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Abstract

The set of n by n matrices with a given Jordan canonical form de�nes a subset of matrices

in complex n2 dimensional space. We analyze one classical approach and one new approach to

count the dimension of this set. The new approach is based upon and meant to give insight

into the staircase algorithm for the computation of the Jordan Canonical Form as well as the

occasional failures of this algorithm. We extend both techniques to count the dimension of

the more complicated set de�ned by the Kronecker canonical form of an arbitrary rectangular

matrix pencil A� �B.

1 Introduction

Given any square matrix A, the set of matrices similar to A forms a manifold in complex n2

dimensional space. This manifold is, of course, the orbit of A under the action of conjugation:

orbit(A) = fPAP�1 : det(P ) 6= 0g;

The matrix pencil analog is to consider any pair of m by n matrices A and B, and de�ne the
orbit of the matrix pencil A � �B by the action of multiplication on the left and right by square
nonsingular matrices of the appropriate size:

orbit(A� �B) = fP (A� �B)Q�1 : det(P )det(Q) 6= 0g;

This orbit de�nes a manifold of pencils in 2mn dimensional space. All pencils on this manifold are
said to be equivalent to A��B. (In matrix theory, a \pencil" refers to a linear matrix polynomial,
often in the indeterminate �. See [4].)

Our concern in this work is to count the (co)dimension of these manifolds as objects in complex
Euclidean space. For simplicity of exposition, we sometimes refer to these two problems as counting
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the (co)dimension of a (single) matrix or of a matrix pencil, when more properly, we would refer to
counting the (co)dimension of the orbits. We take two approaches, one based on classical techniques
that identify the tangent spaces of these manifolds and the other based upon existing numerical
algorithms for computing the Jordan and Kronecker forms [7, 8, 9, 10, 12, 13, 16, 17].

The classical approach to solving this problem requires the computation of the tangent space
to the orbits. In the single matrix case, the tangent vectors have the form

XA� AX; (1)

while in the matrix pencil case, the tangents have the form

X(A� �B)� (A� �B)Y: (2)

Thus the codimension of the single matrix orbit is the number of linearly independent matrices X
for which (1) vanishes, while the codimension of the matrix pencil orbit is related to the number
of linearly independent matrix pairs X; Y for which (2) vanishes.

Arnold [1] has rederived the formula for the Jordan case for the purpose of de�ning a particular
normal form for deformations of a matrix with a given Jordan form. This form is convenient
because of its minimum number of parameters [3]. We are unaware of any general dimension count
for matrix pencils in the literature. One partial result of Waterhouse [15] counts the codimension
of a singular pair of n by n matrices (i.e. the square case) to be n+ 1.

Our new approach is based on the so called staircase algorithms for the Jordan and Kronecker
canonical forms. The staircase algorithm for the Jordan canonical form proceeds by computing the
Weyr characteristics of the matrix, while the staircase canonical form proceeds by computing a
more complicated set of structural indices.

In this paper we lay the groundwork for a theory that we hope might explain the occasional
failures of existing staircase algorithms to �nd the \right" Jordan or Kronecker form. These al-
gorithms are used in systems and control theory to �nd the input matrix (or pencil) of highest
codimension within a user-supplied distance � of the input data. The structures of these matrices
or pencils re
ect important physical properties of the systems they model, such as controllability
[2, 14]. The user chooses � to measure the uncertainty in the data. The existence of a matrix or
pencil with a di�erent structure within distance � of the input means that the actual system may
have a di�erent structure than the approximation supplied as input. So the goal of these algorithms
is to perturb the input by at most � so as to �nd the matrix or pencil of as high a codimension as
possible. The algorithm is said to fail if there is another perturbation of size at most � which would
raise the codimension even further. Therefore, we need to understand how the algorithm produces
outputs of each codimension, which is explained in this paper, although this is just a �rst step to
explaining the failures. In particular, this is why we need to prove a known result (Theorem 2.1)
using a new technique: staircase form. We believe the dimension count for the matrix pencil case
(Theorem 2.2) is new.

2 Main Results

Theorem 2.1 The codimension of the orbit of a given matrix A is

cJor =
X
�

(q1(�) + 3q2(�) + 5q3(�) + : : :);

where q1(�) � q2(�) � q3(�) � : : :, denotes the sizes of the Jordan blocks of A corresponding to �.
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Theorem 2.2 The codimension of the orbit of A � �B depends only on its Kronecker structure.
This codimension can be computed as the sum of separate codimensions as given in the table below.

This equation is expressed more compactly in Equation 6 in the next section. Section 7 provides
examples of how to use these formulas. Readers already familiar with the Kronecker form may wish
to proceed directly to Section 7 before reading the proofs.

Breakdown of the codimension count:

The codimension of the orbit of A � �B depends only on its Kronecker structure. It can be
computed as the sum cTotal = cJor + cRight + cLeft + cJor;Sing + cSing, whose components are
de�ned as:

1. The codimension of the Jordan structure:

cJor =
X
�

(q1(�) + 3q2(�) + 5q3(�) + : : :);

where the sum is over all eigenvalues as in Theorem 2.1, including the in�nite eigenvalue
if it is present.

