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Abstract 
 

In the last years, societies growing environmental and health conscience, obliged the national 
authorities to reinforce existing legislation concerning the maximum permissible noise levels. These 
new demands lead to increasingly accurate tools to perform noise analysis, not only because they 
must include a growing number of parameters that influence its propagation, thus with more 
complexity, but also with more flexibility, quick and easy use and less computational effort. 

This dissertation, after presenting the several existing numerical methods to evaluate the sound 
propagation and its intrinsic limitations, describes the acoustic wave equation resolution method, using 
a Green function. Since the focus of this work is to develop a numerical application, which allows 
incorporating the wind and turbulence effects on sound propagation in the atmosphere, was created a 
C language numerical program. It includes input and output interfaces which ease the analysis of the 
referred effects variations on sound propagation. 

The numerical program validation was achieved not only by comparing its results with exact 
numerical methods, but also by using numerical approaches with known accuracy and with results 
from experimental measurements. The program was applied to an airport by using realistic 
parameters. The coherent results obtained confirmed that the program developed is numerically 
accurate and its user interface is suitable and can be, easily and effectively, used to evaluate the 
effects of wind and turbulence on sound in the vicinity of an airport. 
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1 Introduction 

 
The sound propagation studies in the 

atmosphere had always been a major concern in the 
scientific community. In the 19

th
 century there were 

several isolated investigations to address specific 
requests, such as foghorns to aid shipping traffic or 
the location of artillery pieces. Refer to [Wescott & 
Kushner, (1965)], for a detailed bibliografy of the 
research done before 1965. When, in the 1960s, jet 
aircraft use grew significantly, governments 
throughout the world begun to produce specific 
legislation to limit the noise pollution, with the intent of 
protecting human health and minimizing the 
annoyance of noise to the communities and 
environment. As a result of this, new  research activity 
grew in this area and with the aid of knowledge from 
other fields of physics, new methods to measure the 
outdoor sound propagation, with increasing accuracy,  
where developed. 

The existent methods to calculate the sound 
level in a given atmosphere, have different degrees of 
complexity accuracy and speed. Some of them do not 
incorporate many parameters that influence the real 
atmospheric sound behavior or are computationally 
inefficient. The most relevant methods are the 
Generalized Fast Field Program (FFP) [Raspet, et al., 
(1985)], that do not incorporate range dependent 
atmospheric parameters; the Crank-Nicholson 
Parabolic Equation (CNPE) method [West, et al., 
(1992)], which requires significant computation time; 
the Ray Model [Gabillet, et al., (1993)], which results 

are not accurate enough for some situations and the 
Green Function Parabolic Equation (GFPE) method 
[Gilbert, et al., (1993)]. 

The GFPE method, which was developed by 
[Gilbert, et al., (1993)], is the most suitable one to 
study the effect of wind and turbulence on sound 
propagation in the atmosphere. Using this method, 
where we included several inputs that represent the 
most significant parameters of sound propagation 
phenomena, we developed a computational program, 
in C language, to calculate the sound field. This 
program puts together the best features of each of the 
three methods referred above.  

 
2 Theoretical formulation 

 
2.1 The GFPE method 

 
As in previous studies, we consider a system with 

a monopole source, in a moving atmosphere with a 
non constant sound speed profile, above a finite 
impedance ground surface. Since most  sound 
propagation programs, in particular the one developed 
in this text, use a two-dimensional representation of 
the atmosphere, an aproximation of the three-
dimensional Helmholtz equation is required [Gilbert, et 
al., (1993)]. It is assumed that the system has 
azimuthal symmetry about the vertical axis  . 

