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Abstract
Biological macromolecules have intricate structures that underpin their biological
functions. Understanding their structure–function relationships remains a challenge
due to their structural complexity and functional variability.AlthoughdeRham–Hodge
theory, a landmark of twentieth-century mathematics, has had a tremendous impact on
mathematics and physics, it has not been devised for macromolecular modeling and
analysis. In this work, we introduce de Rham–Hodge theory as a unified paradigm for
analyzing the geometry, topology, flexibility, and Hodge mode analysis of biological
macromolecules. Geometric characteristics and topological invariants are obtained
either from the Helmholtz–Hodge decomposition of the scalar, vector, and/or ten-
sor fields of a macromolecule or from the spectral analysis of various Laplace–de
Rham operators defined on the molecular manifolds. We propose Laplace–de Rham
spectral-based models for predicting macromolecular flexibility. We further construct
a Laplace–de Rham–Helfrich operator for revealing cryo-EM natural frequencies.
Extensive experiments are carried out to demonstrate that the proposed de Rham–
Hodge paradigm is one of the most versatile tools for the multiscale modeling and
analysis of biological macromolecules and subcellular organelles. Accurate, reliable,
and topological structure-preserving algorithms for implementing discrete exterior
calculus (DEC) have been developed to facilitate the aforementioned modeling and
analysis of biological macromolecules. The proposed de Rham–Hodge paradigm has
potential applications to subcellular organelles and the structure construction from
medium- or low-resolution cryo-EM maps, and functional predictions from massive
biomolecular datasets.
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1 Introduction

One of the most amazing aspects of biological science is the intrinsic structural com-
plexity of biological macromolecules and its associated functions. The understanding
of how changes in macromolecular structural complexity alter their function remains
one of the most challenging issues in biophysics, biochemistry, structural biology,
and molecular biology. This understanding depends crucially on our ability to model
three-dimensional (3D) macromolecular shapes from original experimental data and
to extract geometric and topological information from the architecture of molecular
structures. Very often, macromolecular functions depend not only on native struc-
tures but also on nascent, denatured, or unfolded states. As a result, understanding the
structural instability, flexibility, and collective motion of macromolecules is of vital
importance. Structural bioinformatics searches for patterns among diverse geomet-
ric, topological, instability, and dynamic features to deduce macromolecular function.
Therefore, the development of efficient and versatile computational tools for extract-
ingmacromolecular geometric characteristics, topological invariants, instability spots,
flexibility traits, and mode analysis is a key to infer their functions, such as binding
affinity, folding, folding stability change upon mutation, reactivity, catalyst efficiency,
and allosteric effects.

Geometric modeling and characterization of macromolecular 3D shapes have been
an active research topic for many decades. Surface models not only provide a visual
basis for understanding macromolecular 3D shapes, but also bridge the gap between
experimental data and theoretical modelings, such as generalized Born and Poisson–
Boltzmann models for biomolecular electrostatics (Natarajan et al. 2008; Yu et al.
2008). A space-filling model with van der Waals spheres was introduced by Corey,
Pauling, and Koltun (Corey and Pauling 1953). Solvent-accessible surface (SAS) and
solvent-excluded surface were proposed (Lee and Richards 1971; Richards 1977) to
provide a more elaborate 3D description of biomolecular structures. However, these
surface definitions admit geometric singularities, which lead to computational insta-
bility. Smooth surfaces, including Gaussian surfaces (Blinn 1982; Duncan and Olson
1993; Zheng et al. 2012; Chen et al. 2012; Li et al. 2013), skinning surfaces (Cheng
and Shi 2009), minimal molecular surface (Bates et al. 2008), and flexibility–rigidity
index (FRI) surfaces (Xia et al. 2013; Nguyen et al. 2016), were constructed tomitigate
the computational difficulty.

Another important property of macromolecules is their structural instability or
flexibility. Such property measures macromolecular intrinsic ability to respond to
external stimuli. Flexibility is known to be crucial for biomolecular binding, reac-
tivity, allosteric signaling, and order–disorder transition (Ma 2005). It is typically
studied by standard techniques, such as normal mode analysis (NMA) (Go et al. 1983;
Tasumi et al. 1982; Brooks et al. 1983; Levitt et al. 1985,) Gaussian network model
(GNM) (Bahar et al. 1997), and anisotropic network model (ANM) (Atilgan et al.
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2001). These methods have the computational complexity of O(N 3), with N being
the number of unknowns. As a geometric graph-based method, FRI was introduced to
reduce the computational complexity and improve the accuracy of GNM (Xia et al.
2013; Opron et al. 2014). NMA and ANM offer the collective motions which are man-
ifested in normal modes and may facilitate the functionally important conformational
variations of macromolecules.

The aforementioned Gaussian surface or FRI surface defines a manifold structure
embedded in 3D, which makes the analysis of geometry and topology accessible
by differential geometry and algebraic topology. Recently, differential geometry has
been introduced to understand macromolecular structure and function (Feng et al.
2012; Xia et al. 2014). In general, the protein surface has many atomic scale concave
and convex regions which can be easily characterized by Gaussian curvature and/or
mean curvature. In particular, the concave regions of a protein surface at the scale
of a few residues are potential ligand-binding pockets. Differential geometry-based
algorithms in both Lagrangian and Cartesian formulations have been developed to
generatemultiscale representations of biomolecules. Recently, a geometric flow-based
algorithm has been proposed to detect protein-binding pockets by Zhao et al. (2018).
Morse functions and Reeb graphs are employed to characterize the hierarchical pocket
and sub-pocket structure (Zhao et al. 2018; Dey et al. 2013).

More recently, persistent homology (Carlsson et al. 2005; Edelsbrunner and Harer
2010), a newbranch of algebraic topology, has become a popular approach for the topo-
logical simplification of macromolecular structural complexity (Yao et al. 2009; Xia
andWei 2014; Xia et al. 2015). Topological invariants are macromolecular-connected
components, rings, and cavities. Topological analysis is able to unveil the topology–
function relationship, such as ion channel open/close, ligand binding/disassociation,
and protein folding–unfolding. However, persistent homology neglects chemical and
biological information during its geometric abstraction. Element-specific persistent
homology has been introduced to retain crucial chemical and biological information
during the topological simplification (Cang andWei 2018). It has been integrated with
deep learning to predict various biomolecular properties, including protein–ligand-
binding affinities and protein folding stability changes upon mutation by Cang and
Wei (2017).

It is interesting to note that most current theoretical models for macromolecules
are built from classical mechanics, namely computational electromagnetics, fluid
mechanics, elasticity theory, and molecular mechanics based on Newton’s law. These
approaches lead to multivalued scalar, vector, and tensor fields, such as macromolecu-
lar electrostatic potential, ion channel flow, protein anisotropic motion, and molecular
dynamics trajectories. Biomolecular cryogenic electron microscopy (cryo-EM) maps
are also scalar fields. Mathematically, macromolecular multivalued scalar, vector, and
tensor fields contain rich geometric, topological, stability, flexibility, and Hodge mode
information that can be analyzed to reveal molecular function. Unfortunately, uni-
fied geometric and topological analysis of macromolecular multivalued fields remains
scarce. It is more challenging to establish a unified mathematical framework to fur-
ther analyze macromolecular flexibility and Hodge modes. There is a pressing need
to develop a unified theory for analyzing the geometry, topology, flexibility, and col-
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lective motion of macromolecules so that many existing methods can be calibrated to
better uncover macromolecular function, dynamics, and transport.

The objective of the present work is to construct a unified theoretical paradigm for
analyzing the geometry, topology, flexibility, and Hodge mode of macromolecules
in order to reveal their function, dynamics, and transport. To this end, we intro-
duce de Rham–Hodge theory for the modeling and analysis of macromolecules. De
Rham–Hodge theory is a cornerstone of contemporary differential geometry, alge-
braic topology, geometric algebra, and spectral geometry (Hodge 1989; Bott and Tu
2013; Mitchell 1998). It provides not only the Helmholtz–Hodge decomposition to
uncover the interplay between geometry and topology and the conservation of certain
physical observables, but also the spectral representation of the underlying multi-
valued fields, which further unveils the geometry and topology. Specifically, as a
ubiquitous computational tool, the Helmholtz–Hodge decomposition of various vec-
tor fields, such as electromagnetic fields by Hekstra et al. (2016), velocity fields by
De La Torre and Bloomfield (1977), and deformation fields by Atilgan et al. (2001),
can reveal their underlying geometric and topological features (see a survey by Bhatia
et al. (2013)). Additionally, de Rham–Hodge theory interconnects classic differential
geometry, algebraic topology, and partial differential equation (PDE) and provides
a high-level representation of vector calculus and the conservation law in physics.
Finally, the spectra of Laplace–de Rham operators in various differential forms also
contain the underlying geometric and topological information and provide a starting
point for the theoretical modeling of macromolecular flexibility and Hodge modes.
The corresponding computational tool is discrete exterior calculus (DEC) (Hirani
2003; Desbrun et al. 2005; Arnold et al. 2006; Zhao et al. 2019). Lim discussed
discrete Hodge Laplacians on graphs, which might not recover all the properties of
the Laplace–de Rham operator (Lim 2015). De Rham–Hodge theory has had great
success in theoretical physics, such as electrodynamics, gauge theory, quantum field
theory, and quantum gravity. However, this versatile mathematical tool has not been
applied to biological macromolecules, to the best of our knowledge. The proposed de
Rham–Hodge framework seamlessly unifies previously developed differential geome-
try, algebraic topology, spectral graph theory, andPDE-based approaches for biological
macromolecules (Xia and Wei 2016). Our specific contributions are summarized as
follows:

– We provide a spectral analysis tool based on the de Rham–Hodge theory to extract
geometric and topological features of macromolecules. In addition to the tradi-
tional spectra of scalar Hodge Laplacians, we enrich the spectra by using vector
Hodge Laplacians with various boundary conditions.

– We construct a de Rham–Hodge theory-based analysis tool for the orthogonal
decomposition of various vector fields, such as electric field, magnetic field,
velocity field from molecular dynamics and displacement field, associated with
macromolecular modeling, analysis, and computation.

