What you will learn today

- The Dot Product
- The Cross Product
- Equations of Lines and Planes

Definitions:

1. $\vec{a}:\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}:\left\langle b_{1}, b_{2}, b_{3}\right\rangle, \vec{a} \cdot \vec{b}:=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
2. $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.

The two definitions are equivalent.

Corollary

$$
\theta=\arccos \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Corollary

Two non zero vectors \vec{a} and \vec{b} are perpendicular iff $\vec{a} \cdot \vec{b}=0$.
$0 \leq \theta<\frac{\pi}{2}$ iff \vec{a} and \vec{b} points in the same general direction iff $\vec{a} \cdot \vec{b}>0$.
$\frac{\pi}{2}<\theta \leq \pi<$ iff \vec{a} and \vec{b} points in the opposite general direction iff $\vec{a} \cdot \vec{b}<0$.

Direction angles of a non zero \vec{a} are the angles α, β, γ that \vec{a} makes with the positive $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axes.
The cosines of $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines.
For $\vec{a}:\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \cos \alpha=\frac{\vec{a} \cdot \vec{i}}{|\vec{a}| \vec{i} \mid}=\frac{a_{1}}{|a|}$.
$\cos \beta=\frac{a_{2}}{|\vec{a}|} \cdot \cos \gamma=\frac{a_{3}}{|\vec{a}|}$.
Therefore we have the convenient relation:

$$
\vec{a}=|\vec{a}|\langle\cos \alpha, \cos \beta, \cos \gamma\rangle
$$

$\langle\cos \alpha, \cos \beta, \cos \gamma\rangle$ is a unit vector in the same direction as \vec{a}.

Example

Find the direction angles of $\vec{a}=\langle 1,2,3\rangle$.
$\operatorname{Proj}_{\vec{a}} \vec{b}$: the vector projection of \vec{b} along the direction of \vec{a}. (also called shadow of \vec{b} along \vec{a}).
$\operatorname{Comp}_{\vec{a}} \vec{b}$: the signed magnitude of $\operatorname{Proj}_{\vec{a}} \vec{b}$. Called the scalar projection, or component of \vec{b} along \vec{a}.

$$
\begin{gathered}
\operatorname{Comp}_{\vec{a}} \vec{b}=|b| \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \\
\operatorname{Proj}_{\vec{a}} \vec{b}=\operatorname{Comp}_{\vec{a}} \vec{b} \vec{b}|\vec{a}| \\
|\vec{a}| \vec{b}) \vec{a} \\
|\vec{a}|^{2}
\end{gathered}
$$

Example

$\vec{a}=\langle-2,3,1\rangle, \vec{b}=\langle 1,1,2\rangle$, find $\operatorname{Comp}_{\vec{a}} \vec{b}, \operatorname{Proj}_{\vec{a}} \vec{b}$.

Application: Calculating work,

$$
W=\vec{F} \cdot \vec{D}=|\vec{F}||\vec{D}| \cos \theta
$$

The cross product $\vec{a} \times \vec{b}$ is a vector, Definition:
$1, \vec{a} \times \vec{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle$.
$2, \vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b}, with direction determined
by the right hand rule. The magnitude $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$.
The cross product is only defined for three-dimensional vectors.

Easier way to remember:

$$
\left|\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Example

If $\vec{a}=\langle 1,3,4\rangle, \vec{b}=\langle 2,7,-5\rangle$, find $\vec{a} \times \vec{b}$.

Two non zero vectors \vec{a} and \vec{b} are parallel to iff $\vec{a} \times \vec{b}=0$. The magnitude of the product $\vec{a} \times \vec{b}$ is equal to the area of the parallelogram determined by \vec{a} and \vec{b}.

Find a vector perpendicular to the plane that passes through the points $P(1,4,6), Q(-2,5,-1)$ and $R(1,-1,1)$. Find the area of the triangle with vertices P, Q and R.
$\vec{i} \times \vec{j}=\vec{k}, \vec{j} \times \vec{k}=\vec{i}, \vec{k} \times \vec{i}=\vec{j}$.
If general, $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$.
$(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$.
$\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}$.
$\vec{a} \cdot(\vec{b} \times \vec{c})$ is called the scalar triple product:

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Its geometric significance is that $|\vec{a} \cdot(\vec{b} \times \vec{c})|$ is the volume of the parallelepiped determined by \vec{a}, \vec{b} and \vec{c}.
If however the volume is 0 , then \vec{a}, \vec{b} and \vec{c} are coplanar.

