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ABSTRACT

We report on the dynamic behavior of gradient-driven drift waves in a strongly obstructed magnetron discharge. The magnetron has a
magnetic topology that results in a toroidal plasma within the gap and supports the development of very coherent modes of rotating plasma
structures. The modes and their rotation are present over a wide range of conditions, and the rotation is retrograde to the usual externally
imposed E � B direction. This feature seems to be unique to this device and is attributed to a field reversal due to the strong anode-directed
electron diffusion that arises from large axial plasma density gradients. A multi-fluid model is proposed, and a Fourier analysis of the
linearized equations results in the identification of conditions that support the growth of these instabilities and their transitions across mode
symmetries, controlled experimentally by varying the discharge voltage. The model also provides insight on the possible mechanism driving
cross-field particle transport. Experiments are carried out with a segmented anode to confirm the localized current flow concomitant with
the presence of a coherent structure. These segment currents together with high speed videography unambiguously confirm the direction of
plasma rotation and reveal the existence of a stochastic regime between voltage-controlled mode transitions. An analysis of the segment
currents in this regime indicates that the lower frequency state decays into a spectrum of coherent higher frequency states that exhibit
features consistent with a three-wave nonlinear parametric mixing process.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006320

I. INTRODUCTION

Magnetron and Penning discharge configurations form plasmas
in the regions of perpendicular electric and magnetic (E � B) fields.
Renewed interest in the study of such discharges is due in part to
material deposition methods that involve high power impulse mag-
netron sputtering (HPIMS)1 and to Hall effect thrusters2 used in
space propulsion to control geosynchronous satellites and future
lower earth orbit constellations.3 In most practical devices, spatial
gradients exist in the plasma properties driven by kinetic, electro-
static, and magnetostatic pressure. The gradients in confined plasmas
provide an inevitable source of instability, hence the name “universal
instabilities.”4 Drift-wave instabilities in magnetron discharges,

driven by gradients in density and magnetic field, are a subset
of these universal instabilities under conditions of magnetic field
confinement.5

The first analytical description of drift-wave instabilities in a
partially ionized, collisional, and fully magnetized plasma is gener-
ally attributed to Simon and Hoh.6,7 The mechanism that drives
the Simon–Hoh instability (SHI) is the formation of an electric
field that is orthogonal to the external E � B direction due to the
disparity in electron and ion drift velocities. This is because the ion
drift velocity is reduced relative to that of the electrons by the
higher ion-neutral friction. However, most laboratory and commer-
cial plasmas are only partially magnetized; i.e., the electrons are
magnetized and confined with a gyroradius that is smaller than the
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characteristic scale of the discharge (ρe � Lc), whereas the ions,
being much heavier, have a large gyroradius (ρi � Lc) and escape
the plasma region in the direction of the electric field. The SHI
mechanism was modified for the case of non-magnetized ions and
a collisionless plasma8 although with the disparity in magnetization
of ions and electrons (and not friction) as the cause for the forma-
tion of the out of plane (E � B-directed) electrostatic field. In both
the SHI and the modified-SHI (MSHI), the necessary condition
for the formation of the instability, in the presence of a uniform
magnetic field, is that the applied electric field must be in the same
direction of the density gradient (∇ne � E0 . 0). Evidence that the
instability is related to the disparate confinement of electrons and
ions is the observation that the frequency of instabilities is of the
order of the inverse of the transient-time of the ions in the plasma
region as they are accelerated outward.

Drift-wave instabilities in some E � B discharges exhibit spatial
and temporal coherence characteristics of self-organization.9–12 This
self-organization, rendered unstable by gradients in the plasma
density or the magnetic field as discussed above, appears to be
further destabilized by the diffusion of plasma along the magnetic
field.13 For example, we have reported strong coherence and self-
organization in a direct current (DC) magnetron microdischarge.14,15

From high speed videography of the plasma emission, the observed
structures appear to propagate in the �E � B direction, opposite to
what has been generally reported in HiPIMS sources,16–18 although
in some circumstances,19 the coherent structures in HiPIMS also
appear to reverse in their direction.

In a recent paper,20 we showed that the azimuthally propagat-
ing coherent structures in our small magnetron also undergo dis-
tinct mode transitions, with higher order modes favored at a lower
discharge voltage. In that study, we presented the results of a
gradient-driven drift-wave model similar to that developed to
understand low frequency disturbances seen in Hall thrusters.21,22

The model included plasma diffusion along the magnetic field,
expanding the domain of instability. We showed that the model
can account for the dispersion seen in our experiments but pre-
sumes that a field reversal is present within the gap, due to the
necessity to restrict an anode-directed electron flux associated with
the high plasma density gradients. Field reversals are commonly
seen in simulations of Hall thrusters23,24 and have been proposed
to explain transient behavior25 and enhanced ion back-flow26 in
HiPIMS sources.

In this paper, we describe the theory in detail and formulate
perturbations of the fluid equations to factor out non-linear terms
for future numerical simulations. Through linearization and a
Fourier analysis, we derive the dispersion relations and show that
the transitions between modes are determined by the local field-
strength, which is expected to be controlled by the externally
applied discharge gap voltage. Experimentally, we replaced our
usual solid anode with a segmented and transparent anode. With
coincident high speed videography, the time-dependent anode
segment currents allow us to unambiguously confirm the mode
and direction of the rotating, self-organized coherent structures.
Interestingly, the segmented anode current data reveal the existence
of a stochastic regime between voltage-controlled mode transitions.
An analysis of the segment currents in this regime indicates that
the lower frequency coherent state decays into a spectrum of higher

frequency states that exhibit features consistent with a three-wave
parametric mixing process.

The paper is presented as follows. In Sec. II, we describe
the experimental setup. In Sec. III, we lay out the equations for the
fluid model, with perturbation analysis, linearization, and the cor-
responding Fourier analysis giving rise to the dispersion relation
for the linear modes. In Sec. IV, we describe the process of growth
and formation of coherent instabilities by studying the dispersion
relation for base conditions typical of our experiments. Then, we
describe the experimental results and make comparisons to the
model predictions. We also examine the role played by the drift-
wave driven fluctuations in establishing the cross-field transport. In
Sec. V, we discuss the observed dispersion and the dynamical
behavior between coherent modes, in particular, those cases that
show a clear evidence of three-wave interactions. Finally, in Sec. VI,
we draw conclusions and make suggestions for future work.