– We propose a novel multiscale flexibility model based on the spectra of various
Laplace–de Rham operators. This new method is applied to the Debye–Waller
factor prediction of a set of 364 proteins (Opron et al. 2014). By comparison with
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experimental data, we show that our new model outperforms GNM, the standard
bearer in the field (Bahar et al. 1997; Opron et al. 2014).

– We introduce a multiscale Hodge mode model by constraining a vector Laplace–
de Rham operator with a Helfrich curvature potential. The resulting Laplace–de
Rham–Helfrich operator is applied to analyzing theHodgemodes of cryo-EMdata.
Unlike previous normal mode analysis which assumes harmonic potential around
the equilibrium, our approach allowsunharmonicmotions far from the equilibrium.
The multi-resolution nature of the present method makes it a desirable tool for the
multiscale analysis of macromolecules, protein complexes, subcellular structures,
and cellular motions.

– We demonstrate electrostatic field analysis based on Hodge decomposition and
eigenfield analysis. The eigenfield analysis is applied to the reaction potential cal-
culated by solving the Poisson–Boltzmann equation. We show that local dominant
Hodge eigenfields exist for electrostatic analysis.

2 Results

Our results are twofold: We first describe our contribution to computational tools for
Laplace–de Rham operators based on the simplicial tessellation of volumes bounded
by biomolecular surfaces and then we present the modeling and analysis of de Rham–
Hodge theory for biological macromolecules.

2.1 Theoretical Modeling and Analysis

This section introduces de Rham–Hodge theory for the analysis of biomolecules. To
establish notation,weprovide a brief reviewof deRham–Hodge theory.Then,we intro-
duce topological structure-preserving analysis tools, such as discrete exterior calculus
(DEC) (Desbrun et al. 2005), discretized differential forms, and Hodge–Laplacians,
on the compact manifolds enclosing biomolecular boundaries. We use simple finite-
dimensional linear algebra to computationally realize our structure-preserving analysis
on various differential forms. We construct appropriate physically relevant boundary
conditions on biomolecular manifolds to facilitate various scalar and vector Laplace–
de Rham operators such that the resulting spectral bases are consistent with three basic
singular value decompositions of the gradient, curl and divergence operators through
dualities.

2.1.1 De Rham–Hodge Theory for Macromolecules

While the spectral analysis can be carried out using scalar, vector, and tensor calcu-
lus, differential forms and exterior calculus are required in de Rham–Hodge theory to
reveal the intrinsic relations between differential geometry and algebraic topology on
biomolecular manifolds. Since biomolecular shapes can be described as 3-manifolds
with a 2-manifold boundary in the 3D Euclidean space, we represent scalar and vec-
tor fields on molecular manifolds as well as their interconversion through differential

123



108 Page 6 of 38 R. Zhao et al.

forms. As a generalization of line integral and flux calculation of vector fields, a dif-
ferential k-form ωk ∈ �k(M) is a field that can be integrated on a k-dimensional
submanifold of M , which can be mathematically defined through a rank-k antisym-
metric tensor defined on a manifold M . By treating it as a multi-linear map from k
vectors spanning the tangent space to a scalar, it turns an infinitesimal k-dimensional
cell into a scalar, whose sum over all cells in a tessellation of a k-dimensional subman-
ifold produces the integral in the limit of infinitesimal cell size. In R

3, 0-forms and
3-forms have one degree of freedom at each point and can be regarded as scalar fields,
while 1-forms and 2-forms have three degrees of freedom and can be interpreted as
vector fields.

The differential operator (also called exterior derivative) d can be seen as a uni-
fied operator that corresponds to gradient (∇), curl (∇×) , and divergence (∇·) when
applied to 0-, 1-, and 2-forms, mapping them to 1-, 2-, and 3-forms, respectively.
On a boundaryless manifold, a codifferential operator δ is the adjoint operator under
L2-inner product of the fields (integral of pointwise inner product over the whole
manifold), which corresponds to −∇·, ∇×, and −∇, for 1-, 2-, and 3-forms, mapping
them to 0-, 1-, and 2-forms, respectively.

One key property of d : �k(M) → �k+1(M) is that dd = 0, which allows the
space of differential forms �k to form a chain complex, which is called the de Rham
complex

0 −→ �0(M)
d−−→

(∇)
�1(M)

d−−−→
(∇×)

�2(M)
d−−→

(∇·) �3(M)
d−→ 0. (1)

It also matches the identities of second derivatives for vector calculus in R
3, i.e.,

(∇×)∇ = 0 and (∇·)∇× = 0. The topological property associated with differential
forms is given by the de Rham cohomology,

Hk
d R(M) = ker dk

imdk−1 . (2)

ThedeRham theoremstates that the deRhamcohomology is isomorphic to the singular
cohomology, which is derived purely from the topology of the biomolecular manifold.

The Hodge k-star �k (also called Hodge dual) is a linear map from a k-from to
its dual form, �k : �k(M) → �n−k(M). Given two k-forms α, β ∈ �k(M), the
(L2-)inner product between them can be defined along with star operator as

〈α, β〉 =
∫

M
α ∧ �β =

∫
M

β ∧ �α. (3)

Under the inner products, the adjoint operators of d are the codifferential operators
δk : �k(M) → �k−1(M), δk = (−1)k�d� satisfies δδ = 0. Hodge further established
the isomorphism

Hk
d R(M) ∼= Hk

�(M), (4)

where Hk
�(M) = {ω|�ω = 0} is the kernel of the Laplace–de Rham operator � ≡

dδ + δd = (d + δ)2, also known as the space of harmonic forms. A corollary of the
result is the Hodge decomposition,
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ω = dα + δβ + h, (5)

which is an L2-orthogonal decomposition of any form ω into d and δ of two poten-
tial fields α ∈ �k−1(M) and β ∈ �k+1(M), respectively, and a harmonic form
h ∈ Hk

�(M). This means that harmonic forms are the non-integrable parts of differen-
tial forms, which form a finite-dimensional space determined by the topology of the
biomolecular domain due to de Rham’s and Hodge’s theorems.

2.1.2 Macromolecular Spectral Analysis

TheLaplace–deRhamoperator� = dδ+δd, when restricted to a 3Dobject embedded
in the 3D Euclidean space, is simply−∇2. As it is a self-adjoint operator with a finite-
dimensional kernel, it can be used to build spectral bases for differential forms. For
irregularly shaped objects, these bases can be very complicated. However, for simple
geometry, these bases are well-known functions. For example, 0-forms on a unit circle
can be expressed as the linear combination of sine and cosine functions, which are
eigenfunctions of the Laplacian for 0-forms �0. Similarly, spherical harmonics are
eigenfunctions of�0 on a sphere and it has also been extended to manifold harmonics
on Riemannian 2-manifolds.

We further extend the analysis to any rank k and to 3D shapes such as macro-
molecular shapes where analysis can be carried out in two types of cases. In the first
type, one may treat the surface of the molecular shape as a boundaryless compact
manifold and analyzes any field defined on such a 2D surface. In fact, this approach
is relevant to protein surface electrostatic potentials or the behavior of cell membrane
or mitochondrial ultrastructure. In this work, we shall restrain from any further explo-
ration in this direction. In the second type, we consider the volumetric data enclosed
by a macromolecular surface. As a result, the molecular shape has a boundary. In
this setting, the harmonic space becomes infinite-dimensional unless certain bound-
ary conditions are enforced. In particular, tangential or normal boundary conditions
(also called Dirichlet or Neumann boundary conditions, respectively) are enforced to
turn the harmonic space into a finite-dimensional space corresponding to algebraic
topology constructions that lead to absolute and relative homologies.

We first discuss the natural separation of the eigenbasis functions into curl-free
and div-free fields in the continuous theory, assuming that the boundary condition is
implicitly enforced, before providing details on the discrete exterior calculus with the
boundary taken into consideration.

Given any eigenfield ω of the Laplacian,

�ω = λω, (6)

we can decompose it into ω = dα + δβ + h. For λ 
= 0, h = 0, based on dd = 0 and
δδ = 0, it is easy to see that both dα and δβ are eigenfunctions of�with eigenvalue λ

due to the uniqueness of the decomposition, unless one of them is 0. It is typically the
case that ω is either a curl field or a gradient field; otherwise, λ has a multiplicity of at
least 2, in which case both eigenfields associated with λ are the linear combinations
of the same pair of the gradient field and the curl field.
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2.1.3 Discrete Spectral Analysis of Differential Forms

In a simplicial tessellation of a manifold mesh, dk is implemented as a matrix Dk ,
which is a signed incidence matrix between (k +1)-simplices and k-simplices. We
provide the details in Sect. 3, but the defining property in de Rham–Hodge theory
is preserved through such a discretization: Dk+1Dk = 0. The adjoint operator δk

is implemented as S−1
k−1DT

k−1Sk , where Sk is a mapping from a discrete k-form to a
discrete (n − k)-form on the dual mesh, which can be treated as a discretization of
the L2-inner product of k-forms. As Sk is always a symmetric positive matrix, the
L2-inner product between two discrete k-forms can be expressed as (ωk

1)
T Skω

k
2. The

discrete Hodge Laplacian maps a discrete k-form to a discrete n−k-form which is
defined as

Lk = DT
k Sk+1Dk + Sk Dk−1S−1

k−1DT
k−1Sk, (7)

which is a symmetric matrix and S−1
k Lk corresponds to �k . The eigenbasis functions

are found through a generalized eigenvalue problem,

Lkω
k = λk Skω

k . (8)

Depending on whether the tangential or normal boundary condition is enforced,
Dk includes or excludes the boundary elements, respectively. Thus, the boundary
condition is built into discrete linear operators. When we need to distinguish these two
cases, we use Lk,t and Lk,n to denote the tangential and normal boundary conditions,
respectively.