Furthermore, a variable        is defined, which 
removes the cylindrical spreading. Starting from the 
three dimensional Helmholtz equation, the resulting 
two dimensional far-field        equation is, 
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where             is the wave number,   the 

angular frequency and   the speed of sound. 
The derivation of the GFPE method uses the two 

dimensional version of the Kirchhoff-Helmholtz 
integral equation and the result is the Rayleigh II 
integral [Pierce, (1991)] for the field      at point   , in 
terms of an integral over the vertical line at     . In 
the previous conditions, the Rayleigh II integral is, 
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where           ,         and the ground surface 

is located at    . 
The Green's function         also satisfies the 

two-dimensional Helmholtz equation and can be 
written as follows, 

 

 
  

    
  

                          (2.3) 

 
where is assumed that the medium is independent of 
the horizontal distance   (      ) and   can be 

written as           , with         as the 
horizontal spacing. To express the Green's function in 
terms of the horizontal wave number   , the following 
Fourier transform is introduced, 
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The inverse Fourier transform formula, 
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is now substituted in equation (2.2), with         
and        .  Taking into account Fourier transform 
properties, equation (2.2) results (changing the 
notation from   to    and from    to  ), 
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The previous expression can also be derived from 

the spectral theorem of functional analysis [Gilbert, et 
al., (1993)]. The Green's function       

     also 
satisfies the transformed version of the Helmholtz 
equation [equation (2.3)], 
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From equation (2.6), [Gilbert, et al., (1993)] derived the 
following expression for a refracting atmosphere, 
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where the spatial Fourier transform of        is, 

 

                       

 

 

    (2.9) 

 
These two equations are the basic equations of 

the GFPE method. In equation (2.8),        

                    is the plane wave reflection 

coefficient,    is the normalized ground impedance,    

is the wave number at zero height,    is the horizontal 

spacing  and        . 

In equation (2.8), the atmospheric refraction is 
considered by multiplying the solution in a non-
refracting atmosphere by the exponential phase factor 

                    , where the contribution factor  

       is defined by, 
 

        
         (2.10) 

 
and    is a constant wave number at some average 
height. The second term on the right-hand side of 
equation (2.10) is the variation of the vertical profile, 
which can be either positive or negative and it is 

always small compared with      . 
Equation (2.8) represents the sum of three 

different types of sound waves. The first term 
represents the direct wave, the second term 
represents the wave reflected by the ground and the 
third term represents the surface wave. 
 
2.2 Atmospheric turbulence 

 
Atmospheric turbulence on sound propagation 

models is usually described using an effective sound 
speed that randomly fluctuates around an average 
value. Thus, we write the total refraction index as a 
deterministic part       plus a stochastic part       , 

 
                    (2.11) 

 
where    , if weak turbulence is considered. 
Equation (2.11) considers that, although the 
fluctuating part   to be, in reality, a function of both 
space and time, its value can be approximated in a 
specific instant of time. This approximation is called 
the frozen medium approach and it is possible 
because the sound waves travel so fast that the 
medium can be considered as 'frozen'. 

Turbulence is included by multiplying equation 
(2.8) by an exponential factor, which includes the 
refractive index fluctuations        [Salomons, 
(2001)]. The exponential factor is [Martin, (1993)], 

 
         (2.12) 

 
where   is the turbulent phase fluctuation integrated 
over a range step, being its expression, 
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Using the turbulent exponential factor in equation 
(2.12), the GFPE accurately takes into account the 
turbulent fluctuations within a range step. 

The refractive index fluctuations function at the 
grid points is [Salomons, (2001)], 

 

                                      

 

   

 (2.14) 

 
where, 
 

                                    (2.15) 

 
being              ,               and        

for           . The angles    and    are random 
numbers between   and   . These numbers are 
calculated using a pseudorandom number generator. 
The function            is the two-dimensional 
spectral density and can be either the Gauss 
spectrum or the von Kármán spectrum [Salomons, 
(2001)]. Replacing equation (2.14) into (2.13) results, 
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3 Numerical implementation 

 
The GFPE method is a step by step extrapolation 

of the sound field           given by equations (2.8) 
and (2.9). A two dimensional rectangular grid is used, 
where     is the horizontal spacing and    is the 

vertical spacing. We use        , where   is the 
wavelength. The grid is limited by the ground surface 
at     and is truncated at the top at height       , 

where the total height of the atmosphere is given by 
         , being   a positive integer. To prevent 

unwanted reflection from sound waves at the 
truncated top surface, an absorption layer is located 
between        and       . The thickness of the 

absorption layer varies between     and     . This 
attenuation is obtained by adding an imaginary part 

                    
 
 to the wave number within the 

absorption layer, with   a factor that varies with 
frequency. 

