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Identity impersonation attacks

3

Special class of fake identities attacks: the attacker spoofs the 
identity of another real-world user.

• Damage the online image of victims & affect victims in the 
offline world!

• Impersonation attacks are increasingly easy to mount due to 
the availability of personal information online!  

celebrity impersonation attack
social engineering attack
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• Lack of understanding of impersonation attacks online!

 No large dataset about real-world impersonation attacks

• Lack of frameworks to automatically detect impersonation 
attacks online

Detection relies on manual reports
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How to determine which identities try to 
portray the same user?

How similar the profiles of two identities 
should be to qualify as portraying the 

same user? 
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How to determine if a doppelgänger pair 
is an impersonation attacks? 

victim-impersonator pair avatar-avatar pair

How to determine which identity is 
legitimate and which is an impersonator?
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Identifying doppelgänger pairs

• Identify pairs of identities that most humans believe they 
portray the same person

• Every identity has a name, location, bio and photo

• Automated rule-based matching scheme (trained on 
human-annotated data, determines when the profile 
attributes of two identities matches sufficiently)
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Identify victim-impersonator pairs
• Exploit Twitter suspension signals: when Twitter suspends 

one but not both identities

Identify avatar-avatar pairs
• Exploit interactions between identities: clear indication 

that one identity is aware of the other

 Solves challenge 3 as well!

impersonating identity = suspended identity
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• Celebrity impersonation attacks

• Purpose: exploits or maligns the reputation of the victim

• Detection: victim has more than 10,000 followers or is verified 

• Social engineering attacks 

• Purpose: abuses victim’s friends: reveal sensitive info, send 
money

• Detection: attacker contacts victim’s friends

Types of impersonation 
attacks

12

3% (in the random dataset)

2% (in the random dataset)

Most impersonation attacks do not target 
celebrities or try to mount social 

engineering attacks!

What is possibly motivating the attackers?
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Doppelgänger bot attacks 
hypothesis

13

H1:  The attackers create these identities to abuse Twitter (and 
not the victims)

H2:  The attackers attempt to create real-looking fake identities 
to evade the Twitter Sybil defense system

doppelgänger bot attacks
= doppelgänger pair! 
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H1:  The attackers create these identities to abuse Twitter 
(and not the victims)

Evidence:

• Large number of impersonators follow the same users

• The users they follow are suspected of having bought fake 
followers (http://trulyfollowing.app-ns.mpi-sws.org/)

follower fraud

http://trulyfollowing.app-ns.mpi-sws.org/
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H2: Attackers create real-looking fake identities to evade the 
Twitter Sybil defense system 

Evidence:

• Twitter took in median 278 days to suspend the impersonating 
identities

• Other traditional Sybil detection schemes perform badly

Can we do something to detect 
impersonating identities faster?
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SVM classifier to distinguish between victim-impersonator pairs 
and avatar-avatar pairs

• Training and testing: 

• labeled doppelgänger pairs from our dataset 

• Features that characterize pairs of identities: 

• user-names, screen-names, location, profile photos, bios, 
interest similarity; number of common followers, followings, 
users mentioned, and retweeted; time difference between 
creation dates, first and last tweets, outdated account

detects 

90% of victim-impersonator pairs

80% of avatar-avatar pairs 

at less than 5% false positive rate
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RANDOM DATASET BFS DATASET

doppelgänger pairs 18,662 35,642

victim-impersonator pairs 166 16,408

avatar-avatar pairs 2,010 1,629

unlabeled pairs 16,489 17,605

detected victim-
impersonator pairs

1,863 9,031

detected avatar-avatar 
pairs

4,390 4,964

one year later 50% were suspended!
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• First study to characterize and detect identity impersonation 
attacks online

• Method to gather real-world large-scale data about 
impersonation attacks

• Beside celebrity impersonators and social engineering attacks 
there are doppelgänger bot attacks

• Attackers target a wide range of users, anyone can be a 
victim!

• Method to automatically detect impersonation attacks online



Questions?



Backup slides
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• Victim-impersonator pairs have more similar profile attributes 
• Victim-impersonator pairs have no social neighborhood overlap
• Bigger time difference between accounts creation date in 

victim-impersonator pairs



Doppelgänger bot attacks:
characterization
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Who are the victims? Who are the attackers?

How popular?  73 followers
60 followers* 
*lower than victims, higher 
than random

How influential? 40% victims appear in lists 0% attacker appear in lists

How old? October 2010 June 2013

How active?
181 tweets* 
*0 for random users, 20 for 
random users with one post

100 tweets* 
higher numbers of retweets, 
favorite and followings but 
not excessive


