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The ENTROPY Procedure (Experimental)
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Overview: ENTROPY Procedure
The ENTROPY procedure implements a parametric method of linear estimation based on generalized
maximum entropy. The ENTROPY procedure is suitable when there are outliers in the data and robustness
is required, when the model is ill-posed or under-determined for the observed data, or for regressions that
involve small data sets.

The main features of the ENTROPY procedure are as follows:

• estimation of simultaneous systems of linear regression models

• estimation of Markov models

• estimation of seemingly unrelated regression (SUR) models

• estimation of unordered multinomial discrete Choice models

• solution of pure inverse problems

• allowance of bounds and restrictions on parameters

• performance of tests on parameters

• allowance of data and moment constrained generalized cross entropy

It is often the case that the statistical/economic model of interest is ill-posed or under-determined for the
observed data. For the general linear model, this can imply that high degrees of collinearity exist among
explanatory variables or that there are more parameters to estimate than observations available to estimate
them. These conditions lead to high variances or non-estimability for traditional generalized least squares
(GLS) estimates.

Under these situations it might be in the researcher’s or practitioner’s best interest to consider a nontraditional
technique for model fitting. The principle of maximum entropy is the foundation for an estimation methodol-
ogy that is characterized by its robustness to ill-conditioned designs and its ability to fit over-parameterized
models. See Mittelhammer, Judge, and Miller (2000) and Golan, Judge, and Miller (1996) for a discussion of
Shannon’s maximum entropy measure and the related Kullback-Leibler information.

Generalized maximum entropy (GME) is a means of selecting among probability distributions to choose the
distribution that maximizes uncertainty or uniformity remaining in the distribution, subject to information
already known about the distribution. Information takes the form of data or moment constraints in the
estimation procedure. PROC ENTROPY creates a GME distribution for each parameter in the linear model,
based upon support points supplied by the user. The mean of each distribution is used as the estimate of the
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parameter. Estimates tend to be biased, as they are a type of shrinkage estimate, but typically portray smaller
variances than ordinary least squares (OLS) counterparts, making them more desirable from a mean squared
error viewpoint (see Figure 13.1).

Figure 13.1 Distribution of Maximum Entropy Estimates versus OLS

Maximum entropy techniques are most widely used in the econometric and time series fields. Some important
uses of maximum entropy include the following:

• size distribution of firms

• stationary Markov Process

• social accounting matrix (SAM)

• consumer brand preference

• exchange rate regimes

• wage-dependent firm relocation

• oil market dynamics



750 F Chapter 13: The ENTROPY Procedure (Experimental)

Getting Started: ENTROPY Procedure
This section introduces the ENTROPY procedure and shows how to use PROC ENTROPY for several kinds
of statistical analyses.

Simple Regression Analysis
The ENTROPY procedure is similar in syntax to the other regression procedures in SAS. To demonstrate the
similarity, suppose the endogenous/dependent variable is y, and x1 and x2 are two exogenous/independent
variables of interest. To estimate the parameters in this single equation model using PROC ENTROPY, use
the following SAS statements:

proc entropy;
model y = x1 x2;

run;

Test Scores Data Set

Consider the following test score data compiled by Coleman et al. (1966):

title "Test Scores compiled by Coleman et al. (1966)";
data coleman;

input test_score 6.2 teach_sal 6.2 prcnt_prof 8.2
socio_stat 9.2 teach_score 8.2 mom_ed 7.2;

label test_score="Average sixth grade test scores in observed district";
label teach_sal="Average teacher salaries per student (1000s of dollars)";
label prcnt_prof="Percent of students' fathers with professional employment";
label socio_stat="Composite measure of socio-economic status in the district";
label teach_score="Average verbal score for teachers";
label mom_ed="Average level of education (years) of the students' mothers";

datalines;
37.01 3.83 28.87 7.20 26.60 6.19

... more lines ...

This data set contains outliers, and the condition number of the matrix of regressors, X, is large, which
indicates collinearity among the regressors. Since the maximum entropy estimates are both robust with
respect to the outliers and also less sensitive to a high condition number of the X matrix, maximum entropy
estimation is a good choice for this problem.

To fit a simple linear model to this data by using PROC ENTROPY, use the following statements:

proc entropy data=coleman;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;
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This requests the estimation of a linear model for TEST_SCORE with the following form:

test_score D intercept C a � teach_sal C b � prcnt_prof C c � socio_stat

Cd � teach_score C e �mom_ed C �I

This estimation produces the “Model Summary” table in Figure 13.2, which shows the equation variables
used in the estimation.

Figure 13.2 Model Summary Table

Test Scores compiled by Coleman et al. (1966)

The ENTROPY Procedure

Test Scores compiled by Coleman et al. (1966)

The ENTROPY Procedure

Variables(Supports(Weights)) teach_sal prcnt_prof socio_stat teach_score mom_ed Intercept

Equations(Supports(Weights)) test_score

Since support points and prior weights are not specified in this example, they are not shown in the “Model
Summary” table. The next four pieces of information displayed in Figure 13.3 are: the “Data Set Options,”
the “Minimization Summary,” the “Final Information Measures,” and the “Observations Processed.”

Figure 13.3 Estimation Summary Tables

Test Scores compiled by Coleman et al. (1966)

The ENTROPY Procedure
GME Estimation Summary

Test Scores compiled by Coleman et al. (1966)

The ENTROPY Procedure
GME Estimation Summary

Data Set Options

DATA= WORK.COLEMAN

Minimization Summary

Parameters Estimated 6

Covariance Estimator GME

Entropy Type Shannon

Entropy Form Dual

Numerical Optimizer Quasi Newton

Final Information Measures

Objective Function Value 9.553699

Signal Entropy 9.569484

Noise Entropy -0.01578

Normed Entropy (Signal) 0.990976

Normed Entropy (Noise) 0.999786

Parameter Information Index 0.009024

Error Information Index 0.000214

Observations
Processed

Read 20

Used 20



752 F Chapter 13: The ENTROPY Procedure (Experimental)

The item labeled “Objective Function Value” is the value of the entropy estimation criterion for this estimation
problem. This measure is analogous to the log-likelihood value in a maximum likelihood estimation. The
“Parameter Information Index” and the “Error Information Index” are normalized entropy values that measure
the proximity of the solution to the prior or target distributions.

