the ECONOMICS of MANAGERIAL DECISIONS

The Pearson Series in Economics

Abel/Bernanke/Croushore	Husted/Melvin
Macroeconomics*	International Economics
Acemoglu/Laibson/List	Jehle/Reny
Economics*	Advanced Microeconomic Theory
Bade/Parkin	Keat/Young/Erfle
Foundations of Economics*	Managerial Economics
Berck/Helfand	Klein
The Economics of the Environment	Mathematical Methods for Economics
Bierman/Fernandez	Krugman/Obstfeld/Melitz
Game Theory with Economic Applications	International Economics: Theory \& Policy*
Blair/Rush	Laidler
The Economics of Managerial Decisions*	The Demand for Money
Blanchard	Lynn
Macroeconomics*	Economic Development: Theory and Practice for a Divided World
Boyer	Miller
Principles of Transportation Economics	Economics Today*
Branson	Miller/Benjamin
Macroeconomic Theory and Policy	The Economics of Macro Issues
Bruce	Miller/Benjamin/North
Public Finance and the American Economy	The Economics of Public Issues
Carlton/Perloff	Mishkin
Modern Industrial Organization	The Economics of Money, Banking, and Financial Markets*
Case/Fair/Oster Principles of Economics*	The Economics of Money, Banking, and Financial Markets, Business School Edition*
Principles of Economics	Macroeconomics: Policy and Practice*
Chapman Environmental Economics: Theory, Application, and Policy	Murray
Daniels/VanHoose	Econometrics: A Modern Introduction
Daniels/VanHoose International Monetary \& Financial Economics	O'Sullivan/Sheffrin/Perez Economics: Principles, Applications and Tools*
Downs	
An Economic Theory of Democracy	Parkin Economics*
Farnham	Perloff
Economics for Managers	Microeconomics*
Froyen Macroeconomics: Theories and Policies	Microeconomics: Theory and Applications with Calculus*
Macroeconomics. Theories and Policies	Perloff/Brander
Fusfeld	Managerial Economics and Strategy*
The Age of the Economist	Pindyck/Rubinfeld
Gerber	Microeconomics*
International Economics*	Riddell/Shackelford/Stamos/Schneider
Gordon Macroeconomics*	Economics: A Tool for Critically Understanding Society
	Roberts
Econometric Analysis	The Choice: A Fable of Free Trade and Protection
	Scherer
Russian and Soviet Economic Performance and Structure	Industry Structure, Strategy, and Public Policy
Hartwick/Olewiler	Schiller
The Economics of Natural Resource Use	Sherman
Heilbroner/Milberg	Market Regulation
The Making of the Economic Society	Stock/Watson
Heyne/Boettke/Prychitko	Introduction to Econometrics
The Economic Way of Thinking	
Hubbard/O'Brien	Using Econometrics: A Practical Guide
Economics*	Todaro/Smith
InEcon Money, Banking, and the Financial System*	Todaro/Smith Economic Development
Money, Banking, and the Financial System*	Walters/Walters/Appel/Callahan/Centanni/Maex/O'Neill
Hubbard/O'Brien/Rafferty Macroeconomics*	Econversations: Today's Students Discuss Today's Issues
Hughes/Cain	Williamson
American Economic History	

ROGER D. BLAIR

University of Florida
MARK RUSH
University of Florida

THE ECONOMICS OF MANAGERIAL DECISIONS

Vice President, Business, Economics, and UK Courseware: Donna Battista
Director of Portfolio Management: Adrienne D'Ambrosio Senior Portfolio Manager: Christina Masturzo
Development Editor: Lena Buonnano, Karen Trost Editorial Assistant: Courtney Paganelli
Vice President, Product Marketing: Roxanne McCarley
Senior Product Marketer: Tricia Murphy
Product Marketing Assistant: Marianela Silvestri
Manager of Field Marketing, Business Publishing: Adam Goldstein
Senior Field Marketing Manager: Carlie Marvel
Vice President, Production and Digital Studio, Arts and Business: Etain O'Dea
Director of Production, Business: Jeff Holcomb
Managing Producer, Business: Alison Kalil
Content Producer: Carolyn Philips

Operations Specialist: Carol Melville
Design Lead: Kathryn Foot
Manager, Learning Tools: Brian Surette
Content Developer, Learning Tools: Sarah Peterson
Managing Producer, Digital Studio and GLP, Media Production and Development: Ashley Santora
Managing Producer, Digital Studio: Diane Lombardo
Digital Studio Producer: Melissa Honig
Digital Studio Producer: Alana Coles
Digital Content Team Lead: Noel Lotz
Digital Content Project Lead: Noel Lotz
Project Manager: Susan McNally, Cenveo ${ }^{\circledR}$ Publisher Services
Interior Design: Cenveo ${ }^{\circledR}$ Publisher Services
Cover Design: Carie Keller, Cenveo ${ }^{\circledR}$ Publisher Services
Printer/Binder: LSC Communications, Inc. Willard, Ohio
Cover Printer: Phoenix Color/Hagerstown

Microsoft and / or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2019 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text.
PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and /or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data is on file at the Library of Congress.

For Chau, our kids and our grandkids
Roger D. Blair
For Sue's memory and our kids Mark B. Rush

ABOUT THE AUTHORS

Roger D. Blair is the Walter J. Matherly Professor and chair of economics at the University of Florida. He has been a visiting professor at the University of Hawaii and the University of California-Berkeley as well as Visiting Scholar in Residence, Center for the Study of American Business, Washington University. Professor Blair's research centers on antitrust economics and policy. He has published 10 books and 200 journal articles. He has also served as an antitrust consultant to numerous corporations, including Intel, Anheuser-Busch, TracFone, Blue Cross-Blue Shield, Waste Management, Astellas Pharma, and many others.

Mark Rush is a professor of economics at the University of Florida. Prior to teaching at Florida, he was an assistant professor of economics at the University of Pittsburgh. He has spent eight months at the Kansas City Federal Reserve Bank as a Visiting Scholar. Professor Rush has taught MBA classes for many years and has won teaching awards for his classes. He has published in numerous professional journals, including the Journal of Political Economy; the Journal of Monetary Economics; the Journal of Money, Credit, and Banking; the Journal of International Money and Finance; and the Journal of Labor Economics.
PART 1 ECONOMIC FOUNDATIONS
1 Managerial Economics and Decision Making 1
2 Demand and Supply 33
3 Measuring and Using Demand 86
PART 2 MARKET STRUCTURE AND MANAGERIAL DECISIONS
4 Production and Costs 138
5 Perfect Competition 186
6 Monopoly and Monopolistic Competition 227
7 Cartels and Oligopoly 274
8 GameTheory and Oligopoly 318
9 A Manager's Guide to Antitrust Policy 371
PART 3 MANAGERIAL DECISIONS
10 Advanced Pricing Decisions 414
11 Decisions About Vertical Integration and Distribution 465
12 Decisions About Production, Products, and Location 499
13 Marketing Decisions: Advertising and Promotion 541
14 Business Decisions Under Uncertainty 587
15 Managerial Decisions About Information 635
16 Using Present Value to Make Multiperiod Managerial Decisions 677
Content on the Web:
Appendix: The Business PlanChapter: Franchising Decisions

CONTENTS

PART 1

ECONOMIC FOUNDATIONS

Introduction

1.1 Managerial Economics and Your Career 2
1.2 Firms and Their Organizational Structure 3

Definition of a Firm 3
The Legal Organization of Firms 3
1.3 Profit, Accounting Cost, and Opportunity Cost 6

Goal: Profit Maximization 6
Total Revenue 7
Accounting Cost and Opportunity Cost 8
decision snapshot Sunk Costs in the Stock Market 11
DECISION SNAPSHOT Opportunity Cost at Singing the Blues Blueberry Farm 13
Comparing Accounting Cost and Opportunity Cost 15
Using Opportunity Cost to Make Decisions 17
SOLVED PROBLEIM Resting Energy's Opportunity Cost 17
1.4 Marginal Analysis 18