2. The codimension of the L singular blocks:

cRight =
X
j>k

(j � k � 1);

where the sum is taken over all pairs of blocks Lj and Lk for which j > k.

3. The codimension of the LT singular blocks:

cLeft =
X
j>k

(j � k � 1);

where the sum is taken over all pairs of blocks LT
j and LT

k for which j > k.

4. The codimensions due to interactions of the Jordan structure with the singular blocks:

cJor;Sing = (size of Jordan structure)(number of singular blocks):

Here the number of singular blocks counts both the left and the right blocks.

5. The codimensions due to interactions between L and LT singular blocks:

cSing =
X
j;k

(j + k + 2);

where the sum is taken over all pairs of blocks Lj and LT
k .

These are complex codimensions, but the answers are correct for real codimensions when the
matrices or matrix pencils have real Jordan or Kronecker forms. For the rest of this paper all
dimensions will be complex dimensions (half the number of real dimensions).
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3 Mathematical Preliminaries and Notation

3.1 Matrix Canonical Forms

The basic notation in this area has been reinvented by many authors. So as to make this work
self-contained and also to �x notation, we review the basic de�nitions. Further information may
be found in standard matrix theory texts such as [4] or [11].

Given a matrix A that has only one eigenvalue � it is always possible to �nd a similarity that
transforms A into the form

J�(A) = diag(J�q1 ; J
�
q2
; : : :) (3)

where J�q is a q by q matrix with � on the diagonal and 1 on the superdiagonal known as a Jordan
block.

For an arbitrary matrix, it is always possible to �nd a similarity that transforms A into a union
of blocks of the form (3):

J(A) = diag(J�1(A); J�2(A); : : :); (4)

where �1; �2 denotes the distinct eigenvalues of A.
To �x the order of the Jordan blocks within (3), we assume

q1(�) � q2(�) � : : : ;

but we do not �x the order of the eigenvalues:

De�nition 3.1 The matrix J(A) de�ned up to eigenvalue orderings is known as the Jordan

Canonical Form of A.

De�nition 3.2 The sequence of numbers (qi(�)) de�ned above gives the sizes of the Jordan blocks
for the eigenvalue �. They are known as the Segre characteristics of A relative to �.

It is sometimes convenient to think of this as an in�nite sequence with qj(�) = 0 for j >(the
number of Jordan blocks corresponding to �).

De�nition 3.3 The elementary divisors of the matrix A�xI are the polynomials (��x)qi(�) in
the indeterminate x, where � is an eigenvalue of A and qi(�) is a Segre characteristic corresponding
to �.

De�nition 3.4 The invariant factors of the matrix A�xI are the polynomials Pi(x) =
Q

�(��
x)qi(�). It follows that if we let pi denote the degree of the ith invariant factor then

pi =
X
�

qi(�):

Of course n =
P
pi because this counts the sizes of all the Jordan blocks of all the eigenvalues

of A.
Some authors (see [11] pages 43 and 93) consider the quantity mi de�ned as the degree of the

greatest common divisor of all the i by i minors of the linear matrix polynomial A� �I . It can be
shown that mi = pn+1�i + : : :+ pn.

De�nition 3.5 The nullity of an n by n matrix A is n� rank(A). For m by n matrices the row
nullity and the column nullity are m� rank(A) and n� rank(A) respectively.
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De�nition 3.6 Let wj(�) denote the di�erence

nullity(A� �I)j � nullity(A� �I)j�1 � rank(A� �I)j�1 � rank(A� �I)j

The numbers wj(�) are the Weyr characteristics of A relative to �. The number of blocks Jq(�)
with q � j is exactly wj(�). The dimension of the nullspace of (A� �I) is w1(�).

The following lemma is critical for the construction of the staircase algorithm.

Lemma 3.1 Let Q be any unitary matrix whose �rst w1 columns span the nullspace of A � �I.
Then

QTAQ =

 w1 n � w1

�I S

0 Â

!

where Â is an n � w1 by n � w1 matrix. With the deletion of w1(�), the Weyr characteristics of
Â are the same as that of A. In particular, the Weyr characteristics of the other eigenvalues are
unchanged.

Proof The Jordan structure of Â is the same as the Jordan structure of A except that every Jordan
block of Â corresponding to the eigenvalue � is exactly one dimension smaller.

Let A� �B be an m by n matrix pencil. (When discussing the Kronecker case, � is always an
indeterminate.) It is possible to �nd an equivalent pencil Kron(A� �B) in the Kronecker Form:

Kron(A� �B) = diag(L�1 ; : : : ; L�g ; L
T
�1; : : : ; L

T
�h
; J; J1): (5)

The L� blocks are � by �+1 rectangular blocks with � on the diagonal and 1 on the superdiagonal.
The LT

� blocks are � + 1 by �, with � on the diagonal, and 1 on the subdiagonal. The � and � can
be 0, leading to 0 columns and rows respectively. The J block is of the form (4) with the addition
of �I . This constitutes the Jordan structure of the �nite eigenvalues. The J1 block is the union
of blocks of size qi(1) each of which has 1 on the main diagonal and � on the superdiagonal. This
constitutes the Jordan structure corresponding to the in�nite eigenvalue. Frequently there will
be no need to distinguish between the �nite and in�nite eigenvalues. Indeed, with an appropriate
M�obius transformation sending A��B to (�A+�B)��(
A+�B), all eigenvalues may be assumed
�nite.