The next table displayed is the ANOVA table, shown in Figure 13.4. This is in the same form as the ANOVA
table for the MODEL procedure, since this is also a multivariate procedure.

Figure 13.4 Summary of Residual Errors

GME Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square Adj RSq

test_score 6 14 175.8 8.7881 2.9645 0.7266 0.6290

The last table displayed is the “Parameter Estimates” table, shown in Figure 13.5. The difference between
this parameter estimates table and the parameter estimates table produced by other regression procedures is
that the standard error and the probabilities are labeled as approximate.

Figure 13.5 Parameter Estimates

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

teach_sal 0.287979 0.00551 52.26 <.0001

prcnt_prof 0.02266 0.00323 7.01 <.0001

socio_stat 0.199777 0.0308 6.48 <.0001

teach_score 0.497137 0.0180 27.61 <.0001

mom_ed 1.644472 0.0921 17.85 <.0001

Intercept 10.5021 0.3958 26.53 <.0001
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The parameter estimates produced by the REG procedure for this same model are shown in Figure 13.6. Note
that the parameters and standard errors from PROC REG are much different than estimates produced by
PROC ENTROPY.

symbol v=dot h=1 c=green;

proc reg data=coleman;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;
plot rstudent.*obs.

/ vref= -1.714 1.714 cvref=blue lvref=1
HREF=0 to 30 by 5 cHREF=red cframe=ligr;

run;

Figure 13.6 REG Procedure Parameter Estimates

Test Scores compiled by Coleman et al. (1966)

The REG Procedure
Model: MODEL1

Dependent Variable: test_score

Test Scores compiled by Coleman et al. (1966)

The REG Procedure
Model: MODEL1

Dependent Variable: test_score

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 19.94857 13.62755 1.46 0.1653

teach_sal 1 -1.79333 1.23340 -1.45 0.1680

prcnt_prof 1 0.04360 0.05326 0.82 0.4267

socio_stat 1 0.55576 0.09296 5.98 <.0001

teach_score 1 1.11017 0.43377 2.56 0.0227

mom_ed 1 -1.81092 2.02739 -0.89 0.3868

This data set contains two outliers, observations 3 and 18. These can be seen in a plot of the residuals shown
in Figure 13.7
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Figure 13.7 PROC REG Residuals with Outliers

The presence of outliers suggests that a robust estimator such as M-estimator in the ROBUSTREG procedure
should be used. The following statements use the ROBUSTREG procedure to estimate the model.

proc robustreg data=coleman;
model test_score = teach_sal prcnt_prof

socio_stat teach_score mom_ed;
run;

The results of the estimation are shown in Figure 13.8.
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Figure 13.8 M-Estimation Results

Test Scores compiled by Coleman et al. (1966)

The ROBUSTREG Procedure

Test Scores compiled by Coleman et al. (1966)

The ROBUSTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 29.3416 6.0381 17.5072 41.1761 23.61 <.0001

teach_sal 1 -1.6329 0.5465 -2.7040 -0.5618 8.93 0.0028

prcnt_prof 1 0.0823 0.0236 0.0361 0.1286 12.17 0.0005

socio_stat 1 0.6653 0.0412 0.5846 0.7461 260.95 <.0001

teach_score 1 1.1744 0.1922 0.7977 1.5510 37.34 <.0001

mom_ed 1 -3.9706 0.8983 -5.7312 -2.2100 19.54 <.0001

Scale 1 0.6966

Note that TEACH_SAL(VAR1) and MOM_ED(VAR5) change greatly when the robust estimation is used.
Unfortunately, these two coefficients are negative, which implies that the test scores increase with decreasing
teacher salaries and decreasing levels of the mother’s education. Since ROBUSTREG is robust to outliers,
they are not causing the counterintuitive parameter estimates.

The condition number of the regressor matrix X also plays a important role in parameter estimation. The
condition number of the matrix can be obtained by specifying the COLLIN option in the PROC ENTROPY
statement.

proc entropy data=coleman collin;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;

The output produced by the COLLIN option is shown in Figure 13.9.

Figure 13.9 Collinearity Diagnostics

Test Scores compiled by Coleman et al. (1966)

The ENTROPY Procedure

Test Scores compiled by Coleman et al. (1966)

The ENTROPY Procedure

Collinearity Diagnostics

Proportion of Variation

Number Eigenvalue
Condition

Number teach_sal prcnt_prof socio_stat teach_score mom_ed Intercept

1 4.978128 1.0000 0.0007 0.0012 0.0026 0.0001 0.0001 0.0000

2 0.937758 2.3040 0.0006 0.0028 0.2131 0.0001 0.0000 0.0001

3 0.066023 8.6833 0.0202 0.3529 0.6159 0.0011 0.0000 0.0003

4 0.016036 17.6191 0.7961 0.0317 0.0534 0.0059 0.0083 0.0099

5 0.001364 60.4112 0.1619 0.3242 0.0053 0.7987 0.3309 0.0282

6 0.000691 84.8501 0.0205 0.2874 0.1096 0.1942 0.6607 0.9614

The condition number of the X matrix is reported to be 84.85. This means that the condition number of X0X
is 84:852 D 7199:5, which is very large.
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Ridge regression can be used to offset some of the problems associated with ill-conditioned X matrices.
Using the formula for the ridge value as

�R D
kS2

Ǒ0 Ǒ
� 0:9

where Ǒ and S2 are the least squares estimators of ˇ and �2 and k D 6. A ridge regression of the test score
model was performed by using the data set with the outliers removed. The following PROC REG code
performs the ridge regression:

data coleman;
set coleman;
if _n_ = 3 or _n_ = 18 then delete;

run;

proc reg data=coleman ridge=0.9 outest=t noprint;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;

proc print data=t;
run;

The results of the estimation are shown in Figure 13.10.

