
DOCUMENTNUMBER

MITRE TECHNICAL REPORT

The Developer’s Guide to Cursor on Target

August 2005

Mike Butler

©2005 The MITRE Corporation. All Rights Reserved.

Center for Air Force Command & Control
Bedford, Massachusetts

Approved for Public Release; Distribution Unlimited
Case #06-0249

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 JAN 2013

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Cursor on Target (CoT) Developer Guide

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Michael Butler, MITRE

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cursor-on-Target, AFLCMC/HNBC Architecture & Standards Division

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Ancient History
Cursor on Target (CoT) was conceived in the afternoon on June 18, 2002. I was working on a
problem that Jim Hill had handed me four days earlier on a scrap of notebook paper. I originally
called it STP, short for “Space-Time Pieces.” That name reflected what was common among all
SA and C2 problems: they’re all “what,” “where,” “when” problems. Rich Byrne, true to
character, took a risk to fund the idea. On June 28th, he gave me $20K and 30 days to come up
with a prototype; the project was to be called “Meta-Data Integration.” What followed was a
sleepless month of work, a second round of funding, and a very convincing demo.

Almost immediately, MITRE decided the effort needed a better name, and a speech from General
Jumper provided the inspiration. General Jumper said “the sum of all wisdom is a cursor over the
target,” and MITRE decided “Cursor on Target” was a palatable sound bite. Though CoT was
never about cursors and only sometimes about targets, it’s still a good name.

Introduction
This is a developer’s introduction to Cursor-on-Target, or, preferably, CoT. It describes CoT’s
objective, implementation, limitations, and future direction. If you are a developer, this document
will help you understand what CoT is, why it works, and what’s right and wrong with it. It does
not discuss implementation details; you’ll be better off pulling working samples from our website,
http://cot.mitre.org, for that. You can contact the CoT team at cot@mitre.org for with questions.

Document Structure
To save you some time, when you see this mark:

----cut----
you can skip to the next section unless you’re particularly interested in the topic at hand. I
generally go into more detail on a topic than you need, but read it if you want.

 ----cut---

Non-developers will find useful information among the growing list of general publications
referenced on the CoT website. These include case studies, briefings, etc. Those documents are
aimed at a broad audience and aren’t encumbered with lots of technical detail.

What is Cursor-on-Target?
In a nutshell, CoT is just a simplified messaging format that’s rapidly gaining acceptance
throughout the military as an “enterprise integration” solution. Today, there are more than a
hundred systems that speak CoT either natively or through a third-party adaptor (called a plug-in).
CoT’s catching on quickly because it’s simple to understand, simple to implement, simple to
extend, and completely open.

CoT is simple, very simple. CoT’s base class has only 12 required attributes and its complete
description fits on a single printed page. Typically, a good developer can implement a basic CoT
capability in about 12 hours of effort (less with an adequate supply of Mountain Dew).

----cut---
CoT’s simplicity is in marked contrast to all the other military messaging standards that I know of.
The Link-16 spec, MS-6016C, for instance, is seven thousand (7,000) pages long. It’s so complex
that in 20 years, no one has ever fully implemented all of Link-16. VMF is just as bad, maybe
worse since there are six VMF message families and no two are interoperable. USMTF appears
simpler because it’s not binary, but it’s a bear to implement because there’s so much variability; in
fact, it changes so fast that it’s published on a 600MB CD every other year.

CoT is also very stable. Although it’s in its infancy, CoT’s base class hasn’t changed at all since
its release more than two years ago. In fact, we never expect the base class to change. Sure, we’ll
extend it by deriving more classes, but that won’t change what’s already out there.

At present, CoT is only implemented as XML, but there is nothing in CoT that marries it to XML.
In fact, as I’ll describe below, XML isn’t well suited for implementing things like CoT. However,
XML is the best thing we have...so far.

The first few sections of this paper begin somewhat aggressively by challenging a couple of tenets
widely accepted within the DoD. The intent is not to be confrontational, but rather to set the stage
for understanding what makes CoT different.

The “Community of Interest” Myth
Within the DoD today, it’s fashionable to talk about corralling users into convenient
“communities of interest.” Such communities, it’s commonly believed, will develop and adopt
their own information exchange formats. This makes sense as long as the community boundaries
are static and well delineated...but in this case they’re not. The community approach does
absolutely nothing to solve the inter-community data flow problem. Ironically, it’s the inter-
community problem that’s really killing us.

 ----cut---
In the Air Force C2 Summit of April of 2002, General Jumper observed that the enterprise
integration problem was due largely to the isolation of users into disjoint groups with dissimilar
languages. Jumper referred to the existence of “tribes with their own tribal hieroglyphics.” If you
wanted to understand a tribe’s hieroglyphics, you needed a liaison from that tribe.

To answer this, the “community of interest” idea was born. And this is different how? Well, we
domesticated “tribes” into “communities,” but the isolation remains. Some tribal lines will have
to be redrawn, but “tribe” and “community” both reflect the same concept, a division of
civilization into disjointed groups.

