The Ecology of Protists

Stefanie Moorthi ICBM -Terramare, Planktology

The Ecology of Protists

Introduction

- distribution and nutritional modes
- => protists as primary producers
- => protists as consumers
- Concept of Microbial Loop

Trophic Interactions

- competition
- consumption
- mixotrophy

Seasonality in marine systems

Harmful Algal Blooms

Factors influencing the distribution of protists

Abiotic factors

- <u>chemical:</u> concentrations of ions, pH, concentrations of dissolved gases (e.g. oxygen)
- physical: temperature, light, water movement
- Protists are tolerant to wide range of physical and chemical environmental factors
- \Rightarrow found in a wide variety of biotopes and habitats

Biotic factors

competition, predator-prey relationships

Spatial distribution of ocean primary production

- high along the coast and in upwelling regions
- Iow in the Southern Ocean (Fe-limitation?) and in downwelling regions

Algal primary production

Like terrestrial plants algae use atmosphaeric CO_2 and light for growth and reproduction. By doing so they produce the oxygen that we breathe.

Photosynthesis $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + 2802\text{kJ}$ => $C_8\text{H}_{12}\text{O}_8 + 6 \text{ O}_2$

- total CO² uptake by plants: 104.9 giga tons per year
 - -1 Gt = 1.000.000.000 t
- 48.5 Gt/year of that by algae $\sim 47\%$
 - ~ every 2. oxygen molecule is produced by algae

However, role of heterotrophic protists has been severely underestimated until the 1970ies...

Classical Planktonic food web

- Actual role of bacteria?
- Actual role of primary production?
- Role of heterotrophic protists?

Key findings leading to the concept of the microbial loop <u>1. Bacterial abundances</u>

- Direct bacterial counts: Abundances are higher and more constant as assumed before
- instead of ca. 10³ 10⁴ => 10⁶ ml⁻¹
- Bacterial abundances are correlated with Chlorophyll concentrations
- Phytoplankton releases a major part of its photosynthesis products in form of dissolved exudates
- Bacteria take up 50 100% of this DOC (= conversion of DOC to POC)
- Nanoflagellates are very abundant and are able to effectively graze on bacteria
- Nanoflagellate-abundances are correlated with bacterial abundances

New Method: Epifluorescense microscopy

Fluorescent stain and excitation with UV-filter: Visualization of DNA & RNA, and therewith of bacteria and eukaryotic nuclei

www.soest.hawaii.edu

Key findings leading to the concept of the microbial loop 2. Bacterial nutrition (bottom-up)

- Direct bacterial counts: Abundances are higher and more constant as assumed before
- instead of ca. 10³ 10⁴ => 10⁶ ml⁻¹
- Bacterial abundances are correlated with Chlorophyll concentrations
- Phytoplankton releases a major part of photosynthesis products in form of dissolved exudates
- Bacteria take up 50 100% of this DOC (= conversion of DOC to POC)
- Nanoflagellates are very abundant and are able to effectively graze on bacteria
- Nanoflagellate-abundances are correlated with bacterial abundances

Key findings leading to the concept of the microbial loop

- Direct bacterial counts: Abundances are higher and more constant as assumed
- instead of ca. 10³ 10⁴ => 10⁶ ml⁻¹
- Bacterial abundances are correlated with Chlorophyll concentrations
- Phytoplankton releases a major part of its photosynthesis products in form of dissolved exudates
- Bacteria take up 50 100% of this DOC (= conversion of DOC to POC)
- Nanoflagellates are very abundant and are able to effectively graze on bacteria
- Nanoflagellate-abundances are correlated with bacterial abundances

competition for dissolved mineral nutrients favors small organisms, primary production is then mainly based on nutrients regenerated in the water column

Summary: Microbial Loop

- Phytoplankton releases photosynthesis products as dissolved excudates
 - bacteria take up 50-100% of DOC (conversion to POC)
 - bacterial biomass is consumed and thus re-enters food web
- Microbial loop dominates in oligotrophic waters whereas the classical food chain predominates eutrophic systems

Trophic interactions in microbial food webs

Trophic interactions in microbial food webs

Competition

- Two species competing for the same resource do not coexist at equilibrium
- Competitive exclusion principle

Gause 1934

Predictions from Tilman's model:
In well-mixed communities at equilibrium, the number of coexisting species is equal or lower than the number of limiting resources
The observed diversity is much higher, even in well- mixed communities with a small number of limiting resources
=> Why are there so many species?
=> Paradox of the Plankton
(Hutchinson 1961)

Preventing competition

There have to processes preventing competitive exclusion

- temporal heterogeneity
- spatial heterogeneity
- 🕨 disturbance

Pulsing resources increases the number of coexisting species Temporal heterogeneity prevents competitive exclusion

Interference competition

Allelopathy in *Alexandrium tamarense*

- A. tamarense affected whole plankton community by decreasing growth rates in most species and changing community structure
- different sensitivities of target species =>more resistant species may benefit from allelochemicals