Figure 13.10 Ridge Regression Estimates

Test Scores compiled by Coleman et al. (1966)Test Scores compiled by Coleman et al. (1966)

Obs _MODEL_ _TYPE_ _DEPVAR_ _RIDGE_ _PCOMIT_ _RMSE_ Intercept teach_sal

1 MODEL1 PARMS test_score . . 0.78236 29.7577 -1.69854

2 MODEL1 RIDGE test_score 0.9 . 3.19679 9.6698 -0.08892

Obs prcnt_prof socio_stat teach_score mom_ed test_score

1 0.085118 0.66617 1.18400 -4.06675 -1

2 0.041889 0.23223 0.60041 1.32168 -1

Note that the ridge regression estimates are much closer to the estimates produced by the ENTROPY
procedure that uses the original data set. Ridge regressions are not robust to outliers as maximum entropy
estimates are. This might explain why the estimates still differ for TEACH_SAL.

Using Prior Information
You can use prior information about the parameters or the residuals to improve the efficiency of the estimates.
Some authors prefer the terms pre-sample or pre-data over the term prior when used with maximum entropy
to avoid confusion with Bayesian methods. The maximum entropy method described here does not use
Bayes’ rule when including prior information in the estimation.

To perform regression, the ENTROPY procedure uses a generalization of maximum entropy called generalized
maximum entropy. In maximum entropy estimation, the unknowns are probabilities. Generalized maximum
entropy expands the set of problems that can be solved by introducing the concept of support points.
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Generalized maximum entropy still estimates probabilities, but these are the probabilities of a support point.
Support points are used to map the .0; 1/ domain of the maximum entropy to the any finite range of values.

Prior information, such as expected ranges for the parameters or the residuals, is added by specifying support
points for the parameters or the residuals. Support points are points in one dimension that specify the expected
domain of the parameter or the residual. The wider the domain specified, the less efficient your parameter
estimates are (the more variance they have). Specifying more support points in the same width interval also
improves the efficiency of the parameter estimates at the cost of more computation. Golan, Judge, and Miller
(1996) show that the gains in efficiency fall off for adding more than five support points. You can specify
between 2 to 256 support points in the ENTROPY procedure.

If you have only a small amount of data, the estimates are very sensitive to your selection of support points
and weights. For larger data sets, incorrect priors are discounted if they are not supported by the data.

Consider the data set generated by the following SAS statements:

data prior;
do by = 1 to 100;

do t = 1 to 10;
y = 2*t + 5 * rannor(4);
output;

end;
end;

run;

The PRIOR data set contains 100 samples of 10 observations each from the population

y D 2 � t C �

� � N.0; 5/

You can estimate these samples using PROC ENTROPY as

proc entropy data=prior outest=parm1 noprint;
model y = t ;
by by;

run;

The 100 estimates are summarized by using the following SAS statements:

proc univariate data=parm1;
var t;

run;

The summary statistics from PROC UNIVARIATE are shown in Output 13.11. The true value of the
coefficient T is 2.0, demonstrating that maximum entropy estimates tend to be biased.
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Figure 13.11 No Prior Information Monte Carlo Summary

Test Scores compiled by Coleman et al. (1966)

The UNIVARIATE Procedure
Variable:  t

Test Scores compiled by Coleman et al. (1966)

The UNIVARIATE Procedure
Variable:  t

Basic Statistical Measures

Location Variability

Mean 1.693608 Std Deviation 0.30199

Median 1.707653 Variance 0.09120

Mode . Range 1.46194

Interquartile Range 0.32329

Now assume that you have prior information about the slope and the intercept for this model. You are
reasonably confident that the slope is 2 and you are less confident that intercept is zero. To specify prior
information about the parameters, use the PRIORS statement.

There are two parts to the prior information specified in the PRIORS statement. The first part is the support
points for a parameter. The support points specify the domain of the parameter. For example, the following
statement sets the support points -1000 and 1000 for the parameter associated with variable T:

priors t -1000 1000;

This means that the coefficient lies in the interval Œ�1000; 1000�. If the estimated value of the coefficient
is actually outside of this interval, the estimation will not converge. In the previous PRIORS statement,
no weights were specified for the support points, so uniform weights are assumed. This implies that the
coefficient has a uniform probability of being in the interval Œ�1000; 1000�.

The second part of the prior information is the weights on the support points. For example, the following
statements sets the support points 10, 15, 20, and 25 with weights 1, 5, 5, and 1 respectively for the coefficient
of T:

priors t 10(1) 15(5) 20(5) 25(1);

This creates the prior distribution on the coefficient shown in Figure 13.12. The weights are automatically
normalized so that they sum to one.
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Figure 13.12 Prior Distribution of Parameter T

For the PRIOR data set created previously, the expected value of the coefficient of T is 2. The following SAS
statements reestimate the parameters with a prior weight specified for each one.

proc entropy data=prior outest=parm2 noprint;
priors t 0(1) 2(3) 4(1)

intercept -100(.5) -10(1.5) 0(2) 10(1.5) 100(0.5);
model y = t;
by by;

run;

The priors on the coefficient of T express a confident view of the value of the coefficient. The priors on
INTERCEPT express a more diffuse view on the value of the intercept. The following PROC UNIVARIATE
statement computes summary statistics from the estimations:

proc univariate data=parm2;
var t;

run;

The summary statistics for the distribution of the estimates of T are shown in Figure 13.13.
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Figure 13.13 Prior Information Monte Carlo Summary

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable:  t

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable:  t

Basic Statistical Measures

Location Variability

Mean 1.999953 Std Deviation 0.01436

Median 2.001423 Variance 0.0002061

Mode . Range 0.08525

Interquartile Range 0.01855

The prior information improves the estimation of the coefficient of T dramatically. The downside of specifying
priors comes when they are incorrect. For example, say the priors for this model were specified as

priors t -2(1) 0(3) 2(1);

to indicate a prior centered on zero instead of two.