In general, it is not necessarily efficient to take the square root of the discrete Hodge

star operator, S
1
2
k or to compute its inverse, S−1

k . However, for analysis, we can always
convert a generalized eigenvalue problem in Eq. (8) into a regular eigenvalue problem,

L̄kω̄
k ≡ S

− 1
2

k Lk S
− 1

2
k ω̄k = λkω̄k, (9)

where ω̄ ≡ S
1
2
k ω. We can further rewrite the symmetrically modified Hodge Laplacian

as
L̄k = D̄T

k D̄k + D̄k−1 D̄T
k−1, (10)

where D̄k ≡ S
1
2
k+1Dk S

− 1
2

k must satisfy D̄k+1 D̄k = 0. Now the L2-inner product
between two discrete differential forms in the modified space is simply (ω̄k

1)
T ω̄k

2, and
the adjoint operator of D̄k is simply D̄T

k .
Now the partitioning of the eigenbasis functions into harmonic fields, gradient

fields, and curl fields for 1-forms and 2-forms and their relationship can be understood
from the singular value decomposition of the differential operator

D̄k = Uk+1
k V T
k , (11)

where Uk+1 and Vk are orthogonal matrices and 
k is a rectangular matrix that only

has nonzero entries on the diagonal, which can be sorted in ascending order as
√

λk
i

123



The de Rham–Hodge Analysis and Modeling of Biomolecules Page 9 of 38 108

Fig. 1 (Color online figure) Illustration of tangential spectra of a cryo-EM map EMD 7972. Topologically,
EMD 7972 (Baradaran et al. 2018) has six handles and two cavities. The left column is the original shape
and its anatomy showing the topological complexity. On the right-hand side of the parenthesis, the first
row shows tangential harmonic eigenfields, the second row shows tangential gradient eigenfields, and the
third row shows tangential curl eigenfields. The credit for the leftmost picture belongs to HayamMohamed
Abdelrahman

with trailing zeros. As the Hodge decomposition is an orthogonal decomposition, each

column of Vk that corresponds to a nonzero singular value
√

λk
i is orthogonal to any

column of Uk that corresponds to a nonzero
√

λk−1
j . Here, Vk and Uk , together with

the finite-dimensional set of harmonic forms hk (which satisfy both Dkhk = 0 and
DT

k−1hk = 0), span the entire space of k-forms. Moreover, the spectrum (i.e., set of
eigenvalues) of the symmetricmodifiedHodge Laplacian in Eq. (10) consists of 0s, the
set of λk

i ’s, and the set of λ
k−1
j ’s. Note that in the spectral basis, taking derivatives D̄ (or

D̄T ) is simply performed through multiplying the corresponding singular values, and
integration is done through division by the corresponding singular values, mimicking
the situation in the traditional Fourier analysis for scalar fields.

2.1.4 Boundary Conditions and Dualities in 3DMolecular Manifolds

Overall, appropriate boundary conditions are prescribed to preserve the orthogonal
property of the Hodge decomposition. In 3D molecular manifolds, 0- and 3-forms can
be seen as scalar fields and 1- and 2-forms as vector fields. For the spectral analysis
of scalar fields (0-forms or 3-forms), two types of typical boundary conditions are
used: Dirichlet boundary condition f |∂ M = f0 and Neumann boundary condition
n · ∇ f |∂ M = g0, where f0 and g0 are functions on the boundary ∂ M and n is the unit
normal on the boundary. For spectral analysis, harmonic fields satisfying the arbitrary
boundary conditions can be dealt with through spectral analysis of f0 or g0 on the
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boundary, and the following boundary conditions are used for the volumetric function
f . The normal 0-forms (tangential 3-forms) satisfy

f |∂ M = 0, (12)

and the tangential 0-forms (normal 3-forms) satisfy

n · ∇ f |∂ M = 0. (13)

For the spectral analysis of vector fields, boundary conditions are for the three
components of the field. Based on the de Rham–Hodge theory, it is more convenient
to also use two types of boundary conditions. For tangential vector field (representing
tangential 1-forms or normal 2-forms) v, we use the Dirichlet boundary condition for
the normal component and the Neumann condition for the tangential components:

v·n=0, n·∇(v · t1)=0, n·∇(v · t2) = 0, (14)

where t1 and t2 are two local tangent directions forming a coordinate framewith the unit
normal n. The corresponding spectral fields are shown in Fig. 1. For normal vector
field (representing normal 1-forms or tangential 2-forms) v, we use the Neumann
boundary condition on the normal component and the Dirichlet boundary condition
on the tangential components:

v·t1=0, v·t2=0, n·∇(v · n)=0. (15)

The corresponding spectral fields are shown in Fig. 2. Aside from the harmonic
spectral fields, there are two types of fields involved for the spectral fields of both
boundary conditions—the set of divergence-free fields (also called curl fields) and
the set of curl-free fields (also called gradient fields). In summary, the above four
boundary conditions account for both types of boundary conditions of all four differ-
ential forms, since the tangential boundary conditions of k-forms are equivalent to the
normal boundary conditions of n−k-forms.

2.1.5 Reduction and Analysis

For the four types of k-forms (k ∈ {0, 1, 2, 3} inR3) in combinationswith the two types
of boundary conditions (tangential and normal), there are eight different Laplace–de
Rham operators (Lk,t and Lk,n) in total. However, based on Eq. (10), the nonzero
parts of the spectrum Lk can be assembled from the singular values of D̄k and D̄k−1.
Thus, for each type of boundary conditions, there are only three spectra associated
with D̄0, D̄1, and D̄2, since D̄3 = 0 for 3D space. (One still has eight Laplace–de
Rham operators.) Moreover, according to the Hodge duality discussed in the above
paragraph, there is a one-to-one map between tangential k-forms and normal (3−k)-
forms, which further identifies D̄0,t with D̄T

2,n , D̄0,n with D̄T
2,t , and D̄1,t with D̄T

1,n . As
a result, one has four independent Laplace–de Rham operators. Finally, due to the self-
adjointness, there are only three intrinsically different spectra: (1) The first contains
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Normal 
Boundary 
Condition

Gradient 
Fields

Curl
Fields

0-th 1-st

2-nd 3-rd

0-th 1-st

2-nd 3-rd

Fig. 2 (Color online figure) Illustration of the normal spectra of protein and DNA complex 6D6V. Topolog-
ically, the crystal structure of 6D6V (Jiang et al. 2018) has 1 handle. The left column shows the secondary
structure and the solvent-excluded surface (SES). On the right-hand side, the first two rows show normal
gradient eigenfields, and the last two rows show normal curl eigenfields

singular values of the gradient operator D0,t on tangential scalar potential fields (or
equivalently, the singular values of the divergence operator D2,n on tangential gradient
fields) as shown in Fig. 3b; (2) the second contains singular values of the gradient
operator D0,n on normal scalar potential fields (or equivalently, the singular values of
the divergence operator D2,t on normal gradient fields) as shown in Fig. 3c; and (3)
the third contains singular values of the curl operator D1,t applied to tangential curl
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Fig. 3 (Color online figure) Illustration of Hodge Laplacian spectra. This figure shows the properties of
three spectral groups, namely tangential gradient eigenfields (T ), normal gradient eigenfields (N ), and curl
eigenfields (C), for EMD 8962 (Singh et al. 2018). a The original input surface and three distinct spectral
groups. b The cross-section of a typical tangential gradient eigenfield and the distribution of eigenvalues
for group T . c The cross-section of a typical normal gradient eigenfield and the distribution of eigenvalues
for group N . d A typical curl eigenfield and the distribution of eigenvalues for group C . e The left chart
shows the convergence of spectra in the same spectral group due to the increase in the mesh size, i.e., the
DoFs from 1000 (1K) to 6000 (6K). Obviously, low-order eigenvalues converge fast (middle chart) and
high-order eigenvalues converge slowly (right chart)

fields (or equivalently, the singular values of the curl operator D1,n applied to normal
curl fields) as shown in Fig. 3d.

As discussed above, each of the eight Hodge Laplacians defined for smooth fields
on a smooth shape has a spectrum that is simply the combination of one or two of the
three sets of singular values alongwith possibly a 0.However, the numerical evaluation
of the singular values of the differential operators for tangential k-forms D̄k,t can
differ from those of the discrete operators for normal 3−k-forms D̄T

2−k,n , as shown
in Fig. 3d. One immediate reason is that the degrees of freedom (DoFs) associated
with tangential/normal scalar/vector fields represented as tangential forms are not the
same as those represented by normal forms on a given tessellation, leading to different
sampling accuracies. For example, the tessellation of the shape in Fig. 3 consists
of approximately 1000 vertices, 7000 edges, 10,000 triangles, and 5000 tetrahedra.
Thus, each tangential 0-form only has 1000 DoFs, and each normal 3-form has 5000.
Hence, L3,n is capable of handling higher-frequency signals in any given smooth
scalar field than L0,t when we approach the Nyquist frequencies of the sampling. The
convergence of both discretizations for the same continuous operator can be observed
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with increasing DoFs for both differential forms under refinement of the tet meshes
(Fig. 3e, left). For low frequencies (smallest eigenvalues), there is a good agreement
to begin with (Fig. 3e, middle), while for any given high frequency, the convergence
with increased resolutions can be clearly observed (Fig. 3e, right).

On the other hand, D̄k D̄T
k and D̄T

k D̄k will have strictly the same set of nonzero
eigenvalues. For instance, the spectrum of L0,t and the partial spectrum of L1,t that
correspond to gradient fields are identical, since D̄0,t D̄T

0,t and D̄T
0,t D̄0,t have the same

nonzero eigenvalues.
For eigenfields vector Laplacians represented as 1-forms or 2-forms, i.e., the eigen-

fields of L1 or L2, we can observe some typical traits in the distributions of eigenvalues
under normal and tangential boundary conditions. The normal boundary condition
tends to allow more gradient eigenfields associated with eigenvalues below a given
threshold than those under the tangential boundary condition for eigenvalues below
the same threshold. We conjecture that it is due to the more stringent Dirichlet bound-
ary condition on the potential scalar fields than the Neumann boundary condition.
The relation between the tangential boundary condition gradient-type eigenfields and
curl-type eigenfields for low-frequency range seems to be highly dependent on the
shape (Fig. 3b, d). Figure 1 shows different vector eigenfields for tangential bound-
ary condition with EMD 7972 surface. The first row shows different harmonic fields
corresponding to the number of handles of the shape, the second row shows different
gradient fields, and the third row shows different curl fields. Figure 2 shows different
vector eigenfields for normal boundary condition with the protein and DNA complex
crystal structure 6D6V. Since there are no cavities for this shape, there are no harmonic
fields. The first row shows different gradient fields, and the second row shows different
curl fields. Note that the scalar potentials for gradient fields and the vector potentials
for curl fields are also themselves eigenfields associated with the same eigenvalues,
although for different Laplacians.