The Marginal Analysis Rule 18
Using Marginal Analysis 19
solved problem How to Respond Profitably to Changes in Marginal Cost 20
Revisiting How Managers at Sears Holdings Used Opportunity Cost to Make Tough Decisions 21

Summary: The Bottom Line 22
Key Terms and Concepts 23
Questions and Problems 23
MyLab Economics Auto-Graded Excel Projects 25
APPENDIX The Calculus of Marginal Analysis 28
A. Review of Mathematical Results 28
B. Marginal Benefit and Marginal Cost 29
C. Maximizing Total Surplus 29
D. Maximizing Total Surplus: Example 30

Calculus Questions and Problems 31

Managers at Red Lobster Cope with Early Mortality Syndrome 33
Introduction 33

2.1 Demand
 34

Law of Demand 34
Demand Curve 35
Factors That Change Demand 37
DECISION SNAPSHOT Demand for the Cadillac Escalade 41
Changes in Demand: Demand Function 41
SOLVED PROBLEMI Demand for Lobster Dinners 43
2.2 Supply 44

Law of Supply 44
Supply Curve 44
Factors That Change Supply 46
Changes in Supply: Supply Function 49
solved problem The Supply of Gasoline-Powered Cars and the Price of Hybrid Cars 50
2.3 Market Equilibrium 51

Equilibrium Price and Equilibrium Quantity 51
Demand and Supply Functions: Equilibrium 53
SOLVED PROBLEM Equilibrium Price and Quantity of Plush Toys 54
2.4 Competition and Society 54

Total Surplus 54
Consumer Surplus 58
Producer Surplus 59
solved problem Total Surplus, Consumer Surplus, and Producer Surplus in the Webcam Market 60
2.5 Changes in Market Equilibrium 61

Use of the Demand and Supply Model When One Curve Shifts: Demand 61
Use of the Demand and Supply Model When One Curve Shifts: Supply 63
Use of the Demand and Supply Model When Both Curves Shift 64
Demand and Supply Functions: Changes in Market Equilibrium 68
sOLVED PROBLEM Demand and Supply forTablets Both Change 70
2.6 Price Controls 70

Price Ceiling 70
Price Floor 72
SOLVED PROBLEIM The Effectiveness of a Minimum Wage 74
MANAGERIAL
APPLICATION

2.7 Using the Demand and Supply Model
 75

Predicting Your Costs 75
Predicting Your Price 76
Revisiting How Managers at Red Lobster Coped with Early Mortality Syndrome 78
Summary: The Bottom Line 78
Key Terms and Concepts 79
Questions and Problems 80
MyLab Economics Auto-Graded Excel Projects 83

MANAGERIAL APPLICATION

Managers at the Gates Foundation Decide to Subsidize Antimalarial Drugs
Introduction 87
3.1 Regression: Estimating Demand 87
The Basics of Regression Analysis 88
Regression Analysis 89
Regression Results: Estimated Coefficients and Estimated
Demand Curve 92
SOLVED PROBLEIM Regression Analysis at Your Steak Chain 94
3.2 Interpreting the Results of Regression Analysis 94
Estimated Coefficients 94
Fit of the Regression 99
solved problem Confidence Intervals and Predictions for the Demand for Doors 100
3.3 Limitations of Regression Analysis 101
Specification of the Regression Equation 101
Functional Form of the Regression Equation 102
SOLVED PRObLEIM Which Regression to Use? 104
3.4 Elasticity 105
The Price Elasticity of Demand 105
DECISION SNAPSHOT Advertising and the Price Elasticity of Demand 117
Income Elasticity and Cross-Price Elasticity of Demand 117
solved probleim The Price Elasticity of Demand for a Touch-ScreenSmartphone 119
3.5 Regression Analysis and Elasticity 120
Using Regression Analysis 120
Using the Price Elasticity of Demand 122
Using the Income Elasticity of DemandThrough the Business Cycle 122
Revisiting How Managers at the Gates Foundation Decided to Subsidize Antimalarial Drugs 123
Summary: The Bottom Line 123
Key Terms and Concepts 124
Questions and Problems 124
MyLab Economics Auto-Graded Excel Projects 128
CASE STUDY Decision Making Using Regression 130
APPENDIX The Calculus of Elasticity 133
A. Price Elasticity of Demand for a Linear and a Log-Linear Demand Function 133
B. Total Revenue Test 134
C. Income Elasticity of Demand and Cross-Price Elasticity of Demand 135
Calculus Questions and Problems 136
PART 2
MARKET STRUCTURE AND MANAGERIAL DECISIONS
Production and Costs 138
Pizza Hut Managers Learn That Size Matters 138
Introduction 138
4.1 Production 139
Production Function 139
Short-Run Production Function 141
Long-Run Production Function 145
solved probleiv Marginal Product of Labor at a Bicycle Courier Service 147
4.2 Cost Minimization 147
Cost-Minimization Rule 148
Generalizing the Cost-Minimization Rule 149
solved problem Cost Minimization at a Construction Firm 150
4.3 Short-Run Cost 150
Fixed Cost, Variable Cost, and Total Cost 151
Average Fixed Cost, Average Variable Cost, and Average Total Cost 152
Marginal Cost 153
decision snapshot Input Price Changes and Changes in the Marginal Cost of an Eiffel TowerTour 154
Competitive Return 156
Shifts in Cost Curves 157
DECISION SNAPSHOT Changes in Input Prices and Cost Changes at ShagangGroup 159
solved problem Calculating Different Costs at a Caribbean Restaurant 161
4.4 Long-Run Cost 162
Long-Run Average Cost 162
Economies of Scale, Constant Returns to Scale, and Diseconomies
of Scale 166
solved probleiv Long-Run Average Cost 169
MANAGERIALAPPLICATION
4.5 Using Production and Cost Theory 170
Effects of a Change in the Price of an Input 170
Economies and Diseconomies of Scale 171
Revisiting How Pizza Hut Managers LearnedThat Size Matters 173
Summary: The Bottom Line 174
Key Terms and Concepts 174
Questions and Problems 175
x MyLab Economics Auto-Graded Excel Projects 178
APPENDIX The Calculus of Cost 179
A. Marginal Product 179
B. Cost Minimization 180
C. Marginal Cost and the Marginal/Average Relationship 183
Calculus Questions and Problems 184
Burger King Managers Decide to Let Chickens Have It Their Way 186
Introduction 186
5.1 Characteristics of Competitive Markets 187
Defining Characteristics of Perfect Competition 188
Perfectly Competitive Markets 189
solved problein The Markets for Fencing and Cell Phones 190
5.2 Short-Run Profit Maximization in Competitive Markets 191
Marginal Analysis 191
Using Marginal Analysis to Maximize Profit 194
DECISION SNAPSHOT Marginal Analysis at the American Cancer Society 196
Changes in Costs 196
Amount of Profit 197
Shutting Down 201
DECISION SNAPSHOT Lundberg Family Farms Responds to a Fall in the Price of Rice 203
The Firm's Short-Run Supply Curve 204
DECISION SNAPSHOT A Particleboard Firm Responds to a Fallin the Price of an Input205
The Short-Run Market Supply Curve 206
solved Probleiv Amount of Profit and Shutting Down at a PlywoodProducer 207
5.3 Long-Run Profit Maximization in Competitive Markets 208
Long-Run Effects of an Increase in Market Demand 208
Change in Technology 212
solved probleiv The Long Run at a Plywood Producer 214
5.4 Perfect Competition 215
Applying Marginal Analysis 215
Optimal Long-Run Adjustments 215
Revisiting How Burger King Managers Decided to Let Chickens Have It Their Way 217
Summary: The Bottom Line 218
Key Terms and Concepts 218
Questions and Problems 219
MyLab Economics Auto-Graded Excel Projects 222
APPENDIX The Calculus of Profit Maximization for PerfectlyCompetitive Firms 224
A. Marginal Revenue 224
B. Maximizing Profit 224
C. Maximizing Profit: Example 224
Calculus Questions and Problems 226