Fashionable though it may be, and despite their use of XML, “communities of interest” aren’t
going to help solve the integration problem. To do that, we need to break down the community
lines. CoT attempts to do just that.

The XML Mystique
Another widely held belief within the DoD is that XML has mystical powers. As it’s briefed, one
gets the impression that merely invoking the name of the XML deity is sufficient to excise
interoperability demons. XML’s not a panacea, and CoT uses (and abuses) it because there’s
nothing better...yet.

----cut---
In truth, XML does give developers a tremendous leg-up on a convenient, simple, and common
way to represent machine readable information. And XML’s acceptance has ushered in a cadre of
tools to generate, analyze, edit, parse, and view information. These are all absolutely wonderful
perks, a tremendous windfall.

 [Note, though, if you substitute the letters “ASCII” for “XML” in the previous paragraph, there’s
an exact a historic parallel. What XML has done for today’s programmers is akin to what ASCII
did for their fathers decades ago. XML, like ASCII, offered a huge leap forward, but it’s not the
total solution to the interoperability problem.]

XML is good, but it has issues. In fact, for some applications, XML is quite a poor choice. For
example, XML is a horrid technology for implementing object hierarchies: there’s no information
protection, no multiple inheritance, no polymorphism, no virtual base classes, no methods at all.
If one really needs to pass around legitimate OOP objects, XML doesn’t cut it. (Sure, folks are
working on such things, but they're not here yet.)

And then there’s the law of unintended consequence: A decade ago, there were only a couple
dozen message formats in use in the DoD (TADIL-J, USMTF, VMF, OTH-G, ESD, etc). But
XML has made implementing a data model so trivial that there are now literally tens of thousands
of incompatible XML schemas in use within the DoD today. (Visit the DISA XML registry for a
very sobering look at the problem.)

Finding the Perfect Word
An oddly crippling aspect of XML is the flexibility of choosing attribute and entity names. CoT
errs on the side of pragmatism here. We try to choose good attribute and entity names, but we
often miss the mark. But, the parsers don’t really care about the names, and we try to adopt their
attitude. We certainly don’t want to have a hundred systems change all their code because we
think radius would be a more descriptive attribute name than ce.

----cut---

“Back in the day” when variable names were single characters or, worse, hex addresses, there was
little debate about the “right” name for a particular variable. It was what it was and that was it.

But now that data modelers can use arbitrary strings for variable (attributes and entity) names,
many modelers get hung up finding the “perfect” name. Committees charged with coming up
with data models often get mired down in heated debates over names of things and not what they
mean. Such arguments, while occasionally interesting, are rarely very profitable. In truth, it
matters very little what name a tag or attribute has, provided all users understand what it contains.
(Of course, “good” tag names can make a coder’s life much simpler by providing useful
mnemonics, but “perfect” isn’t necessary.)

Many data models charge down the road to “perfect” and completely miss the turnoff for
“pragmatic.” For better or worse, CoT took the turnoff, though some would argue we took it too
early.

CoT tries to use “good” attribute and entity names, but we openly admit they’re not “perfect.”
Furthermore, in the interest of pragmatism, CoT will not change an attribute’s name once it’s in
common use. This has resulted in a number of “warts” with CoT’s entity names. For example,
why did we use ce, le and event instead of radius, height, and cot respectively? No good reason,
but we did, and so we’re stuck with it, and remember that your XML parser doesn’t really care.

The CoT Approach
CoT is an object hierarchy for the DoD’s tactical information. That’s all. But that is what
distinguishes CoT from other DoD message standards. CoT completely ignores community lines
and abstracts the commonality from the underlying data. In true OOP fashion, common data
items are “bubbled up” into base classes from which other, more detailed, classes can be
“derived.”

 ----cut---
CoT sprang from a realization of the frightfully obvious fact that information from completely
unrelated communities often exhibits a very similar internal structure.

This is nothing new. In fact, it’s obvious to anyone with object-oriented programming experience
that finding commonality is the key to building a good object hierarchy. Common (shared)
attributes and methods are placed in base classes from which more refined object classes are
derived and more attributes added.

Furthermore, unlike other DoD standards, CoT is being continually developed by
experimentation. What I mean by “continually developed by experimentation” is that CoT’s
object hierarchy is being extended by collecting and analyzing reams of data from DoD systems.
In CoT, the classes are made to reflect the data, not vice versa.

One of the wonderful things about this approach is that it is parallelizable. One group can be
looking for patterns in METOC data while another looks for patterns in CSAR reports. In fact,

most of our derived classes (subschemas in CoT parlance) come from domain experts who just
happen to be using CoT. CoT’s development path is looking much like the Internet’s whole RFP
process, and it works well. (We have a similar “draft,” “proposed,” “standard” track as well.)

Existing CoT applications won’t break with the introduction of new classes; those applications
just won’t be able to take full advantage of the new classes. They still can deal with the new
information polymorphically, though.

