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Story, Scope, and Mission



Story
(From Vision to Robot)

• Mechanical design and fabrication

• Integrate electrical system         

(read: become electrical engineer)

• Implement control system

• Develop control by method of instant 

centers

structures

electronics

launch time
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rt

MAX Launch Abort System test lessons learned

- NASA Engineering Safety Center
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Mission
(Field a Science 
Instrument)

• Deploy developmental science 

instruments  for demonstration 

purposes in planetary analog 

environments

• Develop instruments between TRL 2 

and TRL 4

• Robotic experimentation and 

research (Autonomy/Remote 

presence)

• Support innovation-driven efforts 

with low cost to implementation

Motivation

• Planetary exploration demands 

mobile, autonomous, and capable 

robots

• Understanding the requirements

• Testing science and robotic 

technology

Similar Rovers

• Rocket 5, 6, and 7

• Sojourner

• MER

• MSL

• Nomad

• Scarab

• K - 10

• Chariot/Athlete



Top-down Design



Top-down Overview
(Mobility Platform)

• Carry a science payload

• Omnidirectional (1:1 L:W)

• Fit through a door

• Navigate a 45° grade

• Navigate 18 inch obstacle

• Accessible electronics 

housing

• Sensor Needs

1:1



Top-down Overview
(System Architecture)

Heritage

• Sensor-rich

• Reconfigurable

• Processing-capable

Attributes

• Lots of sensor options

• IP-based communication

• Everything in LabVIEW

• Embedded PC104 processors



Trimble AG DGPS 132
Differential GPS

SICK LD-OEM1000
Laser Range-Finder

MicroStrain 3DM-GX1
IMU Gyroscope

Videre Stereo Cameras
Directed Perception
PTU-D300 Pan-Tilt

Soios 55
Omnidirectional

Lens

Fujinon C22x17R2-QP1TM

TeleZoom CCTV Lens
22X Optical Zoom

Hokuyo URG-04LX
Laser Range-Finder

Top-down Overview
(Sensors)

FLIER Photon 320TM

IR Thermal Imager

• Situational Awareness
• Target Interrogation
• Localization 
• Qualitative vs.       

Quantitative



Top-down Overview
(Science Instrument)

Robot 
GUI

Instrument GUI

Robot Sensor 
Processing

Main
Instrument

Control

Robot Chassis 
Control

Sensors

Robot

Science
Instrument

PXI

cRIO

PC-104

Support Devices

Sensor
Interface

Actuator
Interface

Top-Level
User Interface OCU

• Modularity

• Flexibility

• Independence



Top-down Overview
(Control System)

• Omnidirectional motion to an 

AWDAWS vehicle 

• Controlled with a National 

Instruments Compact Rio 

controller with Real-Time OS, 

FPGA, and modular IO cards.

• Behavior-based control



Mechanical



Mechanical
(Chassis)

• Kinematic differential 

suspension

• Equipment (batteries and 

sensor devices)

• CG adjust with variable 

Pan-Tilt mounting



Mechanical
(Enclosures)

• Forced convective cooling

• Removable

• Three-side easy access

• Separate system controller 

and processing enclosures



Mechanical
(Rocker-Arms)

• Removable non-planar rocker-

arm design

• Light-weight box beam

• Enclosed wheel position drive



• Zero offset caster

• Motor-in-wheel design

• Concentrate design intensity to 

custom bracket

• Design to COTS wheel

Mechanical
(Wheel/Ankle)



Mechanical
(Simulation and Analysis)

• Model vehicle

• Generate loads by simulation

• Analyze ankle

• Translate loads and analyze 

rocker arm (forward beam)

http://www.youtube.com/watch?v=-vOxiGcD8oM
http://www.youtube.com/watch?v=-vOxiGcD8oM


Control Implementation

Control by Instant Centers
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Controller

User Interface

Read UDP

Com.
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Closed Loop 
Control
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Physical Devices & Components

Real Time

Control
(Components and Signaling)



Tri-Mode
IC 

Controller

User Interface

Read UDP

Com.