Monopoly and Monopolistic Competition 227

Introduction 228
6.1 A Monopoly Market 228
Defining Characteristics of a Monopoly Market 228
Demand and Marginal Revenue for a Monopoly 229
DECISION SNAPSHOT Is Delta Airlines a Monopoly? 229
solved problem The Relationship Among the Price Elasticity of Demand, Marginal Revenue, and Price 233
6.2 Monopoly Profit Maximization 234
Profit Maximization for a Monopoly 234
DECISION SNAPSHOT Profit-Maximizing Range of Prices forTires 237
Comparing Perfect Competition and Monopoly 239
Barriers to Entry 241
SOLVED PROBlEIM Merck's Profit-Maximizing Price, Quantity, andEconomic Profit247
6.3 Dominant Firm 247
Dominant Firm's Profit Maximization 248
DECISION SNAPSHOT How a Technology Firm Responds to Changes in the Competitive Fringe 251
solved problem The Demand for Shoes at a Dominant Firm 252
6.4 Monopolistic Competition 252
Defining Characteristics of Monopolistic Competition 253
Short-Run Profit Maximization for a Monopolistically Competitive Firm 253
Long-Run Equilibrium for a Monopolistically Competitive Firm 255
SOLVED PROBLEIV J-Phone's Camera Phone 256
MANAGERIAL APPLICATION
6.5 The Monopoly, Dominant Firm, and Monopolistic Competition Models 257
Using the Models in Managerial Decision Making 257
Applying the Monopolistic Competition Model 259
Revisiting Premature Rejoicing by the Managers at KV Pharmaceutical 261
Summary: The Bottom Line 261
Key Terms and Concepts 262
Questions and Problems 262
MyLab Economics Auto-Graded Excel Projects 268
APPENDIX The Calculus of Profit Maximization for Firms withMarket Power 269
A. Marginal Revenue Curve 269
B. Elasticity, Price, and Marginal Revenue 269
C. Maximizing Profit 270
D. Maximizing Profit: Example 271
Calculus Questions and Problems 272
Premature Rejoicing by the Managers at KV Pharmaceutical 227

Managers at Major Publishers Read the e-Writing on the e-Wall 274

Introduction
 274

7.1 Cartels 275
Cartel Profit Maximization 276
Instability of a Cartel 277
SOLVED PROBLEIV Potential Profit from a CellularTelephone Cartel 280
7.2 Tacit Collusion 280
Price Visibility 281
DECISION SNAPSHOT A Contract in the Market for Propane 282
Preannouncements 283
Precommitments 283
Price Leadership 284
SOLVED PROBLEM Price Leadership in the Market for Insulin 284
7.3 Four Types of Oligopolies 285
Cournot Oligopoly 285
DECISION SNAPSHOT South Africa's Impala Platinum as a Cournot Oligopolist 293
Chamberlin Oligopoly 294
Stackelberg Oligopoly 296
Bertrand Oligopoly 297
Comparing Oligopoly Models 298
solved problem Coca-Cola Reacts to PepsiCo 299
MANAGERIAL APPLICATION
7.4 Cartels and Oligopoly 300Using CartelTheory and Tacit Collusion for ManagerialDecision Making 301Using Types of Oligopolies for Managerial Decision Making 301
Revisiting How Managers at Major Publishers Read the e-Writing onthe e-Wall 302
Summary: The Bottom Line 303
Key Terms and Concepts 303
Questions and Problems 304
MyLab Economics Auto-Graded Excel Projects 307
APPENDIX The Calculus of Oligopoly 309
A. Cournot Oligopoly 309
B. Stackelberg Oligopoly 315
Calculus Questions and Problems 316

Managers at Pfizer Welcome a Competitor in the Market for Lipitor

Introduction
 318

8.1 Basic Game Theory and Games 319
Elements of a Game 320
A Sample Game 320
Nash Equilibrium 322
A Dilemma 323
DECISION SNAPSHOT An Advertising Game 324
Repeated Games 325
decision snapshot TragoCo and Boca-Cola Play aRepeated Game327
Dominated Strategies 330
solved problein Games Between Two Smartphone Producers 332
8.2 Advanced Games 334
Multiple Nash Equilibria 334
Mixed-Strategy Nash Equilibrium 337
SOLVED PROBLEIM Custom's Flower of the Day 343
8.3 Sequential Games 344
An Entry Game 344
decision snapshot GameTree Between Disney and Warner Brothers 347
Commitment and Credibility 348
solved problem A Pharmaceutical Company Uses GameTheory to Makean Offer 3528.4 Game Theory354
Using Basic Games for Managerial Decision Making 354
Using Advanced Games for Managerial Decision Making 356
Using Sequential Games for Managerial Decision Making 357
solved problem Is aThreat Credible? 359
Revisiting How Managers at Pfizer Welcomed a Competitor in the Market forLipitor 360
Summary: The Bottom Line 361
Key Terms and Concepts 362
Questions and Problems 362
MyLab Economics Auto-Graded Excel Projects 368

The Managers of Sea Star Line Walk the Plank
 371

Introduction 372
9.1 Overview of U.S. Antitrust Policy 372
The Monopoly Problem 372
The Sherman Act, 1890 374
The Clayton Act, 1914 374
The Federal Trade Commission Act, 1914 375
Sanctions for Antitrust Violations 375
Recent Antitrust Cases 377
solved problem A Perfectly Competitive Market Versus a MonopolyMarket 378
9.2 The Sherman Act 379
Sherman Act Section 1: Restraint of Trade 379
Sherman Act Section 2: Monopolization and Attempt to Monopolize 383
solved problem Going, Going, Gone: Price Fixing in the Marketfor Fine Art 387
9.3 The Clayton Act 388
Clayton Act Section 2: Price Discrimination 388
Clayton Act Section 3: Conditional Sales 388
Clayton Act Section 7: Mergers 391
solved problevi The Business Practices Covered in the Clayton Act 392
9.4 U.S. Merger Policy 392
Economic Effects of Horizontal Mergers 393
Antitrust Merger Policy 394
DECISION SNAPSHOT The XM/Sirius Satellite Radio Merger 396
solved problein Mergers in the Office-Supply Market 397
9.5 International Competition Laws 398
European Union Laws 398
Chinese Laws 400
Worldwide Competition Laws 401
solved Probleiv Gazprom Gas Prices Create Indigestion in the European Union 402
9.6 Antitrust Policy 402
Using the Sherman Act and the Clayton Act 402
Using International Competition Laws 403
Antitrust Advice for Managers 403
Revisiting How the Managers of Sea Star Line Walked the Plank 404
Summary: The Bottom Line 405
Key Terms and Concepts 405
Questions and Problems 406
1 MyLab Economics Auto-Graded Excel Projects 410
CASE STUDY Student Athletes and the NCAA
CASE STUDY Student Athletes and the NCAA 412 412

PART 3

MANAGERIAL DECISIONS

Advanced Pricing Decisions 414
Managers at the Turtle Bay Resort Think Kama'aina Pricing Is Par forthe Course414
Introduction 414
10.1 Price Discrimination 416
First-Degree Price Discrimination 416
Second-Degree Price Discrimination 418
Third-Degree Price Discrimination 419
DECISION SNAPSHOT American Airlines Identifies a CustomerType 425
solved problem Price Discrimination at Warner Brothers:That's All,Folks!426
10.2 Peak-Load Pricing 427
Long-Run Capacity Decision 428
Short-Run Pricing and Quantity Decisions 429
DECISION SNAPSHOT Peak-Load Pricing by the Minneapolis-St. Paul Metropolitan Airport 432
solved Probleiv Peak-Load Pricing 433
10.3 Nonlinear Pricing 434
Two-Part Pricing 434
All-or-Nothing Offers 440
DECISION SNAPSHOT Nonlinear Pricing at the 55 Bar 443
Commodity Bundling 443
solved probleiv Movie Magic 446
MANAGERIALAPPLICATION
10.4 Using Advanced Pricing Decisions 447
Managerial Use of Price Discrimination 447
Managerial Use of Peak-Load Pricing 448
Managerial Use of Nonlinear Pricing 449
Revisiting How the Managers at Turtle Bay Resort Came to Think Kama'aina Pricing Is Par for the Course 450
Summary: The Bottom Line 451
Key Terms and Concepts 451
Questions and Problems 451
MyLab Economics Auto-Graded Excel Projects 456
APPENDIX The Calculus of Advanced Pricing Decisions 458
A. Third-Degree Price Discrimination 458
B. Two-Part Pricing 459
Calculus Questions and Problems 463