And, perhaps surprising to some, CoT’s object classes never seem to obey community lines. For
example, TST, ISR, and CAS communities all have the concept of an “engagement;” CoT makes
an “engagement” object that serves them all. The side effect of this is that other systems who also
understand “engagements” can be instantly interoperable with other “engagement” producers or
consumers. Hence ADOCS could instruct a Navy TACTOM to “engage” without ever being in
the TACTOM “tribe.”

Implementing CoT
CoT’s actual implementation is somewhat crippled by pragmatic issues. Specifically, to minimize
implementation effort and foster acceptance, CoT needed to capitalize on the “hot” information
technologies. XML was the best-of-breed. But, despite its benefits, XML isn’t adequate for
implementing object hierarchies; it’s a document markup language, not an object transfer
language. As such, XML provides no information protection, no multiple inheritances, no
polymorphism, no virtual functions. In short, it’s not the right tool for the job, but it’s a tool that
everyone can use easily. As you’ll see, CoT abuses XML; to CoT, XML is like a Crescent
adjustable hammer. XML purists hate that about CoT, but even when you don’t have a hammer,
some problems are still nails.

CoT's information model isn’t dependent on XML, but it has been influenced by it. CoT would
be cleaner if it didn’t use XML at all, but anything else wouldn’t be ubiquitous, and XML brought
so many tangible benefits—parsers, editors, viewers—that the good outweighs the bad.

To overcome XML’s shortcomings, CoT took quite a few liberties in representing “objects” and
“inheritance.” These are very unfortunate, and occasionally ugly, but largely necessary. The CoT
object model (as captured in the UML diagram CoT.vsd) shows CoT’s object model and
describes some of the shortcuts we’ve had to take to represent that in XML. That document offers
a view of what CoT strives to implement, while the XSDs show how it was built. Sincere
apologies to any purists, whether XML purists or OOP purists, both will certainly be revolted.

Like all technologies, XML has its place, but it’s not going to be XML that solves the information
interoperability problem. We need something much more powerful and much less fashionable:
common sense and programming discipline.

Why Isn’t There One “Unified” CoT Schema?
CoT's objective is to provide an object hierarchy. As such, we want each new CoT “class” to
reference its superclasses, but have no knowledge of, and subclasses derived from, it. In short, we
need the IS A relationship to implement an object hierarchy.

Unfortunately, many XML tools want an XML document whose root explicitly names all the
legal components of the document. This is precisely the HAS A relationship. We want an object
hierarchy where the root of the class tree has no knowledge of the derived (more detailed) classes,
but XML tools want a root that references all possible elements. Essentially, XML supports the
HAS A relationship that allows aggregation, but it’s lacking the IS A relationship needed for
abstraction. If we were to make a “unified” CoT root schema (as is the XML way), we wouldn’t
have an object hierarchy any more.

 ----cut---
We’re painfully aware that CoT’s schema definitions “aren’t like the others.” It’s not an oversight
or accident; we’re really trying to solve a problem that XML wasn’t designed to solve. We want
an object hierarchy, not a composite schema. We know that our approach renders some of your
favorite XML tools inert, and we’re very sorry for that.

It is very, very tempting to take a snapshot of the CoT object hierarchy and build an aggregate
schema that will make your XML tools happier. Unfortunately, doing so “locks down” CoT’s
object hierarchy and actually breaks the whole concept behind CoT. So, please be aware that if
you “convert” the CoT schemas into something your tools like, it won’t be an object hierarchy any
more.

We very strongly urge you not to do that, and if you’re absolutely compelled to do it anyway,
please do not propagate your work; it’s going to break more than it fixes. Now, if you’re a Java
developer and you are familiar with JAXB (Java Architecture for XML Binding), you will feel
this pain more acutely than everyone else will. JAXB provides you with some cute hooks that
allow you to treat XML documents like JAVA objects. JAXB is a wonderful kit for manipulating
XML documents, but it doesn’t overcome XML’s inherent limitations; JAXB does not make
XML an OOP language.

If you’re a JAXB user, you'll probably curse CoT for the liberties we’ve taken with XML. But
remember CoT’s objective: implement an extensible object hierarchy. JAXB can’t do that, and if
we bend the CoT schema to make JAXB happy, we subvert our own goal.

Choices Breed Complexity
Most standards claim they’re “flexible” because they give a multitude of ways to represent
everything. That’s an implementation nightmare; you have to be prepared for absolutely anything
and code up things that will never be used.

CoT doesn’t do this. In CoT, there’s precisely one way to represent a piece of information.
Angles (including lat/lon) are always decimal degrees. MKS (meters, kilograms, seconds) is used
everywhere. In general, we bend over backwards to make it simple to code. Sometimes we have
to sacrifice coding simplicity for correctness (see HAE below).

----cut---
USMTF is notorious for offering choice. Location can be lat/lon, MGRS, UTM, range/bearing,
all in a wide variety of formats, flavors, and colors. That looks wonderful on a viewgraph, but it is
flat out awful to have to code it. As such, no one ever codes all the options. And we end up with
interoperability problems when two groups use the same message but different value codings.