II. EXPERIMENTAL SETUP

With the exception of the anode segments, the experimental
facility is similar to that described previously.20 A schematic is pre-
sented in Fig. 1. The main body of the small magnetron discharge
consists of a 17mm diameter samarium–cobalt (SmCo) permanent
ring magnet with an iron (Fe) core. The magnet is covered and pro-
tected by a 120 μm thick graphite cathode. Graphite was selected for
its low sputter yield. The generated magnetic field topology is simu-
lated with a finite element solver27 and is shown overlaid (as field
lines and color are mapped for magnitude) on the discharge gap in
the figure. The toroidal field is uniform in the azimuthal direction
but varies strongly between the powered cathode and grounded
anode. The maximum field at the cathode is approximately 1 T,
falling to a 0.5 T halfway between the electrodes. This produces an
axial field gradient @B0=@x � 0.5 Tmm�1 or a characteristic field
decay length LB ¼ @(lnB0=@x)

�1 � 0:5 mm. Gradients along the
radial direction are comparable to those along the axis, a condition
which holds in the presence of the discharge current densities
(J � 103 A=m2) encountered in our experiments.

The plasma forms as a toroid between the graphite cathode
and a transparent, segmented, indium tin oxide (ITO) anode, close
to where the field is the strongest near the boundary between the
underlying iron core and SmCo ring magnet. In this region, the
B-field lines are largely radial in their direction and eventually ter-
minate directly on the graphite cathode. The transparent anode
provides a direct optical access for high speed videography of the
dynamics inferred from spectrally integrated plasma emission.
Nevertheless, the anode is inevitably covered due to sputtering at
the cathode surface, thus limiting the operation to only a few
minutes before the ITO anode needs to be replaced. When viewed
by the naked eye, the plasma appears to be quiescent, and ring-
shaped, with the most luminous region closer to the cathode.20

While recording anode segment currents, a high framing rate
intensified CCD camera (Cordin, Model 222C-16UV) captures
time-varying plasma emission through the ITO anode, as shown in
the example frame at the top right of the figure. The camera can
capture as many as 16 successive frames with exposure times of
0:5 μs and at a framing rate as high as 2.7 MHz. As shown in the
representative camera frame, the anode is segmented into four
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regions. Three smaller segments (45� apart) are used, together with
the recorded high speed videos to discern the general plasma struc-
ture shape, the disturbance wavenumber, and the frequency. The
current through the remaining fourth segment, together with the
smaller three segments, is combined to provide a measure of the
total discharge current. A 10 kΩ ballast resistor is used to limit the
current flow in the discharge (the left-hand side in Fig. 1), while
four small shunt resistors are used to measure current fluctuating
through the segments. In Fig. 1, an example of the segment current
traces is given for the m ¼ 3 coherent mode depicted in the camera
frame shown (here, m ¼ kyR0, with ky being the azimuthal wave-
number of the disturbance and R0 being the plasma radius). The
values of the shunt resistors are sized so that the potential is
uniform on the anode surface. The magnetron discharge operates
in a vacuum chamber with argon as the working gas, controlled in
pressure to 150 mTorr for all the data presented in this work. The
discharge gap size is typically 2 mm.

III. DRIFT-WAVE INSTABILITY MODEL

The model used to interpret the dynamical behavior of the
plasma starts from a two-fluid description similar to that of Perez
et al.13 Externally applied electric and magnetic fields that act on
the fluids are assumed to be static, and field coupling between the
fluids is through an assumption of quasi-neutrality. The equations
are perturbed, linearized, and Fourier analyzed to obtain the dis-
persion relation that governs azimuthal disturbances. In the
model’s implementation, we unfold the annular geometry of the
magnetron to a Cartesian coordinate system (see Fig. 2). The axial
electric field arising due to the externally applied voltage is Ex
(x -direction, positive from anode to cathode), and the magnetic
field, Bz , is taken to be primarily along the z-direction (radially
inward). The background, undisturbed plasma is assumed to be

uniform in the azimuthal direction, which is the y-direction in the
unfolded Cartesian coordinate frame, and contains a plasma
density (n0) and magnetic field gradients along the x-direction, as
illustrated qualitatively in Fig. 2. We presume that the strongest
ionization and emission occur just beyond the cathode fall where
plasma density gradients produce a field reversal, Ex , 0, driving
ions toward the anode. An analogous reverse ion migration was
measured by laser induced fluorescence in the near anode region of
Hall thrusters.28

FIG. 1. Schematic of the setup. A
graphite cathode covers and protects
the magnet. The plasma emission is
inspected through a transparent, seg-
mented anode by a high speed
camera. The representative discharge
currents, collected by the segments,
are shown along with the total current.

FIG. 2. Schematic of the toroidal plasma structure and the reference frame
used in the model analyses, with illustrative profiles of magnetic field Bz , plasma
density ne, and plasma potential f.
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A. Electron dynamics

The electron fluid motion is described by the equations of
particle and momentum conservation, which in the magnetized
limit are expressed as

@ne
@t

þ ∇ � neveð Þ ¼ Se, (1)

mene
@

@t
þ ve � ∇

� �
ve ¼ �∇pe � ene E þ ve � Bð Þ þ Re: (2)

Here, Se is the ionization source term for the electron fluid,
and Re represents the electron frictional force parallel to the mag-
netic field lines. Neglecting electron inertia and pressure gradients
and approximating the macroscopic electron motion by their
guiding center drift ( justified by the relatively large electron gyro-
frequency), we can express the electron drift velocity along the
direction perpendicular to the magnetic field, ve? , as

ve? ¼ veE�B þ veD ,

where

veE�B ¼ E�B
B2

; and veD ¼ ∇p�B
eneB2

(3)

represent the usual electron E � B drift velocity and the diamag-
netic drift velocity, respectively. With the expression for ve? above,
we can reformulate the electron continuity equation in terms of
perpendicular and parallel contributions, i.e.,

@ne
@t

þ ∇ � (neve? )þ ∇ � (nevek ) ¼ αIne: (4)

In the approach described in Perez et al.,13 nevek is modeled as
an effective diffusion term proportional to the density gradient
along the B-parallel direction. We take a similar approach here and
introduce a field-aligned effective diffusion coefficient Deff . We
note, however, the peculiarity of our magnetic topology in that the
field lines in the vicinity of where the plasma forms (see Fig. 1) ter-
minate back on the cathode. In general, this term can provide
either a sink or a source of electrons. At this time, we simply
parameterize this term together with that which describes the local
ionization. We model the ionization term to be proportional to the
plasma density through the ionization rate coefficient, αI ; i.e.,
Se ¼ αIne. Assuming pressure gradients are driven primarily
through gradients in plasma density (isothermal electrons), substi-
tution of the expression for the above perpendicular component of
the electron velocity into Eq. (4) gives