The L and LT blocks constitute the singular part of the pencil. The Jordan structure for �nite
and in�nite eigenvalues constitutes the regular part of the pencil. The Segre characteristics remain
well de�ned for a matrix pencil, but we must include the characteristics for the in�nite eigenvalue
as well.

De�nition 3.7 Let
0 � �1 � �2 � : : : � �g

denote the sizes of the g L blocks of a pencil, and let

0 � �1 � �2 � : : : � �h

denote the sizes of the h LT blocks. Then the numbers �i are known as the column minimal

indices, while the �i are the row minimal indices.
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We can now recast Theorem 2.2 using the notation from the previous de�nitions. The codi-
mension of the orbit of A� �B can be written compactly as

cod(orbit(A� �B)) = (p1 + 3p2 + 5p3 + : : :) + (g + h)
X

pi

+
X
i>j

(�i � �j � 1) +
X
i>j

(�i � �j � 1) +
X
i;j

(�i + �j + 2); (6)

where the pi include any in�nite eigenvalue blocks.

3.2 Conjugate Partitions

The Weyr characterists and the Segre characterists of a matrix for a given eigenvalue are closely
related.

De�nition 3.8 Let k1 � k2 � k3 � : : : � 0 be a partition of the positive integer k (i.e. k =
k1+ k2 + : : :). Let lj denote the number of ki that are greater than or equal to j. Then the lj form
a partition of k known as the conjugate partition of the ki.

It is easy to verify that the property of being a conjugate partition is symmetric. For example,
17=6+6+3+1+1=5+3+3+2+2+2 are conjugate partitions of 17. This is easy to verify by reading
the diagram below (known as a Ferrers diagram) vertically and horizontally:

6 6 3 1 1
5 . . . . .
3 . . .
3 . . .
2 . .
2 . .
2 . .

The idea of the conjugate partition is very simple, yet very powerful. It allows the interchange
of summations: X

i

kiX
j

f(i; j) =
X
j

ljX
i

f(i; j);

where f(i; j) is any function of i and j, and the ki and lj are conjugate partitions.

Lemma 3.2 The Weyr characteristics and the Segre characteristics of a matrix corresponding to
a particular eigenvalue are conjugate partitions.

The proof of this lemma is evident from the Jordan form of the matrix.

3.3 A Fundamental Codimension Count

Our codimension counts for the Jordan and Kronecker form are built up from the fundamental
Lemma 3.3. To state it, we need to introduce a little notation from manifold theory.

6



De�nition 3.9 The set of k dimensional subspaces of n dimensional space along with its natural
manifold structure forms the Grassmann manifold denoted Gk(n).

The Grassman manifold and its dual Gn�k(n) are isomorphic of dimension k(n � k). In
Lemma 3.3 we will need a full-rank parameterization for Gn�k(n), which we construct as
follows. (Recall that a chart for a complex d-dimensional manifold M is an open neighborhood U
in Cd plus a homeomorphism from M into U . A full rank parameterization is the inverse of this
homeomorphism.) Because of the action of the unitary group, it su�ces to specify a local full rank
parameterization near any one element, say Ek, the one generated by the �rst k coordinate vectors.
We create a parameterization from unitary matrices of the form

Q0 =

 
I �R�

R I

! 
I +R�R 0

0 I +RR�

!�1=2
; (7)

where R is n� k by k. The homeomorphism maps complex n � k by k matrices R to the span of
the �rst k columns of Q0. If Q is any �xed unitary matrix, the homeomorphism from R 2 Cn�k�k

to the space spanned by the �rst k columns of QQ0 provides the parameterization mapping from
a neighborhood of the origin in Cn�k�k to a neighborhood in Gk(n) of the space spanned by the
�rst k columns of Q.

Lemma 3.3 The set of m by n matrices with rank r is a manifold with codimension (m�r)(n�r).

Proof We construct a parameterization whose image is a neighborhood of a particular m by n rank
r matrix A as follows. A neighborhood of the origin in the product space Cr�n�r�Cm�r will serve
as a domain for the parameterization. Let Q be any unitary matrix whose �rst n� r columns span
the nullspace of A, so that AQ = [0M ] is zero in its �rst n � r columns and its last r columns M
have full rank. Let Q0 be as in (7), with k = n� r. Then the map from (R; T ) 2 Cr�n�r � Cm�r

to [0;M + T ]Q�
0Q

� is the desired homeomorphism. If m = n, then we may equally well use the
homeomorphism mapping (R; T ) to QQ0[0;M + T ]Q�

0Q
�. Thus the dimension is r(n � r) + mr,

and the codimension is mn � r(n� r)�mr = (m� r)(n� r).

We graphically depict the independent parameters as follows:

n � r r

m� r S

r R Â

(8)

Here R refers to the coordinates that de�ne the null space, while T = [ST ; ÂT ]T is the matrix
in Cm�r. The black square in the upper left clearly indicates the codimension of (m� r)(n� r).