Summarizing the above discussion on the properties of Laplacian spectra for 3D
shape, we propose the following suggestions for practical spectral analysis:

– Only three independent spectra (e.g., singular values of D0,t , D1,t , and D2,t ) are
necessary to avoid redundancy.

– Laplace–de Rham operators with higher DoFs can be used for more accurate
calculation (at a higher computational cost) given the same tessellation.

– When computing eigenvalues given the same high-frequency truncation threshold,
the differences in the numbers of eigenvalues in the three spectra vary with the
shape.

2.2 Macromolecular Modeling and Analysis

Biological macromolecules and their complexes offer a rich variety of geometric and
topological features, which often exhibit close relations with their functionalities. For
instance, protein pockets can often be identified as a geometrically concave region on
the protein surface, or as a topological cavity of an offset surface. Ion channels that
regulate important biological functions can be usually associated with a topological
tunnel. Mitochondrial ultrastructures admit various geometric and topological com-
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plexity which is related to their functions (Wollenman et al. 2017). Hence, a unified
approach for quantitatively analyzing such geometric and topological features is in
great need. Our de Rham–Hodge analysis and Laplace–de Rham operator modeling
provide such a unified approach for capturing both geometric and topological features
simultaneously.

Our de Rham–Hodge analysis offers a powerful new tool for characterizing macro-
molecular geometry, identifying macromolecular topology, and modeling macro-
molecular structural flexibility and collective motion. We have carried out extensive
computational experiments using protein structural datasets and cryo-EM maps to
demonstrate the utility and usefulness of the proposed de Rham–Hodge tools and
models.

2.2.1 Molecular Shape Generation

The geometricmodeling ofmacromolecular 3D shapes bridges the gap between exper-
imental data and theoretical models for macromolecular function, dynamics, and
transport. To carry out our de Rham–Hodge analysis on a macromolecule or a protein
complex, we need a given domain containing the 3D macromolecular shape. Theoret-
ically, such a domain for a macromolecule can be generated by taking an isosurface
of a cryo-EM map or constructed from the atomic coordinates of the macromolecule.
For a given set of atomic coordinates ri , i = 1, 2, . . . , N , van der Waals surface,
solvent-accessible surface, and the solvent-excluded surface can be constructed. How-
ever, these surfaces are typically singular, leading to computational instability for de
Rham–Hodge analysis. Alternatively, minimal molecular surface (MMS) generated
by differential geometry, Gaussian surface (Li et al. 2013), and flexibility rigidity
index (FRI) surface (Xia et al. 2013; Opron et al. 2014) are computationally preferred
and used widely in many studies. In fact, FRI surface is simpler than MMS and more
stable than Gaussian surface (Nguyen et al. 2016). To generate an FRI surface, we use
a discrete-to-continuum mapping to define an unnormalized molecular density (Xia
et al. 2013; Nguyen et al. 2016)

ρ(r, η) =
N∑

j=1

�(‖r − r j‖; η) (16)

where η is a scale parameter and in this paper, it is set to twice of the atomic van
der Waals radius r j . � is density estimator that satisfies the following admissibility
conditions

�
(‖r − r j‖; η‖) = 1, as ‖r − r j‖ → 0, (17)

�
(‖r − r j‖; η‖) = 0, as ‖r − r j‖ → ∞. (18)

Monotonically decaying radial basis functions are all admissible. Commonly used
correlation kernels include generalized exponential functions

�
(‖r − r j‖; η‖) = e−(‖r−r j ‖/η)κ

, κ > 0, (19)
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and generalized Lorentz functions

�
(‖r − r j‖; η

) = 1

1 + (‖r − r j‖/η
)ν , ν > 0. (20)

The Gaussian kernel (κ = 2) is employed in this work.
A family of biomolecular domains can be defined by varying level set parameters

c > 0
M = {r|ρ(r, η) ≥ c}. (21)

2.2.2 Topological Analysis

In this work, we discuss topology in the mathematical sense. Therefore, topological
features are those stable structural characteristics that do not change with deformation,
such as the number of connected components, the number of holes on each connected
component, and the number of cavities. They are captured in the null spaces of the
corresponding Laplace–de Rham operators. In other words, the invariant spaces asso-
ciated with the eigenvalue of 0, i.e., the lowest ends of the spectra. Specifically, the
dimension of the null space of L1,t and L2,n is the same as the number of tunnels
as shown in Fig. 4a. The dimension of the null space of L1,n and L2,t provides the
number of cavities as shown in Fig. 4b. The dimension of the L0,t is equal to the num-
ber of connected components. In persistent homology, the geometric measurement
for characterizing the persistence of a topological feature has been proven crucial to
the practical use of these otherwise overly stable features. The eigenfields associated
with the eigenvalue 0 in our spectral analysis can also provide such information. For
instance, the strength of the eigenfield associated with the eigenvalue 0 for L1,t can
indicate how narrow the handle/tunnel is in the region. In the tangential harmonic
fields of Fig. 1, the colors show the strength of eigenfields such that red colors stand
for high strengths and indigo colors stand for low strengths. One can see that strengths
are higher in the middle narrow tunnels than the top and bottom parts.

2.2.3 Geometric Analysis

Although the spectra of the Laplace–de Rham operators do not uniquely determine
the geometry (sometimes referred to as “you cannot hear the shape of the drum”), they
do provide key information when comparing shapes, which, sometimes, is referred to
as shape “DNA”. Thus, the traits of the nonzero parts of the spectra can be regarded
as geometrical features. These geometrical features are rigid transformation invariant.
The scalar Hodge Laplacian spectrum has already been used in computer graphics
and computer vision to distinguish various structures in shape analysis and shape
retrieval. It has also been extended to 1-form Hodge Laplacian on surfaces for shape
analysis. However, on surfaces, L1 spectrum is identical to L0 spectrum, except that
the multiplicity is doubled for nonzero eigenvalues. Note that the multiplicity for
the zero eigenvalues is determined by the number of genus instead of the number
of connected components for scalar Hodge Laplacian. In our 3D extension, we have
three unique spectra for each molecule. Figure 5 shows nonzero spectrum traits for
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Fig. 4 (Color online figure) Illustration of topological analysis. a Eigenfields by null space of tangential
Laplace–de Rham operators correspond to handles. b Eigenfields by null space of normal Laplace–de Rham
operators correspond to cavities
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Fig. 5 (Color online figure) Illustration of geometric analysis. The geometry of different molecules (PDB
IDs: 2Z5H (a), 6HU5 (b), and 5HY9 (c)) can be captured by three groups of different Hodge Laplacian
spectra with clear separations shown in d. Note that the color of the line plot corresponds to the color of
the molecules. The solid lines show the tangential gradient (T) spectrum, the dashed lines show the normal
gradient (N) spectrum, and the dot lines show the curl spectrum (C). While there is a possibility that certain
spectral sets may be close to each other (see group T of proteins 6HU5 and 5HY9), the other two groups
of spectra (see groups N and C of proteins 6HU5 and 5HY9) will show a clear difference. In addition, our
topological features will also provide a definite difference. For example, protein 6HU5 has trivial topology
(ball), but protein 5HY9 has a handle

three simple proteins (PDB IDs: 2Z5H (Murakami et al. 2008), 6HU5 (Lanza et al.
2019), and 5HY9 (Kuglstatter et al. 2017), where the clear distinction among the
spectra can be observed. We have tested on various biomolecules and observed the
same discriminating ability of the spectra on these shapes.

Geometric analysis and topological analysis based on the de Rham–Hodge theory
can be readily applied to characterizing biomolecules in machine learning and to
biomolecular modeling. To further demonstrate the capability of de Rham–Hodge
spectral analysis for macromolecular analysis, we propose a set of de Rham–Hodge
models for protein flexibility analysis and a vector de Rham model for biomolecular
Hodge mode analysis.
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2.2.4 Flexibility Analysis

Biomolecular flexibility analysis and B-factor prediction have been commonly per-
formed by normal mode analysis (Go et al. 1983; Tasumi et al. 1982; Brooks et al.
1983; Levitt et al. 1985;Ma 2005) andGaussian networkmodel (GNM) byBahar et al.
(1997). The flexibility is strongly correlated with protein functions, such as structural
support, catalyzing chemical reactions, and allosteric regulation (Frauenfelder et al.
1991). Recently, graph theory-based FRI has been shown to outperform other meth-
ods (Opron et al. 2014). However, all of the aforementioned methods are based on
the discrete coordinate representation of biomolecules. As such, it is not very conve-
nient to use these methods for flexibility analysis at different scales. For example, for
some large macromolecules, such as an HIV viral capsid which involves millions of
atoms, one may wish to analyze their flexibility at atomic, residue, protein domain,
protein, and protein complex scales by using a unified approach so that the results
from cross-scales can be compared on an equal footing. However, current approaches
cannot provide such a unified cross-scale flexibility analysis. In this work, we intro-
duce a de Rham–Hodge theory-basedmodel to quantitatively analyzemacromolecular
flexibility across many scales.

We assume that the de Rham–Hodge B-factor at the i th atom estimated by Lk is
given by

BdRH
k,i = a

∑
j

1

λk
j

[
ωk

j (r)(ω
k
j (r

′))T
]
r=ri ,r′=ri

,∀λk
j > 0, (22)

where a is a parameter to be determined by the least squares regression. Its value
depends on structural resolution, diffraction intensity, experimental method (i.e., x-
ray scattering, electron microscopy, etc.), number of diffraction angles, experimental
temperature, sample quality, and structure reconstruction method. In the computation,
the value of ωk

j (r) is given on a set of mesh points. The linear regression over a cutoff
radius d is used to obtain the required values in atomic centers ri where the B-factor
values are reported. L0,t is applied in test cases.