@ne
@t

þ veE�B � ∇ne � 2ne veE�B þ veDð Þ∇lnB0 þ ∇ � Γk ¼ αIne, (5)

with

Γk ¼ nevek ¼ �Deff∇kne:

Equation (5) describes the electron drift dynamics and
includes both continuity and momentum equations. Again, the
coefficient introduced as Deff accounts for the electron loss
(Deff . 0) or gain (Deff , 0) along the magnetic field lines. In
general, B-parallel electron and ion motion can play an important
role in the dynamics of the plasma. Even more important is the
presence of sheaths when the plasma is bounded by a dielectric
wall,29 as is the case in Hall discharges, and a proper account for
the current balance at this sheath is necessary. As pointed out
above, in our discharge, the field lines in the region close to where
the plasma is most dense intersect the cathode, and therefore, the
field-aligned electron diffusion will be greatly affected by the condi-
tions (e.g., electron emission) at the cathode surface, which at this
time, we do not model. Because of this, the field-aligned flux term
that includes Deff is combined with the ionization coefficient, αI , to
define an adjustable parameter (see below) in the evaluation of the
model for comparison to experiments.

B. Ion dynamics

The ion continuity and momentum equations in the non-
magnetized case are

@ni
@t

þ ∇ � nivið Þ ¼ Si, (6)

mini
@

@t
þ vi � ∇

� �
vi ¼ �∇pi þ eniE þ Ri: (7)

Here, Ri represents the frictional force experienced by the ions
due to scattering collisions, and Si ¼ Se. As the ions are assumed
to be non-magnetized, we consider here just the ion motion along
the direction perpendicular to the B-field, i.e., along the axial
direction parallel to the electric field. As mentioned earlier, we
assume that the plasma is quasi-neutral (ne ¼ ni), that the electric
field is irrotational (introduce the plasma potential, f), we neglect
the ion pressure term (low ion temperature), and we neglect ion
scattering collisions for motion along this direction. The resulting
ion particle and momentum conservation equations reduce to

@ne
@t

þ ne∇ � vi? þ vi? � ∇ne ¼ αIne, (8)

mine
@

@t
þ vi � ∇

� �
vi ¼ �ene∇f: (9)

C. Perturbation and linearization

With the magnetic field at the axial location of interest, Bz �
B0, Eq. (5) can be expressed explicitly using the coordinate system
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adopted (shown in Fig. 2) as

@ne
@t

� 1
B0

@f

@y
@ne
@x

þ 1
B0

@f

@x
@ne
@y

� 2ne
@lnB
@x

kBTe

eneB0

@ne
@y

� 1
B0

@f

@y

� �

� Deff
@2ne
@z2

¼ αIne: (10)

We begin the analysis by representing the dynamic fluctua-
tions in plasma density and plasma potential as perturbations on a
base equilibrium plasma that is uniform in the azimuthal direction:

ne ¼ n0 þ n1, f ¼ f0 þ f1,

@n0
@y

¼ 0,
@f0

@y
¼ 0:

We introduce characteristic lengths to approximate gradients of
zeroth order quantities in the axial direction,

@lnB0

@x
¼ 1

LB
,

@f0

@x
¼ �E0,

@n0
@x

¼ n0
Ln

:

After substitution into Eq. (10) and since the base case satisfies
the unperturbed electron particle and momentum conservation
equations, we arrive at the following equation for the electron (ion)
perturbation amplitudes:

@n1
@t

� E0
B0

þ 2kBTe

eB0LB

� �
@n1
@y

� n0
B0Ln

� 2n0
B0LB

� �
@f1

@y
� Deff

@2n1
@z2

� αIn1

þ 1
B0

@n1
@y

@f1

@x
� 1
B0

@n1
@x

@f1

@y
þ 2n1
B0LB

@f1

@y

� �
¼ 0: (11)

The expression within curly brackets represents the nonlinear
dynamic, which we will neglect moving forward. However, for
future analyses, these terms can be retained to examine the nonlin-
ear behavior of the system as it pertains to the parametric mixing
that is described later in Sec. V. We note that by neglecting the
nonlinear terms, the analysis presented here is only able to describe
the initial growth of the instabilities. A proper analysis of the
dynamics, particularly as it pertains to the parametric mixing, may
require a solution of the full fluid equations, as recently carried out
by Smolyakov et al.30

For the ions, Eq. (8) can be expressed in terms of the coordi-
nate system adopted as

@ne
@t

þ ne
@vx
@x

þ vx
@ne
@x

þ ne
@vy
@y

þ vy
@ne
@y

¼ αIne: (12)

Here, we have dropped the subscript i as all velocities from here on
refer to those of the ions. As above, we express the velocities in

terms of perturbation of their base values,

vx ¼ vx0 þ vx1 , vy ¼ vy0 þ vy1 :

We take the base ion velocities to have the following properties:

@vx0
@x

¼ 0, vy0 ¼ 0,
@vy0
@y

¼ 0:

In making these assumptions, we are implying that the ions are
sufficiently heavy that they do not drift in the azimuthal direction.
We further assume that within the region in which we see strong
fluctuations, the ions drift along the axial direction with a constant
ion velocity. As discussed above, this ion velocity will be taken to be
anode-directed due to the presence of a field reversal within the
gap. We also neglect ionization in the ion continuity equation
because estimates place it to be much smaller than the frequencies of
interest. With these assumptions, and with the gradient length scales
describing the axial variation in the base plasma density, Ln, Eq. (12)
reduces to

@n1
@t

þ n0
@vx1
@x

þ vx1n0
Ln

þ vx0
@n1
@x

þ n0
@vy1
@y

þ n1
@vx1
@x

þ vx1
@n1
@x

þ n1
@vy1
@y

þ vy1
@n1
@y

� �
¼ 0: (13)

Here, once again, we assumed that the quiescent base plasma prop-
erties satisfy the ion particle and momentum conservation equations.
As in the equations for the electrons, the expression within curly
brackets represents the non-linear terms, which will be neglected
moving forward but can be re-visited in future analyses.