Later, we will take advantage of this construction to recursively construct further submanifolds
by placing analogous rank constraints on Â, so that Â still lies in a small neighborhood of the origin.
Therefore, it will be easy to see that we need merely add the codimensions of our constraints at
each level in order to compute the overall codimension of the �nal submanifold.
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4 Proofs of Theorem 2.1 (Codimension Count for Jordan Form)

4.1 Classical Proof

Consider conjugating the matrix A by I + �X , where � is a small scalar. This yields

A+ �(XA�AX) + O(�2);

from which it is evident that the tangent space to orbit(A) at A consists of the matrices of the form
XA� AX . The dimension of the orbit is equal to the dimension of the tangent space so that the
codimension of the orbit is equal to the dimension of the nullspace of the mapping that sends X
to XA� AX . The codimension of the orbit is then the number of linearly independent solutions
to AX = XA. This number of solutions is well known to be

p1 + 3p2 + 5p3 + : : : :

(See page 222 of volume 1 of [4].)

An alternative expression for the number of solutions to AX = XA is

n + 2(m1 + : : :+mn�1)

as given in [11]. According to the remark following De�nition 3.4, these expressions are identical.

4.2 Outline of the Staircase Algorithm

The staircase algorithm for the computation of the Jordan Canonical Form appears in [5, 6, 9, 10,
12]. It is built recursively upon the idea in the proof of Lemma 3.1:

Staircase algorithm for computing the Jordan form for eigenvalue �

i = 0
Atmp = A� �I
while Atmp not full rank

i = i+ 1

Let n0 =
Pi�1

j=1 wj and ntmp = n � n0 = dim(Atmp)

Compute an ntmp by ntmp unitary matrix Q whose leading wi columns span the null space
of Atmp

A = diag(In0 ; Q�) �A � diag(In0 ; Q)
Let Atmp be the lower right ntmp � wi by ntmp � wi corner of A
Atmp = Atmp � �I

endwhile

The �nal A is easily seen to be unitarily similar to the initial A. The �nal A is in staircase
form, as illustrated with the following example:

w1 w2 w3 w4 n0

w1 �I A12 � � �
w2 �I A23 � �
w3 �I A34 �
w4 �I �
n0 A0
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Here, the superdiagonal blocks Ai;i+1 (the \stairs") and also A0 � �I are of full column rank,
while the staircase region in the lower triangle is entirely 0. If A has only one eigenvalue � then n0

is 0 and the last block row and block column do not appear. If A has other eigenvalues �0, then the
staircase form corresponding to the remaining eigenvalues may be extracted by applying the same
algorithm to A0.

An easy observation is that

Lemma 4.1 The wi computed by the staircase algorithm for the eigenvalue � are the Weyr char-
acteristics corresponding to the eigenvalue �.

4.3 Second Proof of Theorem 2.1

Let A be any matrix. We will show that the staircase algorithm, in e�ect, creates a parameterization
for an open neighborhood N(A) of A on the manifold orbit(A). Let � be an eigenvalue of A.
Then A � �I has rank n � w1. The independent parameters portrayed in (8) may be used as a
parameterization for a neighborhood of A � �I on the manifold of rank n � w1 matrices. Lemma
3.1 tells us that we have a parameterization for orbit(A) if we make further assumptions on the
Jordan structure of Â. Notice that in a small enough neighborhood of A, the last n � r columns
of the staircase form are full rank. It is important to observe the independence of the w1(n� w1)
parameters in R1 from the w1(n�w1) parameters of S1 and the as of yet uncounted parameters in
Â. The �rst eigenvalue � is \fully parameterized" when Â� �I has full rank. The parameters are
pictorially depicted below in an example that recurs two more times before Â� �I has full rank.

w1 w2 w3

Â

R1
R2

R3

S1

S2

S3

w1

w2

w3

This parameterization process is repeated on Â with a new eigenvalue shift in an identical
manner. This repetition continues until Â does not exist. The areas of the black squares in the
�gure above indicate the codimension that we might attribute to the eigenvalue �. This codimension
is then

X
i

w2
i =

X
i

wiX
k=1

(2k � 1)

=
X
k

qkX
i=1

(2k� 1)

=
X
k

(2k � 1)qk;

using the fact that the Weyr and Segre characteristics are conjugate partitions.
The total codimension for the entire Jordan structure of A is obtained by summing over all the

eigenvalues because of the independence of the parameters.
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5 Tangent Space Proof of Theorem 2.2

We include two proofs both of which we believe to be new. The �rst proof requires counting the
number of independent solutions to two simultaneous matrix equations derived by analyzing the
tangent space, while the second proof (in Section 6) requires an analysis of the staircase algorithms
for the Kronecker canonical form.