The resulting summary statistics shown in Figure 13.14 indicate how the estimation is biased away from the
solution.

Figure 13.14 Incorrect Prior Information Monte Carlo Summary

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable:  t

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable:  t

Basic Statistical Measures

Location Variability

Mean 0.062550 Std Deviation 0.00920

Median 0.062527 Variance 0.0000847

Mode . Range 0.05442

Interquartile Range 0.01112

The more data available for estimation, the less sensitive the parameters are to the priors. If the number
of observations in each sample is 50 instead of 10, then the summary statistics shown in Figure 13.15 are
produced. The prior information is not supported by the data, so it is discounted.
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Figure 13.15 Incorrect Prior Information with More Data

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable:  t

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable:  t

Basic Statistical Measures

Location Variability

Mean 0.652921 Std Deviation 0.00933

Median 0.653486 Variance 0.0000870

Mode . Range 0.04351

Interquartile Range 0.01498

Pure Inverse Problems
A special case of systems of equations estimation is the pure inverse problem. A pure problem is one that
contains an exact relationship between the dependent variable and the independent variables and does not
have an error component. A pure inverse problem can be written as

y D Xˇ

where y is a n-dimensional vector of observations, X is a n� k matrix of regressors, and ˇ is a k-dimensional
vector of unknowns. Notice that there is no error term.

A classic example is a dice problem (Jaynes 1963). Given a six-sided die that can take on the values x D
1; 2; 3; 4; 5; 6 and the average outcome of the die y D A, compute the probabilities ˇ D .p1; p2; � � � ; p6/0 of
rolling each number. This infers six values from two pieces of information. The data points are the expected
value of y, and the sum of the probabilities is one. Given E.y/ D 4:0, this problem is solved by using the
following SAS code:

data one;
array x[6] ( 1 2 3 4 5 6 );
y=4.0;

run;

proc entropy data=one pure;
priors x1 0 1 x2 0 1 x3 0 1 x4 0 1 x5 0 1 x6 0 1;
model y = x1-x6/ noint;
restrict x1 + x2 +x3 +x4 + x5 + x6 =1;

run;

The probabilities are given in Figure 13.16.



762 F Chapter 13: The ENTROPY Procedure (Experimental)

Figure 13.16 Jaynes’ Dice Pure Inverse Problem

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Information

Index Label

x1 0.101763 0.5254

x2 0.122658 0.4630

x3 0.147141 0.3974

x4 0.175533 0.3298

x5 0.208066 0.2622

x6 0.244839 0.1970

Restrict0 2.388082 . x1 + x2 + x3 + x4 + x5 + x6  =  1

Note how the probabilities are skewed to the higher values because of the high average roll provided in the
input data.

First-Order Markov Process Estimation

A more useful inverse problem is the first-order markov process. Companies have a share of the marketplace
where they do business. Generally, customers for a specific market space can move from company to company.
The movement of customers can be visualized graphically as a flow diagram, as in Figure 13.17. The arrows
represent movements of customers from one company to another.
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Figure 13.17 Markov Transition Diagram

You can model the probability that a customer moves from one company to another using a first-order Markov
model. Mathematically the model is:

yt D Pyt�1

where yt is a vector of k market shares at time t and P is a k � k matrix of unknown transition probabilities.
The value pij represents the probability that a customer who is currently using company j at time t � 1 moves
to company i at time t. The diagonal elements then represent the probability that a customer stays with the
current company. The columns in P sum to one.

Given market share information over time, you can estimate the transition probabilities P. In order to estimate
P using traditional methods, you need at least k observations. If you have fewer than k transitions, you can
use the ENTROPY procedure to estimate the probabilities.

Suppose you are studying the market share for four companies. If you want to estimate the transition
probabilities for these four companies, you need a time series with four observations of the shares. Assume
the current transition probability matrix is as follows:2664

0:7 0:4 0:0 0:1

0:1 0:5 0:4 0:0

0:0 0:1 0:6 0:0

0:2 0:0 0:0 0:9

3775
The following SAS DATA step statements generate a series of market shares from this probability matrix. A
transition is represented as the current period shares, y, and the previous period shares, x.
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data m;
/* Known Transition matrix */

array p[4,4] (0.7 .4 .0 .1
0.1 .5 .4 .0
0.0 .1 .6 .0
0.2 .0 .0 .9 ) ;

/* Initial Market shares */
array y[4] y1-y4 ( .4 .3 .2 .1 );
array x[4] x1-x4;
drop p1-p16 i;
do i = 1 to 3;

x[1] = y[1]; x[2] = y[2];
x[3] = y[3]; x[4] = y[4];
y[1] = p[1,1] * x1 + p[1,2] * x2 + p[1,3] * x3 + p[1,4] * x4;
y[2] = p[2,1] * x1 + p[2,2] * x2 + p[2,3] * x3 + p[2,4] * x4;
y[3] = p[3,1] * x1 + p[3,2] * x2 + p[3,3] * x3 + p[3,4] * x4;
y[4] = p[4,1] * x1 + p[4,2] * x2 + p[4,3] * x3 + p[4,4] * x4;
output;

end;
run;

The following SAS statements estimate the transition matrix by using only the first transition.

proc entropy markov pure data=m(obs=1);
model y1-y4 = x1-x4;

run;

