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Nonequilibrium molecular dynamics simulations were performed for a family of hyperbranched
polymers of the same molecular weight but with different chain lengths between branches.
Microscopic structural properties including mean squared radius of gyration, distribution of beads
from the center of mass and from the core and the interpenetration function of these systems were
characterized. A relationship between the zero shear rate mean squared radius of gyration and the
Wiener index was established. The molecular and bond alignment tensors were analyzed to
characterize the flow birefringence of these hyperbranched polymers. The melt rheology was also
studied and the crossover from the Newtonian to non-Newtonian behavior was captured for all
polymer fluids in the considered range of strain rates. Rheological properties including the shear
viscosity and normal stress coefficients obtained from constant pressure simulations were found to
be the same as those from constant volume simulations except at high strain rates due to shear
dilatancy. A linear dependence of zero shear rate viscosities on the number of spacer units was
found. The stress optical rule was shown to be valid at low strain rates with the stress optical
coefficient of approximately 3.2 independent of the topologies of polymers. © 2009 American
Institute of Physics. �doi:10.1063/1.3247191�

I. INTRODUCTION

In comparison with other classes of materials, polymers
have one of the widest ranges of applications such as coat-
ings, additives, drug and gene delivery, macromolecular
building blocks, nanotechnology, and supramolecular
science.1 The main key to a large number of applications of
polymers is their special properties, which strongly depend
on the molecular topologies. Based on the architecture, poly-
mers are classified as linear, branched, or cross-linked poly-
mers. Among these, branched polymers can be further clas-
sified as graft, star, comb, or dendritic polymers. The
branched polymers that have the most complex architecture
are dendritic polymers including dendrimers and hyper-
branched polymers. Dendrimers are perfectly branched tree-
like structures whereas hyperbranched polymers have incom-
pletely or irregularly branched topologies. Therefore,
modeling dendrimers is less complicated as the structure is
well-defined while simulations of hyperbranched polymers
face difficulties as for a given number of monomers, there is
a large number of possible architectures of hyperbranched
polymers.

As reported in our previous paper,2 there have been a
few papers3–8 on hyperbranched polymer simulations using
Monte Carlo or Brownian dynamics techniques. However
only the randomly branched architecture of hyperbranched
polymers was modeled and rheological properties of the
polymer solution were analyzed. In experiments, although

the melts of some hyperbranched polymers have been
studied,9 the architecture of these polymers is also randomly
branched due to the difficulties in the synthesis of well-
defined dendritic polymers. Recently, dendronized polymers
with well-defined structures comprising a linear backbone
and attached units of dendrons have been synthesized and
modeled10 but the melt rheology of these systems has not
been studied. Therefore our aim in this paper is to study
some controlled specific architectures of hyperbranched
polymers and the effect of branching topology on the melt
rheology. The effect of linear spacers on the rheology of
dendritic polymers in solution has been studied experimen-
tally for branched aromatic etherimide copolymers11 and
theoretically for bead-spring-dumbbell model perfectly
branched polymers using Brownian dynamics techniques12

and generalized Gaussian structure—an extension of the
Rouse model—for hyperbranched polymers.13 It has been
found that spacer length/number of spacer units is an impor-
tant architecture parameter that directly affects the rheology
of hyperbranched polymer solutions. In this work, nonequi-
librium molecular dynamics �NEMD� simulations were per-
formed for a family of hyperbranched polymer melts with
the same molecular weight but different numbers of spacer
units using coarse-grained14 uniform beads. The molecular
weight of all hyperbranched polymers studied was chosen to
be the same as that for perfect trifunctional dendrimers of
generation 4. The total number of beads in dendrimers can be
calculated as Ns= fb��f −1�g+1−1� / �f −2�+1 where f is the
functionality of end groups, b is the number of monomers in
the chain units, and g is the generation number.15 With thea�Electronic mail: btodd@swin.edu.au.
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choice of f =3 and b=2, dendrimers of generation 4 will
have 187 beads. Structural and rheological properties of this
dendrimer as well as a linear chain of equivalent molecular
weight were reported previously.15,16 In order to compare our
simulation data with those polymers, different trifunctional
�f =3� hyperbranched polymers with the same number of
beads per molecule were modeled. All polymers have one
imperfect branching point with the functionality of end
groups f =2. Hyperbranched polymers of type A have two
beads in the chain units �b=2� while polymers of type B, C,
and D have three, four, and five beads, respectively, in the
chain units. The schematic configuration of these hyper-
branched polymers is presented in Fig. 1.

The remainder of this paper is organized as follows. Sec-
tion II describes the methodology employed consisting of
isothermal-isobaric �NpT� and isothermal-isochoric �NVT�
NEMD algorithms. Section III A presents the results and a
discussion of the structural properties of hyperbranched
polymers with different architectures, including mean
squared radii of gyration, distribution of mass, and the inter-
penetration function. Section III B focuses on the flow bire-
fringence effect for these hyperbranched polymers with dif-
ferent spacer lengths. Rheological properties such as the
shear viscosity and first and second normal stress coefficients
are shown in Sec. III B. Some conclusions are presented in
the final section.