Many have complained that CoT does not allow both HAE and MSL. The problem is that every
such alternative means coding work for every single system that accepts it. If your system uses
MSL and you want to talk CoT, the burden is placed on you to use HAE, not on everyone else to
support both.

This is probably the single biggest reason that folks can get “on line” quickly with CoT in hours.
It’s designed to be simple to implement.

Evil Enumerations
Many fields within CoT have a strange encoding resembling this:

“a-h-G-E-V-A-T-t”. Some people argue that we should use enumerations for those fields. What
they overlook is that you don’t get polymorphism in an enumeration.

CoT is an object hierarchy. In an object oriented language, CoT would use inheritance to express
hierarchy. For example, in an OOP world, a T-72 tank might have been represented as:
“atoms::hostile::ground::equipment::vehicle::armored::tank::t72”, and an instance of the t72
object would provide lots of interesting data through inherited methods and be accessible by
polymorphic methods.

But, this is XML. We don’t get object hierarchies or derivation, we have to make due. So, CoT
records the path through an imaginary object hierarchy with a short-hand notation. In the interest
of brevity and ease of coding, CoT abbreviates the path to short hyphen-separated strings. Hence,
“a-h-G-E-V-A-T-t” means “atoms::hostile::ground::equipment::vehicle::armored::tank::t72”, it’s
just shorter.

----cut---
But why not use enumerations for types?

Enumerations have one simple but fatal flaw: they can’t give you partial information, so the
sender and receiver must have identical enumeration tables to exchange information. If the sender
uses an enumeration that the receiver doesn’t know, the receiver cannot do anything with the

message. This introduces a huge interoperability problem when senders and receivers must
upgrade; either everyone upgrades simultaneously, or suffer an interoperability problem.

The object hierarchy avoids this problem. If either sender or receiver has an older (partial) object
hierarchy, it can still understand that the object is a “tank” even if it doesn’t understand precisely
what a t72 is. To another receiver which only understands the first three branches of the “atoms
subtree,” the type string “a-h-G-E-V-A-T” is still “a-h-G-<something>” and can be understood to
be a hostile ground unit. CoT uses these odd constructs everywhere. It's the best we could do in
the absence of an OOP.

Why are those ‘-‘s in there? To allow higher cardinality in the derivation tree. For example, a-
ABC-XYZ is understood to be the object a::ABC::XYZ. If we didn’t have dashes, that would be
a::A::B::C::X::Y::Z.

CoT’s type hierarchy allows you to quickly filter out things you don’t care about. For example, if
you’re an SA system interested in “atoms,” and you get a message that doesn’t begin with ‘a-‘,
you’re done, move on. If your application does deconfliction and you’re looking for friendly
ground units, “a-f-G” gets you there.

CoT’s Type Tree
CoT’s type field is critically important to CoT since it’s how we express objects. When you code
CoT, you’ll have to make branch decisions based on CoT’s type. We recommend you do this by
using the predicates in CoTtypes.xml. Those will insulate you from the details of the type tree,
and we will maintain and distribute that tree (more on this in the Coding Hints section). The latest
type tree is kept on the web site.

 ----cut---
CoT’s type tree has very few branches at the root note. They are

 a - atoms (anything you drop on your foot)

 b - bits (a chunk of information, e.g., image or chat)

 t - tasking (any kind of request which elicits a response)

 r - reply (what you get in response to a request)

 c - capability (an “offer” of a service - e.g., shooting mortars)

 r - reservation (a “lock” on a chunk of space and time)

The Atoms tree is the most populated, it is based on MS2525B. (This is a change from V1.0
which used our own organization.) Also in broad use are the tasking, reply, and bits branches.

Avoiding Implicit Information
A weakness common in many current message standards is their reliance on implicit information.
Sometimes it’s very subtle. For example, all systems report coordinates, but relatively few ascribe
an error bounds to those numbers. Coordinates are nearly useless without knowing how good
they are. CoT makes these error bounds explicit. We express coordinates like a machinist would
express measurements, e.g., 1 +/- 0.001. CoT tries to eliminate implicit information as much as
possible.

----cut---
CoT makes information explicit as often as practical. We take heat for this. Most systems don’t
know their error tolerances and are offended when we demand them. If they can’t put an upper
bound on their errors we use 9999999 meters since we are confident that their coordinates are
within +/-10,000,000 meters, at least if we’re near the Earth.

Yes, calculating an error budget for a system can be painful, but it’s necessary if we’re going to be
able to deal with information in a machine-to-machine manner.

What, When, Where, But No Whom?
Yes, there’s no “whom.” Many, many, many folks have argued that CoT is flawed because it
doesn’t capture “whom.” This was not an oversight. Knowing “whom” is almost always used to
bring some implicit information into play.

----cut---
It almost always turns out that folks who “absolutely need” to know “whom” want it so that they
can use some other bits of implicit information they know from experience. For example, “I need
it because if it’s a SOF unit I know he’ll have a laser designator.”