We now turn to the ion momentum equations. Starting with
the axial direction (x) and using the convention defined in Fig. 2,
we have

vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z

� �
¼ � e

mi

@f

@x
� @vx

@t
: (14)

Similarly, for the azimuthal (y) direction, we write

vy
@vy
@y

þ vx
@vy
@x

þ vz
@vy
@z

� �
¼ � e

mi

@f

@y
� @vy

@t
: (15)

When substituting the perturbed expressions for the velocities, and
within the framework of the above assumptions, we arrive at the
following equations for the x and y perturbation amplitudes:

vx0
@vx1
@x

þ vy1
@vx1
@y

þ vz1
@vx1
@z

� �
¼ � e

mi

@f1

@x
� @vx1

@t
, (16)

vx0
@vy1
@y

þ vx1
@vy1
@x

þ vz1
@vy1
@z

� �
¼ � e

mi

@f1

@y
� @vy1

@t
: (17)

In Eqs. (16) and (17), again, the expressions within curly
brackets represent the nonlinear terms, which will be neglected
henceforth.
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D. Fourier analysis

Neglecting nonlinear terms, we express the perturbations in
the usual form as fluctuations in space and time,

ψ ¼ δψexp i kxx þ kyy þ kzz � ωt
� �� 	

: (18)

Here, kx , ky , and kz represent the component wavenumbers of the
disturbance and ω the frequency. We will assume real axial (x) and
radial (z) wavenumbers and solve for the frequency and growth
rate of the temporal instability as a function of the azimuthal (y)
wavenumber. By doing so, we are assuming that the disturbances
along the three principal directions are independent of each other,
which can only be true in the linear limit. Nothing can be inferred
about nonlinear effects as we neglect all nonlinear terms in the per-
turbation equations.

This analysis applied to Eq. (11) leads to the perturbation
amplitude in the plasma density,

δn
n0

¼ ω* � ωD

ω� ω0 � ωD þ i k2zDeff � αI
� � eδf

kBTe
, (19)

where for the sake of simplicity, we defined the following character-
istic frequencies:

ω0 ¼ �ky
E0
B0

, ωD ¼ �ky
2kBTe

eB0LB
, ω* ¼ �ky

kBTe

eB0Ln
:

In a similar way, the axial and azimuthal ion momentum
equations [Eqs. (16) and (17)] become

δvx1 ¼
e
mi
kx

ω� kxvx0
δf, δvy1 ¼

e
mi
ky

ω� kxvx0
δf: (20)

For the ion continuity equation, we assume that 1
Ln
� kx (i.e.,

the density gradient length scale is taken to be large in comparison
with the component wavelength in the axial direction). With this
assumption and with the use of Eq. (19), the ion continuity leads to
the following for the perturbation amplitude in the plasma density:

δn
n0

¼ c2s k
2
?

ω� kxvx0ð Þ2
δf

kBTe=e
, (21)

where we have defined k2? ¼ k2x þ k2y and cs ¼
ffiffiffiffiffiffiffi
kBTe
mi

q
is the usual ion

sound speed in the plasma.

E. Wave dispersion

By equating Eqs. (19) and (21), we obtain the wave dispersion
relation,

ω2� 2kxvx0 þ
c2s k

2
?

ω*�ωD

� �
ωþk2xv

2
x0 þ

c2s k
2
? ω0þωDð Þ
ω*�ωD

� i
k2?c

2
s νc

ω*�ωD
¼ 0:

(22)

Here, in the imaginary term of the equation, νc ¼ k2zDeff � αI col-
lects the effects of ionization and plasma loss along the magnetic

field direction and represents an ad hoc parameter that is adjusted
in the model, as mentioned earlier. Equation (22) is a second order
polynomial with complex coefficients resulting in complex solu-
tions ω ¼ ωR þ iωI , where

ωR ¼ 1
2

2vx0kx þ k2?
c2s

ω* � ωD

� �

þ 1

2
ffiffiffi
2

p c8s k
8
?

ω* � ωDð Þ4 þ 8
vx0kx � ω0 � ωD

ω* � ωDð Þ3 c6s k
6
?

"(

þ16
vx0kx � ω0 � ωDð Þ2þν2c

ω* � ωDð Þ2 c4s k
4
?

#1
2

þ c4s k
4
?

ω* � ωDð Þ2 þ 4
vx0kx � ω0 � ωD

ω* � ωD
c2s k

2
?

)1
2

, (23)

ωI ¼ þ 1

2
ffiffiffi
2

p c8s k
8
?

ω* � ωDð Þ4 þ 8
vx0kx � ω0 � ωD

ω* � ωDð Þ3 c6s k
6
?

"(

þ16
vx0kx � ω0 � ωDð Þ2þν2c

ω* � ωDð Þ2 c4s k
4
?

#1
2
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4
?

ω* � ωDð Þ2 � 4
vx0kx � ω0 � ωD

ω* � ωD
c2s k

2
?

)1
2

: (24)

IV. COHERENT INSTABILITIES

A. Formation and growth

In the absence of the field-aligned diffusion and ionization,
the wave dispersion [Eq. (22)] will have identical characteristics to
that derived by Frias et al.,22 and with E0 (and vx0 ), 0, the region
of instability has a distinct long wavelength cutoff that depends on
background plasma conditions. As previously mentioned, we
assume that all quantities are known except for the azimuthal wave-
number ky . This will allow us to express the complex frequency as
a function of the azimuthal wavenumber. As usual, the real part of
ω [Eq. (23)] describes the dispersion of the disturbance, while the
complex part [Eq. (24)] describes its initial growth rate. We seek,
for a set of plasma properties, the azimuthal wavenumbers that give
rise to positive imaginary contributions to the roots, as they are the
ones that lead to a positive growth in the disturbances. Positive real
contributions to the frequency correspond to a propagation direc-
tion opposite that of the E � B direction.

As an example, in Fig. 3, we plot the modeled growth rate vs
the non-dimensionalized wavenumber (mode number), m ¼ kyR0,
of the unstable branch. In doing so, we use plausible experimental
conditions Ln ¼ 2 mm, B0 ¼ 0:6 T, 2π=kx ¼ 2:5 mm, and
2π=kz ¼ 0:9 mm. We take νc ¼ 5� 107 s�1, chosen to reproduce
experimental trends as discussed below. As mentioned earlier,
pinning it down will require understanding the interaction of the
plasma with the cathode at the terminal ends of the field lines. The
local axial electric field, E0, which is assumed to depend linearly
with the discharge gap voltage, is varied to sample a range of local
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field-reversed potentials, defined as ΔV ¼ E0Ln. In doing so, we
scale the values of the local ion velocity and electron temperature
to the local field using vi0 � E1=2

0 and kBTe � E0. As a reference,
for ΔV ¼ �23:1 V, taken to correspond to a discharge gap voltage
of 272 V, vx0 ¼ �933 m/s and kBTe ¼ 3:1 eV—also parameters
that are largely unknown but reasonable and should be validated
by future experiments.