In order to allow an accurate comparison with 
other methods, we use a Gaussian starting field given 
by [Tappert, (1977)], 

 

             
  
 

 
      

 

 
    

    
    

   
 

 
      

    

(3.1) 

 

where    is the source height above the ground. 
To compute the sound field it is necessary to 

calculate several Fourier integrals in each range step. 
Each of the integrals can be approximated by a sum 
called Discrete Fourier Transform (DFT). For the 
Fourier integral represented by equation (2.9), the 
discrete sum is [Champeney, (1985)], 
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where the integration variables    and    are 
discretized respectively as, 
 
                                            

          
(3.3) 

 
                                 (3.4) 

 
being            ,    the vertical spacing and 

     the Fourier transform size. As a consequence 
of Fourier transform's periodic nature, the vector 
elements         and          can be related 
between them by a permutation of vector positions. 
Therefore, it is possible to include both integrals into a 
single transformation of size     , which is the 
double of the vertical grid size. This assumption 
decreases the computational effort. The integral 
       only requires a single summation of N terms. 
After the above integrals have been evaluated, the 
inverse Fourier integral of equation (2.8) can be 
calculated with an approximation analogous to 
equation (3.2). Hence, the calculation of one range 
step requires two Fourier transforms: one forward 
DFT and one inverse DFT. 

An alternative method for computing the Fourier 
integrals is based on the midpoint rule for numerical 
integration [Press, et al., (1986)]. The Fourier integral 
represented by equation (2.9) results in the following 
approximation, 

 

                  
 

 
          

   

   

    
 
 
      (3.5) 

 
where the integration variable    and    are 
discretized as equation (3.3) and (3.4) respectively. 
Equation (3.5) uses the   coordinates at the center of  

the integration intervals           therefore, the ground 

surface (   ) is represented more accurately in 
equation (3.5) than in equation (3.2), which in turn 
leads to a more accurate approximation. For the 
inverse Fourier integral, an approximation analogous 
to equation (3.5) is used. 

After each extrapolation step,            for 

heights    where          , as a way to avoid 

coupling between the top and ground surface, which 
can generate computational errors. These heights can 
be interpreted as corresponding to negative heights, 
due to the Fourier transform's periodic nature. 
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As we confirm in section 4.3, the accuracy of the 
method can be enhanced by using the following 
refraction factor, 

 
               (3.6) 

 

as a result, all computational simulations use this 
refraction factor. 

The discrete sampling of the inverse Fourier 
transform causes errors when its summand oscillates 
rapidly. We multiply the summand by window function 
to suppress its rapid oscillation [Salomons, (1998)],  

 

 
 
 

 
                            

     
            

  
 

                               

                    

 

(3.7) 

 
In section 4.3 we confirm that the use of this 

function improves the results accuracy. 
The described numerical implementation and the 

additional functions, were included in the C language 
computational program. Its analysis and validation is 
performed in chapter 4, as well as, the results 
obtained. 

 
4 Analysis and results 

 
4.1 Test cases 

 
This section defines various test cases to analyze 

the accuracy and optimization of the developed 
numerical implementation of the GFPE method. 

The sound levels are measured using either the 
relative sound pressure or the transmission loss. The 
relative sound pressure    is defined as the sound 
pressure level relative to the free field.  

 

           
    

 

       
   (4.1) 

 
The transmission loss (TL) is the sound pressure 

relative to the acoustic pressure of the direct sound 
field at   m from the source. 

 
Table 4.1- Acoustic and environment parameters for two test 

cases in a non-refracting atmosphere. 

Test case 1 2 

Atmosphere 
non-refracting 

       m/s 

non-refracting 

       m/s 

Ground surface 

   Hz 
    Hz 
     Hz 

reflecting 
 

     (at all 

frequencies) 

absorbing 
                

                

                

Source/receiver height   m   m 

 

As known, in a non-refracting atmosphere the 
adiabatic sound speed is constant in all medium's 
points. The ground impedance of test case 1 (    )  

represents a water surface while the ground 
impedances enumerated for the test case 2 represent 
grassland. They are calculated with the four 
parameter model of [Attenborough, (1985)]. These 
test cases have an exact analytical solution, which is 
fundamental to test the accuracy of the program. 