In reality, wouldn’t it be better to be told that he really brought a laser designator? And that it was
working properly? And he was somewhere he could use it? All that information takes only one
bit: “i_am_laser_capable=1”. That bit is a heck of a lot more useful and reliable than experience,
and it’s much easier to make sure it’s accurate; a built-in-test procedure can set that bit.

Lat, Lon and HAE?
We use lat/lon because it’s ubiquitous and relatively simple. Other formats (UTM, MGSR) are
much harder to code to. CoT uses HAE because it’s much, much simpler, more accurate than
MSL or AGL, and it’s also what devices like GPS use (well, not really). MSL seems simpler at
first, but it’s fraught with interoperability problems that HAE conveniently avoids.

----cut---

Internally GPS uses an even simpler Cartesian coordinate system called ECEF. That would make
life much, much easier since distances and speeds, spheres, would be much easier to calculate.
The problem with ECEF is that nothing makes it available. It’s used inside the GPS receiver, but
they (in)conveniently convert to lat/lon or MGRS when they cough out their coordinates on the
NMEA interface. Same is true of most every system out there.

CoT would like to use ECEF, but doing so would place a burden on absolutely everyone. Not a
good trade-off. Pragmatism prevailed here and CoT took on lat/lon. Like XML, it’s not perfect,
but it’s the right choice. Now, about the HAE/MSL issue:

MSL is empirically derived (as is AGL from DTED). MSL is based on an estimate of “sea level”
which is affected by the density of the Earth’s crust. “Sea level” is actually an irregular,
undulating surface that’s higher where the crust is densest. The shape of this surface is modeled
by a big 2-D table of measurement, an Earth Gravity Model (EGM). The model is refined
periodically (EGM84 and EGM96 are both in current use). Models are available in multiple
resolutions (10x10 degree grids, 15x15 min grids, etc.), and there are multiple interpolation
algorithms in use.

In short, MSL is an interoperability nightmare. You have to have the same model, gridding, and
interpolation to exchange information, or errors will result. All this is avoided if we use HAE.
HAE is a mathematical model with just a few parameters for ellipse axes. It’s simple, accurate,
and stable.

Where–Why A Cylinder?
CoT's base class models “where” as a vertical cylinder having of specific radius and half-height
and centered on a specific point in space. For legacy reasons the cylinder’s radius is called ce, and
its half-height is le. The cylinder is sized so that it completely encloses the entire object with a 1-
sigma certainty. A bigger object gets a bigger cylinder; and an object whose position is less
accurately known gets a bigger cylinder. Basically the cylinder sums (linear sum) the positional
uncertainty and the objects size.

 ----cut---
So, for example, a 1-meter radius Mountain Dew tank sitting in a precisely known location will
have a CoT ce of 1. If that same tank’s location wasn’t known precisely, it would be in a larger
cylinder. A half-meter positional uncertainty would make a ce of 1.5, 1.0 for the tank and 0.5 for
the uncertainty.

Why does CoT sum size and error? For simplicity; it’s extremely simple to implement. If it’s
ever really necessary for an application to separate the size from the position error, CoT will
provide that additional level of detail in a subschema (a derived class). However, despite the
academic’s objections to this, we’ve never once seen a system that needs both.

But why does CoT use a cylinder? Simplicity. To calculate whether two cylinders overlap, you
check if their heights overlap, then you need only compute the Cartesian distance between their
centers and see if it’s less than the sum of their radii. One line of code. Any other shape required
serious machinations.

(Note that in the lat/lon coordinate system, a true “cylinder” is hard to calculate. By convention,
we use the latitude scaling at the center of the cylinder when doing this calculation. This is one
place where ECEF would be a true blessing. See HAE below).

My Object Isn’t Cylindrical
Wrap it in a cylinder big enough to contain all points with a 1-sigma confidence interval. If you
have a need to express more detail than a cylinder, use CoT’s <shape> subschema. That’ll give
you ellipses, polylines, and DXF.

----cut---
Targeteers swear but are mistaken that their impact areas are ellipses. Target impact zones are
really the intersection of an inclined cone of uncertainty with a nearly flat plane of the ground.
The resulting shape is eccentric, it’s not an ellipse.

CoT’s shape schema allows you to have multiple “levels” of shape modeling. The lowest fidelity
is the simplest; it’s the cylinder of the base class. Within the shape class there are ellipses,
polylines, and full DXF. The targeteers can use their ellipses as “level 1” models and, in a decade
or so when they realize their impact areas aren’t symmetric, they can add a “level 2” DXF model.
It’s a poor man’s polymorphism.

Confidence
A common criticism of CoT is that CoT doesn’t provide ID confidence on the CoT type. This
omission was intentional, not an oversight. The problem is that providing a single “confidence”
interval would be misleading. Every bit of information has a confidence interval associated with
it. In thinking this through, it was pretty clear that this belonged in a derived “confidence” class.
In practice, we’ve yet to need it.

 ----cut---
What do I mean that every bit of information needs a confidence interval? For example, there’s a
red oak outside my office. In CoT this may be (completely fictitious type) “a-n-p-d-t-o-r” which
would be short hand for an object class:

 atoms::neutral::plant::deciduous::tree::oak::red

 What’s my confidence in this?