Introduction
 465

11.1 The Basics of Vertical Integration 467
Markets Versus Vertical Integration 467
Types of Vertical Integration 468
Transfer Prices and Taxes 469
SOLVED PROblem Vertical Integration 470
11.2 The Economics of Vertical Integration 471
Synergies 471
Costs of Using a Market: Transaction Costs, the Holdup Problem,and Technological Interdependencies471
decision snapshot PepsiCo Reduces Transaction Costs 473
Costs of Using Vertical Integration 476
DECISION SNAPSHOT Pilgrim's Pride and the Limits of Vertical Integration 477
solved problem IBM Avoids a Holdup Problem 478
11.3 Vertical Integration and Market Structure 478
Vertical Integration with Competitive Distributors 479
Vertical Integration with a Monopoly Distributor 483
SOLVED PROBLEM Price and Quantity with Competitive Distributorsand a Monopoly Distributor 488
managerial11.4 Vertical Integration and Distribution489
Using the Economics of Vertical Integration for Managerial Decision Making 489
Using Vertical Integration and Market Structure for ManagerialDecision Making Within a Firm 490
Revisiting Why Walgreens Boots Alliance Would Purchase Wholesaler AmerisourceBergen 490
Summary: The Bottom Line 491
Key Terms and Concepts 492
Questions and Problems 492
MyLab Economics Auto-Graded Excel Projects 496
Decisions About Production, Products, and Location 499
Managers at Freeport-McMoRan Dig Deep to Make a Decision 499
Introduction 500
12.1 Joint Production 500
Fixed Proportions 501
Variable Proportions 502
SOLVED PROBLEIM A Refinery Responds to an Increase in the Profit from Gasoline 506
12.2 The Multi-Plant Firm 506
Marginal Cost for a Multi-Plant Firm 507
Profit Maximization for a Multi-Plant Firm 508
solved probleiv Can Producing Too Many Cookies Hurt Your Firm'sProfit? 510
12.3 Location Decisions 511
Changes in Costs from Adding Plants 511
The Effect ofTransportation Costs on Location Decisions 513
DECISION SNAPSHOT Quaker Oats' Location Decision 514
DECISION SNAPSHOT Walgreens and CVS Compete forYour Drug Prescription 515
The Effect of Geographic Variation in Input Prices on Location Decisions 516
solved problem A Department Store Pays forTransportation 518
12.4 Decisions About Product Quality 518
SOLVED PROBLEMI Flower Quality 520
12.5 Optimal Inventories 521
Economic Order Quantity Model 521
General Optimal Inventory Decisions523
solved problem How a Decrease in Demand Affects the Economic Order Quantity 524
MANAGERIALAPPLICATION
12.6 Production, Products, and Location 525
Joint Production of an Input 525
Transportation Costs, Plant Size, and Location 526
Revisiting How Managers at Freeport-McMoRan Had to Dig Deep to Make a Decision 528
Summary: The Bottom Line 528
Key Terms and Concepts 529
Questions and Problems 529
\cdotsMyLab Economics Auto-Graded Excel Projects 534
APPENDIX The Calculus of Multi-Plant Profit-Maximization and InventoryDecisions 536
A. Production Decisions at a Multi-Plant Firm 536
B. Economic Order Quantity Inventory Model 537
Calculus Questions and Problems 539
Introduction 541
13.1 Profit-Maximizing Advertising by a Firm 542
Advertising and Profit Maximization 543
Choosing Advertising Media 547
DECISION SNAPSHOT PepsiCo Allocates Its Advertising Dollars 548
solved Problelv Marginal Benefit from AutomobileAdvertising549
13.2 Optimal Advertising by an Industry 550
Industry-Wide Advertising as a Public Good 550
Challenges of Industry-Wide Advertising 551
sOLVED PRObLEIM The National Football League's AdvertisingProblem 554
13.3 False Advertising 554
When Can False Advertising Be Successful? 555
What Are the Penalties for False Advertising? 557
solved Problein Advertising for Skechers Shape-Ups Getsthe Boot 558
13.4 Resale Price Maintenance and Product Promotion 558
The Effect of Resale Price Maintenance 559
Profit Maximization with Resale Price Maintenance 560
Resale Price Maintenance and Antitrust Policy 561
DECISION SNAPSHOT Amazon.com Markets Its Kindle 562
solved probleiv Profit-Maximizing Resale Price Maintenance for DesignerShoes 563
13.5 International Marketing: Entry and Corruption Laws 564
Entering a Foreign Market 564
U.S. Anticorruption Law:The Foreign Corrupt Practices Act 566
DECISION SNAPSHOT JPMorgan "Sons and Daughters" Program 569
U.K. Bribery Act 569
SOLVED PROBLEIM Legal or Illegal? 570
13.6 Marketing and Promotional Decisions 571
Industry-Wide Advertising 571
Resale Price Maintenance 571
Foreign Marketing Issues 573
Revisiting Heads Up for Advertising Decisions at Riddell 573
Summary: The Bottom Line 575
KeyTerms and Concepts 576
Questions and Problems 576
1 MyLab Economics Auto-Graded Excel Projects 580
APPENDIX The Calculus of Advertising 582
A. Profit-Maximizing Amount of Advertising with a Single Advertising Medium 582
B. Profit-Maximizing Amount of Advertising with Two or More Advertising Media 584
Calculus Questions and Problems 585

Introduction 587

14.1 Basics of Probability 588

Relative Frequency 588
DECISION SNAPSHOT Probability of Success at a New Branch 589
Expected Value 590
Subjective Probability 591
SOLVED PROBLEM Expected Customers at a Car Dealership 592
14.2 Profit Maximization with Random Demand and Random Cost 593
Expected Profit Maximization with Random Demand 593
Expected Profit Maximization with Random Cost 596
Expected Profit Maximization with Random Demand and Random Cost 598
SOLVED PROBLEM Profit Maximization for a Vineyard 599
14.3 Optimal Inventories with Random Demand 600

The Inventory Problem 600
Profit-Maximizing Inventory 601
SOLVED PROBLEM Profit-Maximizing Inventory of Pastry Rings 603
14.4 Minimizing the Cost of Random Adverse Events 604

Minimizing the Cost of Undesirable Outcomes 604
Expected Marginal Benefit from Avoiding Undesirable Outcomes 604 Marginal Cost of Avoiding Undesirable Outcomes 606 Optimal Accident Avoidance 607
DECISION SNAPSHOT Patent Search at a Pharmaceutical Firm 608
The Role of Marginal Analysis in Minimizing the Cost of Accidents 611
SOLVED PROBLEIM Safety at an Energy Firm 611
14.5 The Business Decision to Settle Litigation 612

Basic Economic Model of Settlements: Parties with Similar Assessments 612
DECISION SNAPSHOT Actavis Versus Solvay Pharmaceuticals 614
Parties with Different Assessments 615
solved probleivi To Settle or Not To Settle, That Is the Question 616
14.6 Risk Aversion 616
Insurance 617