II. METHODOLOGY

The models of hyperbranched polymers were built using
beads with Weeks–Chandler–Anderson17 �WCA� intermo-
lecular interaction and finitely extensible nonlinear elastic
�FENE� �Ref. 18� bond potential. Nonbonded beads only
have the WCA potential interaction, which is the Lennard-
Jones potential truncated at the position of the minimum and
shifted to eliminate the discontinuity, whereas bonded beads
have both FENE and WCA interactions. Details of these po-
tentials can be found in our previous paper.2 In the remainder
of this paper, all quantities are expressed in terms of site
reduced units in which the reduction parameters are the
Lennard-Jones interaction parameters � and � and the mass,
mi�, of bead � in molecule i. The reduced temperature is
given by T�=kBT /� where kB is the Boltzmann constant, the
density is given by ��=��3, the pressure tensor by P�

=P�3 /�, and strain rate by �̇�= �mi��2 /��1/2�̇. For simplicity
of notation, the asterisk will be omitted hereafter.

To simulate fluids under shear, the molecular version of
the SLLOD algorithm19 was applied. The reasons for using
this version of the SLLOD algorithm have been discussed
extensively elsewhere.20 To maintain the constant tempera-
ture of simulations, the kinetic energy of the system has been
constrained using the molecular version of the Gaussian iso-
kinetic thermostat, which is derived from Gauss’s principle
of least constraint. The equations of motion for bead � in
molecule i are given as

ṙi� =
pi�

mi�
+ ri · �u ,

�1�
ṗi� = Fi� − �mi�/Mi�pi · �u − ��mi�/Mi�pi,

where ri� and pi� represent the position and thermal momen-
tum of bead � in molecule i, �u is the velocity gradient
tensor, ri=��=1

N� mi�ri� /Mi is the position of the center of
mass of molecule i, Fi� is the intermolecular force on bead �
in molecule i, Mi=��=1

N� mi� is the mass of molecule i, pi

=��=1
N� pi� is the momentum of the center of mass of molecule

i and �=�i=1
N ��=1

Ns Fi� ·pi− �̇�i=1
N pixpiy /�i=1

N pi
2 is the thermo-

stat constraint multiplier.
All NVT simulations in this work were performed at

constant volume at a reduced temperature of 1.25 and the
reduced bead density of 0.84.

In order to keep the polymer systems at constant pres-
sure in NpT NEMD simulations, the Nosé–Hoover integral
feedback mechanism was implemented.21 The equations of
motion are defined as

ṙi� =
pi�

mi�
+ ri · �u + �̇ri,

ṗi� = Fi� − �mi�/Mi�pi · �u − ��mi�/Mi�pi − �̇�mi�/Mi�pi, �2�

V̇ = 3�̇V .

The multiplier �̇ can be obtained by solving the differ-
ential equation given by

�̈ =
�p − p0�V
QNkBT

, �3�

where Q is a damping factor, p0 is the required pressure, and
p is the instantaneous isotropic pressure. In this work, Q was
chosen to be 1000 to minimize the effect of unphysical os-
cillations of volume, pressure, or atomic temperature caused
by coupling the simulated system to the barostat, hence the
melts were allowed to relax to compensate for the flow-
induced changes in the pressure. All simulations were per-
formed at the required pressure p0 of 5.42, which is the equi-
librium pressure of the generation 2 dendrimer melt at the
density of 0.84 in our previous study.22

The equations of motion of the beads were integrated
with time step �t=0.001 in reduced units using a fifth-order
Gear predictor corrector ordinary differential equation
solver.23 After the hyperbranched polymer systems of 125
molecules generated at low density had been compressed to

FIG. 1. Schematic architectures of hyperbranched polymers with different
numbers of spacers.
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the required density, they were equilibrated for 1�106 time-
steps and the pressure or density was plotted against time to
check if the system had reached the steady state. Twenty
separate production simulations, each consisting of 1�106

time-steps, are then performed for every system. The means
and standard errors were evaluated from results of all the
separate runs.

III. RESULTS AND DISCUSSION

A. Structural properties

As stated above, a group of four hyperbranched poly-
mers of the same molecular weight was modeled using
coarse-grained uniform beads. Typical instantaneous con-
figurations of these hyperbranched polymers are shown in
Fig. 2. As mentioned above, simulated trifunctional hyper-
branched polymers have one imperfect branching point with
the functionality of end groups f =2. They all have the same
degree of polymerization N of 187 as for a perfect dendrimer
of generation 4. The only difference in their architectures is
the number of spacer units. Hyperbranched polymers of type
A have the number of spacer units b=2 while polymers of
type B, C, and D have that of three, four, and five, respec-
tively. Two structural parameters, the degree of branching
and the Wiener index, were computed for these systems and
results are shown in Table I.