 I’m 100% certain it’s atoms.

 I’m 98% certain it’s neutral (Steven King makes me unsure.)

 I’m 100% certain it’s a plant

 I’m 98% certain it’s a tree

 I’m 90% certain it’s an oak

 I’m 70% certain it’s a red oak

So, what one confidence weight should I apply to the ID? Hmmm...

[Aside: It seems that weighting confidence makes things very amenable to maximum likelihood
decoding kinds of processing. This gets really, really interesting since it could be a key enabler
for some new fusion processing. This will all go into a subschema when needed.]

Three Time Fields?
CoT’s base class has three times associated with it: time, start, stale. They indicate when the
information was generated, when it will become valid and when it ceases to be valid.

----cut---
To understand why three times are needed, imagine reserving a conference room. You make the
call at 8:00, to reserve it between 9:00 and 10:00. You generated the request at 8:00, but the
reservation begins at 9:00 and ends at 10:00. All three times are needed. The first, the time you
called, is needed to sort requests to determine the most recent information. The second and third
indicate the interval of time we’re discussing.

Note that time needn’t be earlier than start. I can describe a reservation I had this morning. I
generate the information at 11:00, but it describes a time in the past.

By convention, CoT allows the stale time to predate the start time. This reversal is how CoT
indicates “drop track.” If the information was stale before it started, it’s considered an overt
indication that the sender wishes to cancel the data. (Note that many systems, including our own,
often just make stale less than time to indicate drop. This isn’t strictly correct, since it may still
describe an interval in the past, but the effect on SA systems that only care about “right now” is
the same. To them, information in the past gets dropped. A historical note: the only change
between the version 1.0 CoT schema and the version 2.0 schema was the addition of the third time
field, start. Prior to that there were only two times.

Taskings (Open-Loop vs. Closed-Loop Messaging)
CoT differentiates messages that require responses from those that do not. In CoT parlance, any
message that will elicit a direct response is a tasking, and all taskings fall under one branch of
CoT’s object hierarchy. Taskings elicit responses from the receiving system. The receiver sends

back acknowledgments, status updates, and completion information. Full details are in CoT’s
request documentation which is available on the schema portion of the web site.

----cut---
Many message standards are organized based on message purpose or intended recipient, e.g., a
single standard may have one group of messages for “Situational Awareness (SA)” and another
related to “Command and Control (C2).” CoT doesn't organize messages according to their
purpose or audience, but rather by what they have in common. As such, there are no explicit SA
or C2 types in CoT since those are usage-based concepts.

All messages that require a response are, in CoT parlance, considered taskings. Don’t get too
hung up on the word tasking, it’s just the class name [see “Finding the Perfect Word”]. All
taskings have CoT types beginning with “t-“.

Tasking objects carry additional information (sub schemas) about (1) where responses should be
sent, (2) who is being tasked, (3) who authorized the tasking, etc. In an OOP world, these would
be data members of the tasking class when it was derived from “event,” but in the XML world,
these extra attributes are carried in a subschema (unfortunately named <request>).

In an OOP world, a tasking object would have methods like

 tasking→Reply(...);

 tasking→Addressee();

 tasking→Authorization();

In the XML world, you’ll have to implement these by pulling information out of the <request>
subschema.

Other documents on the CoT web site provide a rather lengthy description of CoT's request-
response model. Please refer to that for more detailed information.

What’s the Message Router?
What an IP router does at layer 3 for IP packets, CoT’s message router does at layer 7 for CoT
messages. And, just like a layer 3 router, you don’t need the message router to connect up CoT
applications.

----cut---
The message router is just a plain old CoT application. It’s given a bunch of “business rules” that
determine how messages flow through the enterprise, and it applies those rules to incoming
messages. Pull the router and documentation from the website if you’re really interested. It
brings a tremendous amount of flexibility to the way systems are interconnected via CoT.

Like layer 3 routers, there can be more than one CoT router in play in a network. Concepts
analogous to unicast, multicast, firewalling, spoofing, packet sniffing, NAT, are all available in
the message router.

Coding Hints
 1. The CoT debugger is your very best friend

 2. Use the CoTtypes.xml files where possible.

----cut---
I maintain the debugger and message router myself. They will always have the latest CoT
concepts built in. The debugger changes frequently. Get a new one as often as you can. If you
need a feature, ask: it may already be in there.

If the debugger gives you a thumbs-up on your CoT interactions, many of your integration issues
will be eliminated. We strongly recommend that you mail a releasable sample of your CoT XML
(which the debugger can capture) to cot@mitre.org. We'll look it over and work with you to fix
anything that’s not right.

Open Squirt Close
A CoT object (<event>) describes only one object. There is no aggregation element defined, and
there is no streaming model (where you can continue to get multiple CoT messages over a single
TCP connection). This was done on purpose. If we allowed streaming, we’d have to require
everyone to implement a framing mechanism. That goes against the CoT “keep it simple stupid”
philosophy. Instead, for a reliable transfer, we open a TCP connection, “squirt” one CoT object,
and close the connection.