Risk Aversion and Diversification 617
Risk Aversion and Litigation 618
SOLVED PROBLEM MerckTakes Advantage of Risk Aversion 618
MANAGERIAL 14.7 Making Business Decisions Under Uncertainty 619APPLICATION
Maximizing Profit with Random Demand and Random Cost 619
Optimal Inventories with Uncertainty About Demand 620
Making Business Decisions to Settle Litigation 622
Revisiting How Embezzlement Made Managers at a Nonprofit See Red 622
Summary: The Bottom Line 623
Key Terms and Concepts 624
Questions and Problems 624
${ }^{1}$ MyLab Economics Auto-Graded Excel Projects 630
CASE STUDY Decision Making with Final Offer Arbitration 632
Managerial Decisions About Information 635
Auctions Float the Navy's Boat 635
Introduction 635
15.1 Intellectual Property 636
Patents and Trade Secrets 637
Copyrights 639
Trademarks 640
SOLVED PROBLEM Patent Infringement 641
15.2 Value of Forecasts 642
Random Demand Model 642
Factors Affecting the Value of Forecasts 644
SOLVED PROBLEIM Value of a Forecast 648
15.3 Auctions 650
Types of Auctions 650
Bidding Strategy 651
DECISION SNAPSHOT Strategy in an English Auction of a U.S. Silver Dollar 655
Expected Revenue 656
solved problem The San Francisco Giants Strike Out 658
15.4 Asymmetric Information 658
Adverse Selection 659
Moral Hazard 663
SOLVED PROBLEIV Adverse Selection and Insurance Companies 665
MANAGERIAL15.5 Decisions about Information666
Value of Forecasts for DifferentTime Periods 666
Managing the Winner's Curse When Selling a Product 667
Incentives and the Principal-Agent Problem 667
Revisiting How Auctions Float the Navy's Boat 669
Summary: The Bottom Line 669
Key Terms and Concepts 670
Questions and Problems 671
MyLab Economics Auto-Graded Excel Projects 674

Introduction 677

16.1 Fundamentals of Present Value 678
Calculating Future Values 679
Calculating Present Values 680
Valuing a Stream of Future Payments 683
Future and Present Value Formulas 688
SOLVED PROBLEM Choosing a Loan Repayment Schedule 688
16.2 Evaluating Investment Options 689
Net Present Value and the Net Present Value Rule 689
Extensions to the Net Present Value Rule 692
decision snapshot Salvage Value at a Car Rental Firm 693
DECISION SNAPSHOT Depreciation Allowance: Should a Tax Firm Take It Now
or Later? 697
Selection of the Discount Rate 698
Risk and the Net Present Value Rule 698
SOLVED PROBLEIM Investment Decision for an Electric Car Maker 700
16.3 Make-or-Buy Decisions 701
Make-or-Buy Basics 701
Make-or-Buy Net Present Value Calculations 703
SOLVED PROBLEM A Make-or-Buy Decision with Learning by Doing 704
MANAGERIAL APPLICATION
16.4 Present Value and Net Present Value 704
Valuing Financial Assets 704
Using the Net Present Value Rule in the Real World 705
The Effect of Tax Shields on Net Present Value 706
Revisiting Why Ziosk's Managers Gave TheirTablets to Chili's for Free 707
Summary: The Bottom Line 708
Key Terms and Concepts 709
Questions and Problems 709
MyLab Economics Auto-Graded Excel Projects 712
CASE STUDY Analyzing Predatory Pricing as an Investment 715
Answer Key to Chapters 717
Answer Key to Calculus Appendices 756
Index 765

Content on the Web

The following content is available on www.pearson.com/mylab/economics

Web Appendix: The Business Plan

A. Dehydrated Business Plan

B. Funding Business Plan

Executive Summary
Market and Customer Analysis
Company Description, Product Description, and Competitor Analysis
Marketing and Pricing Strategies
DECISION SNAPSHOT Gilead Sciences Needs a Price
Operations Plan
Development Plan
Team
Critical Risks
Offering
Financial Plan
Key Terms and Concepts
Questions and Problems

Web Chapter: Franchising Decisions

Quiznos Sandwiches Finds Its Stores Under Water

Introduction

WC. 1 Franchising

Franchising Issues
Monopoly Benchmark
Input Purchase Requirements
Sales Revenue Royalties
Resale Price Controls and Sales Quotas
woriked Problem Subway Uses an Input Purchase Requirement
WC. 2 Managerial Application: Franchising Theory
Managerial Use of Lump-Sum Franchise Fees
Managerial Use of Sales Revenue Royalties
Managerial Use of Resale Price Controls and Sales Quotas Summary
Revisiting How Quiznos Sandwiches Found Its Stores Under Water
Summary: The Bottom Line
Key Terms and Concepts
Questions and Problems

Solving Teaching and Learning Challenges

Students who enroll in the managerial economics course are typically not economics majors. They take the course with the goal of building skills that will help them become better managers in a variety of business settings, including small and large firms, nonprofit organizations, and public service. In teaching our classes, we often skipped theoretical, abstract coverage in existing books-such as indifference curves, isoquants, the Cobb-Douglas production function, the Rothschild Index, and the Lerner Index-because these topics are not useful to students pursuing careers in management. Based on our teaching experiences and feedback from many reviewers and class testers, we have omitted this sort of theoretical, abstract coverage from our book.

Our decision to omit these topics does not mean that we shortchange economic theory. On the contrary, our book and a wide range of media assets show students how economic theory and concepts-including opportunity cost, marginal analysis, and profit maximization-can provide important insights into real-world managerial challenges such as how to price a product, how many workers to hire, whether to expand production, and how much to spend on advertising. Applications and extensions of the core theory abound. Some of the topics include bundled pricing, vertical integration, resale price maintenance, industry-wide advertising, settlement of legal disputes, present value and investment decisions, auctions and optimal bidding, and optimal patent search. We focus on how to think critically and make decisions in real-world business situations-in other words, how to apply economic theory.

MyLab Economics

MyLab Economics is an online homework, tutorial, and assessment program that delivers technology-enhanced learning in tandem with printed textbooks and etexts. It improves results by helping students quickly grasp concepts and by providing educators with a robust set of tools to easily gauge and address the performance of individuals and classrooms.

The Study Plan provides personalized recommendations for each student, based on his or her ability to master the learning objectives in your course. This allows students to focus their study time by pinpointing the precise areas they need to review, and allowing them to use customized practice and learning aids-such as videos, eText, tutorials, and more-to keep them on track.

First-in-class content is delivered digitally to help every student master critical course concepts. MyLab Economics includes Mini Sims, Auto-Graded Excel Projects, and Digital Interactives to not only help students understand important economic concepts, but also help them learn how to apply these concepts in a variety of ways so they can see how they can use economics long after the last day of class.

MyLab Economics allows for easy and flexible assignment creation, so instructors can assign a variety of assignments tailored to meet their specific course needs.

Visit www.pearson.com/mylab/economics for more information on Mini Sims, Auto-Graded Excel Projects, Digital Interactives, our LMS integration options, and course management options for any course of any size.

Chapter Features

The following key features and media assets demonstrate how The Economics of Managerial Decisions keeps the spotlight on the student as a future manager.

Real-world chapter openers and closers: Each chapter begins with a real-world example that piques student interest and poses a managerial decision-making question. We revisit this question and apply the chapter content to provide an answer at the end. Because students pursue careers in various fields, the chapter openers present challenges faced by a number of different types of organizations, including large and small profit-seeking firms, government organizations, nongovernmental organizations, and nonprofits.

Managers at the Gates Foundation Decide to Subsidize

 Antimalarial DrugsThe Bill and Melinda Gates Foundation (Gates Foundation) a trust endowment of nearly $\$ 40$ billion. The foundation provides grants for education, medical research, and vaccinations around the world. As of 2015, the foundation had made total grants of $\$ 37$ billion. The goal of the Gates Foundation is not maximizing profit. Instead, its goal is to save lives and improve health in developing countries.
In 2010, the Global Fund to Fight AIDS, Tuberculosis and Malaria presented proposals to the Gates Foundation to subsidize antimalarial drugs in Kenya and other nations of sub-Saharan Africa. Although the Gates Foundation provides nearly $\$ 4$ billion in grants per year, there are more than $\$ 4$ billion worth of competing uses for its resources. Consequently, before the managers accepted these proposals, they needed to determine their expected impact: How many people would these projects save compared to alternative uses of the funds? The managers
realized that lives hinged on their decision, so they wanted to be certain that they were getting the most value for their money.
The proposed subsidy programs would lower the price patients pay for the drugs. As you learned in Chapter 2, according to the law of demand, a decrease in the price of a product increases the quantity demanded. Antimalarial drugs are no exception; if their price falls, more patients will buy them. To make the proper decision about the proposals, however, the foundation's managers needed a more quantitative estimate: Precisely how many additional patients would buy the drugs when their
prices were lower? prices were lower?
This chapter explains how to answer this and other questions that require quantitative answers. At the end of the chapter, you will learn how the Gates Foundation managers could forecast the number of patients they
would help by subsidizing the drugs. would help by subsidizing the drugs.

