What you will learn today

- The Dot Product
- The Cross Product
- Equations of Lines and Planes

The Cross Product Proj	ection angles and Direction cosines
------------------------	-------------------------------------

Definitions:

1. $\vec{a} : \langle a_1, a_2, a_3 \rangle, \vec{b} : \langle b_1, b_2, b_3 \rangle, \vec{a} \cdot \vec{b} := a_1 b_1 + a_2 b_2 + a_3 b_3.$ 2. $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta.$

The two definitions are equivalent.

The Dot Product The Cross Product Lines and Planes	Direction angles and Direction cosines Projections
Lines and Planes	

Corollary

$$heta = \arccos rac{ec{a} \cdot ec{b}}{ec{a} ec{b} ec{b}}$$

Corollary

Two non zero vectors \vec{a} and \vec{b} are perpendicular iff $\vec{a} \cdot \vec{b} = 0$.

 $0 \le \theta < \frac{\pi}{2}$ iff \vec{a} and \vec{b} points in the same general direction iff $\vec{a} \cdot \vec{b} > 0$. $\frac{\pi}{2} < \theta \le \pi < \text{iff } \vec{a} \text{ and } \vec{b}$ points in the opposite general direction iff $\vec{a} \cdot \vec{b} < 0$.

Direction angles of a non zero \vec{a} are the angles α, β, γ that \vec{a} makes with the positive x,y,z-axes.

The cosines of $cos\alpha$, $cos\beta$, $cos\gamma$ are the direction cosines.

For \vec{a} : $\langle a_1, a_2, a_3 \rangle$, $\cos \alpha = \frac{\vec{a} \cdot i}{|\vec{a}|\vec{i}||} = \frac{a_1}{|\vec{a}|}$. $\cos\beta = \frac{a_2}{|\vec{a}|}$. $\cos\gamma = \frac{a_3}{|\vec{a}|}$. Therefore we have the convenient relation:

 $\vec{a} = |\vec{a}| \langle \cos\alpha, \cos\beta, \cos\gamma \rangle$

 $(\cos\alpha, \cos\beta, \cos\gamma)$ is a unit vector in the same direction as \vec{a} .

The Dot Product	Direction angles and Direction cosines
The Cross Product Lines and Planes	Projections

Example

Find the direction angles of $\vec{a} = \langle 1, 2, 3 \rangle$.

The Dot Product The Cross Product Lines and Planes	Direction angles and Direction cosines Projections
Lines and Fianes	

 $Proj_{\vec{a}}\vec{b}$: the vector projection of \vec{b} along the direction of \vec{a} . (also called shadow of \vec{b} along \vec{a}). $Comp_{\vec{a}}\vec{b}$: the signed magnitude of $Proj_{\vec{a}}\vec{b}$. Called the scalar projection, or component of \vec{b} along \vec{a} .

$$Comp_{\vec{a}}\vec{b} = |b|cos heta = rac{ec{a}\cdot b}{|ec{a}|}$$
 $Proj_{ec{a}}\vec{b} = Comp_{ec{a}}ec{b}rac{ec{a}}{|ec{a}|} = rac{(ec{a}\cdotec{b})ec{a}}{|ec{a}|^2}$

Direction angles and Direction cosines Projections

Example

$$\vec{a} = \langle -2, 3, 1 \rangle$$
, $\vec{b} = \langle 1, 1, 2 \rangle$, find $Comp_{\vec{a}}\vec{b}$, $Proj_{\vec{a}}\vec{b}$.

Application: Calculating work,

$$W = \vec{F} \cdot \vec{D} = |\vec{F}| |\vec{D}| cos \theta$$

The cross product $\vec{a} \times \vec{b}$ is a vector, Definition:

1,
$$\vec{a} \times \vec{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$
.

2, $\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b} , with direction determined by the right hand rule. The magnitude $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|sin\theta$. The cross product is only defined for three-dimensional vectors.

Easier way to remember:

$$egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array}$$

< □ > < 6

Example

If
$$\vec{a} = \langle 1, 3, 4 \rangle$$
, $\vec{b} = \langle 2, 7, -5 \rangle$, find $\vec{a} \times \vec{b}$.

Two non zero vectors \vec{a} and \vec{b} are parallel to iff $\vec{a} \times \vec{b} = 0$. The magnitude of the product $\vec{a} \times \vec{b}$ is equal to the area of the parallelogram determined by \vec{a} and \vec{b} .