For these conditions, we see from Fig. 3 that the maximum in
the linear growth rate, which we presume may determine the pre-
ferred mode numbers, are in the range m ¼ 3��5, and increase
with a decrease in the local value of the electric field (or
field-reversal potential). Determining the conditions that define
instability from Eq. (22) is made difficult by the presence of the
imaginary term. We will see in Sec. IV E how, for our conditions,
where there is a field reversal within the gap and positive values of
Ln and LB, instability requires 2Ln . LB and LB to be greater than a
threshold value LB. Because of the finite value of νc, the system is
unconditionally unstable; i.e., it is unstable over all wavelengths
with no lower wavelength cutoff when these conditions on the gra-
dient length scales are met. In practice, as described above, we
assume that the field-reversal potential will scale linearly with the
applied discharge gap voltage—a feature that should be validated
by future experiments or computational simulations. We would
expect that high discharge voltages will generate high plasma densi-
ties and hence higher (positive) values of ΔV . This would predict
that higher mode numbers are expected at lower voltages. The
model also predicts that mode transitions should occur with a hys-
teresis if the discharge voltage is swept without interruption, with
higher modes favored over lower modes as voltages are increased
and lower modes favored over higher modes when voltages are
decreased. For example, with increasing discharge voltage, condi-
tions that favor an active m ¼ 4 mode will persist until the peak
growth rate surpasses a critical value, triggering a mode transition
to m ¼ 3. Reversing the voltage should maintain the m ¼ 3 mode
until a transition to m ¼ 4 occurs at some higher voltage. In the

experiments presented below, we do not sweep voltage continu-
ously and instead initiate the plasma from a cold start at various
discharge voltages to limit the on-time of the discharge in order to
avoid erosion of the thin indium tin oxide coating on the transpar-
ent anode. A study of the existence of a discharge hysteresis is the
subject of future work and its presence would be further validation
of the model.

B. Experimental results

The high framing rate movies taken through the transparent
anode allowed for direct capture of the rotation frequency and
wave mode of the coherent structures as discharge conditions are
varied. Figure 4 plots as symbols the experimentally measured fre-
quencies (delineated by the favored modes) over a 20 V range in
the discharge voltage (corrected for the ballast voltage drop). The
results from the model are overlaid as a function of the potential
E0Ln (top axis), also varying in range by 20 V. To overlay the exper-
imental data, we assume a ΔV ¼ 30 V potential reversal when the
gap voltage is 279 V.

We see from the figure that the model is able to capture the
general trends seen in the experiments. It is noteworthy that it pre-
dicts two somewhat counter-intuitive features seen in the experi-
ments. The first is that within a given azimuthal mode, the
frequency of the instability decreases with increasing discharge
voltage even though higher voltages (and hence higher values of
the local field) are expected to generate higher E � B velocities. The
second is that the frequency of the instability increases with a
decrease in the favored mode number. This implies that the phase
velocity of the wave increases with increasing wavelength. These
features are, of course, a consequence of the wave dispersion, which
is depicted in Fig. 5 for the range of field-reversed potentials shown
in the previous figure. For any given value of the field-reversed

FIG. 4. Mode frequencies from experiments (symbols) and predicted by the anal-
ysis (lines) as a function of the experimental discharge voltage (lower abscissa)
and modeled E0Ln due to field reversals (upper abscissa). The scales are
matched assuming a 30 V voltage hump when the discharge voltage is 279 V.

FIG. 3. Growth rate variation with the azimuthal wavenumber (mode number)
computed for a range of values of the reverse-field potential.
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potential, the frequency decreases with increasing wavenumber
(decreasing wavelength). The reason for this is discussed in detail
in Sec. IV D. The wavenumber-dependence of the real part of the
unstable root of Eq. (22) is dominated by the linear term, which is
comprised of two parts—that which depends on the ion velocity
and insensitive to wavelength (as kx is taken to be constant) and
that which is nearly inversely dependent on ky , since kx � ky .
Since only discrete sets of wavelengths establish the resonant
modes of the system, when anchored to a particular mode (m ¼ 5,
in this case), an increase in operating discharge potential will lead
to a reduction in the frequency (decrease in the phase velocity).
Beyond some limit, a further increase in discharge potential favors
a lower-order mode, resulting in a mode transition and a change
(increase) in the phase velocity, a pattern that will continue as the
system passes through multiple states.

As previously mentioned, a combination of anode segment
current measurements and a comparison of high speed video-
graphic imaging through the anode allow for the unambiguous
determination of the frequency and the mode number. The current
segments alone are not enough to precisely determine the mode
number because the spatial resolution is limited by the segment
area. For example, with 45� segments, modes higher than m ¼ 4
will not be properly resolved by the current measurements alone
due to aliasing. An example of how the determination is carried
out for when the discharge is in states corresponding to m ¼ 3 and
m ¼ 4 modes is illustrated with the help of Figs. 6 and 7, respec-
tively. In these figures, the location of the anode segments (1–4) is
shown in the images, and their corresponding collected currents
are shown in the central plot. We note that the current measure-
ments are delayed with respect to the density fluctuation because of
the time of flight of charged particles and the different phase shifts
of ion and electron velocities.

It is apparent that aliasing is not a factor in the current traces
seen in Fig. 6, as they are well resolved in time, and the direction of

FIG. 5. Wave dispersion arising from the model for various values of the
field-reversed potential. Regions are highlighted depicting the range in which
various azimuthal modes are preferred (have the greatest linear growth rates).

FIG. 6. Comparison between current measurements and anode pictures for
m ¼ 3. The sampling frequency for current measurements is 250 MHz. A
25-point moving average filter is applied to reduce noise. The exposure time is
1 μs for each frame. The delay time, measured from t ¼ 0 to the moment of
sensor exposure, is shown for each frame and is indicated in the current traces.