Sources: Karl Mathiesen, "What Is the Bill and Melinda Gates Foundation?" The Guardian. March 16, 2015;
Gavin Yamey, Marco Schaterhoff, and Dominic Montagu, "Piloting the Affordable Medicines Facility-Malaria:
What Will Success Look Like?" Bulletin of the Worrd Health Organization, February 3, 2012, http://www.who
What WiII Success Look Like?" Bulletin of the World Health Organization, February 3, 201
int/bulletin/ Folumesion/611-091199/en; Erinstar, "Availability of Subsidized Malaria Drug
Behavioral Foundations of Primary Health Care Policy Advocacy, March 11, 2012. httos:/: Behavioral Foundations of Primary Health Care Policy Advocacy, March
.com/2012/03/11/availability-of-subsidized-malaria-drugs-in-kenya-18-2.

Revisiting How Managers at the Gates Foundation Decided to Subsidize Antimalarial Drugs
$\Delta \mathrm{s}$ noted at the beginning of the chapter, the managers at the Bill and Melinda Gates Foundation want to use their funds in the best way possible. Because was ing their resources means that people could die unnecessaly. costermine the quantitative impact of the propals pre ented to them. sented to them.

In the case of the proposals to subsidize antimalaria drugs in Kenya and other nations, the managers were unlikely countries because of data limitations. Instead they proba bly relied on estimates of the price elasticity of demand to determine the increase in the quantity of drugs demanded

The subsidy programs lowered the price of these ugs between 29 percent and 78 percent the fall in price differed from nation to nation and from drug to drug) Overall the average decrease in price was roughly 50 percent. Because there are few substitutes, the demand for pharmaceutical drugs is price inelastic. The price elas ticity of demand for pharmaceutical drugs for low-income Danish consumers is estimated to be 0.31. Denmark and

Kenya differ in an important respect: Low-income consumers in Kenya have much lower incomes than their counterparts in Denmark. Consequently, the expenditure on drugs in Kenya is a much larger fraction of consumers for drugs in Konya is lerger than in agers at the Bill and Melinda Gates Foundation estimated that the price elasticity of demand for drugs in Kenya was about wice that in Denmark say, 0.60 -they could then predict that lowering the price of the drugs by 50 percent would increase the quantity demanded by 50 percent $\times 0.60=30$ percent The $\times 0$ Foundationcent

The Gates Foundation funded the proposals to subthe quantity of the drugs demanded in the different nations increased by 20 to 40 percent. The quantitative estimate was right in line with what occurred Using the price elasticity of demand to estimate the impact of the drug subsidy proposals allowed the managers at the foundation to compare them to competing proposals and to make decisions that saved the maximum number of lives.

```
120 CHAPTER 3 Measuring and Using Demand
```

3.5 Regression Analysis and Elasticity Learning Objective 3.5 Use regression analysis and the different elasticity measures to make better managerial decisions.
Regression analysis and the different elasticity measures are important to manager because they help quantify decision making. As a manager, you will face situations
in which you need to know the exact amount of a change in the price of an input, the precise change in your cost when you change your production, or the actual decrease in quantity demanded when you raise the price of your product. Regression analysis and the application of the different elas
you answer these and many other important questions. you answer these and many other important questions.

Using Regression Analysis

Using the results from regression analysis is an essential ta positions. Analysts can use regression analysis for much demand curve. For example, you can use it to estimate how Production changes. We explain this important concept, depends significantly on a specific influence often use regre changes in such factors as personal income (important to aut such as General Motors and Honda) or new home sales (imp ment stores such as Home Depot and Lowe's).
The ultimate goal of regression analysis is
The ultimate goal of regression analysis is to help you m mated demand function to help you make both immediate d to set and long-term decisions about whether to open a new an analyst for your firm has used regression to determine t for your chain's steak dinners depends on the following facto

1. The price of the dinners, measured as dollars per dinner 2. The average income of residents living within the city,
2. The unemployment rate within the city, measured as the 4. ment rate

Suppose that Table 3.4 includes the estimated coefficien rors, t-statistics, and P-values. ${ }^{4}$ The R^{2} of the regression is 0.7 dicts the data reasonably well. In the table, the t-statistics for
greater than 1.96 , and accordingly all five P-values are les Therefore, you are confident that all the variables included the demand for steak dinners. The coefficient for the price var
a $\$ 1$ increase in the price of a dinner decreases the quantity de or 12.9 dinners per night. Similarly, the coefficient for the a 0.0073 , shows that a $\$ 1,000$ increase in average income in

Table 3.4 Estimated Demand Function for Steak Dinners The table shows the results of a regression of the demand for meals at an estimated coefficients for the price, average income in the city in which the restaurant is located, unemployment
rate in the city, and population of the city.
rate in the city, and population of the city.

	Soefficient	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value	Lower 95\%	Upper 95\%
Constant	139.2	11.9	11.7	0.00	117.3	163.1
Price of dinner	-12.9	1.8	7.2	0.00	-9.4	-16.4
Average income	0.0073	0.0012	6.1	0.00	4.9	9.7
Unemployment rate	-10.0	3.1	3.1	0.00	-3.9	-16.5
Population	0.0005	0.0002	2.5	0.02	0.0001	0.0009

$0.0073 \times 1,000$, or 7.3 dinners per night. The coefficient for the unemployment rate variable, -10.0 , shows that a one percentage point increase in the unemploymen
rate decreases the demand by -10.0×1, or 10 dinners per night. And the coefficien or the population variable, 0.0005 , shows that a 1,000 -person increase in populatio ncreases the demand by $0.0005 \times 1,000$, or 0.5 dinners per night.
Short-Run Decisions Using Regression Analysis
Although a more detailed explanation of how managers determine price must wait until Chapter 6 , intuitively it is clear that demand must play a role. The estimated deman function can help determine what price to charge in different cities because you can use it to estimate the nightly quantity of dinners your customers will demand in those cities Suppose that one of the restaurants is located in a city of 900,000 people, in which ave ger income is $\$ 6,30$. $Q^{d}=139.2-(12.9 \times \$ 60)+(0.0073 \times \$ 66,300)-(10.0 \times 5.9)+(0.0005 \times 900,000)$ or 240 dinners per night. You can now calculate consumer response to a change in he price. For example, if you raise the price by $\$ 1$, then the quantity of dinners de manded decreases by 12.9 per night, to approximately 227 dinners.
Long-Run Decisions Using Regression Analysis
You can also use the estimated demand function to forecast the demand for you other executives at your steak chain might be deciding whether to open a restauran in a city of 750,000 residents, with average income of $\$ 60,000$ and an unemployment rate of 6.0 percent. Using the estimated demand function in Table 3.4 and a price of $\$ 60$ per dinner, you predict demand of about 118 meals per night. Suppose this quanthree years, you forecast the city's population will rise to 950,000 , average income will increase to $\$ 70,000$, and the unemployment rate will fall to 5.8 percent. Three year from now, if you set a price of $\$ 60$ per dinner, you forecast the demand will be 293 dinners per night. This quantity of dinners provides support for a plan to open restaurant in three years. You might start looking for a good location!
Other companies can use an estimated demand function to forecast their future for their automobiles to forecast the quantity of steel it expects to need for nex year's production. This information can help its managers make better decisions about the contracts they will negotiate with their suppliers.

Decision Point: Establishing Base Price Based on Demand: Setting Price

Enlighten.
While the Enlighten project was being developed, you hired a market research company to survey consumers to try to find out how much they would be willing to pay for a car with the Enlighten's features. The best estimate of the demand curve for the Enlighten is shown
below. below

> Based on this projected demand curve, at what price would you set the Enlighten if you were going to manufacture 30,000 cars and wanted to sell all of them?