Consider an orbit preserving transformation of them by n pencil A��B obtained by multiplying
on the left by I + �X and the right by I � �Y , where � is a small scalar. This yields A � �B +
�(X(A� �B)� (A � �B)Y ) +O(�2); from which it is evident that the tangent space to the orbit
of the pencil consists of the pencils that can be represented in the form

f(X; Y ) = X(A� �B)� (A� �B)Y; (9)

where X is an m by m matrix and Y is an n by n matrix.
Since (9) maps a space of dimension m2 + n2 linearly into a space of dimension 2mn, the

dimension of the image space is m2 + n2 � d, where d is the dimension of the kernel of f(X; Y ),
and so the codimension is

2mn� (m2 + n2 � d) = d� (m� n)2: (10)

The term (m� n)2 represents extra baggage due to our consideration of rectangular pencils. As in
the Jordan case, we need to calculate d, the number of linearly independent solutions to f(X; Y ) =
0. This can be written as the two simultaneous equations

XA = AY and XB = BY: (11)

Unfortunately, we can not simply quote a classical count of the number of independent solutions
to (11) as we were able to do in Section 4.1. However since

Pf(X; Y )Q�1 = (PXP�1)P (A� �B)Q�1 � P (A� �B)Q�1(QYQ�1);

it follows that the number of linearly independent solutions to f(X; Y ) = 0 depends only on the
Kronecker structure of A � �B. Thus, we assume that A � �B is already in Kronecker canonical
formM = diag(M1;M2; : : :). The Kronecker case is more complicated than the Jordan case due to
the greater number of possibilities for the Kronecker structure M .

We partition the equation XM = MY conformally with M = diag(M1;M2; : : :) so that
XijMj =MiYij , where Mk is mk by nk, Xij is mi by mj , and Yij is ni by nj :

 m1 m2

m1 X11 X12

m2 X21 X22

!  n1 n2

m1 M1

m2 M2

!
=

 n1 n2

m1 M1

m2 M2

!  n1 n2

n1 Y11 Y12
n2 Y21 Y22

!

The next lemma allows us to compute the quantity d mentioned before Equation (11) as the
sum of the number dij of independent solutions of XijMj =MiYij in the variables Xij and Yij .

Lemma 5.1 In terms of the above notation

d =
X
i;j

dij :
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Proof As is evident from the example 
X11 X12

X21 X22

! 
M1

M2

!
=

 
M1

M2

! 
Y11 Y12
Y21 Y22

!
;

the equations XijMj =MiYij , i = 1; 2; : : :, j = 1; 2; : : : are all mutually independent.

Given any two blocks, Mi and Mj (we allow i = j here) we de�ne their interaction and the
cointeraction:

De�nition 5.1 LetMi be mi�ni and letMj bemj�nj . Let X be an arbitrary mj�mi matrix and
Y be an arbitrary nj � ni matrix. We de�ne the interaction dij of Mi with Mj as the dimension
of the linear space fX; Y g such that XMj =MiY . We de�ne the cointeraction of Mi with Mj as
cij = dij � (mi � ni)(mj � nj). We also consider the combined cointeraction which we de�ne
as cij + cji when i 6= j, and simply cii when i = j.

Notice that the combined cointeraction has a di�erent de�nition depending on whether Mi and
Mj are distinct blocks (even if they happen to be equal) on one hand, or if i = j on the other hand.
Strictly speaking the combined cointeraction is a function of Mi, Mj , and the Kronecker delta �ij .

Lemma 5.2 The codimension of a matrix pencil M with Kronecker structure diag(M1;M2; : : :) is
the sum of cointeractions of Mi with Mj for all combinations of i and j.

Proof The sum of the cointeractions isX
i;j

fdij � (mi � ni)(mj � nj)g = d� (m� n)2

as in Equation (10).

We must now count the number of linearly independent solutions (and the associated combined
cointeractions) to the following equations:

� XLj = LkY and XLT
j = LT

k Y

� XLj = LT
k Y and XLT

j = LkY

� XJ = LjY and XLj = JY and related structures

� XJ = JY

where J denotes the non-singular structure of the pencil.

5.1 XLj = LkY and XL
T
j = L

T
k Y

Consider the equation XLj = LkY , where X is an unknown k by j matrix and Y is an unknown
k + 1 by j + 1 matrix. This equation is equivalent to the two equations

X [0 Ij ] = [0 Ik]Y

X [Ij 0] = [Ik 0]Y;
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where 0 denotes a column of zeros. These two equations are in turn equivalent to the conditions

X�;� = Y�;� ; � = 1; : : : ; k; � = 1; : : : ; j

Y�;� = Y�+1;�+1; � = 1; : : : ; k; � = 1; : : : ; j

Y�+1;1 = Y�;j+1 = 0; � = 1; : : : ; k

If j < k there is only the trivial solution X = 0 and Y = 0. The interaction is 0, so that the
cointeraction is 0� (j � (j + 1))(k� (k + 1)) = �1.

If j � k then there are non-trivial solutions: Y can be any upper triangular Toeplitz matrix
with 1 + j � k diagonals starting from the main diagonal. X is then obtained from Y by omitting
the �rst row and column. The interaction of Lj with Lk is 1 + j � k so that the cointeraction is
(1 + j � k)� 1 = j � k.

We conclude that the combined cointeraction of Lj and Lj is 0, while if j > k then the combined
cointeraction of Lj with Lk is j � k � 1.

Taking the transpose and interchanging the roles of j and k, we see that the same result holds
for blocks of the form LT

j . We also remark that the analysis is correct even if j or k is 0.