We don’t want to define an aggregate object as that makes message-level routing more complex.
Message routing is an important part of how CoT does the whole enterprise integration thing, and
we want that to be easy.

----cut---
If we were to pass aggregate objects, things like message routing would be nightmarishly
complex. Furthermore, we’d have to tear things apart, package them back up for each CoT
consumer. I firmly believe that the “one-at-a-time” model is definitely the right model.

The one downside of the one-at-a-time model is that it’s not efficient for TCP transfers. If you
have a lot of data, you end up with a whole bunch of lingering sockets. We handle this by moving
SA data via UDP, reserving TCP for things like targets, maydays, images. (Note, also, that CoT is
in no way dependent on being on IP network. We routinely run CoT messages over SATCOM
links that are not IP.)

Information Linking (Aggregation)
CoT's <event> base class describes the what, where, when of a single object. This makes
processing CoT messages remarkably simple, but the one-item limitation is inadequate for
describing complex collections of objects (e.g., the multiple DMPI’s of a single target, or multiple
obstacles in a single drop zone.) To support these complex concepts, CoT uses unidirectional
links. A CoT object may have zero or more links to other CoT objects (and links to non-CoT
objects are in the works.) Links allow you to represent any acyclic directed graph (that is, a tree.)

 ----cut---
It’s very tempting to define subschemas that describe the aggregate objects, but doing so negates
the advantages CoT provided (simplicity, polymorphism). An alternative approach is providing a
means to “stitch together” a number of simple objects.

CoT provides this “stitching” mechanism by a scheme called “linking.” A CoT object can be
“linked” to other objects (think “pointer”). Thus, a CoT “drop zone” object can contain any
number of separate “obstacle” objects, each of which is a CoT object in its own right.

By making each component a CoT object in its own right, an application that doesn’t understand
the complex notion of “drop zone” can still process the individual “obstacle” objects.

Acyclic direct graphs seem like a very limited data structure choice, unless, of course, you’re a
lisp programmer. In practice, though, links provide a tremendous capability with very little
complexity. CoT uses links to implement routes (routes in CoT are just a list of waypoints), link
aircraft to their flight leads, link weapons to targets, SPI’s to sensors, etc.

Each link has a relation type that describes the relationship of the two objects. Since the link is
directed, the relation is usually clear.

Warts
CoT has warts, but mercifully they’re small and few. We try to excise the big ugly ones early; so
far we’ve been lucky. Ultimately, we expect that CoT will be recast in a new technology
(XML++?) and we’ll give it a face lift when that happens. Until then, we’re going to live with the
warts rather than inflict pain on everyone who’s already implemented it.

Here’s what a look in the mirror reveals:

• Affiliation (friend, hostile, ...) is in the type. That’s not the ideal place, but it is the
best place. It’s only applicable to the atoms branch,

• MS2525B has some redundancies. For example, there are multiple representations for
helicopter. This is a wart we adopted. We have pruned some branches of that tree
and intend to prune more. The sole “official” CoT types tree is in CoTtypes.xml
which ships with the CoT debugger.

• Freetext shouldn’t be in the tasking tree. This is egregious enough that we’re going to
ask some folks to do some code rip-up. Removing freetext from that branch will
simplify the implementation of the reply mechanism considerably.

• I added an entity called <uid> to hold the name of an object as it was known on other
systems. This has confused countless people since there’s a ‘uid’ attribute in the base
schema, and a <uid> entity as one of the subschemas. This was a screw-up; I should
have called it <alias>. But now everyone implements it, so we'll live with it as <uid>

• There are lots of unfortunate attribute name choices, ce instead of ‘cylinder’, le instead
of ‘height,’ etc. They’re unfortunate, but we’re going to live with them; it’s not worth
asking coders to rip and risk bugs simply because we don’t like a word’s spelling.

CoT Predicates
CoT frequently uses funky, hyphenated strings to indicate class hierarchies.

As with other “magic constants,” it’s unwise to hard-code these class strings into your code. For
that reason, there is a CoT-provided XML file-CoTtypes.xml-that contains a set of predicates.
The file has entries in the file look like this:

 <is what=‘friend’ match=“^a-f-“ />

The “what” attribute is a predicate name, and the “match” attribute provides a Perl style regexp
that matches any event of the specified type. With the addition of a predicate test method, is(), we
code all our tests as:

 if(event->is(“friend”)) { ... }

This is the recommended way to make runtime type decisions with CoT. The file will be updated
as the class hierarchy is extended.

 ----cut---
Why is this necessary? The issue is that XML isn’t an OOP language, so it provides no methods.
If we had polymorphic methods, we wouldn't be dependent on this runtime type checking and
branching in the application. These predicates provide a kind of poor man’s run time typing
mechanism. Yes, that’s ugly, but without OOP support in XML, it’s unavoidable.