Type values in the space provided below, and click Submit.
$\square \square$

NEW! Mini Sims: The Managerial Applications are accompanied by Mini Sims that are located in MyLab Economics. Written by David Switzer of St. Cloud State University and Casey DiRienzo of Elon University, these Mini Sims are designed to build students' critical-thinking and decision-making skills through an engaging, active learning experience. Each Mini Sim requires students to make a series of decisions based on a business scenario, which helps them move from memorization to understanding and application. These also allow students to experience how different functional areas of a business interact and how each employee's decisions affect the organization.

Solved Problems: This section-ending feature guides students step by step in solving a managerial problem, set in the context of a situation managers may encounter.

DECISION
 SNAPSHOT
 Advertising and the Price Elasticity of Demand

Your marketing department estimates that at the current price and quantity, your firm's product has a price elasticity of demand of 1.1. You run an advertising campaign that changes the demand, so that at the current price and quantity the elasticity falls to 0.8 . In response to this change, would you raise the price, lower it, or keep it the same? Explain your answer.

Answer
You should raise your price. Before the advertising campaign, the demand for your product was elastic, so according to the total revenue test, a price hike would lower your firm's total revenue. After the campaign, the demand became inelastic. You now will be able to increase your firm's profit by raising the price. Because the demand is inelastic, a price hike raises your firm's total revenue. A price hike also decreases the quantity demanded, so your firm produces less, which decreases your costs. Raising revenue and lowering cost unambiguously boost your firm's profit!

Decision Snapshots: This feature places readers in the role of managers facing a decision in a range of industries, including large and small for-profit firms, public service organizations, and nonprofits. An answer is included so students can confirm the decision they have made.

Integrated examples: We consistently present economic concepts in the context of business scenarios from a range of industries. For example:

- Chapter 4, "Production and Costs," uses dinners at a restaurant to present the concepts of production and costs.
- Chapter 13, "Marketing Decisions: Advertising and Promotion," includes examples of advertising by a private company as well as by an entire industry.
- Chapter 14, "Business Decisions Under Uncertainty," discusses the effect of uncertainty on business decisions using examples including Starbucks and Samsung.

Case studies: Four chapters end with case studies that illustrate how managers used the topics in the chapter to approach or solve a business challenge. The case studies conclude with openended questions about a similar situation that instructors can use for class discussion or assign as homework. Here are the four cases:

- Chapter 3 Case Study: Decision Making Using Regression
- Chapter 9 Case Study: Student Athletes and the NCAA
- Chapter 14 Case Study: Decision Making with Final Offer Arbitration
- Chapter 16 Case Study: Analyzing Predatory Pricing as an Investment

Assessment: End-of-chapter Questions and Problems are grouped by the titles of the major numbered sections and the accompanying learning objectives so that instructors can easily assign problems based on those objectives, and students can efficiently review material that they find difficult. Students can complete these problems and questions on MyLab Economics, where they receive tutorial help, instant feedback, and assistance with incorrect responses.

x
NEW! MyLab Economics AutoGraded Excel Projects: Excel is a software application that managers in all industries and all functional areas, such as marketing, sales, and finance, use to analyze data and make decisions such as what to produce, how much to produce, and how to price products. Mandie Weinandt of the University of South Dakota created Excel projects for each chapter based on the content of the chapter. Kathryn Nantz of Fairfield University accuracy checked the projects and solutions. The projects are accessible in MyLab Economics, where instructors can seamlessly integrate Excel content into their courses without having

Questions and Problems

All exercises are available on MyEconLab; solutions to even-numbered Questions and Problems appear in the back of this book.					
3.1 Regression: Estimating Demand Learning Objective 3.1 Explain the basics of regression analysis.					
1.1 In the	3.3 Limitations of Regression Analysis 4.2 Complete the following table.				
meaning dent var tion, anc	Learning Objective 3.3 Describe the limitations of regression analysis and how they affect its use by managers.		Elasticity	Percentage Change in Price	Percentage Change in Change in Demanded
1.2 Why do ence of	3.1 You are a manager at a company similar to KB Home, one of the largest home builders in the		a.	8 percent	12 percent
1.3 Explain			1.4	6 percent	
	United States. You hired a consulting firm to es-		0.6	6 percent	
tants' report used regression analysis to estimate the demand. They assumed that the			1.2		6 percent

MyLab Economics Auto-Graded Excel Projects

mo
The
(24
the
3.2
to manually grade spreadsheets. Students simply download a spreadsheet, work live on a problem in Excel, and then upload that file back into MyLab Economics, where they receive personalized, detailed feedback in the form of reports that pinpoint where they went wrong on any step of the problem.

Optional calculus appendices: The mathematics we use in the chapters is algebra and geometry because this level is appropriate for managers. For those who want to delve more deeply into the math, appendices showing calculus derivations of the important results accompany 9 of the 16 chapters (Chapters $1,3,4,5,6,7,10,12$, and 13). Each appendix includes five homework problems that use calculus.

Developing Career Skills

\equiv
 Demand and Supply

Decision Point: Establishing Base Price Based on Demand: Setting Price

Now that youve straightened out that administrative issue, you can focus on pricing the Enlighten.

While the Enlighten project was being developed, you hired a market research company to survey consumers to try to find out how much they would be willing to pay for a car with the Enlighten's features. The best estimate of the demand curve for the Enlighten is shown below.

Based on this projected demand curve, at what price would you set the Enlighten if you were going to manufacture 30,000 cars and wanted to sell all of them?
Type values in the space provided below, and click Submit.

Students who want to succeed in a rapidly changing job market should be aware of their career options and how to go about developing a variety of skills. As featured on the previous pages, the text focuses on developing these skills in various features:

- Real-world chapter openers and closers show how managers from a variety of business organizations apply economic concepts to make decisions.
- Solved Problems and Decision Snapshots help students build their analytical and critical-thinking skills.
- Mini Sims related to the Managerial Application at the end of each chapter, except Chapter 1, help build students' critical-thinking and decision-making skills through an engaging, active learning experience. The screen on the left shows one decision-point step in the Mini Sim that accompanies Chapter 2, "Demand and Supply."
- Auto-Graded Excel Projects at the end of each chapter help students build their skill using Excel, a software application that they will need to use as managers regardless of the industry or functional area in which they choose to work.

Table of Contents Overview

Chapters 1 through 6 are core chapters. An instructor can cover these chapters in order and then proceed either to Chapters 7 and 8 or to Chapter 10. The chapters in Part 3 (Chapters 10-16) can be covered in any order. For those who want to delve more deeply into the mathematics, appendices showing calculus derivations of the important results accompany 9 of the 16 chapters (Chapters $1,3,4,5,6,7,10,12$, and 13). An appendix on how to write a business plan and an additional chapter on franchising decisions are located at www.pearson.com/mylab/economics.

Part 1. ECONOMIC FOUNDATIONS

Chapter 1: Managerial Economics and Decision Making
Chapter 2: Demand and Supply
Chapter 3: Measuring and Using Demand
Part 2. MARKET STRUCTURES AND MANAGERIAL DECISIONS
Chapter 4: Production and Costs
Chapter 5: Perfect Competition

Chapter 6: Monopoly and Monopolistic Competition
Chapter 7: Cartels and Oligopoly
Chapter 8: Game Theory and Oligopoly
Chapter 9: A Manager's Guide to Antitrust Policy

Part 3. MANAGERIAL DECISIONS

Chapter 10: Advanced Pricing Decisions
Chapter 11: Decisions About Vertical Integration and Distribution
Chapter 12: Decisions About Production, Products, and Location
Chapter 13: Marketing Decisions: Advertising and Promotion
Chapter 14: Business Decisions Under Uncertainty
Chapter 15: Managerial Decisions About Information
Chapter 16: Using Present Value to Make Multiperiod Managerial Decisions
The following content is posted on www.pearson.com/mylab/economics:
Web Appendix: The Business Plan
Web Chapter: Franchising Decisions

Instructor Teaching Resources

The following supplements are available to instructors for download at www. pearsonhighered.com.