5.2 XLj = L
T
k Y and XL

T
j = LkY

We proceed in a manner similar to the previous case. Consider the equation XLj = LT
k Y; where

X is an unknown k + 1 by j matrix and Y is an unknown k by j + 1 matrix. The equations are
equivalent to

X�;� = Y�;� ; � = 1; : : : ; k; � = 1; : : : ; j

Y�+1;� = Y�;�+1; � = 1; : : : ; k; � = 1; : : : ; j

Y�;1 = Y�;j+1 = 0; � = 1; : : : ; k

Xk+1;� = 0; � = 1; : : : ; j

This has only the trivial solution X = Y = 0 so that the interaction of Lj with LT
k is 0 and the

cointeraction is 0� (�1)(1) = 1.
A similar examination of the equation XLT

j = LkY shows that the interaction of LT
j with Lk is

j+k so the cointeraction is j+k�(1)(�1) = j+k+1. We conclude that the combined cointeraction
is j + k + 2.

5.3 Jordan Blocks and Singular Blocks

In one way, the computation involving Jordan blocks is easier since the interaction is equal to the
cointeraction. (This is true simply because the Jordan block is square.) However, we must now
allow for arbitrary eigenvalues.

Assume that Jk is a single Jordan block of size k corresponding to the �nite eigenvalue e. (We use
e here so that there is no confusion with the indeterminate �.) We consider solutions toXJk = LjY .
The reader can verify that the dimension of the space of solutions is k. Indeed the �rst row of
the j + 1 by k matrix Y can be chosen arbitrarily and this determines the remaining elements as
follows: Y�1 = Y11e

��1, X is obtained from Y by deleting the last row, and eY�;�+Y�;��1 = Y�+1;�.
An analogous, though simpler argument shows that the case of in�nite eigenvalues gives the same
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answer. (We can also resort to a M�obius transformation as well.) We conclude that the interaction
of Jk with Lj is k.

The interaction of Lj with Jk is readily shown to be 0. From the equation XLj = JkY; we can
conclude that X is obtained from Y by deleting the last column, that the last column of Y is zero,
and if the mth column of Y is 0, then so is the m� 1st column of X and hence so is the m � 1st
column of Y .

The cases XLT
j = JY and XJ = LT

j Y can be reduced to the previous cases by remembering

that if J is a Jordan block, JT = PJP where P is the permutation that renumbers indices in
backwards order. For example, the number of independent solutions to XLT

j = JY is the same as

the number of solutions to (Y TP )(PJTP ) = (LjX
TP ).

5.4 Jordan Blocks with other Jordan Blocks

Let J be the entire non-singular portion of the Kronecker structure. If we assume that there are
no in�nite eigenvalues, then the equation XJ = JY implies X = Y and we are reduced to the case
in Theorem 2.1. We remark that Theorem 2.1 tells us that there is no interaction among Jordan
blocks with di�erent eigenvalues.

We omit the tedious algebra, but it is possible to show that an in�nite eigenvalue behaves
exactly as if it were �nite. (A simpler argument would point out that we can rotate the Riemann
sphere to insure that all the eigenvalues are �nite, without changing the codimension count.) We
conclude that the combined cointeractions of the non-singular portion of the pencil is exactly as in
Theorem 2.1.

5.5 Proof of Theorem 2.2

The proof follows from the analysis of the cases presented in Sections 5.1.1 through 5.1.4.

6 Proof of Theorem 2.2 Based on the Staircase Algorithm

We begin by reviewing the staircase algorithm. The version we use has three passes. Let A��B be
an m by n matrix pencil. The �rst pass produces two sequences of numbers si and ri and returns
a pencil A0 � �B0 with no Lj blocks and no zero eigenvalues. The sequence satis�es

s0 � r0 � s1 � r1 � s2 � : : : ;

where

� si � ri = the number of Li blocks and

� ri � si+1 = the number of J0i+1 blocks.

The algorithm is as follows.
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Staircase algorithm for computing the Kronecker form for the 0 eigenvalue and Lj blocks

i = �1
Atmp = A
while Atmp not full rank

i = i+ 1

Let n0 =
Pi�1

j=0 sj and ni = n � n0 = #cols(Atmp)

Let m0 =
Pi�1

j=0 rj and mi = m�m0 = #rows(Atmp)

Compute an ni by ni unitary matrix Q whose leading si = nullity(Atmp) columns span
the right null space of Atmp

Let A = A � diag(In0 ; Q) and B = B � diag(In0 ; Q)
Btmp = B(m0 + 1 : m ; n0 + 1 : n0 + si)
Compute an mi by mi unitary matrix P whose �rst ri = rank(Btmp) rows span

the column space of Btmp

Let A = diag(Im0 ; P ) �A and B = diag(Im0 ; P ) �B
Let Atmp be the last mi � ri rows and ni � si columns of A

endwhile

It is easy to see the �nal A� �B is unitarily equivalent to the initial A��B. We illustrate the
�nal form of A� �B with the following small example:

s0 s1 s2 s3 n0

r0 0� �B00 A01 � �B01 � � �
r1 0� �B11 A12 � �B12 � �
r2 0� �B22 A23 � �B23 �
m0 A0 � �B0

On completion, the Bii blocks have full row rank, and the Ai;i+1 blocks have full column rank.
The �rst pass through the inner loop of the algorithm postmultiplies A and B by a unitary Q

so A's leading s0 = nullity(A) columns are 0, and then premultiplies A and B by a unitary P so
that B00, the leading r0 by s0 submatrix of B, is full rank, and the remaining rows of the �rst s0
columns of B are zero. We then repeat the process on the trailing m� r0 by n � s0 submatrix of
A� �B to get s1 and r1. We continue until the trailing block of A has full rank (or is null).