FIG. 7. Comparison between current measurements and anode pictures for
m ¼ 4. Camera settings and other considerations are the same as in Fig. 6.
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rotation is readily established. For example, from the current traces,
we see that the current through segment 3 (channel 3) precedes
that of segment 2 (channel 2), which precedes that of segment 1
(channel 1). Therefore, we conclude that the plasma rotates clock-
wise (as viewed in the image) and confirmed by the time sequence
of the images. A clockwise rotation of the plasma structures con-
firms that a structure straddling segment 3 will straddle segment 1
2 μs later (frames labeled 1 μs – 3 μs), as seen in the current traces.
However, an assumed counterclockwise rotation of the plasma
structure that straddles segment 1 (see the frame labeled 3 μs,
channel 1) would arrive at segment 3 (frame labeled 4 μs, channel
3) 1 μs later—a result inconsistent with the current traces. In con-
trast, the problem of potential aliasing is clearly apparent in Fig. 7.
There, we see that the currents collected from segments 1 and 3
have nearly identical forms (the same phase) and are indistinguish-
able due to the 90� separation between them. From the current
traces, the current through segment 2 can be seen to precede that
of segment 3 or segment 1; therefore, an analysis of just the current
traces would be inconclusive in determining the direction of rota-
tion. However, in combination with the video frames, we can
confirm that the rotation of the plasma structures is clockwise. We
see that if a structure straddles segment 2 (in the frame labeled
1 μs) and is rotating counterclockwise, it would arrive at segment
3 in less than 1 μs—a result inconsistent with the current traces,
which suggest that it takes two microseconds to do so. However if
the same structure rotates clockwise, the video reveals that it strad-
dles segment 1 two microseconds later (frame labeled 3 μs) - a
result consistent with the current traces. In our experimental con-
figuration, a clockwise rotation in these video frames represents a
drift in the negative E � B direction (here, E is that field associated
with the externally applied potential).

C. Sensitivity analysis

The free energy that drives the instability is the relative drift of
the electrons and ions due to their disparate magnetization and the
presence of field gradients. The many poorly experimentally quan-
tifiable parameters in the model demand that we perform a sensi-
tivity analysis to understand which parameters have a greatest
impact on the formation and growth of the instability. The sensitiv-
ity analysis is performed numerically for the condition of E0Ln ¼
�23:1 V, where the m ¼ 3 mode seems to be preferred for decreas-
ing voltages. We generally find that the formation of the instability
is most sensitive to the magnetic field gradient (represented by the
parameter LB). A slight increase in the magnetic field gradient (e.g.,
by about 10%) nearly doubles the growth rate and shifts its peak to
prefer higher mode numbers. A slight increase in ion mass and
assumed reverse-field potential tend to shift the growth rates to
prefer lower mode numbers, without a substantial increase in the
peak growth rate. A slightly higher density gradient and a plasma
radius shift growth rates to prefer higher mode numbers (also
without a significant increase in the growth rate). These results can
be used to anticipate the qualitative behavior of other operating
conditions; for example, we might expect lower preferred mode
numbers for heavier gases. Future experiments will attempt to
confirm these scalings.

D. Analysis of the terms in the analytical solution

The analytical expression of ωR [Eq. (23)] can be decomposed
into contributions A, B, and C, where A ¼ vx0kx ,
B ¼ 1

2 k?
2cs2=(ω* � ωD), and C is the more complicated term with

two nested square roots so that ωR ¼ Aþ Bþ C. Figures 8 and 9
show the contributions of the three terms to the total magnitude of
ωR for the same conditions as in Fig. 4 as a function of the
field-reversal potential for the different modes (Fig. 8) and the
wavenumber for a fixed potential (Fig. 9), respectively. As one can
see, for our conditions, none of the three terms are negligible
and the dispersion cannot be further simplified. As a result, it is
instructive to understand the contributions that each term makes
and their general behavior as operating conditions may be varied.

FIG. 9. Frequency of instability vs the wavenumber ky for E0Ln ¼ �21 V
decomposed in three contributions A, B, and C so that ωR ¼ Aþ Bþ C.

FIG. 8. Frequency of instability vs plasma potential for decreasing voltages
decomposed in three contributions A, B, and C so that ωR ¼ Aþ Bþ C.
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The first term, A (A ¼ vx0kx), is generally responsible for the
decreasing frequencies within modes (Fig. 8) as the discharge voltage
is increased but does not contribute to the frequency separation
between modes since it is not a function of ky (Fig. 9). Its value is
negative because vx0 is negative (ions are leaving the plasma region
toward the anode due to the presumed field reversal) and increases
in magnitude with increasing discharge potential, while kx is
assumed to be constant. It is for this reason that the model predicts
the counter-intuitive trend with discharge potential. If we were able
to avoid this field reversal (by lowering the density gradient, for
example), the model would predict increasing frequencies within
modes and also higher frequencies, since all the other terms are posi-
tive. Future experiments will aim at validating this behavior.

Conversely, the term B is only a function of the wavenumber ky
and does not depend on the field reversal potential. This is because
c2s , ω

*, and ωD are linear functions of the plasma temperature, and
although Te is modeled to depend on the field-reverse potential
(which is presumed to vary linearly with discharge potential), Te

shows up as a linear term in both the numerator and denominator
and so it cancels altogether. From Fig. 8, we see that B is responsible
for the frequency separation between modes, with higher frequencies
associated with lower mode numbers. Its variation scales nearly
inversely with ky because k?2 [defined in Eq. (21)] is a weak func-
tion of ky (due to the dominating contribution from kx).

The term C is important in magnitude to the final result
(Fig. 8) but contributes less to the general trends. Curiously, A and
B, being opposite in sign, almost cancel, leaving C to contribute
substantially to the final values of the frequency. C would be negli-
gible without the field reversal, leading to a much simplified expres-
sion for ωR and much higher frequencies.

E. Conditions for instability

An inspection of the internal structure of C reveals that it is
very similar to ωI [Eq. (24)]. If we define β ¼ 1

8 cs
4k?4=(ω* � ωD)

2,

γ ¼ 1
2 (vx0kx � ω0 � ωD)=(ω* � ωD)c2s k?

