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What you will learn today

The Dot Product

The Cross Product

Equations of Lines and Planes
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Definitions:
1. ~a : 〈a1, a2, a3〉, ~b : 〈b1, b2, b3〉, ~a · ~b := a1b1 + a2b2 + a3b3.
2. ~a · ~b = |~a||~b|cosθ.
The two definitions are equivalent.
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Corollary

θ = arccos
~a · ~b
|~a||~b|

Corollary

Two non zero vectors ~a and ~b are perpendicular iff ~a · ~b = 0.
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0 ≤ θ < π
2 iff ~a and ~b points in the same general direction iff

~a · ~b > 0.
π
2 < θ ≤ π < iff ~a and ~b points in the opposite general direction iff

~a · ~b < 0.
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Direction angles of a non zero ~a are the angles α, β, γ that ~a
makes with the positive x,y,z-axes.
The cosines of cosα, cosβ, cosγ are the direction cosines.

For ~a : 〈a1, a2, a3〉, cosα = ~a·~i
|~a|~i ||

= a1
|a| .

cosβ = a2
|~a| . cosγ = a3

|~a| .
Therefore we have the convenient relation:

~a = |~a|〈cosα, cosβ, cosγ〉

〈cosα, cosβ, cosγ〉 is a unit vector in the same direction as ~a.
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Example

Find the direction angles of ~a = 〈1, 2, 3〉.
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Proj~a~b: the vector projection of ~b along the direction of ~a. (also
called shadow of ~b along ~a).
Comp~a~b: the signed magnitude of Proj~a~b. Called the scalar
projection, or component of ~b along ~a.

Comp~a~b = |b|cosθ =
~a · ~b
|~a|

Proj~a~b = Comp~a~b
~a

|~a|
=

(~a · ~b)~a

|~a|2
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Example

~a = 〈−2, 3, 1〉, ~b = 〈1, 1, 2〉, find Comp~a~b, Proj~a~b.
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Application: Calculating work,

W = ~F · ~D = |~F ||~D|cosθ
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The cross product ~a× ~b is a vector,
Definition:
1, ~a× ~b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.
2, ~a× ~b is orthogonal to both ~a and ~b, with direction determined
by the right hand rule. The magnitude |~a× ~b| = |~a||~b|sinθ.
The cross product is only defined for three-dimensional vectors.
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Easier way to remember: ∣∣∣∣∣∣
~i ~j ~k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
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Example

If ~a = 〈1, 3, 4〉, ~b = 〈2, 7,−5〉, find ~a× ~b.
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Two non zero vectors ~a and ~b are parallel to iff ~a× ~b = 0.
The magnitude of the product ~a× ~b is equal to the area of the
parallelogram determined by ~a and ~b.
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Find a vector perpendicular to the plane that passes through the
points P(1,4,6), Q(-2,5,-1) and R(1,-1,1). Find the area of the
triangle with vertices P, Q and R.
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~i ×~j = ~k , ~j × ~k =~i , ~k ×~i =~j .
If general, ~a× ~b = −~b ×~a.
(~a× ~b)× ~c 6= ~a× (~b × ~c).
~a · (~b × ~c) = (~a× ~b) · ~c .
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~a · (~b × ~c) is called the scalar triple product:∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
Its geometric significance is that |~a · (~b × ~c)| is the volume of the
parallelepiped determined by ~a, ~b and ~c .
If however the volume is 0, then ~a, ~b and ~c are coplanar.
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Show the vectors ~a = 〈1, 4,−7〉, ~b = 〈2,−1, 4, 〉 and
~c = 〈0,−9, 18〉 are coplanar.
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Application: The torque (relative to the origin) is defined as the
cross product of the position and force vectors:
~τ = ~r × ~F
measures the tendency of the body to rotate about the origin. The
direction indicates the axis of rotation(its orientation).
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A line L in three dimensional space is determined by a point on the
line and its direction:

~r = ~r0 + t~v

where t is a parameter. This is called the vector equation for L. As
t varies, the line is traced out by the tip of the vector ~r .
We can also write

〈x , y , z〉 = 〈x0 + ta, y0 + tb, z0 + tc

or
x = x0 + ta, y = y0 + tb, z = z0 + tc

which is called the parametric form.
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Example

Find a vector equation and parametric equation for the line that
passes through the point P(5,1,3) and is parallel to the vector
〈1, 4,−2〉.
Find two other points on the line.
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If a vector ~v = 〈a, b, c〉 is used to describe the direction of a line L,
then the numbers a, b and c are called direction numbers of L. Any
vector parallel to ~v can also be used.
If none of a,b or c is 0, we can solve each equation for t and
equate them:

x − x0
a

=
y − y0

b
=

z − z0
c

which is called the symmetric equations for L. The direction
numbers just appear on the denominators.
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Example

Find symmetric equations of the line that passes through the
points A(2,4,-3) and B(3,-1,1).
At what point does this line intersect the xy-plane?
Hint: consider

x − x0
x1 − x0

=
y − y0
y1 − y0

=
z − z0
z1 − z0
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A line segment from ~r0 to ~r1 is given by the vector equation

~r(t) = (1− t)~r0 + t~r1, 0 ≤ t ≤ 1

The lines not intersecting and not parallel are called skew lines.
Show L0 : x = 1 + t, y = −2 + 3t, z = 4− t and
L1 : x = 2s, y = 3 + s, z = −3 + 4s are skew lines.
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A plane in three dimensional space is determined by a point in the
plane and a vector ~n perpendicular to the plane. ~n is called the a
normal vector.
Vector equation:

~n · (~r − ~r0) = 0

or
~n ·~r = ~n · ~r0

Scalar equation:

〈a, b, c〉 · 〈x − x0, y − y0, z − z0〉 = 0

Write d = −(ax0 + by0 + cz0), then we have linear equation
ax + by + cz + d = 0.
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1. Find an equation of the plane that passes through the points
P(1,3,2), Q(3,-1,6) and R(5,2,0).
2. Find the point where the line x = 2 + 3t, y = −4t, z = 5 + t
intersects the plane 4x + 5y − 2z = 18.
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Two planes are parallel iff their normal directions are parallel. If
they are no parallel, they intersect in a line. The angles between
two planes is the acute angle between their normal vectors.
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Find the angle between the planes x + y + z = 1 and
x − 2y + 3z = 1.
Find symmetric equations for the line of intersection of the two
planes.
Note: A pair of two linear equations represent a line, we can view
the symmetric equations as a two linear equations.
Find the distance from a point (x1, y1, z1) to the plane
ax + by + cz + d = 0.
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1. Find the distance between two planes 10x + 2y − 2z = 5 and
5x + y − z = 1.
2. Find the distance between the skew lines
L0 : x = 1 + t, y = −2 + 3t, z = 4− t and
L1 : x = 2s, y = 3 + s, z = −3 + 4s.
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What you have learned today
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