Find a vector perpendicular to the plane that passes through the points P(1,4,6), Q(-2,5,-1) and R(1,-1,1). Find the area of the triangle with vertices P, Q and R.

$$\vec{i} \times \vec{j} = \vec{k}, \ \vec{j} \times \vec{k} = \vec{i}, \ \vec{k} \times \vec{i} = \vec{j}.$$

If general, $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}.$
 $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c}).$
 $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}.$

$\vec{a} \cdot (\vec{b} \times \vec{c})$ is called the scalar triple product:

$$\begin{array}{rrrr} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array}$$

Its geometric significance is that $|\vec{a} \cdot (\vec{b} \times \vec{c})|$ is the volume of the parallelepiped determined by \vec{a} , \vec{b} and \vec{c} . If however the volume is 0, then \vec{a} , \vec{b} and \vec{c} are coplanar.

Show the vectors $\vec{a} = \langle 1, 4, -7 \rangle$, $\vec{b} = \langle 2, -1, 4, \rangle$ and $\vec{c} = \langle 0, -9, 18 \rangle$ are coplanar.

Application: The torque (relative to the origin) is defined as the cross product of the position and force vectors: $\vec{\tau} = \vec{r} \times \vec{F}$

measures the tendency of the body to rotate about the origin. The direction indicates the axis of rotation(its orientation).

The Dot Product	Lines
The Cross Product	Diamag
Lines and Planes	Planes

A line L in three dimensional space is determined by a point on the line and its direction:

$$\vec{r} = \vec{r_0} + t\vec{v}$$

where t is a parameter. This is called the vector equation for L. As t varies, the line is traced out by the tip of the vector \vec{r} . We can also write

$$\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc$$

or

$$x = x_0 + ta, y = y_0 + tb, z = z_0 + tc$$

which is called the parametric form.

Lines Planes

Example

Find a vector equation and parametric equation for the line that passes through the point P(5,1,3) and is parallel to the vector (1, 4, -2).Find two other points on the line.

If a vector $\vec{v} = \langle a, b, c \rangle$ is used to describe the direction of a line L, then the numbers a, b and c are called direction numbers of L. Any vector parallel to \vec{v} can also be used. If none of a,b or c is 0, we can solve each equation for t and

equate them:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

which is called the symmetric equations for L. The direction numbers just appear on the denominators.

The Dot Product	Lines
The Cross Product	Diamor
Lines and Planes	Planes

Example

Find symmetric equations of the line that passes through the points A(2,4,-3) and B(3,-1,1). At what point does this line intersect the xy-plane? Hint: consider

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

A line segment from $\vec{r_0}$ to $\vec{r_1}$ is given by the vector equation

$$\vec{r}(t) = (1-t)\vec{r}_0 + t\vec{r}_1, 0 \le t \le 1$$

The lines not intersecting and not parallel are called skew lines. Show $L_0: x = 1 + t, y = -2 + 3t, z = 4 - t$ and $L_1: x = 2s, y = 3 + s, z = -3 + 4s$ are skew lines.

The Dot Product	Lines
The Cross Product	Dianas
Lines and Planes	Planes

A plane in three dimensional space is determined by a point in the plane and a vector \vec{n} perpendicular to the plane. \vec{n} is called the a normal vector.

Vector equation:

$$\vec{n}\cdot(\vec{r}-\vec{r_0})=0$$

or

$$\vec{n}\cdot\vec{r}=\vec{n}\cdot\vec{r_0}$$

Scalar equation:

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

Write $d = -(ax_0 + by_0 + cz_0)$, then we have linear equation ax + by + cz + d = 0.

Lines Planes	
	Lines Planes

Find an equation of the plane that passes through the points P(1,3,2), Q(3,-1,6) and R(5,2,0).
 Find the point where the line x = 2 + 3t, y = -4t, z = 5 + t intersects the plane 4x + 5y - 2z = 18.

The Dot Product	Lines
The Cross Product	Dianas
Lines and Planes	Planes

Two planes are parallel iff their normal directions are parallel. If they are no parallel, they intersect in a line. The angles between two planes is the acute angle between their normal vectors.


```
Find the angle between the planes x + y + z = 1 and
x - 2y + 3z = 1.
```

Find symmetric equations for the line of intersection of the two planes.

Note: A pair of two linear equations represent a line, we can view the symmetric equations as a two linear equations.

```
Find the distance from a point (x_1, y_1, z_1) to the plane
ax + by + cz + d = 0.
```


The Dot Product	Lines
The Cross Product	Dianas
Lines and Planes	Planes

1. Find the distance between two planes 10x + 2y - 2z = 5 and 5x + y - z = 1. 2. Find the distance between the skew lines $L_0: x = 1 + t, y = -2 + 3t, z = 4 - t$ and $L_1: x = 2s, y = 3 + s, z = -3 + 4s.$

Lines Planes

What you have learned today

- The Dot Product
- The Cross Product
- Equations of Lines and Planes