The MARKOV option implies NOINT for each model, that the sum of the parameters in each column is one,
and chooses support points of 0 and 1. This model can be expressed equivalently as

proc entropy pure data=m(obs=1) ;
priors y1.x1 0 1 y1.x2 0 1 y1.x3 0 1 y1.x4 0 1;
priors y2.x1 0 1 y2.x2 0 1 y2.x3 0 1 y2.x4 0 1;
priors y3.x1 0 1 y3.x2 0 1 y3.x3 0 1 y3.x4 0 1;
priors y4.x1 0 1 y4.x2 0 1 y4.x3 0 1 y4.x4 0 1;

model y1 = x1-x4 / noint;
model y2 = x1-x4 / noint;
model y3 = x1-x4 / noint;
model y4 = x1-x4 / noint;

restrict y1.x1 + y2.x1 + y3.x1 + y4.x1 = 1;
restrict y1.x2 + y2.x2 + y3.x2 + y4.x2 = 1;
restrict y1.x3 + y2.x3 + y3.x3 + y4.x3 = 1;
restrict y1.x4 + y2.x4 + y3.x4 + y4.x4 = 1;

run;

The transition matrix is given in Figure 13.18.
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Figure 13.18 Estimate of P by Using One Transition

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Information

Index

y1.x1 0.463407 0.0039

y1.x2 0.41055 0.0232

y1.x3 0.356272 0.0605

y1.x4 0.302163 0.1161

y2.x1 0.272755 0.1546

y2.x2 0.271459 0.1564

y2.x3 0.267252 0.1625

y2.x4 0.260084 0.1731

y3.x1 0.119926 0.4709

y3.x2 0.148481 0.3940

y3.x3 0.180224 0.3194

y3.x4 0.214394 0.2502

y4.x1 0.143903 0.4056

y4.x2 0.169504 0.3434

y4.x3 0.196252 0.2856

y4.x4 0.223364 0.2337

Note that P varies greatly from the true solution.

If two transitions are used instead (OBS=2), the resulting transition matrix is shown in Figure 13.19.

proc entropy markov pure data=m(obs=2);
model y1-y4 = x1-x4;

run;
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Figure 13.19 Estimate of P by Using Two Transitions

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Information

Index

y1.x1 0.721012 0.1459

y1.x2 0.355703 0.0609

y1.x3 0.026095 0.8256

y1.x4 0.096654 0.5417

y2.x1 0.083987 0.5839

y2.x2 0.53886 0.0044

y2.x3 0.373668 0.0466

y2.x4 0.000133 0.9981

y3.x1 0.000062 0.9990

y3.x2 0.099848 0.5315

y3.x3 0.600104 0.0291

y3.x4 7.871E-8 1.0000

y4.x1 0.194938 0.2883

y4.x2 0.00559 0.9501

y4.x3 0.000133 0.9981

y4.x4 0.903214 0.5413

This transition matrix is much closer to the actual transition matrix.

If, in addition to the transitions, you had other information about the transition matrix, such as your own
company’s transition values, that information can be added as restrictions to the parameter estimates. For
noisy data, the PURE option should be dropped. Note that this example has six zero probabilities in the
transition matrix; the accurate estimation of transition matrices with fewer zero probabilities generally
requires more transition observations.

Analyzing Multinomial Response Data
Multinomial discrete choice models suffer the same problems with collinearity of the regressors and small
sample sizes as linear models. Unordered multinomial discrete choice models can be estimated using a
variant of GME for discrete models called GME-D.

Consider the model shown in Golan, Judge, and Perloff (1996). In this model, there are five occupational
categories, and the categories are considered a function of four individual characteristics. The sample contains
337 individuals.

data kpdata;
input job x1 x2 x3 x4;

datalines;
0 1 3 11 1

... more lines ...
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The dependent variable in this data, job, takes on values 0 through 4. Support points are used only for the
error terms; so error supports are specified on the MODEL statement.

proc entropy data=kpdata gmed tech=nra;
model job = x1 x2 x3 x4 / noint

esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 );
run;

Figure 13.20 Estimate of Jobs Model by Using GME-D

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

GME-D Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1_1 1.802572 1.3610 1.32 0.1863

x2_1 -0.00251 0.0154 -0.16 0.8705

x3_1 -0.17282 0.0885 -1.95 0.0517

x4_1 1.054659 0.6986 1.51 0.1321

x1_2 0.089156 1.2764 0.07 0.9444

x2_2 0.019947 0.0146 1.37 0.1718

x3_2 0.010716 0.0830 0.13 0.8974

x4_2 0.288629 0.5775 0.50 0.6176

x1_3 -4.62047 1.6476 -2.80 0.0053

x2_3 0.026175 0.0166 1.58 0.1157

x3_3 0.245198 0.0986 2.49 0.0134

x4_3 1.285466 0.8367 1.54 0.1254

x1_4 -9.72734 1.5813 -6.15 <.0001

x2_4 0.027382 0.0156 1.75 0.0805

x3_4 0.660836 0.0947 6.98 <.0001

x4_4 1.47479 0.6970 2.12 0.0351

Note there are five estimates of the parameters produced for each regressor, one for each choice. The first
choice is restricted to zero for normalization purposes. PROC ENTROPY drops the zeroed regressors. PROC
ENTROPY also generates tables of marginal effects for each regressor. The following statements generate
the marginal effects table for the previous analysis at the means of the variables.

proc entropy data=kpdata gmed tech=nra;
model job = x1 x2 x3 x4 / noint

esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 )
marginals;

run;
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Figure 13.21 Estimate of Jobs Model by Using GME-D (Marginals)

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

GME-D Variable Marginal
Effects  Table

Variable
Marginal

Effect Mean

x1_0 0.338758 1

x2_0 -0.0019 20.50148

x3_0 -0.02129 13.09496

x4_0 -0.09917 0.916914

x1_1 0.859883 1

x2_1 -0.00345 20.50148

x3_1 -0.0648 13.09496

x4_1 0.034396 0.916914

x1_2 0.86101 1

x2_2 0.000963 20.50148

x3_2 -0.04948 13.09496

x4_2 -0.16297 0.916914

x1_3 -0.25969 1

x2_3 0.0015 20.50148

x3_3 0.009289 13.09496

x4_3 0.065569 0.916914

x1_4 -1.79996 1

x2_4 0.00288 20.50148

x3_4 0.126283 13.09496

x4_4 0.162172 0.916914

The marginals are derivatives of the probabilities with respect to each variable and so summarize how a small
change in each variable affects the overall probability.