The degree of branching, which is defined as B
=2D / �2D+L� where D is the number of fully branched
beads and L is the number of partially reacted beads,24 was
calculated for the simulated hyperbranched polymers. The
value of the degree of branching varies from 0 for linear
polymers to 1 for dendrimers or fully branched hyper-
branched polymers. As all simulated systems have only one

imperfect branching point, the value of L is always 1. Hy-
perbranched polymers of type A and B have the same num-
ber of fully branched beads of 61, hence they have the same
degree of branching of 0.992. Polymers of type C and D
have the same number of fully branched beads of 30. There-
fore they have the same degree of branching of 0.9836. The
same values of the degree of branching for different hyper-
branched polymers indicate that the degree of branching only
characterizes the extent of unbranched content within a hy-
perbranched molecule and does not fully describe the archi-
tecture of the systems. This is in agreement with many other
reports5–8 on hyperbranched polymers.

In addition to the degree of branching, the Wiener index,
defined as W=1 /2� j=1

Ns �i=1
Ns dij where Ns is the number of

beads per molecule and dij is the number of bonds separating
bead i and j of the molecule,6 was calculated to characterize
the topologies of simulated hyperbranched polymers in
greater detail. This parameter only describes the connectivity
and is not a direct measure of the size of the molecules. For
polymers of the same molecular weight, linear chain has the
largest value of W whereas star polymer with branch length
of 1 and the core functionality of Ns−1 has the smallest
value of W. In this work, the Wiener index is largest for the
type D system, which has the longest linear chain in between
branching points �spacer length b=5� and smallest for the
type A system which has the shortest linear chain between
branching points �b=2�. With increasing number of spacer
units from 2 to 5, the values of the Wiener index for hyper-
branched polymers comprising 187 beads increase and fall in
the range between 246 388 and 387 540. Systems with
higher Wiener index or higher number of spacer units have
more open structures and larger topological separation of
beads.

Figure 3 presents the mean squared radius of gyration,
which can be calculated as shown in Eq. �4�, for hyper-
branched polymers with different spacers,

�Rg
2� � 	��=1

Ns m��r� − rCM� · �r� − rCM�
��=1

Ns m�

 , �4�

where the angular brackets denote an ensemble or time av-
erage, r� is the position of bead �, and rCM is the position of
the molecular center of mass. At low strain rates, the value of

FIG. 2. Typical configurations of simulated hyperbranched polymers com-
posed of 187 beads and different numbers of spacer units: Type A �b=2�,
Type B �b=3�, Type C �b=4�, and Type D �b=5�.

TABLE I. Degree of branching and Wiener index for different hyper-
branched polymer architectures simulated.

Type of
hyperbranched
polymers Degree of branching Wiener index

A 0.9920 246 388
B 0.9920 306 244
C 0.9836 349 972
D 0.9836 387 540

FIG. 3. Dependence of the radius of gyration on strain rate for hyper-
branched polymers with different number of spacer units.
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�Rg
2� remains constant while at high strain rates where mol-

ecules are stretched, �Rg
2� increases rapidly. Furthermore as

type A molecules have the most dense and rigid structure
while type D molecules have the most open and flexible
architecture, the radius of gyration rises the least steadily for
type A hyperbranched polymers and the most steadily for
type D polymers. The ratio of the radii of gyration at strain
rates of 0.0001 and 0.1 is 1.34 for type A, 1.52 for type B,
1.81 for type C, and 2.08 for type D polymers. In addition,
hyperbranched polymers of type A have the most compact
architecture with the least extension of molecules in space as
seen from Wiener index, hence at a given strain rate, the
radius of gyration is lowest, whereas hyperbranched poly-
mers of type D with the most spatial separation of beads
have the highest value of the radius of gyration. Data for the
radii of gyration for different hyperbranched polymers were
fitted using the Carreau– Yasuda equation25 �Rg

2�= �Rg
2�0 / �1

+ �	Rg
�̇�2�mRg where �Rg

2�0 is the zero shear rate squared ra-
dius of gyration, 	Rg

is a time constant, and mRg
is the power

law exponent. Results for the zero shear rate radii of gyration
were plotted against the Wiener index as shown in Fig. 4. An
exponential function gives a very good fit to the zero shear
rate mean square radius of gyration. The dependence of �Rg

2�0

on the Wiener index was found to be �Rg
2�0=65�16�−87�7�

�e−W/�39�16��104� where the number in brackets shows the
statistical uncertainty from the standard error of the fit. If a
power law function is used to fit the �Rg

2�0 data, the zero
shear rate mean squared radius of gyration scales as �Rg

2�0


W1.20�6�. The power law exponent of 1.20�6� for these hy-
perbranched polymers in NEMD simulations is close to the
value of 1.0 found for phantom chains neglecting long-range
excluded volume interactions and the correction terms in the
calculation of the end-to-end distance between two
segments.8 Brownian dynamics simulations5,6 which take
into account the excluded volume and hydrodynamic inter-
actions also showed a power law exponent of approximately
1.0 for hyperbranched polymers of different molecular
weights. Specifically the Brownian dynamics results showed
that the zero shear rate radius of gyration scales as �Rg�0