We perform numerical experiments to confirm that our flexibility analysis on C-
alpha atoms is robust and reliable. In fact, our method can analyze the flexibility of
all atoms or a subset of atoms. The cutoff radius is set to 7 Å. Our method involves
several parameters including level set value c and grid spacing r and cutoff radius d
(Fig. 6). Figure 7 shows statistics of the average Pearson correlation coefficient with
various parameters on the test set of 364 proteins.

Level Set The level set parameter c in Eq. (21) controls the general distance from
the surface to C-alpha atoms (Fig. 6a). A larger level set value will result in a smaller
domainwith richer topology structures, includingmany tunnels and cavities. A smaller
level set value will make the surface fatter so that it will lead to a ball-like shape.

Grid Spacing The grid spacing r controls the density of tetrahedrons of the mesh. A
finer mesh will lead to a better prediction but is computationally more expensive (Fig.
6b).
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a
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d

e

f

Fig. 6 (Color online figure) Illustration of the procedure for flexibility analysis. We use protein 3VZ9
(Nishino et al. 2013) as an example to demonstrate our procedure from a to f. a The input protein crystal
structure. b That only C-alpha atoms (yellow spheres) are considered in this case. We assign a Gaussian
kernel to eachC-alpha atomand extract the level set surface (transparent surface) as our computation domain.
c That standard tetrahedral mesh is generated with the domain. (Boundary faces are gray; inner faces are
indigo.) We use a standard matrix diagonalization procedure to obtain eigenvalues and eigenvectors. B-
factor at each mesh vertex is computed as shown in Eq. (22). d B-factor at the position of a C-alpha atom
is obtained by the linear regression using within the nearby region. (For the red C-alpha atom, the linear
regression region is colored as purple, which is within the cutoff radius.) e The predicted B-factors on the
surface. f The predicted B-factors at C-alpha atoms (orange), compared with the experimental B-factors in
the PDB file (blue). Our prediction for 3VA9 has the Pearson correlation coefficient of 0.8081

Cutoff Radius The parameter cutoff radius d controls the linear regression region
around the specific C-alpha atom (tets within the radius d to the specific C-alpha atom
which is colored purple in Fig. 6d). Our approach will potentially introduce a denser
mesh, which will lead to small local vibrations (high frequencies introduced due to
the increasing number of matrix elements) that should be filtered out. This treatment
is the same as throwing away higher frequencies.

We consider a benchmark test set of 364 proteins studied in earlier work by Opron
et al. (2014) to systematically validate our method. Our test indicates that the best
parameters are c = 0.4, r = 1.6 Å, d = 4.0 Å. Figure 8 shows several examples
with the best parameters and comparisons with GNM. Table 1 shows the average
Pearson correlation coefficient of predicting the benchmark set of 364 proteins Opron
et al. (2014) at a cutoff radius 4.0 Å, which includes the overall best average Pearson
correlation coefficient at grid spacing 1.6 Å and level set value 0.4 . The contour level
value should not be too large such that only those C-alpha atoms that are close enough
to each other will have interactions, as well as not be too small such that enough
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Fig. 7 (Color online figure) Statistics of the average Pearson correlation coefficient (PCC) with various
parameters on the test set of 364 proteins. Each plot has the same cutoff radius varying from 1.0 Å to 6.0
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different lines; the grid spacing varies from 1.6 Å to 4.0 Å with interval 0.4 Å shown in the horizontal axis
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Fig. 8 (Color online figure) Illustration of B-factor prediction. We use proteins 1V70 (Hanawa-Suetsugu
et al. 2004), 3F2Z, and 3VZ9 as examples to show our predictions compared with the experiments. The red
lines with triangles are the ground truth from experimental data. The blue lines with circles are predictions
with our method (EDH). The green lines with cubes are predictions fromGaussian network method (GNM)

geometric and topological features are preserved. The cutoff radius should be a proper
value such that higher frequencies are mitigated, while lower frequencies are well
kept. There is not much influence of resolution if the previous two parameters are well
set (see statistics at cutoff radius 5 Å). This provides the foundation for analyzing large
protein complexes with coarse resolution.

The proposed flexibility analysis can be easily extended to analyze the flexibility
of cryo-EM data at given level sets. The computed (relative) B-factors are located
at vertices but can be interpolated to any desirable location if necessary. Due to the
multi-resolution nature of our approach, the computational cost is determined by the
number of unknowns, i.e., the mesh size. For a given computational domain, the mesh
size depends on the grid spacing. Therefore, for large macromolecules with millions
of atoms, which is intractable for coordinate-based methods, the proposed de Rham–
Hodge approach can still be very efficient.
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Table 1 The average Pearson correlation coefficient for predicting 364 proteins at cutoff radius 4.0 Å. The
overall best average Pearson correlation coefficient is 0.580 (in bold), compared to that of 0.565 for GNM
on the same dataset (Opron et al. 2014)

Grid spacing (Å)

1.6 2.0 2.4 2.8 3.2 3.6 4.0

Level set 0.2 0.574 0.572 0.569 0.564 0.536 0.508 0.498

0.4 0.580 0.579 0.578 0.573 0.561 0.547 0.534

0.6 0.574 0.574 0.569 0.567 0.552 0.534 0.523

0.8 0.545 0.547 0.535 0.513 0.481 0.417 0.389

The commonly used method that produces the B-factors that wind up in the PDB
files is the least squares fit. This method connects diffraction intensity profiles and
structural model predicted densities in the PDB with B-factors. In our model, we con-
nect experimental structures (the coordinates of structural model predicted densities)
and B-factors in the PDB files with our Hodge eigenvalue- and eigenvector-based
model.

2.2.5 Hodge Mode Analysis

Normal mode analysis is an important approach for understanding biomolecular
collective behavior, residue coupling, protein domain motion, and protein–protein
interaction, reaction pathway, allosteric signaling, and enzyme catalysis (Go et al.
1983; Tasumi et al. 1982; Brooks et al. 1983; Levitt et al. 1985; Ma 2005). However,
normal model analysis becomes very expensive for large biomolecules. In particular,
it is difficult to carry out the anisotropic network model (ANM) analysis (Atilgan
et al. 2001) for cryo-EMmaps which do not have atomic coordinates. Virtual particle-
based ANM methods were proposed to tackle this problem (Tama et al. 2002; Ming
et al. 2002). Being based on the harmonic potential assumption, these methods are
restricted to relatively small elastic motions. In this work, we propose an entirely dif-
ferent strategy for biological macromolecular anisotropic motion analysis based on de
Rham–Hodge theory.

Laplace–de Rham Operator It is noted that a mass–spring system is underlying many
earlier successful elastic network models. This system describes the interconver-
sion between the kinetic energy and potential energy during the dynamic motion. In
our construction, we take advantage of de Rham–Hodge theory. In fact, de Rham–
Hodge theory provides a general framework to model the dynamic behavior of
macromolecules. In the present work, we just illustrate this approach with special
construction.

In order for de Rham–Hodge theory to be able to describe anisotropic motions, we
utilize the 1-form Laplace–de Rham operator

�1 = d0�
−1
0 d0�1 + �−1

1 d1�2d1, (23)
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where dk denote exterior derivatives on �k(M) and �k denote Hodge star operators.
Note that the 2-formLaplace–de Rham operator works similarly well, but wewill limit
our discussion with 1-form. The first term on the right hand side of Eq. (23) is the
quadratic energy form measuring the total divergence energy, while the second term
measures the total curl energy. Both terms are kinetic energy physically or Dirichlet
energy mathematically.

Laplace–de Rham–Helfrich Operator Physically, a potential energy term is required
to constrain the elastic motion of biological macromolecules. There are many options,
such as Willmore energy, which minimize the difference between two principle
curvatures. Additionally, Helfrich introduced a curvature energy for modeling cell
membrane or closed lipid vesicles (Helfrich 1973; Du et al. 2004). In our case, we
assume the curvature energy of the form

V = μ

∫
∂ M

(H − H0)
2dA, (24)

where μ is the molecular bending rigidity, H is the mean curvature on the molecular
surface, and H0 is the spontaneous curvature of the molecule. The potential energy in
Eq. (24) is defined on the compact manifold enclosing a smooth molecular surface.

Conceptually, our curvature model deals with a dynamical system with a thin shell
having a thickness much smaller than other dimensions. Computationally, the 2D
curvature model serves as a boundary condition to complete the Laplace–de Rham
operator on amacromolecule. The curvature energy increases as themean curvature H
deforms away from its rest state. Therefore, H is a function of surface displacement.
The quadratic energy generated from surface deformation is given by (see Tamstorf
and Grinspun (2013) for discretization details)

Q = ∂2V /∂ X2, (25)

where X is a displacement vector field on the surface. Due to the isomorphism between
vector fields and 1-forms, we can evaluate the volumetric 1-form ω as a displacement
vector field and restrict it to the boundary surface. We denote the restriction as a linear
operator G,

X = Gω. (26)

Then, the quadratic form for the curvature energy in terms of the 1-form is GT QG.
Finally, the total 1-form quadratic energy is given by the following one-parameter
Laplace–de Rham–Helfrich operator

Eμ = d0�
−1
0 dT

0 �1 + �−1
1 dT

1 �2d1 + GT QG. (27)

We can solve the eigenvalue problem for the Laplace–de Rham–Helfrich operator
Eμ to extract the natural vibration modes of biomolecules. It is a standard procedure
to assemble required matrix G and Q together with our Laplace–de Rham matrix.

In fact, an advantage of the proposed anisotropic motion theory is that it allows to
treat the divergence energy and curl energy differently. For example, we can introduce
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Fig. 9 (Color online figure) Hodge modes of EMD 1258. The 0th, 4th, 8th, and 12th Hodge modes are
shown

a bulk modulus type of parameter λ to the divergence energy term, which leads to a
weightedLaplace–deRhamoperator. As a result, we have a two-parameter Laplace–de
Rham–Helfrich operator

Eλμ = λ · d0�
−1
0 dT

0 �1 + �−1
1 dT

1 �2d1 + GT QG. (28)

We need to choose appropriate weight parameters λ and μ. Generally, the two-
parameter Laplace–de Rham–Helfrich operator and boundary condition matrix can be
tuned separately. What we would like to achieve is letting the curvature energy drive
themotion and let our systempenalize the compressibility (i.e., the divergence energy).
Therefore, we select an appropriate λ at a different scale and choose μ > λ > 1.