The next test cases represent a more complex 
atmosphere, including atmospheric refraction. Their 
parameters are taken from benchmark problems used 
to test outdoor sound propagation models 
[Attenborough, et al., (1993)].  

Table 4.3 displays the sound speed profiles of the 
four test cases. Test case 3 represents an idealized 
situation of sound propagation under upwind 
conditions. Test case 4 is similar to the previous one, 
only with opposite gradient sign and represents a 
downwind condition. Test case 5 is a DUC profile 
(downward - upward - constant) and is composed by 
three functions: a positive gradient up to     m, then a 
negative gradient between     and     m, followed 
by a constant profile. The gradient values are similar 
to the previous ones. Test case 6 is a logarithmic 
profile, which is used as a realistic representation of 
the atmosphere above open ground areas. Table 4.2 
displays the remaining simulation parameters. The 
normalized ground impedance values are similar for 
the four test cases and are representative of 
grassland. They were calculated with the four 
parameter model of [Attenborough, (1985)]. 

 
Table 4.2 - Acoustic and environment parameters for a 

refracting atmosphere 

Starting field Gaussian 

Ground surface 

     Hz 
    Hz 
   Hz 

absorbing 
                

                

              

Source height   m 
Receiver height   m 

 
4.2 Validation for a non-refracting atmosphere 

 
With the parameters described in Table 4.1, we 

present the program results in Figure 4.1 plots, either 
the standard Fourier transform [equation (3.2)], or the 
alternate Fourier transform based on the midpoint rule 
for numerical integration [equation (3.5)]. Furthermore, 
we introduce the results with the exact solution, which 
numerically integrates an exact Laplace transform for 
a point source in a homogeneous atmosphere above 
an absorbing ground [Di, et al., (1993)]. All the results 
in this section use the relative sound pressure to 
measure the sound levels [equation (4.1)].  

 

 
 

Table 4.3 - Atmospheric refraction parameters of four test cases.  

 Test case 3 4 5 6 

Sound speed 
profiles 

speed         
 

upward 
 

            

downward 
 

             

DUC downward 
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Figure 4.1 - Relative sound pressure up to    km with parameters from test case 1 (left figure) and test case 2 (right figure), for a     
Hz  point source. 

 
The vertical spacing     should not be larger than 

     or      m in these two test cases. On the other 

hand, the horizontal spacing can be up to    , 
depending on the simulation parameters. Acording to 
Figure 4.1, the sound level results, with the standard 
Fourier transform, deviate substantially from the exact 
solution. However, when using smaller vertical 
spacings, the latter results tend to approximate the 
exact solution. Oppositely, the error decreases with 
increasing horizontal spacing. 

The alternate Fourier transform results, based on 
the midpoint rule, are very similar to the exact 
solution, presenting a difference minor than     dB. 

With        , the standard transform deviates 
considerably. We found similar results for the 
frequencies    and      Hz. 

The alternate Fourier transform allows the use of 
larger    to obtain accurate sounds levels and 
consequently, the program requires a smaller number 
of vertical points. This results in a more efficient 
computational effort and, simultaneously, an accurate 
solution. For these reasons, all the following test 
cases use the alternate Fourier transform. 

The discrete sampling of the inverse Fourier 
transform causes numerical errors due to the rapid 
oscillation of its summand. With the same conditions 
used in the previous test cases, we tested the window 
function's influence on sound levels and, 
simultaneously, compared them with the accurate 
results of the previous plots. We concluded that, with 
the window function, we can use larger range steps, 
up to     m, allowing a greater computational 
efficiency, without compromising the solution's 
accuracy. 

 
4.3 Validation for a refracting atmosphere 

 
Using the test cases from Table 4.3, we calculate 

the results and compare them with the CNPE method, 
as its accuracy is well known. From [Gilbert, et al., 
(1993)] we took, as reference, the range step values 
for the GFPE method, as well as, the reported range 
step values for the CNPE method. 