�W0.5Ns
−0.85, which means that the squared radius of gyra-

tion scales as �Rg
2�0�W�Ns

−1.7. It is interesting that this re-

lationship for hyperbranched polymers is very similar to that
for linear chains in good solvents �Rg

2�0�W�Ns
−1.824, which

results from W�Ns
3 for linear polymers and �Rg�0�Ns

0.588

for linear molecules in good solvents.26 In ideal solvents or
melts, the squared radius of gyration for linear polymers
scales as �Rg

2�0�Ns, hence the relationship between W, Rg,
and Ns is expected to be �Rg

2�0�W�Ns
−2.0. Taken together

these results show that more work is needed to clarify the
relationship between W, Rg, and Ns, especially for polymer
molecules with short branches.

Figure 5 presents the distribution of beads from the mo-
lecular center of mass, which is defined as

gCM�r� =
��i=1

N ��=1
Ns ���r − �ri� − rCM����

N
, �5�

where N is the number of molecules, ri� is the position of
bead � in molecule i, and rCM is the position of the center of

FIG. 4. Dependence of zero shear rate radii of gyration on Wiener index for
different hyperbranched polymers of the same molecular weight �the solid
line representing fitting with the exponential function�.

FIG. 5. Distribution of mass from the center of mass for �a� different hy-
perbranched polymers at strain rate of 0.0001, �b� different hyperbranched
polymers at strain rate of 0.02, and �c� hyperbranched polymer of type B at
strain rate of 0.0001 and 0.02.
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mass, for hyperbranched polymers of the same molecular
weight. With increasing number of spacer units, the distribu-
tion of mass becomes broader and the average distance of
beads from the center of mass increases. This is in accor-
dance with the topologies of hyperbranched polymer systems
simulated. Furthermore the shear-induced behavior of the
distribution of mass for different hyperbranched polymers
shows a similar trend. At higher strain rates, the curves be-
come wider and the peaks shift toward larger distance as
molecules are stretched under shear flow. This behavior was
also observed in Brownian dynamics simulations for charged
hyperbranched polymers.4

In addition to the distribution of beads from the center of
mass, another form of intramolecular radial distribution
function has been used. The distribution of beads from the
central bead �the core�, defined as

gcore�r� =
��i=1

N ��=2
Ns ���r − �ri� − ri1����

N
, �6�

where ri1 is the position of the core, for different hyper-
branched polymers is presented in Fig. 6. Strong peaks at the
distance equal to the average bond length are observed for all
systems corresponding to the first neighbors of the core. The
same height of these peaks for different hyperbranched poly-
mers is due to the same number of beads around the core in
the innermost shell of the molecules. In contrast, in the outer
shells of the molecules, the separation of beads around the
core is lowest for the system of type A and highest for the
system of type D. Therefore the distribution of beads from
the core is the most narrow for type A polymers and broadest
for type D polymers. Similar to the radial distribution of
beads from the center of mass, the distribution of beads from
the core for all hyperbranched polymers under shear flow
becomes wider as the molecules are stretched.

In order to characterize the penetration of the volume
occupied by the molecule by beads of other molecules, the
penetration function, defined as

ginter�r� =
��i=1

N � j�i
N ��=1

Ns ���r − �r j� − ri1����
4�r2N

, �7�

where ri1 is the position of the core of molecule i and r j� is
the position of bead � in molecule j, was used and results are
shown in Fig. 7. It can be clearly seen that the penetration
function for hyperbranched polymers increases with the in-
crease in the number of spacer units. The system of type A
has the lowest penetration function while the system of type
D has the highest penetration function. This is because poly-
mer molecules with longer linear chains between branching
points are more open and freely accessible by beads of other
molecules whereas polymers with short chains between
branching points have more compact structures, which re-
duce the probability of finding parts of other molecules in the
interior of a polymer molecule. Furthermore, under shear
flow, the interpenetration increases with the increase in strain
rate as molecules are stretched and become more open, hence
parts of other molecules can gain access closer to the core of
the hyperbranched polymer molecule.

B. Flow birefringence

In order to characterize the flow birefringence effect for
hyperbranched polymer structures, the molecular and bond
alignment tensors were computed. The form birefringence is
the birefringence caused by the alignment of the whole mol-
ecules. This can be characterized by the molecular alignment
tensor defined as Sm= ��i=1

N �uiui−1 /3I��, where N is the total
number of molecules, ui is the unit vector denoting the ori-
entation of single molecules, and I is the unit tensor. On the
other hand, the intrinsic birefringence is the birefringence
due to the alignment of intramolecular bonds, which can be
characterized by the bond alignment tensor defined as Sb

= ��i=1
N ��=1

Ns−1�ui�ui�−1 /3I�� where ui� is the unit vector be-
tween adjacent beads.