Vitals

LOS

Closed Loop 
Control
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Physical Devices & Components

Control
(Physical System)

Sample Wiring Diagram 



Tri-Mode
IC 

Controller

User Interface

Read UDP

Com.
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Closed Loop 
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Control
(FPGA Digital Design)



Tri-Mode
IC 

Controller

User Interface

Read UDP

Com.

Vitals

LOS

Closed Loop 
Control

FPGA Signal IO

Physical Devices & Components

Control
(Closed-Loop Servo Control)



Tri-Mode
IC 

Controller

User Interface

Read UDP

Com.

Vitals

LOS

Closed Loop 
Control

FPGA Signal IO

Physical Devices & Components

Control by Instant Centers
(The IC-Plane)

• Drivable State: The wheel 

positions and velocity conform to 

the constraints of planar motion

Classes Of Drivable States

Translate

Rotate

Mixed

IC-PlaneThe Mapping Problem

• Mapping problem

• The IC-Plane is a vehicle centric geometric 

interpretation of the three classes of planar motion



Control by Instant Centers
(The Notion of the IC-Path)

IC1,2 = Drive-State1,2

R1,2 = Radii of Path1,2

• IC-Path implies time dependence 

• Actuator slew rate defines a ‘one-step 

region’

• The one-step region relates the 

physical constraints of the 

system to the IC-Path in the 

geometric IC-Plane

• Every IC-Step on the IC-Path 

must reside in the overlap of all 

one-step regions



Control by Instant Centers
(The General Problem)

• Abstract part of the 

global path-planning 

problem into a 

structured context

• Both the drivable state 

and the IC-Path are 

redundantly satisfied 

by the mobility base
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Control by Instant Centers
(Geometric State Control for the IC-Path)
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Drive Normal Mode
(Control Scheme)

Translate

Drive Normal

Rotate

Achievable IC-Plane

• Intuitive operation

• Steerage ratio

• Steering limit



Drive Normal Mode
(IC-Path Planning) Tri-Mode

IC 
Controller

User Interface

Read UDP

Com.

Vitals

LOS

Closed Loop 
Control

FPGA Signal IO

Physical Devices & Components

• Map global vehicle 

path to IC-Path

• Path planning 

algorithm/behavior
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Drive Normal Mode
(Velocity and Trimming)

• IC-Plane to actuator commands 

requires velocity control and trimming

Velocity

• Velocity magnitude defined by the ratio 

of IC radii

• Maximum angular wheel position error 

limits velocity command

• Limit is imposed with a weighting 

function

Trim

• Mechanical slop leaves the system 

unrivaled without trim compensation

• Use programmatic toe-in to take 

advantage non-uniform torsional rigidity 

of box beam

Velocity Magnitude Coefficients

Velocity Limiting
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Drive Normal Mode
(User Input Mapping)

• Steer from an 

‘imaginary wheel’

• Adjustable input 

mapping

• Tuned with vehicle 

in the loop
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Drive Normal Mode
(Input manipulation)

• Steerage ratio b

• Steering limit β

• Restrictions on the 

accessible range of 

the IC plane.



Sensor Implementation



Sensors
(Implemented Devices)

SICK LD-OEM1000
Laser Range Finder

MicroStrain 3DM-GX1
IMU Gyroscope

Soios 55
Omnidirectional

Lens

Directed Perception
PTU-D300 Pan-Tilt

Videre DCSG CCD imager

http://www.youtube.com/watch?v=ejqwuTaVVno
http://www.youtube.com/watch?v=ejqwuTaVVno
http://www.youtube.com/watch?v=7RREHN8kfZI
http://www.youtube.com/watch?v=7RREHN8kfZI
http://www.youtube.com/watch?v=9UCQE4dWRSA
http://www.youtube.com/watch?v=9UCQE4dWRSA