Just as with the Jordan form, each step of the algorithm incrementally builds a parameterization
for the set of matrices of a given Kronecker form. Each step of the algorithm restricts the Kronecker
form of the pencil to a set of higher codimension. The restrictions imposed at each step are
independent for the same reason they were in the Jordan case, so we can just add codimensions.
The increase in codimension at each step is given by Lemma 3.3, as the sum of the products of
the row and column nullities of submatrices of A and B. Speci�cally the mi by ni submatrix of
A has column nullity si, rank ni � si, row nullity mi + si � ni, and so by Lemma 3.3 codimension
(mi + si � ni)si. Similarly the codimension due to B at step i is (mi � ri)(si � ri). The �rst pass
through the algorithm determines the L and J0 blocks so that the codimension due to these blocks
is given by X

i

f(mi + si � ni)si + (mi � ri)(si � ri)g : (12)

We proceed to show that (12) is the formula given in Theorem 2.2.
For convenience we list our notation:
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mi number of rows in the lower right subpencil at step i = m�
Pi�1

k=0 rk
ni number of columns in the lower right subpencil at step i = n�

Pi�1
k=0 sk

si column nullity of Atmp at step i

ri row rank of Btmp at step i
li number of Li blocks in the original pencil
l0i number of LT

i blocks in the original pencil
ti number of J0i blocks in the original pencil
u size of the regular structure corresponding to � 6= 0.

6.1 Only left singular blocks

We begin by assuming that our pencil only contains left singular blocks. Let li denote the number
of Li blocks. It is easy to show by induction that the algorithm computes

mi =
1X
j=i

(j � i)lj

ni =
1X
j=i

(1 + j � i)lj

si =
1X
j=i

lj

ri =
1X

j=i+1

lj :

Thus for this case expression (12) evaluates to

� =
1X
i=0

li

1X
j=i+1

(j � i� 1)lj: (13)

This is exactly
P

i>j(�i � �j � 1) as in (6).

6.2 Left singular blocks and J
0 blocks

We now add the assumption that there are J0 blocks as well. Let ti be the number of J0i blocks,
i.e., Jordan blocks of size i corresponding to a zero eigenvalue. Again by induction it is possible to
show

mi =
1X
j=i

(j � i)(lj + tj)

ni = mi +
1X
j=i

lj

si =
1X
j=i

lj +
1X

j=i+1

tj

ri =
1X

j=i+1

(lj + tj):
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Now for this case Expression (12) evaluates to

� =
1X
i=0

8<
:
0
@ 1X
j=i+1

tj

1
A
0
@ 1X

j=i

lj +
1X

j=i+1

tj

1
A + li

1X
j=i+1

(j � i� 1)(lj + tj)

9=
; (14)

which can readily be manipulated to be

� = � +
1X
i=0

(
1X

j=i+1

tj)
2 +

1X
i=0

8<
:

1X
j=i

lj

1X
k=i+1

tk + li

1X
j=i+1

(j � i� 1)tj

9=
; ;

where � is the same interaction among the left singular blocks as in Equation (13). We recognize
from De�nition 3.6 that (

P1
j=i+1 tj)

2 is w2
i+1, the square of the i + 1'st Weyr characteristic of the

zero eigenvalue. From our new proof of Theorem 2.1 we know that
P1

i=0 w
2
i+1 is the codimension

due to the zero eigenvalue alone.
Lastly, we must evaluate

1X
i=0

8<
:

1X
j=i

lj

1X
k=i+1

tk + li

1X
j=i+1

(j � i� 1)tj

9=
;

=
1X
i=0

li(
iX

j=0

1X
k=j+1

tk +
1X

k=i+1

(k � i� 1)tk)

=
1X
i=0

li

8<
:

iX
k=1

k�1X
j=0

tk +
1X

k=i+1

iX
j=0

tk +
1X

k=i+1

(k � i� 1)tk

9=
;

= (
1X
i=0

li)(
1X
k=1

ktk)

= (size of Jordan structure for � = 0)(number of left singular blocks).

Therefore � = �+ g
P

i q
0
i .

6.3 Arbitrary singular blocks and arbitrary Jordan structure

We complete the �rst pass through the algorithm by de�ning l0i to denote the number of L
T
i blocks,

and u to be the size of the regular Jordan structure for � 6= 0. Thus, u =
P

i(pi � q0i ) includes the
structure for � =1 which plays no special role during the �rst pass through the algorithm.