Figure 8 shows the molecular alignment angle, m, and
the bond alignment angle, b, for different hyperbranched
polymers. The molecular alignment angle is the average

FIG. 6. Distribution of mass from the core for �a� different hyperbranched
polymers at strain rate of 0.0001, �b� different hyperbranched polymers at
strain rate of 0.02, and �c� hyperbranched polymer of type B at strain rate of
0.0001 and 0.02.
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angle between the flow direction and the molecular align-
ment direction. On the other hand, the bond alignment angle
is the average angle between the flow direction and the bond
alignment direction. At low strain rates where polymer sys-
tems are in the Newtonian regime, both molecular and bond
alignment angles reach 45°. At high strain rates where sys-
tems are in the non-Newtonian regime, the hyperbranched
polymer of type A has the highest values of the alignment
angles m and b while the polymer of type D has the lowest
values of m and b. This again can be explained by the
topologies of these systems. Type A hyperbranched polymer
with the smallest number of spacer units has the most com-
pact and constrained structure. With increasing number of
spacer units, polymer architectures become less rigid, hence
molecules and bonds can stretch and align more easily with
respect to the flow field. Furthermore, at high strain rates, the
bond alignment angle is always higher than the molecular
alignment angle of the same polymer type.

Figure 9 presents the molecular order parameter Sm, de-
fined as 3/2 of the largest eigenvalue of the molecular align-
ment tensor and the bond order parameter Sb, defined as 3/2
of the largest eigenvalue of the bond alignment tensor. The
other eigenvalues of the alignment tensor are about half of
the largest eigenvalues indicating weaker ordering in the
other two directions. Such ordering is consistent with the
prolate ellipsoid molecular shape characterized by the eigen-
values of the gyration tensor as discussed in our previous
paper.2 The order parameter of the molecular alignment ten-
sor is actually a measure of the ordering of the anisotropy of
the directors of the molecules. In all cases, the order param-
eter remains constant at low strain rates and increases in high
strain rate regions. This indicates that for all hyperbranched
polymers, the orientational ordering increases and the align-
ments of molecules and bonds are more pronounced at high
strain rates. It can also be seen that with increasing number
of spacer units, the order parameter increases. The order pa-
rameter for hyperbranched polymers with smaller number of
spacer units is always lower than that for polymers with
larger number of spacer units. This is because they have
more compact and constrained structures and it is more dif-
ficult for the chain segments to stretch and align with respect
to the flow field. Furthermore the bond order parameter is
always much lower than the molecular order parameter. This
is due to the high level of branching of hyperbranched poly-
mers and the excluded volume effect. In addition, the small-
scale features are always less distorted by shear.27

FIG. 7. Comparison of the interpenetration function for �a� different hyper-
branched polymers at strain rate of 0.0001, �b� different hyperbranched
polymers at strain rate of 0.02, and �c� hyperbranched polymer of type A at
strain rate of 0.0001 and 0.02.

FIG. 8. �a� Molecular and �b� bond alignment angle for different hyper-
branched polymers at different strain rates.
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C. Rheological properties

The rheological properties of the polymer fluids under
shear flow can be calculated from the components of the
molecular pressure tensor,20 which is given by

PMV =	�
i=1

N
pipi

Mi
−

1

2�
i=1

N

�
�=1

Ns

�
j�i

N

�
�=1

Ns

rijFi�j�
 , �8�

where pi is the total peculiar center of mass momentum of
molecule i, as defined by the equations of motion, rij =r j

−ri is the center of mass separation of molecules i and j,
Fi�j� is the intermolecular force on bead � in molecule i due
to bead � in molecule j.

The isotropic pressure of polymeric systems under shear
can be calculated as

p = 1
3Tr�PM� = 1

3 �Pxx + Pyy + Pzz� . �9�

Results of the isotropic pressure for different hyperbranched
polymers in NVT simulations are shown in Fig. 10�a�. It can
be seen that at low strain rates, the pressure of all systems
reaches a plateau while at high strain rates, the pressure in-
creases rapidly. This indicates that the behavior of the isotro-
pic pressure moves from the Newtonian to non-Newtonian
regime. In comparison to linear and other branched poly-
mers, the pressure for hyperbranched polymers shows a dif-
ferent trend. A drop can be observed in the plot of pressure
versus strain rate for linear, star, H, and comb-shaped poly-
mer melts comprising of C100H202 molecules.28 Before the
rapid increase in pressure, linear molecules exhibit a pressure

drop of about 5% while the pressure of other branched poly-
mers only have a small drop. The pressure data for hyper-
branched polymers were fitted using the Carreau– Yasuda
equation p= p0 / �1+ �	p�̇�2�mp where p0 is the zero shear rate
pressure, 	p is a time constant from and mp is the power law
exponent. Fitting parameters are shown in Table II. As can be
seen from this table, the zero shear rate isotropic pressure
slightly increases with increasing number of spacer units due
to the larger spatial separation of beads. Furthermore, the
critical strain rate �̇critical at which the transition from New-
tonian to non-Newtonian behavior of the pressure occurs can
be calculated as the inverse of 	p. The values of �̇critical were
found to be 0.06�2�, 0.07�3�, 0.09�2�, and 0.09�2� for hyper-
branched polymers with the number of spacer units of 2, 3,
4, and 5, respectively.