Modal analysis, compared to fluctuation analysis, provides more information. In
addition to the description of flexibility, modal analysis also provides the collective
motion of a molecule and its potential function. The dynamics of a macromolecule can
be described by the linear combination of its natural modes. Figure 9 shows several
Hodge modes for core spliceosomal components, EMD 1258 (Sander et al. 2006),
which indicates the success of our Laplace–de Rham–Helfrich operator.

It is noted that the original Laplace–de Rham operator with appropriate boundary
conditions admits the orthogonal Hodge decomposition in terms of divergence-free,
curl-free, and harmonic eigenmodes. In contrast, the Laplace–de Rham–Helfrich oper-
ator does not preserve these properties. Nonetheless, the eigenmodes generated by the
Laplace–de Rham–Helfrich operator are mutually orthogonal and subject to different
physical interpretations. For example, the first three eigenmodes are associated with
3D translational motions. Therefore, the operator is translational invariant. The modes
in Figure 9 have little to do with the topological singularity of EMD 1258.

Additionally, the eigenmodes inFig. 1 have afixedboundary. In contrast, boundaries
of eigenmodes generated with the Laplace–de Rham–Helfrich operator as shown in
Fig. 9 are allowed to change. The Laplace–de Rham–Helfrich operator can predict
significant macromolecular deformations, which are controllable with two weight
parameters, λ and μ. In contrast, existing normal mode analysis methods can only
admit small deformations due to the use of the harmonic potential.

Moreover, due to its continuous nature, the proposed Laplace–de Rham–Helfrich
operator can be easily employed for the Hodge mode analysis at any given scale. It can
be directly applied to the analysis of cryo-EM maps and other volumetric data at an
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arbitrary scale. One specific example of potential applications is the analysis of sub-
cellular organelles, such as mitochondrial ultrastructure and endoplasmic reticulum.

Finally, the proposed Laplace–de Rham–Helfrich model is phenomenological in
nature but can describe physical observations. Like the Navier–Stokes equation for
fluidmechanics and theGinzburg–Landau equation for superconductivity, Laplace–de
Rham–Helfrich model is not rigorously derived from the fundamental laws of physics
or first principles.

2.2.6 Field Decomposition and Analysis

Our Laplace–de Rham operators constructed from different boundary conditions can
also perform vector field decomposition tasks. Following the discussion of boundary
conditions in Sect. 2.1, a Hodge decomposition for a k-form bounded manifolds in
3D is constructed as ωk = dαk−1

n + δβk+1
t + hk , where αk−1

n is in the space of
normal (k−1)-forms �k−1

n , βk+1
t is in the space of tangential (k+1)-forms, and hk

is in Hk
�. Moreover, Hk

� is further decomposed based on boundary conditions and a
five-component orthogonal decomposition (Cantarella et al. 2002) is given as

ωk = dαk−1
n + δβk+1

t + hk
t + hk

n + ηk, (29)

where hk
t is a tangential harmonic form, hk

n is a normal harmonic form, and ηk is cen-
tral harmonic form which is both exact and coexact. There are naturally various vector
fields existing in biomolecules, such as electric fields, magnetic fields, and elastic
displacement fields. De Rham–Hodge theory can help provide a mutually orthogo-
nal decomposition to investigate source, sink, and vortex features presented in those
fields. An example of this analysis is given in Fig. 10 for a synthetic vector field on
a vacuolar ATPase motor, EMD 1590 (Muench et al. 2009). We expect this decom-
position becomes more interesting for biomolecular electric fields, dipolar fields, and
magnetic fields. Various components from the decomposition can be naturally used
as the components of machine learning feature vectors. Moreover, each orthogonal
component can be represented in the basis formed by eigenfields of Laplace–de Rham
operators, and the low-frequency coefficients can be used as machine learning features
as well. The following session illustrates an example of an eigenfield representation,
for the gradient of the reaction potential for molecular electrostatics.
Electrostatics Analysis Electrostatic interactions are of paramount importance in
biomolecular simulations due to their ubiquitous existence and vital contribution to
force fields. Two major types of electrostatic analyses are the qualitative analysis for
general electrostatic characteristics and the quantitative analysis for statistical, ther-
modynamic, and kinetic observables. An important two-scale implicit solvent model
for electrostatic analysis is the Poisson–Boltzmann (PB) model (Sharp and Honig
1990; Fogolari et al. 2002), in which the explicit water molecules are treated as a
dielectric continuum and the dissolved electrolytes are modeled with the Boltzmann
distribution. The PB model has been widely applied in biomolecular simulations such
as protein structures (Cherezov et al. 2007), protein–protein interactions (Dong et al.
2003), pKa (Alexov et al. 2011; Antosiewicz et al. 1996; Nielsen and McCammon
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Normal Gradient Tangential Curl Tangential Harmonic Central HarmonicInput

Fig. 10 (Color online figure) Biological flow decomposition. Illustration of a synthetic vector field in
EMD 1590 that is decomposed into several mutually orthogonal components based on different boundary
conditions

Fig. 11 (Color online figure)
The PB implicit solvent model.
� is the molecular surface
separating space into the solute
region �1 and the solvent region
�2

Solvent

Molecule

Mobile Ions

2003), membranes (Zhou et al. 2010), binding energies (Nguyen et al. 2017), and
solvation-free energies (Wagoner and Baker 2006).

The Poisson–Boltzmann Model for a Solvated Molecule The PB model is illustrated
in Fig. 11, in which the molecular surface � separates the solute domain �1 and
the solvent domain �2. The molecule domain �1 consists of a set of atomic charges
qk located at atomic centers xk for k = 1, . . . , Nc. In domain �2, a Boltzmann
distribution describes the free ions. For computational purposes, the Boltzmann term
is often linearized.

Thus, the electrostatic potential φ(x) here satisfies the linearized PB equation,

− ∇ · ε(x)∇φ(x) + κ̄2(x)φ(x) =
Nc∑

k=1

qkδ(x − xk), (30)
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Fig. 12 (Color online figure) a The force field of two positive charges; b the first eigenvector; c the force
field of one negative and one positive charge; c the second eigenvector

where ε(x) is the piecewise-constant dielectric function

ε(x) =
{

ε1, x ∈ �1,

ε2, x ∈ �2,
(31)

and κ̄ is the screening parameter with the relation κ̄2 = ε2κ
2, where κ is the inverse

Debye length measuring the ionic length. The interface conditions on the molecular
surface are

φ1(x) = φ2(x), ε1
∂φ1(x)

∂n
= ε2

∂φ2(x)
∂n

, x ∈ �, (32)

where φ1 and φ2 are the limit values when approaching the interface from the inside
and the outside domains, n is the outward unit normal vector on �, and the normal
derivatives are ∂φi

∂n = n ·∇φi . The PB model assumes the far-field boundary condition
of lim|x|→∞ φ(x) = 0. Taking interface � as the solvent-excluded surface, the PB
model is usually solved numerically. Two types of methods have been developed:
Grid-based finite-difference and finite-element methods discretize the entire domain
(Im et al. 1998; Honig and Nicholls 1995; Baker et al. 2001), such asMIBPB (Yu et al.
2007; Chen et al. 2011) and boundary-element methods discretize only the molecular
surface (Juffer et al. 1991; Liang and Subranmaniam 1997; Vorobjev and Scheraga
1997; Lu et al. 2007; Geng and Krasny 2013). We use boundary-element methods
according to the same surface mesh used as the molecular surface and the boundary
for our volumetric manifold, for the simplicity of calculating the reaction potential.
Solving PB Model and Reaction Potential A well-conditioned boundary integral form
of PB implicit solvent model is derived by applying Green’s second identity and
properties of fundamental solutions to Eq. (30),which yields the electrostatic potential,

φ(x) =
∫

�

[
G0(x, y)

∂φ(y)
∂n

− ∂G0(x, y)
∂ny

φ(y)
]
dSy +

Nc∑
k=1

qk G0(x, yk), x ∈ �1,

(33a)

φ(x) =
∫

�

[
−Gκ(x, y)

∂φ(y)
∂n

+ ∂Gκ(x, y)
∂ny

φ(y)
]
dSy, x ∈ �2, (33b)

where the Green’s function for Coulomb interaction is G0(x, y) = 1
4π |x−y| and the

Green’s function for the screened Coulomb interaction Gk(x, y) = e−κ|x−y|
4π |x−y| . Then,

applying the interface condition in Eq. (32) with the differentiation of electrostatic
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potential in each domain yields a set of boundary integral equations relating the surface
potential φ1 and its normal derivative ∂φ1/∂n on �,

1

2
(1 + ε) φ1(x) =

∫
�

[
K1(x, y)

∂φ1(y)
∂n

+ K2(x, y)φ1(y)
]
dSy + S1(x), x ∈ �,

(34a)

1

2

(
1 + 1

ε

)
∂φ1(x)

∂n
=

∫
�

[
K3(x, y)

∂φ1(y)
∂n

+ K4(x, y)φ1(y)
]
dSy + S2(x), x ∈ �,

(34b)

where ε = ε2/ε1. As given in Eqs. (35a–35b) and (36), the kernels K1,2,3,4 and source
terms S1,2 are linear combinations of theCoulomb and screenedCoulomb interactions,
and their first- and second-order normal derivatives,

K1(x, y) = G0(x, y) − Gκ(x, y), K2(x, y) = ε
∂Gκ(x, y)

∂ny
− ∂G0(x, y)

∂ny
, (35a)

K3(x, y) = ∂G0(x, y)
∂nx

− 1

ε

∂Gκ(x, y)
∂nx

, K4(x, y) = ∂2Gκ(x, y)
∂nx∂ny

− ∂2G0(x, y)
∂nx∂ny

,

(35b)

and the source terms S1,2 are

S1(x) = 1

ε1

Nc∑
k=1

qk G0(x, yk), S2(x) = 1

ε1

Nc∑
k=1

qk
∂G0(x, yk)

∂nx
. (36)

Once the potential and normal derivatives of the potential on the boundary of
Eqs. (33a) and (33b) are solved, the reaction potential φreac(x) = φ(x) − S1(x) and
for x ∈ �1 it is given as

φreac(x) =
∫

�

[
G0(x, y)

∂φ(y)
∂n

− ∂G0(x, y)
∂ny

φ(y)
]
dSy. (37)

Numerically solving boundary integral forms of the PB model requires speedup
techniques, for which we directly apply the software package presented in Chen and
Geng (2018). The reaction potential describes the potential caused by the solvent and
solute near their interface. It is important to calculate the electrostatic solvation energy,
given as �Gsol = 1

2

∑Nc
k=1 qkφreac(xk), where Nc is the number of charges and qk are

charges.