Since the CNPE method sound levels are 
evaluated using the transmission loss (TL), we also 
used it to calculate the sound levels in the develop 
program. For all simulations we used a vertical 
spacing of        . Test case 3 is represented by 
three frequencies as diplayed in Figure 4.3 plots, 

 

 
 
 
 
 

Test case 3 Range step (m) 

Frequency    Hz     Hz      Hz 
GFPE            
CNPE            

 

 
Figure 4.2 - Comparison between the GFPE and the CNPE 
methods, with parameters from test case 3. The respective range 
steps used are displayed in the bottom table. 

 
Despite a slight difference of    dB over a range of 

     m for a frequency of    Hz, the compared 
results of the methods are in good accordance. By 
comparing the range steps on Figure 4.2, we 
conclude that the GFPE method range steps are    , 
    and    times the ones of the CNPE method at 

    ,    ,    Hz, respectively. This corresponds into 
a faster calculation, without sacrificing accuracy. We 
also verfied that larger range step values could be 
used successfully with small difference in the sound 
levels. 

For test case 4, the two lines were mostly 
indistinguishable for all frequencies. The oscillatory 
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nature of the sound levels obtained, is a result of 
interference between the propagating modes. 

In Figure 4.3, we study the accuracy of the GFPE 
method with a profile composed of three functions 
(test case 5). The agreement between the two 
methods is very good and both possess an oscillatory 
behavior for     and      Hz. For the GFPE method, 
larger range steps can be used, with the disadvantage 
that the sound field oscillations can be inadequately 
represented. By comparing the range step values, we 
conclude that the GFPE method it is    to     times 
faster than the CNPE method. 

 

 

 
Test case 5 Range step(m) 

Frequency    Hz     Hz      Hz 
GFPE           
CNPE            

 
 

 
Figure 4.3 - Comparison between the GFPE and the CNPE 

methods, with parameters from test case 5. The respective range 
steps used are displayed in the bottom table. 

 
For test case 6, we studied the accuracy with a 

logarithmic sound speed profile and, simultaneously, 
we test the influence of the alternative refraction factor 
[equation (3.6)]. We compare both results with the 
CNPE method because it yields a solution of the wide 
angle parabolic equation, which is more accurate than 
the low angle parabolic equation used in the GFPE. 
The alternate refraction factor proved to be more 
accurate at long range than the standard refraction 
factor, which generates a phase error.    

 
4.4 Turbulence analysis and results 

 
In this section, we compare the numerical 

program developed with sound levels collected from a 
real atmosphere by [Weiner, et al., (1959)]. The data 
used to compare the program belongs to an extensive 

set of measurements of sound propagation, in an 
upward refracting atmosphere done by Weiner and 
Keast [Weiner, et al., (1959)].  

The turbulence parameters for the two spectral 
density functions and for the refractive-index 
fluctuations (section 2.2), have to be correctly 
estimated to reproduce, as close as possible, the 
conditions of the experimental measurements. For the 
von Kármán and Gauss spectra we used a set of 
parameters for a turbulent atmosphere near a flat 
ground surface [Ostashev, (1997)]. To estimate the 
parameters of the refractive-index fluctuations is 
necessary to calculate the size of the sum   and the 

wave number spacing    in equation (2.17). Table 4.4 
displays the parameters. 

 
Table 4.4 - Turbulence parameters used  

Gauss spectrum von Kármán spectrum Both spectra 

    
  

 

  
                    

  
 

  
       

  
 

  
                         

  
                       

 
The measured values were corrected for spherical 

spreading and atmospheric absorption thus, we use 
the relative sound pressure to compare the results 
[equation (4.1)]. The sound levels were measured  at 
a height of     m, up to a distance of      m from the 

source, which was placed  at a height of      m. Two 

frequencies  were considered:     and     Hz. The 
sound speed profile is written as [Gilbert, et al., 
(1990)], 
 

      
       

 

 
      

       
  
 
      

  (4.2) 

 

where           ,           and         . 
Two types of refraction where studied by [Weiner, et 
al., (1959)]: strong upward refraction and weak 
upward refraction. The first one refers to propagation 
almost directly upwind and the refraction parameter is 
        . The second one represents the sound 

propagation mostly crosswind and           . 
The soil in the experimental measurement is 

described as a flat ground surface, covered with 
sparse vegetation. Using the empirical formulas of 
[Delany, et al., (1970)], the complex impedances for 
each source frequency are [Gilbert, et al., (1990)]: 
            and           , for     and     Hz 
respectively.  