FIG. 9. Order parameter of the �a� molecular and �b� bond alignment tensors
for different hyperbranched polymers at different strain rates.

FIG. 10. Dependence of the �a� isotropic pressure and �b� reduced bead
density on strain rate of different hyperbranched polymers in NVT and NpT
simulations, respectively �solid lines representing fitting with the Carreau–
Yasuda model�.

TABLE II. Parameters of the Carreau–Yasuda model fitted to the isotropic
pressure vs strain rate dependence for NVT simulations.

Type of
hyperbranched
polymers p0 	p mp

A 5.295�6� 16.9�7� �0.46�2�
B 5.334�4� 14.1�7� �0.48�3�
C 5.336�9� 11�2� �0.6�1�
D 5.34�1� 11�3� �0.6�3�
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In contrast to NVT simulations with constant density and
changing pressure, NpT simulations have constant pressure
and variable density. Figure 10�b� shows the reduced bead
density as a function of shear rate in constant pressure simu-
lations. It can be seen that the density reaches a plateau at
low strain rates while at high strain rates, the density falls
rapidly. This phenomenon is called shear dilatancy.29

Density data are fitted using the Carreau–Yasuda equation
�=�0 / �1+ �	��̇�2�m� where �0 is the zero shear rate density,
	� is a time constant, and m� is the power law exponent.
Results for these parameters are presented in Table III. The
time constant for density 	� has lower values than that for
isotropic pressure 	p. Therefore the critical strain rates at
which the transition from Newtonian to non-Newtonian be-
havior of the reduced bead density occurs are higher than
those for the pressure.

From the components Pxy and Pyx of the molecular
pressure tensor PM, the non-Newtonian shear viscosity
of hyperbranched polymer fluids can be calculated as
�=−�Pxy + Pyx� /2�̇. Shear viscosity data at different strain
rates obtained from NpT and NVT simulations are presented
in Fig. 11. As can be seen, the shear thinning behavior is
captured within the considered range of strain rates for hy-
perbranched polymers of all types. The viscosities reach a
plateau at low strain rates then decrease rapidly at high strain
rates. Furthermore, the viscosities of the simulated fluids in-
crease with increasing number of spacer units. Hyper-
branched polymers of type A possess the lowest shear vis-
cosities whereas polymers of type D have the highest
viscosities. This is because hyperbranched polymers with a
larger number of spacer units have longer branches and more
open structure, which lead to more entanglement in the sys-
tems and result in higher values of viscosity. However, at
very high strain rates, the trend is reversed, hyperbranched
polymers with longer spacer length have lower viscosities
than those with shorter spacer length. Results obtained from
NVT and NpT simulations only differ from each other at
high strain rates as they then apply to different state points.
Viscosity values in the high strain rate regions obtained from
constant pressure simulations are lower than those from con-
stant volume simulations. The reason for the more pro-
nounced shear thinning behavior in NpT simulations is be-
cause of the “shear dilatancy”—the density decreases as the
shear rate increases. However NpT and NVT simulation re-
sults will be the same if the same state point is investigated
by setting the required pressure in NpT simulations equal to
the pressure obtained from NVT simulations at a given strain
rate.21

Viscosity data were fitted using the Cross equation30

which is given by �=��+ ��0−��� / �1+ �K�̇�mC� where �0 is
the zero shear viscosity, �� is the infinite shear viscosity, K is
the consistency index, and mC is the power law index. Fitting
parameters are shown in Table IV. The NpT simulation zero
shear rate viscosities obtained from the Cross equation fit are
then plotted against the number of spacer units and results
are shown in Fig. 12. It can be clearly seen that zero shear
rate viscosities correlate linearly with the number of spacer
units b in hyperbranched polymer systems simulated. The
slope of the line is found to be 7.3�2�. The linear dependence
of �0 on the number of spacer units has also been investi-
gated in Brownian dynamics simulations12 for hyper-
branched polymers comprising 66 beads per molecule and in
experiments11 for hyperbranched aromatic etherimide co-
polymers.

TABLE III. Parameters of the Carreau–Yasuda model fitted to the reduced
bead density vs strain rate dependence for NPT simulations.