Wireless
Bridge

PC104 Embedded 
Computers
- IMU/Gyro sensor 
- SICK Laser range-finder
(IP Device)

PC104 Embedded 
Processor
- Omni-Cam
- Fwd-Cam

Compact Rio

Real-Time Processor
- Resolving joystick inputs
- Coordination of drive actuators
- Closed loop control of servos
- Pan-and-Tilt control

Reconfigurable FPGA
- Signal processing
- Data conversion

SICK laser 
rangefinder

IP
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Sensors
(Implemented System)

• IP Networked

• Embedded XP + LabVIEW

• Windows remote desktop

• Network-shared variables 

for all sensor data

• TDMA using LV sequence 

structure

• UDP for all actuator 

command and control



User Interface



User Interface
(Sensor Data)

• Perspective has an 
effect on use of the 
mobile system (e.g., 
god’s eye view vs. 1st

person view)
• Layout modeled after 

an automotive 
dashboard

• User-directed gaze of 
forward camera



User Interface
(Command & Control)

Input Mapping Selection Tree

Onscreen Pan-Tilt Interface

Com./Ctl. Access Panel 

Joystick Input Definition

Input Mode Indicator

Processing Interface

Power Distribution Unit (PDU) Interface



Results



System Performance
(Actuation & IC controller)

Tri-Mode
IC 

Controller

User Interface

Read UDP

Com.

Vitals

LOS

Closed Loop Control

FPGA Signal IO

Physical Devices & Components

Tests Performed

Error Measured

Components Under 
Examination

• IC state controller works
• Machine round-off error
• Possible lack of 

optimization

http://www.youtube.com/watch?v=PApoYRiPeFA
http://www.youtube.com/watch?v=PApoYRiPeFA


System Performance
(Flexibility test for Instant Center Control)

• Fault tolerance implies 
modification to control system

• Test validates the system’s 
behavioral attributes

Method

• Failed wheel defines new line-
of-zero motion

• Project command IC onto new 
line

• NO modification of user input

• No noticeable change in 
performance for failure angles 
up to 60°

• No difficulty in controlling 
system to failure angles of 90°

• Implementation time: <1 hour



System Performance
(Vehicle Operation)

Maneuver Condition Measurement

Max ascent grade 

(experimental)

Grass slope 30°

Loose dirt 29°

Max grade of decent & cross 

slope navigation

Validated 39°

Theoretical 45°

Max right-angle step 

navigation

Direct approach (90°) 12 in

Indirect approach (45°) 18 in

Max speed (any direction) Flat & level ground 1.7 mph

Time to rotate 360° in place — 0.8 s

Max steering transition time 

(full forward to full turn)
— 2.8 s

Time to pure rotation from full 

forward
— 1.1 s

Transition time between full 

forward and 90° lateral 

translation

— 2.8 s

http://www.youtube.com/watch?v=PApoYRiPeFA
http://www.youtube.com/watch?v=PApoYRiPeFA


Future Work



Future Work
(The IC-Plane)

• True omnidirectionality: 
accessibility to the whole IC-Plane



Future Work
(Laser based multi sensor)

• Targeting future Mars mission

• Under development to leave lab 
bench

• Topical and atmospheric 
measurements



Future Work
(Immersive Virtual Human Environments)

• Make data from Moon, Mars, and 
other missions available to the 
public

• Data driven

• 3D media-rich interface

• Virtual reality 



Future Work
(Bio exploration & X-Ray Fluoroscope)

• Innovation work using a carbon 
nano-fiber-based  bio-sensor to 
lead to autonomous exploration for 
life

• Borehole probe for sub-surface 
elemental analysis using x-ray 
fluorescence.

Carbon nano-fiber-based  bio-sensor illustrations

X-ray fluorescence borehole probe



Concept

Completion

Conclusion

Initial Concepts
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Mechanical
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and Control



Backup
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Translate & Rotate Modes
(Velocity and Trimming)
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