Eigenfield Decomposition The 1-form electrostatic reaction field ω is generated from
the gradient of the reaction potential ∇φreac by taking line integral on each edge. Our
goal is to project ω onto the eigenvectors of Hodge Laplacian by L2-inner products of
Eq. (3). The molecular surface � created by the solute and the solvent is considered
as the boundary of the volumetric manifold M . The space of k-forms �k(M) is a
Hilbert space equipped with the aforementioned L2-inner products. Therefore, the

123



108 Page 28 of 38 R. Zhao et al.

Ta
bl
e
3

E
xa
m
pl
e
2
co
ns
id
er
s
fo
ur

ch
ar
ge
s
ar
ra
ng

ed
in

fiv
e
ca
se
s,
na
m
el
y
p–

p–
p–

p,
p–

p–
n–

n,
p–

n–
p–

n,
p–

n–
n–

p,
an
d
p–

p–
p–

n,
w
he
re

“p
”
st
an
ds

fo
r
po

si
tiv

e
an
d
“n
”
st
an
ds

fo
r
ne
ga
tiv

e,
sp
ec
ifi
ed

in
th
e
or
de
r
of

to
p
le
ft
,t
op

ri
gh
t,
bo
tto

m
le
ft
,a
nd

bo
tto

m
ri
gh
t.
H
er
e,

〈ω
,
e i

〉2
is
th
e
in
ne
r
pr
od
uc
ts
qu
ar
e
of

th
e
no
rm

al
iz
ed

el
ec
tr
os
ta
tic

re
ac
tio

n
fie
ld

ω
w
ith

it
h
ei
ge
nv
ec
to
r,
w
hi
ch

is
no
rm

al
iz
ed

to
o.

T
he

se
co
nd

ro
w
of

ea
ch

ca
se

is
th
e
sq
ua
re
d
su
m

of
in
ne
r
pr
od
uc
ts
.T

he
su
m

re
co
ve
rs
th
e
no
rm

al
iz
ed

el
ec
tr
os
ta
ti
c
re
ac
tio

n
fie
ld

if
su
m
m
at
io
n
is
ca
rr
ie
d
ou
to

ve
r
th
e
in
ne
r
pr
od
uc
ts
w
ith

al
lt
he

ei
ge
nfi

el
ds

ac
co
rd
in
g
to

Pa
rs
ev
al
’s
th
eo
re
m

E
ig
en
ve
ct
or

e 0
e 1

e 2
e 3

e 4
···

e 1
0

···
e 1

00
···

e 2
00

p–
p–

p–
p

〈ω
,
e i

〉2
∑ i

j=
1
〈ω

,
e

j〉2
0.
54

7
0.
01

7
0.
00

0
0.
00

1
0.
00

0
···

0.
00

0
···

0.
00

1
···

0.
00

0

0.
54

7
0.
56

4
0.
56

4
0.
56

5
0.
56

5
···

0.
56

6
···

0.
85

3
···

0.
91

1

p–
p–

n–
n

〈ω
,
e i

〉2
∑ i

j=
1
〈ω

,
e

j〉2
0.
00

8
0.
26

8
0.
21

1
0.
00

1
0.
00

0
···

0.
00

1
···

0.
00

0
···

0.
00

0

0.
00

8
0.
27

6
0.
48

7
0.
48

8
0.
48

8
···

0.
54

6
···

0.
83

9
···

0.
89

5

p–
n–

p–
n

〈ω
,
e i

〉2
∑ i

j=
1
〈ω

,
e

j〉2
0.
00

5
0.
19

8
0.
27

2
0.
00

5
0.
00

0
···

0.
00

0
···

0.
00

0
···

0.
00

0

0.
00

5
0.
20

3
0.
47

5
0.
48

0
0.
48

0
···

0.
53

3
···

0.
84

0
···

0.
89

2

p–
n–

n–
p

〈ω
,
e i

〉2
∑ i

j=
1
〈ω

,
e

j〉2
0.
00

2
0.
00

2
0.
00

2
0.
43

4
0.
00

0
···

0.
00

0
···

0.
00

0
···

0.
00

0

0.
00

2
0.
00

4
0.
00

6
0.
44

0
0.
44

0
···

0.
45

9
···

0.
83

9
···

0.
88

8

p–
p–

p–
n

〈ω
,
e i

〉2
∑ i

j=
1
〈ω

,
e

j〉2
0.
43

4
0.
05

5
0.
00

0
0.
04

7
0.
00

0
···

0.
00

0
···

0.
00

1
···

0.
00

0

0.
43

4
0.
48

9
0.
48

9
0.
53

6
0.
53

6
···

0.
55

7
···

0.
84

8
···

0.
90

8

123



The de Rham–Hodge Analysis and Modeling of Biomolecules Page 29 of 38 108

0-th eigenmode 1-st eigenmode 2-nd eigenmode 3-th eigenmode
E

ig
en

m
od

es
V

ec
to

r f
ie

ld
 

4-th eigenmode

Fig. 13 (Color online figure) The first row shows the first five eigenmodes. The second row shows vector
fields under corresponding charge combinations

corresponding 1-formof the electrostatic reaction field inside themolecule surface is in
the space �1(M). Moreover, as shown in Eq. (29), aside from a harmonic component,
the gradient of the reaction potential is in the spaced of normal gradient fields, which is
spanned by the eigenvectors corresponding to the normal gradient fields. Represented
in the basis formed by these eigenvectors, the electrostatic reaction field (without the
harmonic component) is a linear combination of these eigenvectors. However, the
coefficients are with only large absolute values for certain modes, since dominant
eigenmodes often exist due to the geometry characteristics of the molecular domain.
We illustrate the Hodge mode decomposition for two examples. Table 2 shows the
square of coefficients of i th eigenvector projected on the electrostatic reaction field ω

as 〈ω, ei 〉2, and their sums. The dominant eigenvectors for p–p and n–p are the first
and second eigenvectors, respectively, as shown in Fig. 12, in which the eigenvectors
are sorted in ascending order of their corresponding eigenvalues. As the number of
eigenvectors increases, the difference between the electrostatic reaction field and the
approximated electrostatic reaction field decreases. Table 3 shows another example
with four changes arranged in five ways as shown in Fig. 13. The first case has four
positive charges. The first Hodge eigenvector is the dominant mode among all the
eigenvectors as shown in Fig. 13. In the second and third cases, where two same type
charges located in either the top–bottom or right–left manner, the second and third
Hodge eigenvectors dominate their electrostatic reaction fields. The dominant Hodge
eigenvector for the third case is the forth Hodge mode. The last case illustrates a
molecule that has three positive charges and one negative charge, for which the first
Hodge eigenvector is the dominantmode. In all cases, the accumulated contributions of
the first 11 Hodge modes have a similar magnitude. This method is readily applicable
to the electrostatic reaction field analysis of complex biomolecular systems and the
general Hodge mode analysis of any biomolecular vector fields.
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3 Method Preliminaries

We provide the details for our design of computational tools, data structures, and
parameters in our implementation of the present de Rham–Hodge spectral analysis.
Through efficient implementation, our method is highly scalable and capable of han-
dling molecular data ranging from protein crystal structures to cryo-EM maps.

3.1 Simplicial Complex Generation

The domain of our Laplace–de Rham operators is first tessellated into a simplicial
complex, which is a tetrahedral mesh in our 3D case. There are quite a few well-
developed software packages for tetrahedral mesh generation given a boundary with a
surface triangle mesh as input. We chose CGAL (computational geometry algorithm
library) over others for its superior control on element quality.

In theory, we can generate tetrahedral meshes with any highly accurate closed
surface. However, macromolecule complexes with atom-level resolution often make
the output mesh intractable with typical computing platforms.Moreover, a densemesh
is unnecessary for the calculation of the low-frequency range of the spectrum. Thus,
we produce a coarse resolution with a spatial sampling density higher than twice the
spatial frequencies (wavenumbers, i.e., square root of eigenvalues of the Laplacians)
of the geometrical and topological features to be computed in the given biomolecule
complexes.

For protein crystal structures, we tested the construction of the surface using only
theCα positions. First, a Gaussian kernel is assigned to each atomic position to approx-
imate the electron density. Then, a level set surface is generated to construct the contour
of the protein closely enclosing the high electron density regions.

For cryo-EM data, to produce a smooth contour surface, Gaussian kernels are
associated with data points. Other approaches, such as mean curvature flow (Bates
et al. 2008; Zhao et al. 2018), can be used as well. When dealing with noisy and
densely sampled data, we can carefully choose the level set that corresponds to a
fairly smooth contour surface that encloses the original cryo-EM data.

Given a volumetric data, we can either directly use CGAL to produce a tetrahedral
mesh or first convert it to a triangular surface mesh through the marching cubes algo-
rithm, and use that to generate a tetrahedral mesh. Different sampling densities are
tested to meet typical quality requirements while balancing computational cost and
mesh quality.

3.2 Discrete Exterior Calculus

As a topological structure-preserving discretization of the exterior calculus on differ-
ential forms, discrete exterior calculus (DEC) has been widely applied in recent years
for various successful applications on geometrical problems and finite-element anal-
ysis, including meshing and computational electromagnetics (Hekstra et al. 2016).
It is an appropriate tool for our de Rham–Hodge analysis of biomolecules, as all
the related operations, including exterior derivatives and the Hodge stars, are rep-
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resented as matrices that preserve the defining properties in the continuous setting.
More precisely, the discrete exterior derivative operators strictly satisfy Dk+1Dk = 0,
mimicking dk+1dk = 0, and the discrete Hodge star operators are realized by sym-
metric positive definite matrices. Hence, the discrete Laplace–de Rham operators can
be assembled using finite-dimensional linear algebra with the aforementioned three
distinct spectra.