Type of
hyperbranched
polymers �0 	� m�

A 0.8412�2� 12.6�5� 0.175�9�
B 0.8400�1� 11.1�3� 0.156�6�
C 0.8400�2� 9.4�8� 0.18�2�
D 0.8400�4� 9�2� 0.21�9�

FIG. 11. Shear viscosities vs strain rate for �a� different hyperbranched
polymers in NVT simulations, �b� different hyperbranched polymers in NpT
simulations, and �c� hyperbranched polymer of type A in NVT and NpT
simulations �solid lines representing fitting with the Cross model�.
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Viscosity data were also fitted using the Carreau–Yasuda
equation in the form �=�0 / �1+ �	��̇�2�m� where 	� is a time
constant and m� is the power law exponent. The fitting pa-
rameters for all simulated hyperbranched polymer systems
are presented in Table V. The inverse of the time constant 	�

is the strain rate �̇critical at which the onset of shear thinning is
observed. As the values of 	� increase with increasing num-
ber of spacer units, the critical strain rate �̇critical is lowest for
hyperbranched polymer of type A with the lowest Wiener
index and highest for polymer of type D with the largest
Wiener index. A similar behavior of the critical strain rate
was found for hyperbranched polymers under elongational
flow in Brownian simulations.5 Furthermore the time con-
stant in the Carreau–Yasuda model fitted to the shear viscos-
ity data from NpT simulations is always lower than that from
NVT simulations. Therefore the value of the critical strain
rate for a given hyperbranched polymer system at constant
pressure is always higher than that at constant volume. As
mentioned above, NVT and NpT algorithms will give the
same results if the same state point is investigated.

The time constant 	� in the Carreau–Yasuda model fitted
to the viscosity data is also the longest relaxation time �0 of
molecules composing the fluids from which the Weissenberg
number We can be calculated by the definition We= �̇�0. As
shown in our previous paper,31 using the Weissenberg num-
ber, a master curve can be established and the shear rate
dependence of the viscosity for hyperbranched polymers of
different molecular weights in the same series could be pre-
dicted. With the same purpose, the ratios of shear viscosity
and zero shear rate viscosity for hyperbranched polymers of
four different architectures are plotted against the Weissen-

berg number. However results show that using the Weissen-
berg number calculated from the time constant in the
Careau–Yasuda model and normalized viscosity is not suffi-
cient to eliminate differences between different architectures.
Therefore the time constant in the Cross model is used to
compute the Weissenberg number and viscosity data were
normalized using different parameters in the Cross models.
Although this gives a better result in eliminating the differ-
ences between simulated architectures, a master curve still
cannot be established as shown in Fig. 13.

From the components of the molecular pressure tensor
PM, the first and second normal stress coefficients, which
describe the effect of the normal stress differences exhibited
by polymeric fluids, can be calculated by the definitions �1

= �Pyy − Pxx� / �̇2 and �2= �Pzz− Pyy� / �̇2. Results for �1 and
−�2 for hyperbranched polymers with different number of
spacer units are shown in Figs. 14 and 15. It can be seen that
the first and second normal stress coefficients are always
higher for systems with longer branches. However, the gap
between the values of the normal stress coefficients of dif-
ferent hyperbranched polymers is more pronounced for �1

than that for −�2. The crossover from Newtonian to non-
Newtonian behavior cannot be captured due to the noise of
data in the low strain rate region. The normal stress coeffi-
cients for all simulated hyperbranched polymers in NpT and
NVT simulations were fitted in the power-law region. The
exponents � and � of the asymptotic dependences �1
�̇−�

and ��2�
�̇−� are presented in Table VI. Similar to the be-
havior of the shear viscosity, the rate of decrease in the nor-
mal stress coefficients is more pronounced for NpT simula-
tions, hence the exponents � and � obtained from NpT
simulations have higher values than those from NVT simu-
lations. However, these values are still within the range of
typical experimental values for polymer melts and concen-
trated solutions.25

Figure 16 shows the deviations from the stress optical
rule �SOR� which can be tested using the components of the
molecular pressure tensor Pxx, Pyy, and Pzz together with
components of the bond alignment tensor Sxx, Syy, and Szz. As
can be seen, components of the stress and alignment tensors
are proportional, hence the SOR is valid, only in the low
strain rate region. The proportionality constant—the stress
optical coefficient—is independent of the number of spacer
units and has the value of approximately 3.2, which is very
close to the obtained stress optical coefficient for hyper-
branched polymers type A at different molecular weight. This
is in agreement with experimental results which show that
the stress optical coefficient does not depend on the molecu-

TABLE IV. Parameters of the Cross model fitted to the shear viscosity vs strain rate dependence.