PROC ENTROPY also enables the user to specify where the derivative is evaluated, as shown below:

proc entropy data=kpdata gmed tech=nra;
model job = x1 x2 x3 x4 / noint

esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 )
marginals=( x2=.4 x3=10 x4=0);

run;
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Figure 13.22 Estimate of Jobs Model by Using GME-D (Marginals)

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

GME-D Variable Marginal Effects  Table

Variable
Marginal

Effect Mean

Marginal
Effect at

User
Supplied

Values

User
Supplied

Values

x1_0 0.338758 1 -0.0901 1

x2_0 -0.0019 20.50148 -0.00217 0.4

x3_0 -0.02129 13.09496 0.009586 10

x4_0 -0.09917 0.916914 -0.14204 0

x1_1 0.859883 1 0.463181 1

x2_1 -0.00345 20.50148 -0.00311 0.4

x3_1 -0.0648 13.09496 -0.04339 10

x4_1 0.034396 0.916914 0.174876 0

x1_2 0.86101 1 -0.07894 1

x2_2 0.000963 20.50148 0.004405 0.4

x3_2 -0.04948 13.09496 0.015555 10

x4_2 -0.16297 0.916914 -0.072 0

x1_3 -0.25969 1 -0.16459 1

x2_3 0.0015 20.50148 0.000623 0.4

x3_3 0.009289 13.09496 0.00929 10

x4_3 0.065569 0.916914 0.02648 0

x1_4 -1.79996 1 -0.12955 1

x2_4 0.00288 20.50148 0.000256 0.4

x3_4 0.126283 13.09496 0.008956 10

x4_4 0.162172 0.916914 0.012684 0

In this example, you evaluate the derivative when x1=1, x2=0.4, x3=10, and x4=0. If the user neglects a
variable, PROC ENTROPY uses its mean value.
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Syntax: ENTROPY Procedure
The following statements can be used with the ENTROPY procedure:

PROC ENTROPY options ;
BOUNDS bound1 < , bound2, . . . > ;
BY variable < variable . . . > ;
ID variable < variable . . . > ;
MODEL variable = variable < variable > . . . < / options > ;
PRIORS variable < support points > variable < value > . . . ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST < “name” > test1 < , test2 . . . > < / options > ;
WEIGHT variable ;

Functional Summary
The statements and options in the ENTROPY procedure are summarized in the following table.

Description Statement Option

Data Set Options
specify the input data set for the variables ENTROPY DATA=
specify the input data set for support points and
priors

ENTROPY PDATA=

specify the output data set for residual, pre-
dicted, and actual values

ENTROPY OUT=

specify the output data set for the support points
and priors

ENTROPY OUTP=

write the covariance matrix of the estimates to
OUTEST= data set

ENTROPY OUTCOV

write the parameter estimates to a data set ENTROPY OUTEST=
write the Lagrange multiplier estimates to a
data set

ENTROPY OUTL=

write the covariance matrix of the equation er-
rors to a data set

ENTROPY OUTS=

write the S matrix used in the objective function
definition to a data set

ENTROPY OUTSUSED=

read the covariance matrix of the equation er-
rors

ENTROPY SDATA=

Printing Options
request that the procedure produce graphics via
the Output Delivery System

ENTROPY PLOTS=

print collinearity diagnostics ENTROPY COLLIN
suppress the normal printed output ENTROPY NOPRINT



Functional Summary F 771

Description Statement Option

Options to Control Iteration Output
print a summary iteration listing ENTROPY ITPRINT

Options to Control the Minimization Pro-
cess
specify the convergence criteria ENTROPY CONVERGE=
specify the maximum number of iterations al-
lowed

ENTROPY MAXITER=

specify the maximum number of subiterations
allowed

ENTROPY MAXSUBITER=

select the iterative minimization method to use ENTROPY METHOD=

Statements That Declare Variables
specify BY-group processing BY
specify a weight variable WEIGHT
specify identifying variables ID

General PROC ENTROPY Statement Op-
tions
specify seemingly unrelated regression ENTROPY SUR
specify iterated seemingly unrelated regression ENTROPY ITSUR
specify data-constrained generalized maximum
entropy

ENTROPY GME

specify moment generalized maximum entropy ENTROPY GMEM
specify the denominator for computing vari-
ances and covariances

ENTROPY VARDEF=

General TEST Statement Options
specify that a Wald test be computed TEST WALD
specify that a Lagrange multiplier test be com-
puted

TEST LM

specify that a likelihood ratio test be computed TEST LR
request all three types of tests TEST ALL
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PROC ENTROPY Statement
PROC ENTROPY options ;

The following options can be specified in the PROC ENTROPY statement.

General Options

COLLIN
requests that the collinearity diagnostics of the X 0X matrix be printed.

COVBEST=CROSS | GME | GMEM
specifies the method for producing the covariance matrix of parameters for output and for standard
error calculations. GMEM and GME are aliases and are the default.

GME | GCE
requests generalized maximum entropy or generalized cross entropy. This is the default estimation
method.

GMEM | GCEM
requests moment maximum entropy or the moment cross entropy.

GMED
requests a variant of GME suitable for multinomial discrete choice models.

MARKOV
specifies that the model is a first-order Markov model.

PURE
specifies a regression without an error term.

SUR | ITSUR
specifies seemingly unrelated regression or iterated seemingly unrelated regression.