Three different sound levels are presented in 
Figure 4.4. The connected red dots are the 
experimental sound levels. The solid lines are GFPE 
method solutions for a refracting turbulent atmosphere 
using either, the Gauss spectrum (green line, left side) 
or the von Kármán spectrum (blue line, right side). 
The dashed black lines are GFPE method outputs for 
a refracting atmosphere without turbulence 
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Weak upward refraction     Hz 

 
 

strong upward refraction     Hz 

   
 

weak upward refraction     Hz 

 
 

strong upward refraction     Hz 

   
 

Figure 4.4 - relative sound pressure up to a range of      m. 

Overall, the results from the GFPE method with 
turbulence (green and blue solid lines) are in 
conformity with the experimental measurements (red 
connected dots), for both spectra. The exception is for 
strong upward refraction for     Hz, which differs    

dB in the range from     m to     m. Additionally, for 
any of the test case, the average sound levels for 
several trials are consistent hence, one trial is enough 
to accurately estimate them. 

Results from the GFPE method without turbulence 
(black dashed line) are severely underestimated for a 
distance greater than     m. Up to a range of     m, 
all the three results are in accordance. This means 
that turbulent effects are small up to this distance 
thus, at short range, sound propagation is mostly 
governed by deterministic parameters such as the 
source frequency or the refraction parameter. For long 

range sound propagation (more than     m), the 
incorporation of turbulence effects is essential in order 
to obtain realistic sound pressure levels. 

 
5 Program application to an airport 

 
In this section, we use the  computational program 

developed to study the noise generated by an aircraft 
in the vicinity of an airport. This task requires 
information on air temperature and wind speed and 
direction, in the region where the sound propagates 

 
5.1 Meteorological and simulation parameters 

 
Several empirical formulas were developed by 

meteorologists to predict the wind and temperature 
gradients, when direct measurement is impractical or 
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unattainable. The formulas we use, are based on the 
Monin-Obukhov simularity theory [Monin, et al., 
(1979)]. Furthermore, we use Pasquill stability classes 
to classify different atmospheric conditions [Pasquill, 
(1961)]. 

We consider two meteorological conditions: light 
wind and moderate cloud cover (Pasquill class B) and 
moderate wind and moderate cloud cover (Pasquill 
class C). [Salomons, et al., (1994)] suggests 
evaluating Monin-Obukhov lenght  , using the 
Pasquill meteorological categories. Positive and 
negative values of   represent unstable and stable 
atmospheric conditions respectively. With a neutral 
atmosphere,   has infinite value. Moreover, 
turbulence has to be included in order to correctly 
estimate sound levels. We use the expressions 
sugested by [Zaporozhets, et al., (2011)] to estimate 
the Gauss spectrum parameters. The Monin-Obukhov 
profiles parameters and the Gauss spectrum 
parameters are displayed in Table 5.1 and Table 5.2, 
respectively. 

 
Table 5.1 - Parameters used in the Monin-Obukhov  

profiles for two meteorological conditions 

Pasquill 
Class 

                                 Stability 

B                      unstable 

C                      
slightly 

unstable 

 
Table 5.2 - Gauss spectrum parameters at a height         

Pasquill class          
   

     
    

  

B                       
C                       

 
Two source heights were considered:     m and   

m. The first one represents an aircraft taking off or 
landing, whereas   m stands for an aircraft taxiing. 
The wind direction proposed in Figure 5.1 was 
headwind or blowing against the direction of travel, 
since this is the most frequent and favorable situation 
when taking off or landing.  

 
 

Figure 5.1 - Schematic representation of the source and receivers 
position (m) and wind direction.  

 

We assumed three receiver locations, to 
simultaneously simulate upwind (receiver A), 
downwind (receiver B) and crosswind (receiver C) 
sound propagation. The receiver's height was set at 
    m to represent the typical human ear height. 

The ground along the sound propagation path is a 
mixture of hardened asphalt, grassland and exposed 
soil. The normalized ground impedances    for an 

octave band spectrum are displayed in Table 5.3 
[Attenborough, (1985)]. Finally, Table 5.4 displays the 
test cases for the present study and their respective 
parameters. 
 