Consumption

- Consumption: Prey is consumed by consumer
 - bacterivores
 - herbivores
 - carnivores
 - omnivores

consumers influence the abundance and distribution of their prey and vice versa

- Consumers excrete or egest nutrients and therefore have positive effects on algal growth
- Consumers have comparably low plasticity in nutrient content and excrete nutrients which are not in short supply

Bacterivory

- marine planktonic flagellate assemblage may graze 25 to >100% of daily production of bacterioplankton
 - mismatch "less grazing than production" can be explained by...
 - ...other types of grazers (mixotrophic phytoflagellates, ciliates)
 - ...bacterivores selecting larger, growing and dividing cells thus directly cropping bacterial production
 - ...lack of methods to accurately measure protistan bacterivory
 - ...bacterial mortality due to viral infection

Herbivores: protistan zooplankton

Calbet 2008: Schematic approximation to the global mean grazing impact on autotrophic production

- Microzooplankton (grazers <200µm) are key components of marine food webs
- Diverse groups play distinct roles in ecosystems
- Ciliates are important, but also other groups often ignored and poorly sampled => heterotr. and mixotr. small flagellates and dinoflagellates, radiolaria, foraminifera (+ metazoan microzooplankton such as rotifera, meroplanktonic larvae and copepod nauplii)

Percentage of phytoplankton primary production (PP, mg C m⁻² d⁻¹) consumed daily by microzooplankton (shaded area) and mesozooplankton (line) as a function of autotrophic production (mg C m⁻² d⁻¹). Data from Calbet (2001) and Calbet and Landry (2004).

Herbivores: metazooplankton

Protists as consumers can be...

...voracious predators

Didinium nasutum

Didinium is able to expand its cytostome (mouth) to such an extent that in can engulf an entire *Paramecium*

www.microscopy-uk.org.uk

Trophic cascades

- alternating effects of regulating forces among trophic levels
- indirect interactions in natural communities are important
- predators can have positive or negative effects on primary producers, depending on food web configuration

<section-header> Description of the provide the provide the provided the prov

Summary: Trophic interactions

Competition

- exploitative + interference competition
- competitive exclusion principle
- Paradox of the plankton

Processes preventing competitive exclusion

- temporal heterogeneity
- spatial heterogeneity
- disturbance

Summary: Trophic interactions

Consumption:

Bacterivory: heterotrophic + mixotrophic flagellates, ciliates

Herbivory: metazoan and protistan grazers => special role of microzooplankton (e.g. ciliates, heterotrophic and mixotrophic flagellates and dinoflagellates, radiolaria, foraminifera + metazoans)

<u>Mixotrophic protists</u>: phagotrophy + phototrophy

- advantages for growth in dark and under low-nutrient conditions
- variable contributions on temporal and spacial scales
- can play a major role as bacterivores in polar, temperate and tropical marine ecosystems
- influenced by abiotic (e.g. light, nutrients) and biotic (prey abundances, presence of phototrophic or heterotrophic competitors) factors
- can have major impact on carbon fixation, nutrient dynamics and control of prey (bacteria, algae, heterotrophs)

Seasonality in marine plankton

Herbivore-prey oscillations

But sometimes consumers are not able to control phytoplankton blooms...

Selective feeding of herbivorous zooplankton

Inedible or actively avoided species experience lower mortality than well edible species.

How to get feeding resistant:

- > size
 - big single cells
 - colony formation
- forming of appendages
- mucus production
- indigestibility
- chem. intolerance / toxicity

Selectivity depends on species, size and feeding mode of consumer

Red Tide off the coast of La Jolla, California

Why?

Allelopathy

a way to outcompete other algal species. Nutrient ratios affect toxin concentrations

Grazer deterrence

avoid being eaten

BUT for most substances not fully understood yet!!

metabolic products stored in the cells for other reasons, toxicity not directed at competitors or consumers

Interference competition

Allelopathy in *Alexandrium tamarense*

- A. tamarense affected whole plankton community by decreasing growth rates in most species and changing community structure
- different sensitivities of target species =>more resistant species may benefit from allelochemicals

Pseudo-nitzschia spp

Domoic Acid

Amnesic Shellfish Poisoning (ASP) > 1500 mammal strandings in

Symptoms

Nausea, vomiting, abdominal cramps, headache, dizziness, confusion, disorientation, short term memory loss, motor weakness, seizures, cardiac arrhythmia, coma, possibly death

Hypothesized bloom formation of *L. polyedrum*: an interplay of behavior and physical forces?

Summary Seasonality and HAB

- herbivore and prey dynamics oscillate (clear waterstate when grazed down)
- Selective feeding => grazing resistance
- ind. size (cell size, colonies)
- indigestibility (chemical intolerance/toxicitiy)
- forming of appendages
- mucus production

Harmful Algal Blooms (HAB) and red tides:

allelopathy, grazer deterrence, secondary metabolites produced for other reasons (not directed at consumers or competitors)

many red tide organisms are mixotrophic and do not only have a major impact as phototrophs, but also as grazers

Literature

- Sommer, Biologische Meereskunde (2nd ed., Springer)
- Valiela, Marine ecological processes, Springer
- Begon, Harper, Townsend: Ecology (4th ed, 2005, Blackwell)
- Hausmann & Hülsmann, Protozoology (2nd edition, Thieme)