2 and α to be the third
factor from the doubly nested square root, we can decompose C2

and ω2
I so that C2 ¼ α þ (β þ γ) and ω2

I ¼ α � (β þ γ). Figure 10
reveals that β dominates over γ at low wavenumbers and γ domi-
nates over β at higher wavenumbers. This competition leads to a
minimum in the sum β þ γ, which is equivalent to a maximum in
ωI . A necessary condition for this competition to occur is for γ to
be negative, since β is always positive. For this condition to hold,
either the numerator or the denominator of γ must be negative. γ
can be expressed as

γ

c2s k
2
?
¼ vx0kx þ ky

E0
B0
þ ky

2kBTe
eB0LB

�ky
kBTe
eB0Ln

þ ky
2kBTe
eB0LB

: (25)

We can study the sign of γ by studying the sign of the numera-
tor and denominator of Eq. (25) in the presence or absence of a field
reversal. The denominator is positive if 1

Ln
, 2

LB
. The study of the sign

of the numerator is more complicated because it depends on the field
reversal (which in turn determines the sign of both E0 and vx0 ), the
sign of B0, and the geometrical parameter ξ ¼ kx

ky
. Interestingly, the

numerator does not depend on Ln; therefore, the effect of the numer-
ator on the sign of γ can be described by a limiting LB value,

LB ¼
2kBTe
e

vx0j jξB0 þ E0j j : (26)

Figures 11 and 12 show the regions of instability in the LB–Ln
plane when B0 . 0 in the presence and absence of field reversals,
respectively.

FIG. 10. For the same conditions as Fig. 9, terms α, β, and γ show how the
formation of the maximum value of ωI , necessary for the formation of a coherent
instability, is due to the competition between β and γ .

FIG. 11. Instability map in the presence of field reversals (E0 , 0) and a posi-
tive magnetic field, where coherent instability regions are not gray. The experi-
mental condition of the magnetron experiment discussed in this paper is
indicated in the region of positive LB and Ln, right above the LB limit. Under
these conditions, the LB limit exists only for a positive LB since the numerator of
γ is always negative in the third and fourth quadrants.
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Figure 12 shows the same instability region found by Frias
et al.,22 with the addition of a region for �LB , LB , 0 where the
condition reverses. Figure 11 is relevant to our experimental condi-
tions because of the field reversal within the gap. In general, the
value of LB can have a stabilizing or destabilizing effect on a dis-
charge when we change the operating conditions. In particular, LB
becomes larger in magnitude within modes for increasing E0 and
for decreasing ξ, giving rise to either a lower or higher threshold
for the formation of the instability.

It is noteworthy that the conditions necessary for the SHI and
MSHI (that do not account for magnetic field gradients); i.e., ∇ne �
E0 . 0 are captured by our analyses in the limiting case. Indeed,
our experiments violate this condition because of the density gradi-
ents and the local field reversal. As apparent in Fig. 11, our condi-
tions, with E0 , 0, generate an instability when Ln . 0. However,
consistent with the conditions of the SHI and MSHI, we recover
∇ne � E0 . 0 for both E0 . 0 (lower and upper right quadrants in
Fig. 12) and E0 , 0 (lower and upper left quadrants in Fig. 11) in
the limit of a uniform magnetic field (i.e., LB ! +1).

The conditions found by the stability analysis impose a con-
straint on the steepness of the gradient in the magnetic field, which
can be controlled by the design of the magnetic topology. The
density gradient is less easily controlled but perhaps can be influ-
enced by the control of the discharge gap. We note, however, that
the reversal in the midgap field is predicated upon the density gra-
dient length scale, Ln, being small in order to drive excess electrons
toward the anode by diffusion. Too low of a density gradient (or
larger gap) is expected to result in waves that will reverse in their
propagation direction, i.e., conform to that which is usually
expected—the E � B direction determined by the external fields. As
a result, this model suggests that there is a narrow window of

opportunity in which coherent structures are driven to propagate
in such retrograde directions.

F. Fluctuations and particle transport

Fluctuations are known to potentially drive or enhance elec-
tron and ion transport across magnetic field lines. The linear per-
turbation analysis described above provides some guidance as to
conditions that must be established to be able to produce the corre-
lated electron and ion density and axial velocity fluctuations, which
may account for the measured time-varying and average anode
current. Here, we estimate these electron and ion period-averaged
current densities through the quasi-linear description (we revert
back to using the subscripts e and i to specify species velocities),

δJexh i ¼ � 1
2
Re eδnδv*ex

n o
, (27)

δJixh i ¼ 1
2
Re eδnδv*ix

n o
: (28)

The superscript, *, denotes the complex conjugate of the perturba-
tion amplitude. The perturbation in the electron axial velocity
is due to the coupling of the induced azimuthal perturbation in
plasma potential and pressure to the radial magnetic field, δvexE�B

and δvexD , respectively [from Eq. (3)]. Only the former gives a net
nonzero contribution since δvexD is π=2 out of phase with respect
to the density fluctuation; therefore, of the two, we will consider
only δvexE�B .

We can write the perturbation velocities as

δvex ¼ �iky
δf

B0
, δvix ¼

e
mi
kx

ω� kxvx0
δf: (29)

We use Eq. (19) [or equivalently Eq. (21)] to express the complex
amplitude of the potential fluctuation in terms of the density per-
turbation to arrive at

δf ¼ kBTe

e
ωR � ω0 � ωD þ i ωI þ νcð Þ

ω* � ωD

δn
n0

: (30)

Using the above equations and taking the density fluctuation
to be real, without loss of generality, we arrive at the time-averaged
fluctuation-induced contributions to the discharge current,

δJexh i ¼ � 1
2
n0

kykBTe

B0

νc þ ωI

ω* � ωD

δne
ne

� �2

, (31)

δJixh i ¼ 1
2
en0

kx
k2?