VARDEF=N | WGT | DF | WDF
specifies the denominator to be used in computing variances and covariances. VARDEF=N specifies
that the number of nonmissing observations be used. VARDEF=WGT specifies that the sum of the
weights be used. VARDEF=DF specifies that the number of nonmissing observations minus the model
degrees of freedom (number of parameters) be used. VARDEF=WDF specifies that the sum of the
weights minus the model degrees of freedom be used. The default is VARDEF=DF.

Data Set Options

DATA=SAS-data-set
specifies the input data set. Values for the variables in the model are read from this data set.

PDATA=SAS-data-set
names the SAS data set that contains the data about priors and supports.
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OUT=SAS-data-set
names the SAS data set to contain the residuals from each estimation.

OUTCOV

COVOUT
writes the covariance matrix of the estimates to the OUTEST= data set in addition to the parameter
estimates. The OUTCOV option is applicable only if the OUTEST= option is also specified.

OUTEST=SAS-data-set
names the SAS data set to contain the parameter estimates and optionally the covariance of the
estimates.

OUTL=SAS-data-set
names the SAS data set to contain the estimated Lagrange multipliers for the models.

OUTP=SAS-data-set
names the SAS data set to contain the support points and estimated probabilities.

OUTS=SAS-data-set
names the SAS data set to contain the estimated covariance matrix of the equation errors. This is the
covariance of the residuals computed from the parameter estimates.

OUTSUSED=SAS-data-set
names the SAS data set to contain the S matrix used in the objective function definition. The
OUTSUSED= data set is the same as the OUTS= data set for the methods that iterate the S matrix.

SDATA=SAS-data-set
specifies a data set that provides the covariance matrix of the equation errors. The matrix read from
the SDATA= data set is used for the equation error covariance matrix (S matrix) in the estimation.
The SDATA= matrix is used to provide only the initial estimate of S for the methods that iterate the S
matrix.

Printing Options

ITPRINT
prints the parameter estimates, objective function value, and convergence criteria at each iteration.

NOPRINT
suppresses the normal printed output but does not suppress error listings. Using any other print option
turns the NOPRINT option off.

PLOTS=global-plot-options | plot-request
controls the plots that the ENTROPY procedure produces. (For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).) The global-
plot-options apply to all relevant plots generated by the ENTROPY procedure.

The global-plot-options supported by the ENTROPY procedure are as follows:

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL displays each graph separately. (By default, some graphs can appear together in a
single panel.)
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The specific plot-request values supported by the ENTROPY procedure are as follows:

ALL requests that all plots appropriate for the particular analysis be produced. ALL is
equivalent to specifying FITPLOT, COOKSD, QQ, RESIDUALHISTOGRAM, and
STUDENTRESIDUAL.

FITPLOT plots the predicted and actual values.

COOKSD produces the Cook’s D plot.

QQ produces a Q-Q plot of residuals.

RESIDUALHISTOGRAM plots the histogram of residuals.

STUDENTRESIDUAL plots the studentized residuals.

NONE suppresses all plots.

The default behavior is to plot all plots appropriate for the particular analysis (ALL) in a panel.

Options to Control the Minimization Process

The following options can be helpful if a convergence problem occurs for a given model and set of data. The
ENTROPY procedure uses the nonlinear optimization subsystem (NLO) to perform the model optimizations.
In addition to the options listed below, all options supported in the NLO subsystem can be specified on the
ENTROPY procedure statement. See Chapter 6, “Nonlinear Optimization Methods,” for more details.

CONVERGE=value

GCONV=value
specifies the convergence criteria for S-iterated methods. The convergence measure computed during
model estimation must be less than value before convergence is assumed. The default value is
CONVERGE=0.001.

DUAL | PRIMAL
specifies whether the optimization problem is solved using the dual or primal form. The dual form is
the default.

MAXITER=n
specifies the maximum number of iterations allowed. The default is MAXITER=100.

MAXSUBITER=n
specifies the maximum number of subiterations allowed for an iteration. The MAXSUBITER= option
limits the number of step halvings. The default is MAXSUBITER=30.

METHOD=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR

TECHNIQUE=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR

TECH=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR
specifies the iterative minimization method to use. METHOD=TR specifies the trust region method,
METHOD=NEWRAP specifies the Newton-Raphson method, METHOD=NRR specifies the Newton-
Raphson ridge method, and METHOD=QN specifies the quasi-Newton method. See Chapter 6,
“Nonlinear Optimization Methods,” for more details about optimization methods. The default is
METHOD=QN for the dual form and METHOD=NEWRAP for the primal form.
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BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters estimated by the ENTROPY procedure. You can specify any
number of BOUNDS statements.

Each boundary constraint is composed of variables, constants, and inequality operators in the following
form:

item operator item <,operator item <,operator item ...> >

Each item is a constant, the name of a regressor variable, or a list of regressor names. Each operator is <, >,
<=, or >=.

You can use either the BOUNDS statement or the RESTRICT statement to impose boundary constraints; the
BOUNDS statement provides a simpler syntax for specifying inequality constraints. See section “RESTRICT
Statement” on page 779 for more information about the computational details of estimation with inequality
restrictions.

Lagrange multipliers are reported for all the active boundary constraints. In the printed output and in the
OUTEST= data set, the Lagrange multiplier estimates are identified with the names BOUND1, BOUND2,
and so forth. The probability of the Lagrange multipliers are computed using a beta distribution (LaMotte
1994). Nonactive or nonbinding bounds have no effect on the estimation results and are not noted in the
output. To give the constraints more descriptive names, use the RESTRICT statement instead of the BOUNDS
statement.