5.2 Effect of atmospheric turbulence on sound 

propagation 
 
One effect results in a spatial coherence loss that 

increases as the front waves propagate away from the 
source. This results into sound pressure fluctuations, 
from the average values. Plots from section 4.4 show 
this effect. The other effect occurs when an acoustical 
shadow region forms. Experimental measurements 
carried by [Weiner, et al., (1959)], show that sound 
levels in the shadow region are significantly higher 
than expected by the ray theory. It is generally 
assumed that atmospheric turbulence affects the 
maximum attenuation achieved in a shadow region 
[Piercy, et al., (1977)]. 

We use two different types of sound speed 
profiles, with upwind and downwind sound 
propagation, from Table 5.4, with class C atmospheric 
conditions. Figure 5.2 presents the results. 

 

 
 

Figure 5.2 - One trial of the relative sound pressure up to a 

range of      m, with and without atmospheric turbulence. 

 
Table 5.3 - Normalized impedance values for an octave band spectrum 

Frequency (Hz)                               

Normalized impedance                                                                        

 
Table 5.4 - Test cases and their respective parameters  

Test case up2 down2 cross2 up100 down100 cross100 

Source height   m     m 
Receiver position A B C A B C 
Receiver height     m 
Wind direction upwind downwind crosswind upwind downwind crosswind 
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With upwind propagation the sound speed 

decreases with height thus, a shadow region forms. 
The average sound levels relative to the free field 
remain constant throughout this region. When 
turbulence is not incorporated, the sound levels are 
largely underestimated. 

With downwind propagation, the sound speed 
increases close to the ground therefore, the sound 
speed gradient is positive within this region. In this 
situation, the sound levels without turbulence are in 
accordance with the average ones with turbulence. In 
this particular case, the addition of atmospheric 
turbulence is redundant and not mandatory. 

When the source is located at     m, the sound 
levels without turbulence and the average ones with 
turbulence are similar. Since the wind speed above a 
certain height is nearly constant, the sound speed 
gradient at a height of     m is only slightly negative. 
This explains why both the results are in close 
agreement, despite the fact that the sound waves are 
propagating in a negative sound speed gradient 
medium. 

To graphically illustrate how turbulence influences 
the penetration of sound waves into the shadow 
region, we use the test case up2 from Table 5.4 and 
plot a two-dimensional representation of the relative 
sound pressure field, with (right plot) and without (left 
plot) turbulence effects. 

 

 
 

Figure 5.3 - Two-dimensional plots of the relative sound pressure 
level    (dB). The frequency is     Hz 

 
We obtained similar results for the remaining 

octave spectrum frequencies. These two-dimensional 
plots clearly show that sound pressure levels in a 
shadow region are a direct result of scattering due to 
atmospheric absorption. In their experimental study 
[Weiner, et al., (1959)] verified that the relative sound 
pressure levels, in the shadow region, were mostly 
independent of range. Furthermore, [Daigle, et al., 
(1986)] in the same conditions of the previous study, 
reported a limited dependence of relative sound 
pressure levels with height. These observations are in 
accordance with the results from the two dimensional 
plots in this section. 

 
5.3 Effect of wind on sound propagation 

 
To study the effect of wind on sound propagation, 

we use the test cases from Table 5.4, with B and C 
class atmospheric conditions. Moreover, turbulence is 

also included. The following two plots are for a source 
height of   m. 

 
 

Figure 5.4 - Comparison of the relative sound pressure values, 
at a range of      m, for three wind directions. 

 
By comparing the wind directions in each plot, we 

infer that maximum attenuation is achieved when the 
wind is directly upwind. When the wind direction is 
downwind a sound speed inversion for moderate wind 
occurs, which by turn results in less attenuation of the 
sound waves. With crosswind propagation the 
attenuation value is between upwind and downwind 
propagation, as expected.  

By comparing both meteorological conditions, we 
conclude that a stronger speed wind increases the 
attenuation on the sound levels and a light wind speed 
attenuates it less. 

For a source height of     m, the attenuation 

achieved for a      m range is smaller than the one 

for a source height of   m, for all test cases. 
 