Show the vectors $\vec{a}=\langle 1,4,-7\rangle, \vec{b}=\langle 2,-1,4$,$\rangle and$ $\vec{c}=\langle 0,-9,18\rangle$ are coplanar.

Application: The torque (relative to the origin) is defined as the cross product of the position and force vectors:
$\vec{\tau}=\vec{r} \times \vec{F}$
measures the tendency of the body to rotate about the origin. The direction indicates the axis of rotation(its orientation).

A line L in three dimensional space is determined by a point on the line and its direction:

$$
\vec{r}=\overrightarrow{r_{0}}+t \vec{v}
$$

where t is a parameter. This is called the vector equation for L. As t varies, the line is traced out by the tip of the vector \vec{r}.
We can also write

$$
\langle x, y, z\rangle=\left\langle x_{0}+t a, y_{0}+t b, z_{0}+t c\right.
$$

or

$$
x=x_{0}+t a, y=y_{0}+t b, z=z_{0}+t c
$$

which is called the parametric form.

Example

Find a vector equation and parametric equation for the line that passes through the point $P(5,1,3)$ and is parallel to the vector $\langle 1,4,-2\rangle$.
Find two other points on the line.

If a vector $\vec{v}=\langle a, b, c\rangle$ is used to describe the direction of a line L, then the numbers a, b and c are called direction numbers of L. Any vector parallel to \vec{v} can also be used.
If none of a, b or c is 0 , we can solve each equation for t and equate them:

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

which is called the symmetric equations for L. The direction numbers just appear on the denominators.

Example

Find symmetric equations of the line that passes through the points $A(2,4,-3)$ and $B(3,-1,1)$. At what point does this line intersect the $x y$-plane?
Hint: consider

$$
\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{y-y_{0}}{y_{1}-y_{0}}=\frac{z-z_{0}}{z_{1}-z_{0}}
$$

A line segment from $\overrightarrow{r_{0}}$ to $\overrightarrow{r_{1}}$ is given by the vector equation

$$
\vec{r}(t)=(1-t) \vec{r}_{0}+t \vec{r}_{1}, 0 \leq t \leq 1
$$

The lines not intersecting and not parallel are called skew lines. Show $L_{0}: x=1+t, y=-2+3 t, z=4-t$ and $L_{1}: x=2 s, y=3+s, z=-3+4 s$ are skew lines.

A plane in three dimensional space is determined by a point in the plane and a vector \vec{n} perpendicular to the plane. \vec{n} is called the a normal vector.
Vector equation:

$$
\vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)=0
$$

or

$$
\vec{n} \cdot \vec{r}=\vec{n} \cdot \overrightarrow{r_{0}}
$$

Scalar equation:

$$
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

Write $d=-\left(a x_{0}+b y_{0}+c z_{0}\right)$, then we have linear equation $a x+b y+c z+d=0$.

1. Find an equation of the plane that passes through the points $P(1,3,2), Q(3,-1,6)$ and $R(5,2,0)$.
2. Find the point where the line $x=2+3 t, y=-4 t, z=5+t$ intersects the plane $4 x+5 y-2 z=18$.

Two planes are parallel iff their normal directions are parallel. If they are no parallel, they intersect in a line. The angles between two planes is the acute angle between their normal vectors.

Find the angle between the planes $x+y+z=1$ and $x-2 y+3 z=1$.
Find symmetric equations for the line of intersection of the two planes.
Note: A pair of two linear equations represent a line, we can view the symmetric equations as a two linear equations.
Find the distance from a point $\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$.

1. Find the distance between two planes $10 x+2 y-2 z=5$ and $5 x+y-z=1$.
2. Find the distance between the skew lines
$L_{0}: x=1+t, y=-2+3 t, z=4-t$ and
$L_{1}: x=2 s, y=3+s, z=-3+4 s$.

What you have learned today

- The Dot Product
- The Cross Product
- Equations of Lines and Planes