We once again omit the details, but it is possible to show by induction that the algorithm
computes

mi = m0
i +

1X
j=0

(j + 1)l0j + u

ni = n0i +
1X
j=0

jl0j + u

si = s0i

ri = r0i ;

where the superscript 0 indicates no right singular structure and no non-zero regular structure, i.e.
as in the notation of Section 6.2.
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We now have that the codimension expression in (12) is


 = � +
1X
i=0

8<
:(

1X
j=0

l0j)(
1X
j=i

lj +
1X

j=i+1

tj) + li(
1X
j=0

(j + 1)l0j + u)

9=
; ;

where � is as in (14). With some algebraic manipulation, we obtain


 = � +
1X

i;j=0

lil
0
j(i+ j + 2) + u

1X
i=0

li + (
1X
i=0

l0i)(
1X
k=1

ktk):

The terms here are the terms


 = � +
X
i;j

(�i + �j + 2) + g
X
i

(pi � q0i ) + h
X
i

q0i :

6.4 Second and third passes through algorithm

The �rst pass through the algorithm gives us a pencil A0 � �B0, which may have only LT
j blocks

and nonzero eigenvalues. We then run the algorithm on (B0 � �A0)T , so that the indices that gave
the right singular blocks before now give the left singular blocks. The indices that described � = 0
now describe � =1. This algorithm returns a pencil with only a regular part that has no zero or
in�nite eigenvalues.

If we reinvoke the previous results, we see that the second pass through the algorithms nearly
completes the entire expression (6). The only gap isX

� 62f0;1g

(q�1 + 3q�2 + 5q�3 + : : :):

This is just the Jordan structure of the regular part other than the zero and in�nite eigenvalues.
This is covered in the third phase of the algorithm, completing the proof.

7 Examples, Observations About Genericity, and Applications
to the Waterhouse Theorems

We illustrate how these theorems may be used with a number of examples:

1. Let A be a matrix all of whose eigenvalues are �. The most generic such matrix, whose orbit
has codimension n, is a single Jordan block. The least generic such matrix, with codimension
1 + 3 + 5 + : : : = n2, i.e. dimension 0, is the single point �I .

2. Let A be a matrix with no multiple eigenvalues. The codimension of its orbit is then
P

� 1
or n. One might intuitively think of this as having speci�ed the n eigenvalues, but no other
information about the matrix. Indeed, if you do not wish to specify the value of an eigenvalue,
the correct codimension for this unspeci�ed eigenvalue is one less:

�1 + q1(�) + 3q2(�) + 5q3(�) + : : : :

In the Kronecker algorithm one sometimes speci�es that that the eigenvalues are 0, 1 or
\other". It would therefore be correct to subtract one for eigenvalues classi�ed as \other".
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3. Let the Kronecker structure of a particular 8 by 12 pencil be diag(L0; L2; L3; L3). Since this
pencil has only Lj blocks, the entire codimension is to be found in cright. It is 1 + 2 + 2 = 5.
Notice that the interactions of two Lj blocks that are equal or di�er by only one, make no
contribution to the codimension. If a pencil contains only blocks of the form L� or L�+1, the
codimension is 0. We have therefore observed

Corollary 7.1 The generic Kronecker structure for a matrix pencil with d = n �m > 0 is

diag(L�; : : : ; L�; L�+1; : : : ; L�+1);

where � = bm=dc, the total number of blocks is d, while the number of L�+1 blocks is given
by m mod d (which is 0 when d divides m).

The same statement holds when d = m�n > 0 if we replace the L� and L�+1 blocks by their
transposes. Corollary 7.1 was obtained by Van Dooren, Wilkinson, and Wonham as discussed
on page 3.55 of [13].

4. Let an n by n matrix pencil have the Kronecker structure diag(Lj ,LT
n�j�1), where 0 � j <

n. From the cSing portion of the codimension, we learn that the orbit has codimension
j + (n� j + 1) + 2 = n+ 1. If a square pencil has any singular part at all, it is fairly easy to
check that the smallest possible codimension is n + 1 and it must be of this form. We have
thus reproduced a result of Waterhouse([15]:

Corollary 7.2 The generic singular pencils of size n by n have Kronecker structures

diag(Lj; L
T
n�j�1);

where j = 0; : : : ; n� 1.

Intuitively, we might think of this as the n+1 conditions on the coe�cients of � that det(A�
�B) = 0.)

More generally, [15] has shown that if a square matrix has one Lr block and one LT
s block

and otherwise has a generic n� r� s� 1�n� r� s� 1 block (eigenvalues unspeci�ed), then
the codimension is (r+ s+2)+ 2(n� r� s� 1) = 2n� (r+ s). This too readily follows from
our results.

5. If an 11 by 12 pencil has the Kronecker form diag(L1; L
T
1 ; L3; J

1
5 ), where here J15 denotes a

single 5 by 5 Jordan block with eigenvalue 1, then cJor = 5, cRight = 1, cJor;Sing = 5�3 = 15,
and cSing = 4+ 6 = 10 giving a total codimension of 31.

6. The 0 pencil has a Kronecker structure consisting of m LT
0 blocks and n L0 blocks. The

codimension from cSing only is 2mn, i.e. the dimension is 0.
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