Data Transport
CoT messages are transport agnostic; they can be moved by SOAP, FTP, TCP, sneaker-net, etc.
The two most popular means for moving CoT messages are via raw TCP and UDP exchanges, a
single CoT message per UDP packet, or a single CoT message per TCP session. We call the one
message per TCP session “open-squirt-close.” We don’t advocate a persistent TCP connection
for CoT message transfer because doing so requires a framing protocol (to delineate message
boundaries) which TCP doesn’t provide.

 ----cut---
While CoT is really an object hierarchy, in practice, CoT is only trying to solve the inter-COI data
exchange problem, not tell developers how to architect their software. Therefore, CoT has
relevance only when data being transferred between systems.

CoT’s UID
The <event> element of CoT’s base schema has an attribute “uid.” There's been a little confusion
about what this and how it should be used.

CoT is really an object hierarchy. We expect that an entity in the battlefield (e.g., a particular
aircraft, vehicle, target, or image) will be represented by a CoT “object.” CoT’s UID is an
intended to uniquely identify the object being described. The UID is an opaque string and does
not necessarily convey any meaningful information. Its sole purpose is to ensure global
uniqueness. (You may be familiar with the UUID concept; think of CoT’s UID as being similar
to UUID.)

For example, there would be a one-to-one correspondence between a CoT UID and a specific
aircraft. As that aircraft moved through space, its CoT position reports—a new one every few
seconds—would all have the same UID. This is how one knows that the messages all apply to the
same object (that particular aircraft).

The thing that the UID is making “unique” here is the object (the aircraft), not the individual
message. The UID is not unique to the message, rather it uniquely identifies the object the
message is describing.

If there are multiple messages with the same UID, how does one know which message is most
current? The attribute time indicates when the message was generated. The CoT message with
the latest timestamp is presumed to be the most up-to-date information. (CoT presumes that all
systems are reasonably well synchronized in time.) See the discussion on time for more details.

How Can CoT’s UID Be Guaranteed Unique?
Recall that the CoT glues together other systems. Most systems use some internal scheme for
differentiating between objects they’re processing. Link-16 uses track numbers, FBCB2 uses
URNs, ADOCS uses target numbers, etc.

CoT’s UIDs are generated by combining the reporting system’s designation (e.g., track number)
with some globally unique prefix (e.g. “Link-16”). Thus, the CoT UID for track number 01520 in
Link-16 might be uid=“Link16.01520”. This ensures that if the particular object is unique within
the Link-16 network, it will be globally unique in the CoT world.

But remember that the CoT UIDs are opaque types. Do not attempt to dissect them to determine
things like what track number the object had on Link-16.

The prefixes are administered much like domain names on the Internet. That is, there is a
“numbering authority” that ensures that there are no prefix clashes. You can claim your own
prefix by coordinating with the folks who answer mail at cot@mitre.org.

What is This CoT Object Called on <system->?
If the CoT UIDs are opaque, how can you tell what a certain systems (e.g. Link-16) internal
numbering was? There is a sub-schema that captures the name of this object on various systems.
It is an unfortunate mistake (wart) that this entity is named <uid>. A much better name would
have been <alias>, but changing now would cause great pain for little gain.

The <uid> entity (distinct from the uid attribute in the <event> element) is an attribute-value
paring which shows system name and alias on that system. For example,

 <event uid=“f37qPbs9z” ...

 <detail>

 <uid tadilj=“01520” adocs=“XY3241” fbfb2=“1134527” />

 ...

 </detail>

This means that the CoT object with the UID “f37qPbs9z” is known on tadilj systems as track
number 01520, and is known to adocs as XY3241, etc. In retrospect, it was probably unwise to
implement this as we did; it would have been better if we had defined a structure that like:

 <!-- WRONG - THIS WILL NOT WORK -->

 <alias system=“tadilj” id=“01520” />

 <alias system=“adocs” id= “XY3241” />

However, this is yet another case where the die has been cast and we’ll live with the <uid>
implementation as it is.

What Next?
Please visit http://cot.mitre.org for background information about CoT, implementation details,
examples, and some useful tools. Address any questions you may have to cot@mitre.org.

	Ancient History
	Introduction
	Document Structure
	What is Cursor-on-Target?
	The “Community of Interest” Myth
	The XML Mystique
	Finding the Perfect Word
	The CoT Approach
	Implementing CoT
	Why Isn’t There One “Unified” CoT Schema?
	Choices Breed Complexity
	Evil Enumerations
	CoT’s Type Tree
	Avoiding Implicit Information
	What, When, Where, But No Whom?
	Lat, Lon and HAE?
	Where–Why A Cylinder?
	My Object Isn’t Cylindrical
	Confidence
	Three Time Fields?
	Taskings (Open-Loop vs. Closed-Loop Messaging)
	What’s the Message Router?
	Coding Hints
	Open Squirt Close
	Information Linking (Aggregation)
	Warts
	CoT Predicates
	Data Transport
	CoT’s UID
	How Can CoT’s UID Be Guaranteed Unique?
	What is This CoT Object Called on <system->?
	What Next?

