taking sample?

- Deep-tissue or punch biopsy
- Needle aspiration
- Swab culture (levine's vs "Z" technique)
- Sequence based swab/tissue

Wound Swab (FYI – no standardized technique)

- Avoid a superficial sample
- Collect the culture before topical or systemic antibiotics.
- Viable wound bed deep sample more useful
- No necrotic debris
- Swab 1cm2 (or Z-technique) for 5 seconds hard enough to get exudate
- Room temp 2 hours

American Society of Plastic Surgeons. Evidence-based clinical practice guideline: chronic wounds of the lower extremity. May 2007. www.docstoc.com/docs/120588469/Evidence-based-Clinical-Practice-Guideline-Chronic-Wounds-of-the-Lower-Extremity. Accessed December 4, 2013.

Bonham PA. Swab cultures for diagnosing wound infections: a literature review and clinical guideline. J Wound, Ostomy Continence Nurs. 2009;36(4):389-95.

Tissue Biopsy for Culture

- Debride and clean superficial area
- Resect viable tissue with aspectic technique
- Aerobic & Anaerobic orders

Needle Aspiration for Culture

- Disinfect overlying tissue
- Use 18-22 gauge needle to aspirate fluid
- Aerobic & Anaerobic orders

Superficial Swabs

• Carefully swab surface of wound

• Throw swab into garbage can

Sequencing Sample Collection

- Swab the deck!
- Throw everything in!
- Try to give get as much as possible
- Remember: a chronic wound is an ecosystem
- Topical lidocaine will degrade DNA

Summary

- Infection is a clinical diagnosis and not a culture diagnosis
- Most wounds will culture something
- Chose your culture/sequence technique wisely
- Comprehensive sequencing is available
- Today's dogma is tomorrow's heresy

- Misic AM, Gardner SE, Grice EA. The Wound Microbiome: Modern Approaches to Examining the Role of Microorganisms in Impaired Chronic Wound Healing. Advances in Wound Care. 2014;3(7):502-510. doi:10.1089/wound.2012.0397.
- Gardner SE. and Frantz RA.: Wound bioburden and infection-related complications in diabetic foot ulcers. Biol Res Nurs 2008; 10:44.
- Bergan et al. Chronic venous disease. NEJM 355:488-98
- Blow N (2008) Exploring unseen communities. Nature 453: 687-90
- Lipsk BA. Diagnosis and treatment of diabetic foot infections. Clin Infect Dis 39:885-910
- Matin Jo, Zenilman J. Molecular Microbiology: New Dimensions for Cutaneous Biology and Wound Healing. Journ of Invest Dermatol. 2010. Vol 130. 38-48
- Ehrlich G. D., Demeo PJ. The problem of culture negative infections. Biofilm Infections. Springer series on biofilm 7. DOI 10.1007/978-3-642-29554-6_1
- Bowler PG, Davies BJ. The microbiology of infected and non infected leg ulcers. Int J of Dermatol 38:573-6

Wolcott RD, (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19:45-46

Dowd SE, Wolcott RD. Molecular diagnostics and personalised medicine in wound care: assessment of outcomes. J Wound Care vol 10. no 5. may 2011. 232-239