The Instructor's Manual was prepared by David Switzer of St. Cloud State University and includes the following features:

- Solutions to all end-of-chapter and appendix questions and problems, which the authors prepared and then revised based on an accuracy review by two other professors.
- Chapter summaries
- Lists of learning objectives
- Chapter outlines, section summaries, and key term definitions
- Extra examples
- Teaching tips

The Test Bank was prepared by Casey DiRienzo of Elon University and includes over 2,400 questions, with approximately 125 multiple-choice questions and 25 true/ false questions per chapter. Between 5 and 10 questions per chapter include a graph and ask students to analyze that graph. The questions are organized by learning objective, and each question has the following annotations:

- Topic
- Skill
- AACSB learning standard (Written and Oral Communication; Ethical Understanding and Reasoning; Analytical Thinking; Information Technology; Interpersonal Relations and Teamwork; Diverse and Multicultural Work; Reflective Thinking; Application of Knowledge)

The PowerPoint Presentation was prepared by Julia Frankland of Malone University and includes the following features:

- All the graphs, tables, and equations in each chapter
- Section summaries for all chapters
- Lecture notes

Acknowledgments

We are grateful for the guidance and recommendations of our many reviews, class testers, and accuracy checkers. Their constructive feedback and support was indispensable in the development of the chapters, media assets, and supplements.

Eric Abrams, McKendree University
Basil Al Hashimi, Mesa Community College
Jasmin Ansar, Mills College
Elena Antiniadou, Emory University
Sisay Asefa, Western Michigan University
Joseph Bailey, University of Maryland
Lila Balla, St. Louis University
Sourav Batabyal, Loyola University Maryland
Jason Beck, Armstrong State University
Ariel Belasan, Southern Illinois University at Edwardsville
Jeanne Boeh, Augsburg College
David Bouras, Lincoln University
Terry Brownschidle, Rider University
Donald Bumpass, Sam Houston State University
Louis P. Cain, Northwestern University
Hugh Cassidy, Kansas State University
Hector Chade, Arizona State University
Kalyan Chakraborty, Emporia State University
Keith W. Chauvin, University of Kansas
Jihui Chen, Illinois State University
Abdur Chowdhury, Marquette University
Jan Christopher, Delaware State University
Kalock Chu, Loyola University at Chicago
Christopher Colburn, Old Dominion University
Kristen Collett-Schmitt, University of Notre Dame
Benjamin Compton, University of Tennessee
Cristanna Cook, Husson University and the University of Maine
Akash Dania, Alcorn State University
Tina Das, Elon University
Dennis Debrecht, Carroll University
Lisa Dickson, University of MarylandBaltimore County
Cassandra DiRienzo, Elon University
Carol Doe, Jacksonville University

Juan Du, Old Dominion University
Nazif Durmaz, University of Texas-Victoria
Maxwell Eseonu, Virginia State University
Xin Fang, Hawaii Pacific University Jose Fernandez, University of Louisville
Darren Filson, Claremont McKenna College
John Fizel, Pennsylvania State University
John Flanders, Central Methodist University
Julia Frankland, Malone University
Yoshi Fukasawa, Midwestern State University
Chris Gingrich, Eastern Mennonite University
Tuncer Gocmen, Shepherd University
Rajeev Goel, Illinois State University
Natallia Gray, Southeast Missouri State University
Anthony Greco, University of Louisiana at Lafayette
Gauri S. Guha, Arkansas State University
John Hayfron, Western Washington University
Martin D. Heintzelman, Clarkson University
J. Scott Holladay, University of Tennessee

Adora Holstein, Robert Morris University
John Horowitz, Ball State University
Jack Hou, California State University at Long Beach
Syed Jafri, Tarleton State University
Andres Jauregui, Columbus State University
Russ Kashian, University of Wisconsin at Whitewater
Mark Keightley, George Mason University
David Kelly, University of Miami
Abdullah Khan, Claflin University
Felix Kwan, Maryville University
Jacob LaRiviere, University of Tennessee
Marc Law, University of Vermont

Robert Lawson, Southern Methodist University
Mahdi Majbouri, Babson College
Michael Maloney, Clemson University
Russ McCullough, Ottawa University
Eric McDermott, University of Illinois
Hannah Mead, George Mason University
Douglas Meador, University of St. Francis at Fort Wayne
Saul Mekies, University of Iowa/Kirkwood Community College
Evelina Mengova, Governors State University
Matt Metzgar, University of North Carolina at Charlotte
Phillip Mixon, Troy University
Masoud Moallem, Rockford University
Francis Mummery, California State University at Fullerton
Kathryn Nantz, Fairfield University
Michael Newsome, Marshall University
Dmitri Nizovtsev, Washburn University
Christian Nsiah, Baldwin Wallace University
Tunay Oguz, Lenoir Rhyne University
Charles Parker, Wayne State College
Robert Pennington, University of Central Florida
Paul Pieper, University of Illinois at Chicago
Chung Ping, University of North Florida
Harvey Poniachek, Rutgers University
John Reardon, Hamline University
Jean Ricot, Valencia Community College
Katy Rouse, Elon University
Stefan Ruediger, Arizona State University
Charles R. Sebuharara, Binghamton University SUNY

Stephanie Shayne, Husson University
Dongsoo Shin, Santa Clara University
Steven Shwiff, Texas A\&M University at Commerce
Kusum Singh, LeMoyne Owen College
Ken Slaysman, York College of Pennsylvania
John Spytek, Webster University
Denise Stanley, California State University at Fullerton
Paul Stock, University of Mary HardinBaylor University
Brock Stoddard, University of South Dakota
David Switzer, St. Cloud State University
Michael Tasto, Southern New Hampshire University
Bill Taylor, New Mexico Highlands University
Kasaundra Tomlin, Oakland University
Suzanne Toney, Savannah State University
Dosse Toulaboe, Fort Hays State University
Julianne Treme, University of North Carolina at Wilmington
Jennifer VanGilder, Ursinus College
Elizabeth Wark, Worcester State University
Mandie Weinandt, University of South Dakota
Keith Willet, Oklahoma State University
Mark Wilson, West Virginia University Tech
Shishu Zhang, University of the Incarnate Word
Ting Zhang, University of Baltimore

A Note of Thanks...

When we first started work on this book, we never realized how many people would be so heavily involved, helping us, assisting us, and frequently prodding us along the way. In truth, it is impossible to convey an adequate measure of thanks for their input. But we shall try:

- Christina Masturzo, Senior Portfolio Manager with Pearson, was our guiding light. We owe her a huge debt for her belief in our vision and for her tireless work helping us achieve this vision. The team she assembled was first class, as were her comments and inputs. Simply put, without her this book would not exist.
- Lena Buonanno, Content Development Specialist with Pearson, helped keep us on track and our noses to the grindstone. Lena was with us every step of the way, literally from the first day to the last. We believe we would still be working on the project were it not for her incredibly cheerful emails (most of which reminded us about missed deadlines).
- Karen Trost, Freelance Development Editor, together with Lena, helped convert our writing into something that has at least a passing resemblance to English. We cannot believe the number of hours Karen put in making grammatical improvements that sharpened and clarified the text. Because she will not have a chance to edit this preface, all wee kan say is thanx.
- Carolyn Philips, Content Producer with Pearson, played a crucial role in helping our thoughts progress from a manuscript to a finished product. We shudder to think what the book would look like without her help.
- Courtney Paganelli, Editorial Assistant with Pearson, truly kept us organizedat least as much as possible. We cannot imagine how Courtney was able to keep all the details about all the aspects of the project straight and especially how she was able to do so when working with us, disorganized as we are. We would doff our hats to her if we could find them.
- Susan McNally, Production Manager with Cenveo, had what is probably the most thankless task of all. Susan had to work with us when we had no idea how to edit pages for publication. Her explanations about what could be (and what could not be) done were invaluable. Time after time she patiently answered our neophyte questions, making us eternally grateful and forever in her debt.