5.4 Airport scenario simulation: case studies 
 
In the present section, we use the developed 

program to simulate two proposed scenarios, more 
realistic and complex. The first one simulates the 
noise emitted by an aircraft landing and the second 
one by an aircraft flying at a constant height. 

Figure 5.5 illustrates case study 1, where an 
aircraft, initially at a height of     m, approaches the 
runway and lands (height of   m). The approach 

angle, also called glide slope, is approximately    
above the horizontal. 

 
 

Figure 5.5 - Schematic representation of case study 1. All 

distances are displayed in meters. 
 
We use different receivers to simulate different 
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wind directions (A upwind and B downwind). The 
receiver's height was set at     m to represent the 
typical human ear height. 

Figure 5.6 illustrates case study 2, where we 
propose a scenario to simulate crosswind sound 
propagation. In this situation, an aircraft flies at a 
constant height of    m and the receiver C is 
positioned as displayed in Figure 5.6, at a height of 
    m.  

 
 

Figure 5.6 - Schematic representation of case study 2. The 
aircraft travels from position 1 to position 3 and all the distances 

are displayed in meters. 

 
For the meteorological parameters we use both 

moderate wind and cloud cover from section 5.1. For 
the ground parameters, we use the normalized ground 
impedance values from Table 5.3. 

Figure 5.7 displays the sound attenuation values 
due to geometrical spreading (black line), atmospheric 
absorption (red line) and meteorological and ground 
effects (blue line. The total attenuation (green line), is 
the sum of all combined effects. 

 

 

 

 
 

 
 

Figure 5.7 - Attenuation values for case study 1 (top two plots) 
and case study 2 (bottom plot). 

 

 

For the receiver A, the distance between it and the 
aircraft decreases therefore, the atmospheric 
absorption and spherical spreading attenuation 
decrease with horizontal travel. Moreover, the relative 
sound pressure increases, since initially the source is 
at     m and its height decreases (up to   m), where 
the sound speed gradient is more intense. 

For the receiver B the opposite occurs, the 
distance between the receiver and the aircraft 
increases hence, the atmospheric absorption and 
spherical spreading attenuation increase with 
horizontal travel. The relative sound pressure 
attenuation also increases, although with less intensity 
than for the receiver A (upwind propagation). 

For the receiver C, the distance between the 
aircraft and the receiver decreases from   m up to 

     m, where it reaches a minimum value, and then 
increases. The sound attenuation components also 
decrease up to      m and afterwards increase. The 
relative sound pressure has more attenuation when 
the sound propagation is upwind (from 0 to      m). 
When the propagation is downwind (from      to 

    ), the attenuation is less intense. 
 

6 Conclusions and future developments 
 
Since GFPE method does not allow an analytical 

solution, it was necessary to develop a numerical 
implementation (chapter 3) to solve the basic 
equations of the method (equations (2.8) and (2.9)). 
Several assumptions to develop the approach were 
introduced and justified. Some additional functions 
were also implemented, to overcome the limitations of 
the mathematical approach of the propagation 
physical phenomenon. 

In chapter 4, three sets of test cases were used to 
validate the numerical implementation developed. The 
first set is for a non-refracting atmosphere, which has 
a mathematical exact solution; the second set 
includes atmospheric refraction and was compared 
with the CNPE method results; finally, the third set 
includes atmospheric turbulence in addition to the 
previous conditions and was verified by comparing 
with experimental measurements. In all the test 
situations, the results accordance between the 
numerical implementation and the mathematical and 
benchmark cases, were good enough to assure that 
the numerical approach and the program developed 
are accurate. 

Finally, a real situation associated with an airport 
was simulated. Once again, it was confirmed that the 
program developed is numerically accurate and its 
user interface can be, easily and effectively, used to 
evaluate the effects of wind and turbulence on sound 
propagation in the vicinity of an airport. 

To achieve a yet more realistic description, new 
features can be incorporated such as, ground barriers, 
topographic features and vegetation. A three 
dimensional approach, an inhomogeneous and 
anisotropic turbulence model, and a combined model 
of GFPE method with the Ray Model, to overcome the 
angular limitation of the first, are other possible 
improvements. 
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