Type of
hyperbranched
polymers

NVT NpT

�� �0 K m �� �0 K m

A 7�2� 53�2� 322�46� 0.74�9� 3�2� 52�1� 241�24� 0.72�7�
B 7�1� 61�1� 374�28� 0.86�6� 4�1� 60�1� 336�25� 0.81�6�
C 7�1� 67�1� 391�30� 0.90�7� 3�1� 67�1� 347�21� 0.82�5�
D 8�2� 74�2� 408�30� 1.01�8� 5�1� 74�2� 380�30� 0.96�8�

FIG. 12. Dependence of zero shear rate viscosities on the number of spacer
units for hyperbranched polymers.
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lar weight or branching of molecules.26 As discussed in our
previous paper,2 the violation of the SOR in the high strain
rate region occurs because it does not take into account the
flow-induced changes of the radial distribution function of
hyperbranched polymers that becomes distorted at high
strain rates. Furthermore the deviations from the SOR corre-
spond to the point where the pressure p��̇�, which depends
on the radial distribution function, begins to vary rapidly as
can be seen in Fig. 10�a� rather than that for the shear vis-
cosity ���̇� as seen in Fig. 11. This confirms that the devia-
tions are due to the changes in the local structure.

IV. CONCLUSIONS

In this work, hyperbranched polymers of the same mo-
lecular weight of 187 beads but with different number of
spacer units of 2, 3, 4, and 5 were modeled using NEMD.
The degree of branching was found to possess the same
value for polymers of type A and B as well as for polymers

of type C and D. Therefore the Wiener index W was calcu-
lated to fully characterize the architecture of simulated sys-
tems. Microscopic structural properties, flow birefringence,
and melt rheology of these systems were found to change
significantly with an increasing number of spacer units.

The radius of gyration, distribution of beads, and the
interpenetration function were in accordance with the mo-

TABLE V. Parameters of the Carreau–Yasuda model fitted to the shear viscosity vs strain rate dependence.

Type of
hyperbranched
polymers

NVT NpT

�0 	� m� �0 	� m�

A 48�6� 1422�615� 0.158�2� 47�1� 1338�240� 0.18�1�
B 57.5�4� 1524�87� 0.186�4� 56.0�7� 1471�137� 0.200�8�
C 63�5� 1612�93� 0.195�5� 62.2�7� 1562�127� 0.214�8�
D 75�19� 1918�1268� 0.214�9� 69.6�5� 1801�730� 0.245�7�

FIG. 13. Shear viscosities vs Weissenberg number for different hyper-
branched polymers in �a� NVT and �b� NpT simulations �solid lines repre-
senting fitting with the Cross model�.

FIG. 14. First normal stress coefficient vs strain rate for �a� different hyper-
branched polymers in NVT simulations, �b� different hyperbranched poly-
mers in NpT simulation, and �c� hyperbranched polymer of type A in NVT
and NpT simulations.
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lecular architecture being less compact and more open with
an increasing number of spacer units and have significant
changes induced by the shear flow. The mean squared zero
shear rate radius of gyration was found to scale with the
Wiener index as �Rg

2�0
W1.20�6�.

For all systems, the flow alignment angle always con-
verges to 45° in the Newtonian regime and decreases in the
non-Newtonian regime. Furthermore the molecular align-
ment angle is found to be lower than the bond alignment
angle. On the other hand, the order parameter for simulated
hyperbranched polymers remains constant in the low strain
rate region and increases at high strain rates. Besides, the
smaller value of the bond alignment parameter in compari-
son with the molecular alignment parameter indicates that
the intrinsic birefringence is fairly small compared to the
form birefringence.

The crossover from the Newtonian to non-Newtonian
behavior was captured for all polymeric fluids in the range of
strain rates considered. Rheological properties obtained from
NpT simulations were found to be the same as those from
NVT simulations except at high strain rates due to shear
dilantancy. A linear dependence of zero shear rate viscosities
on the number of spacer units was found for the hyper-
branched polymer systems simulated. Furthermore it has
been found that using the Weissenberg number and normal-
ized viscosity is not sufficient to eliminate differences be-
tween different architectures of hyperbranched polymers. Al-
though the isotropic pressure in NVT simulations and
reduced bead density in NpT simulations show opposite
trends, they both have large critical strain rate at which the
transition from the Newtonian to non-Newtonian behavior
occurs. Furthermore the SOR was shown to be valid at low

FIG. 15. Second normal stress coefficient vs strain rate for �a� different
hyperbranched polymers in NVT simulations, �b� different hyperbranched
polymers in NpT simulations, and �c� hyperbranched polymer of type A in
NVT and NpT simulations.

TABLE VI. Estimated values of the exponents in the power law regions for
the first and second normal stress coefficients of different hyperbranched
polymers.

Type of
hyperbranched
polymers

NVT NpT

� � � �

Type A 1.0�2� 0.9�7� 1.2�5� 1.27�4�
Type B 1.1�1� 1.0�3� 1.2�6� 1.26�9�
Type C 1.0�9� 1.1�1� 1.1�9� 1.1�3�
Type D 1.1�5� 1.1�4� 1.2�6� 1.1�6�

FIG. 16. Deviations from the stress optical rule—�Pxx− Pyy� / �Sxx−Syy� and
�Pyy − Pzz� / �Syy −Szz� vs the logarithm of �̇ for different hyperbranched
polymers.
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strain rates with the stress optical coefficient of approxi-
mately 3.2 independent of the polymer topologies.
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