ωR � kxvx0ð Þ δne
ne

� �2

: (32)

From these estimates, the discharge current fluctuations can
be obtained. Using plausible values for our experimental condi-
tions, i.e., ΔV ¼ 23:1 V, n0 ¼ 1018 m�3, m ¼ 3 (decreasing volt-
ages), vx0 ¼ �933 m/s, and considering the density perturbations
to be saturated, i.e., δn=n0 ¼ 1, we arrive at δJexh i ¼ �115:0A=m2

FIG. 12. Instability map in the absence of field reversals (E0 . 0) and a posi-
tive magnetic field, where coherent instability regions are not gray. Under these
conditions, the LB limit exists only for a negative LB since the numerator of γ is
always positive in the first and second quadrants.
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and δJixh i ¼ 118:6A=m2. Taking the plasma area,
A ¼ 7:9� 10�6 m2 (using a plasma radial thickness of 0.5 mm),
the corresponding currents are δIexh i ¼ �0:903 mA and
δIixh i ¼ 0:931 mA. The potential fluctuation that drives this
current is δf � 1:1 V. The current contributions due to electron
and ion fluctuations estimated from this quasi-linear analysis are
well below the current measured (typically several milliamperes) as
can be seen in Figs. 6 and 7, which show that the current discharge
oscillations dominate the discharge current and are consistent with
the high speed camera images depicting the rotation of the plasma
structures. We also note that by taking a saturated density fluctua-
tion, we may be outside the scope of our linear analysis, in a region
where the actual gradients might be steeper and thus driving a
higher current. Our linear analysis, while capturing some of our
experimental data, may not be adequate to describe the saturated
regions, which are thought to be responsible for the measured cur-
rents. A study of the nonlinear equations will give us additional
tools to model fluctuation-driven currents seen in the experiments.
Such a study may also provide insight into dynamics that is seen
between modes, as described in Sec. V.

V. NONLINEAR BEHAVIOR BETWEEN MODES

Here, we discuss observations that suggest dynamic behavior
that cannot be described by the linear model. This seemingly non-
linear behavior is excited when transitioning between linear modes.
We see this when transitioning between all of the linear modes

(m ¼ 3, 4, 5) observed in our experiments. The descriptor “mixed”
may be somewhat of a misnomer in that the frequency contents of
these “mixed” states are not a combination of the surrounding
states (for example, the frequency of modes 3 and 4) but instead
much more complex, consisting of higher frequencies that seem to
be related through non-linear mixing. In general, it is not possible
to identify a single principal frequency and a wavenumber, and the
plasma does not seem to organize itself in discrete structures.
Attempts to use high speed video capture of the structure during
these mixed regimes reveal blurred features with little or no appar-
ent coherence (see Fig. 13).

Figure 14 is a Fourier analysis of the temporal currents
recorded through anode segments 1–3 for a discharge voltage of
257 V, placing us within an m ¼ 3 and m ¼ 4 mode. For this con-
dition, we record five strong peaks, labeled f1 � f5 on a broad
underlying (but much weaker) turbulent background. The frequen-
cies are significantly higher (.1MHz) than those of the linear
modes. Using a wavelet decomposition, we construct the full dis-
persion of these waves and the associated spectral power (Fig. 15).
The frequency and wavenumbers for each peak are summarized in
Table I. A close inspection of the data suggests the following rela-
tions between the modes present in this mixed regime,

f3 ¼ f1 þ f2, k3 ¼ k1 þ k2,

f4 ¼ f5 � f1, k4 ¼ k5 þ k1,

f5 ¼ f2 þ f3, k5 ¼ k2 þ k3:

FIG. 13. High frame rate pictures of a nonlinear mode of 1 μs separation.
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These wave energy and momentum-conserving relationships
suggest the presence of three-wave mixing and the transfer of
energy between one quasi-coherent state to another due to the non-
linearity of the system. Such non-linear phenomenon is responsible
for the transfer of energy between scales and the formation of
large-scale coherent structures that may not be predicted by linear
analyses. It is noteworthy that while these mixed regimes show this
rich structure in the dispersion space, we do not see any disconti-
nuity in discharge current when passing through this somewhat
turbulent state of the system. A study of the nonlinear contribu-
tions to the model equations [Eqs. (11) and (13)] to better under-
stand this mixed state of the system is the subject of future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the dynamic behavior of
gradient-driven drift waves in a strongly obstructed small magne-
tron discharge. In this particular discharge, the waves are uncharac-
teristically coherent, with linear growth rates generally greater than
the mode frequencies of the observed rotating plasma structures.
The modes and their rotation are stable over a wide range of condi-
tions, and the rotation is retrograde to the usual externally imposed
E � B direction. We have conjectured that the cause of this retro-
grade structure rotation is a midgap electric field reversal that is
attributed to strong anode-directed electron diffusion. We have
introduced a multi-fluid model for the dynamics, and a Fourier
analysis of the linearized set of equations results in a dispersion
relation that, with the assumption of a midgap field reversal, pro-
vides a behavior of the instabilities consistent with those seen in
the experiments. Most important is that the model identifies condi-
tions for the formation and growth of these retrograde instabilities
and can describe transitions from lower to higher mode symmetries
(controlled experimentally by varying the discharge voltage).
Experiments are carried out with a segmented anode to confirm
the localized current density. The segment currents together with
high speed videography unambiguously confirm the direction of
plasma rotation. An important find from the segmented anode
current measurements is that there exists a stochastic regime
between voltage-controlled mode transitions. An analysis of the
segment currents in this regime indicates that the lower frequency
state decays into a spectrum of coherent higher frequency states
that exhibit features consistent with a three-wave nonlinear para-
metric mixing process.

It is important to emphasize that the success of this model, in
its comparison with quantifiable data from the experiments, is
predicated on the presence of this midgap field reversal. Such field
reversals have been shown to exist in plasma sources of a similar
magnetic field topology (e.g., Hall thrusters), but as of yet, we do
not have direct evidence of such a reversal in our small magnetron
studies. Future experiments will focus on identifying such a field
reversal, perhaps through local ion velocity measurements. The
success of the fluid model also speaks to the appropriateness of
such a model to describe the basic dynamical features seen experi-
mentally. As such, another future study will focus on solving the
full set of equations that describe the azimuthal dynamics, includ-
ing the nonlinear terms, to confirm the presence of three-wave
mode-mixing, as suggested by the experiments when the discharge
places the system between the lowest-order stable modes predicted
by the linear analysis. Finally, two observable features that the

FIG. 14. Nonlinear frequency content of the current signal measured by the
three segments. 5 point average filtering is applied to reduce noise (the sam-
pling frequency is 250 MHz).

FIG. 15. Power spectrum of a nonlinear mode.

TABLE I. Location of peaks of signals in Figs. 14 and 15.

Peak Frequency (MHz) m (–) k (rad/m)

f1 0.85 3.25 230
f2 1.31 −1.84 −130
f3 2.16 1.41 100
f4 2.62 2.82 200
f5 3.47 −0.43 −30

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 223301 (2020); doi: 10.1063/5.0006320 127, 223301-13

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


model predicts—a hysteresis in the mode preference depending on
the continuous change in the discharge voltage and also a poten-
tially strong dependence of the mode frequency on ion mass—will
be the focus of our next experimental campaign.
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