To allow replication of our results, we recap our implementation of DEC (Zhao
et al. 2019). We start by a tetrahedral tessellation of the volumetric domain,
i.e., a tetrahedral mesh, which is the collection of a vertex set V , an edge set
E , a triangle set F , and a tetrahedron set T . The vertices are points in 3D
Euclidean space; the edges/triangles/tetrahedra are represented as 1-/2-/3-simplices,
i.e., pairs/triples/quadruples of vertex indices, respectively, and regarded as the convex
hull of these vertices. We further choose an arbitrary orientation for each k-simplex,
which is an order set of k+1 vertices, up to an even permutation.We denote an oriented
k-simplex as

σ = [v0, v1, . . . , vk]. (38)

The boundary operator is defined as

∂σ =
k∑

i=0

(−1)i [v0, v1, . . . , v̂i , . . . , vk], (39)

where v̂i means that the i th vertex is omitted. Thus, the boundary operator will take all
the 1-degree lower faces of σ with an induced orientation. We will take the following
strategy to handle orientation in the implementation. We usually assign each tet an
orientation such that, when applying the boundary operator, each facet has an outward
pointing orientation. The total boundary of the tet mesh conforms naturally with the
surfacewith outwardpointingorientation.But for each edge and facet,wepre-assign an
orientation by increasing indices of incident vertices. In this case, we need to take care
of the boundary operator when there is a conflict between the pre-assigned orientation
and the induced orientation. The algorithm for calculating the cohomology basis of
boundary operators is similar to the algorithm in simplicial homology (Edelsbrunner
et al. 2000). However, DEC needs further constructions.

Scalar fields are naturally encoded as 0-forms and 3-forms. A 0-form is the same
with the finite-element method such that the coefficients are sampled on vertices
equipped with basis functions. A 3-form is, different from a 0-form, stored per tet
as volume integration of the scalar field. Vector fields are naturally encoded as 1-form
and 2-form. A 1-form is sampled by the line integral on each oriented edge. A 2-form
is sampled by surface flux on each oriented facet. Whitney forms (Bossavit 1988) can
help convert forms back to piecewise linear vector fields on each tet, which can be
used in, e.g., the construction of the operator G.

Wewill store discrete k-forms as column vectors. Then, as mentioned before, all the
discrete operators can be formed asmatrices applying on the column vectors. Then, we
start to construct discrete exterior derivative and discrete Hodge star matrices. Suppose
we are dealing with the discrete differential form dω on simplices σ , according to
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+1

-1

+1-1

-1

-1
+1

+1

-1

Fig. 14 (Color online figure) Illustration of orientation. The pre-assigned orientation is colored in red.
Induced orientation by ∂ is colored in green. The vertices are assumed to have a positive pre-assigned
orientation. Therefore, the induced orientation from edge orientation is +1 at the head and −1 at the
tail. For a triangle facet, +1 is assigned whenever the pre-assigned orientation conforms with the induced
orientation, and −1 vice versa. A similar rule applies to tets which obey a right-hand orientation with the
normal pointing outward. Non-adjacent vertices give 0

Fig. 15 (Color online figure) Illustration of the primal and dual elements of the tetrahedral mesh. All the
red vertices are mesh primal vertices. All the indigo vertices are dual vertices at the circumcenter of each
tet. All the gray edges are primal edges. All the pink edges are dual edges connecting adjacent dual vertices.
The first chart shows the dual cell of a primal vertex. The second chart shows the dual facet of the primal
edge. The third chart shows the dual edge of the primal facet. The last chart shows the dual vertex of the
primal cell (tet)

Stokes’ theorem ∫
∂σ

ω =
∫

σ

dω, (40)

dω is just an oriented summation ofω on facets of σ . So the discrete exterior derivative
operator Dk is just a matrix filled with −1, 0, 1 (Fig. 14), depending on whether the
pre-assigned orientation is conforming with the induced orientation. The preservation
of Stokes’ theorem is what guarantees the preservation of the de Rham cohomology,
as the discrete de Rham k-cohomology is isomorphic to the simplicial n−k-homology
due to the boundary operator, which is in turn isomorphic to singular k-cohomology
and thus to the continuous de Rham k-cohomology.

One can easily observe that the discrete exterior derivative operators for dual forms
are merely DT

k . The discrete Hodge star operator Sk is just converting primal form
and dual form back a forth by the following equation:

1

|σk |
∫

σk

ω = 1

| ∗ σk |
∫

∗σk

�ω. (41)

Each primal element in the tet mesh has one corresponding dual element (Fig. 15).
So the discrete Hodge star operator is merely a diagonal matrix. Note that here we use
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Fig. 16 (Color online figure) Illustration of cohomology. This figure illustrates the relation by exterior
derivative and Hodge star operators. The assembly of Laplacian operator Lk is just starting from primal
k-forms, multiplying matrices along the circular direction

a diagonal matrix to approximate the Hodge star operator, where non-diagonal Hodge
star with higher accuracy can be applied as well. But a diagonal Hodge star is enough
for our current application. The diagonal Hodge star matrix just has diagonal entries
as dual-element volume over primal-element volume. For example, given a 1-form
on each edge, applying the Hodge star is turning the primal 1-form into dual 2-form
stored on each dual facet. This can be interpreted as we sample the vector field at the
center of the edge. One way is to compute the 1-form as the sampled vector integrated
the primal edge as the line integral; the other way is to compute the 2-form as the
sampled vector integrated on the dual facet as vector flux. So the transition can be
encoded as a number of dual-element volume over primal-element volume. See Fig.
16 for relations between differential forms and operators.

Oncewe have these relatedmatrices for discrete operators, we are ready to construct
the Laplacian matrix Lk for k = 0, . . . , 3 as

L0 = DT
0 S1D0, L1 = DT

1 S2D1 + S1D0S−1
0 DT

0 S1,

L2 = DT
2 S3D2 + S2D1S−1

1 DT
1 S2, L3 = S3D2S−1

2 DT
2 S3,

(42)

where Dk are pre-assembled discrete exterior derivatives, Sk are discrete Hodge star
matrices and Lk correspond to ��k . The assembly of Laplace–de Rham operators Lk

are just starting from primal k-forms, multiplying matrices along the circular direction
as shown in Fig. 16. Note that the usual Hodge Laplacian matrix is not symmetric
generally. In practice, we usually left multiply byHodge star to turn it into a symmetric
one. After this, we need to take care of the boundary conditions. Boundary condition
treatment can be incorporated when assembling d matrices. Recall that the d matrices
are merely for creating an oriented summation of discrete differential forms stored on
simplices.We can just delete corresponding columns and rows for boundary elements.
We use Lk,t to denote Laplace–de Rham operator with boundary elements and Lk,n

to denote those without boundary elements (Demlow and Hirani 2014).
Finally, the spectral analysis can be done with a generalized eigenvalue problem in

Eq. (8). The smallest eigenvalues and their corresponding eigenvectors are associated
with useful low frequencies. In principle, large eigenvalues also contain useful infor-
mation but are often impaired by large computational errors. We use an eigensolver
with parameter starting from small magnitude eigenvalues.
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4 Conclusion

The deRham–Hodge theory is a landmark of twentieth-centurymathematics that inter-
connects differential geometry, algebraic topology, and partial differential equation.
It provides a solid mathematical foundation to electromagnetic theory, quantum field
theory, and many other important physics. However, this important mathematical tool
has never been applied to macromolecular modeling and analysis, to the best of our
knowledge. This work introduces the de Rham–Hodge theory as a unified paradigm
to analyze biomolecular geometry, topology, flexibility, and Hodge modes based on
three-dimensional (3D) coordinates or cryo-EM maps. Specifically, de Rham–Hodge
spectral analysis has been carried out to reveal macromolecular geometric character-
istic and topological invariants with normal and tangential boundary conditions. The
Helmholtz–Hodge decomposition is employed to analyze the divergence-free, curl-
free, and harmonic components of macromolecular vector fields. Based on the 0-form
scalarHodge–Laplacian, an accuratemultiscalemodel is constructed to predict protein
fluctuations. By equipping a vector Laplace–de Rham operator with a boundary con-
straint based on Helfrich-type curvature energy, a 1-form Laplace–de Rham–Helfrich
operator is proposed to predict the Hodge modes of biomolecules, particularly cryo-
EMmaps. In addition to its versatile nature for awide variety ofmodeling and analysis,
the proposed de Rham–Hodge paradigm also provides a unified approach to handle
biomolecular problems at various spatial scales and with different data formats. A
state-of-the-art 3D discrete exterior calculus algorithm is developed to facilitate accu-
rate, reliable, and topological structure preserving spectral analysis and modeling of
biomolecules. Extensive numerical experiments indicate that the proposed de Rham–
Hodge paradigm offers one of the most powerful tools for the modeling and analysis
of biological macromolecules.

The proposed de Rham–Hodge paradigm provides a solid foundation for a wide
variety of other biological and biophysical applications. For example, the present de
Rham–Hodge flexibility and Hodge mode analysis can be directly applied to subcellu-
lar organelles, such as vesicle, endoplasmic reticulum, golgi apparatus, cytoskeleton,
mitochondrion, vacuole, cytosol, lysosome, and centrosome, for which the exist-
ing atomistic biophysical approaches have very limited accessibility. Additionally,
features extracted from de Rham–Hodge flexibility and Hodge mode analysis can
be incorporated into deep neural networks for the structure reconstruction from
medium- and low-resolution cryo-EM maps (Haslam et al. 2018). Finally, due to
its ability to characterize geometric traits and describe topological invariants, the pro-
posed de Rham–Hodge paradigm opens an entirely new direction for the quantitative
structure–function analysis of molecular and macromolecular datasets. The integra-
tion of de Rham–Hodge features and machine learning algorithms for the predictions
of protein–ligand-binding affinity, protein–protein-binding affinity, protein-folding
stability change upon mutation, drug toxicity, solubility, partition coefficient, per-
meability, and plasma protein binding is under our consideration.
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