The following BOUNDS statement constrains the estimates of the coefficients of WAGE and TARGET
and the 10 coefficients of x1 through x10 to be between zero and one. This example illustrates the use of
parameter lists to specify boundary constraints.

bounds 0 < wage target x1-x10 < 1;

The following is an example of the use of the BOUNDS statement to impose boundary constraints on the
variables X1, X2, and X3:

proc entropy data=zero;
bounds .1 <= x1 <= 100,

0 <= x2 <= 25.6,
0 <= x3 <= 5;

model y = x1 x2 x3;
run;

The parameter estimates from this run are shown in Figure 13.23.
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Figure 13.23 Output from Bounded Estimation

Prior Distribution of Parameter T

The ENTROPY Procedure

Prior Distribution of Parameter T

The ENTROPY Procedure

Variables(Supports(Weights)) x1 x2 x3 Intercept

Equations(Supports(Weights)) y

Prior Distribution of Parameter T

The ENTROPY Procedure
GME Estimation Summary

Prior Distribution of Parameter T

The ENTROPY Procedure
GME Estimation Summary

Data Set Options

DATA= WORK.ZERO

Minimization Summary

Parameters Estimated 4

Covariance Estimator GME

Entropy Type Shannon

Entropy Form Dual

Numerical Optimizer Newton-Raphson

Final Information Measures

Objective Function Value 6.292861

Signal Entropy 6.375715

Noise Entropy -0.08285

Normed Entropy (Signal) 0.990364

Normed Entropy (Noise) 1.004172

Parameter Information Index 0.009636

Error Information Index -0.00417

Observations
Processed

Read 20

Used 20

NOTE: At GME Iteration 20 convergence criteria met.

GME Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square Adj RSq

y 4 16 1665620 83281.0 288.6 -0.0013 -0.1891
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Figure 13.23 continued

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

x1 0.1 0 . .

x2 0 0 . .

x3 3.33E-16 0 . .

Intercept -0.00432 3.406E-6 -1269.3 <.0001

1.25731 9130.3 0.00 0.9999 0.1  <=  x1

0.009384 0 . . 0  <=  x2

0.000025 0 . . 0  <=  x3

BY Statement
BY variables ;

A BY statement is used to obtain separate estimates for observations in groups defined by the BY variables.
To save parameter estimates for each BY group, use the OUTEST= option.

ID Statement
ID variables ;

The ID statement specifies variables to identify observations in error messages or other listings and in the
OUT= data set. The ID variables are normally SAS date or datetime variables. If more than one ID variable
is used, the first variable is used to identify the observations and the remaining variables are added to the
OUT= data set.

MODEL Statement
MODEL dependent = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. If no independent variables are specified in the MODEL statement, only the mean (intercept) is
estimated. To model a system of equations, specify more than one MODEL statement.

The following options can be used in the MODEL statement after a slash (/).

ESUPPORTS=( support (prior) . . . )
specifies the support points and prior weights on the residuals for the specified equation. The default is
the following five support values:

�10 � value;�value; 0; value; 10 � value

where value is computed as

value D .max.y/ � Ny/ �multiplier
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for GME, where y is the dependent variable, and

value D .max.y/ � Ny/ �multiplier � nobs �max.X/ � 0:1

for generalized maximum entropy—moments (GME-M), where X is the information matrix, and
nobs is the number of observations. The multiplier depends on the MULTIPLIER= option. The
MULTIPLIER= option defaults to 2 for unrestricted models and to 4 for restricted models. The prior
probabilities default to the following:

0:0005; 0:333; 0:333; 0:333; 0:0005

The support points and prior weights are selected so that hypothesis tests can be performed without
adding significant bias to the estimation. These prior probability values are ad hoc.

NOINT
suppresses the intercept parameter.

MARGINALS = ( variable = value, . . . , variable = value)
requests that the marginal effects of each variable be calculated for GME-D. Specifying the
MARGINALS option with an optional list of values calculates the marginals at that vector of values.
For example, if x1–x4 are explanatory variables, then including

MARGINALS = ( x1 = 2, x2 = 4, x3 = –1, x4 = 5)

calculates the marginal effects at that vector. A skipped variable implies that its mean value is to be
used.

CENSORED ( ( UB | LB) = (variable | value ), ESUPPORTS =( support (prior) . . . ) )
specifies that the dependent variable be observed with censoring and specifies the censoring thresholds
and the supports of the censored observations.

CATEGORY= variable
specifies the variable that keeps track of the categories the dependent variable is in when there is range
censoring. When the actual value is observed, this variable should be set to MISSING.

RANGE ( ID = (QS | INT) L = ( NUMBER ) R = ( NUMBER ) , ESUPPORTS=( support < (prior) > . . . ) )
specifies that the dependent variable be range bound. The RANGE option defines the range and the
key ( RANGE ) that is used to identify the observation as being range bound. The RANGE = value
should be some value in the CATEGORY= variable. The L and R define, respectively, the left endpoint
of the range and the right endpoint of the range. ESUPPORTS sets the error supports on the variable.

PRIORS Statement
PRIORS variable < support points < (priors) > > variable < support points < (priors) > > . . . ;

The PRIORS statement specifies the support points and prior weights for the coefficients on the variables.

Support points for coefficients default to five points, determined as follows:

�2 � value;�value; 0; value; 2 � value



RESTRICT Statement F 779

where value is computed as

value D .kmeank C 3 � stderr/ �multiplier

where the mean and the stderr are obtained from OLS and the multiplier depends on the MULTIPLIER=
option. The MULTIPLIER= option defaults to 2 for unrestricted models and to 4 for restricted models. The
prior probabilities for each support point default to the uniform distribution.

The number of support points must be at least two. If priors are specified, they must be positive and there
must be the same number of priors as there are support points. Priors and support points can also be specified
through the PDATA= data set.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. You can specify
any number of RESTRICT statements.

Each restriction is written as an optional name, followed by an expression, followed by an equality operator
(=) or an inequality operator (<, >, <=, >=), followed by a second expression:

<“name” > expression operator expression

The optional “name” is a string used to identify the restriction in the printed output and in the OUTEST=
data set. The operator can be =, <, >, <= , or >=. The operator and second expression are optional, as in the
TEST statement, where they default to = 0.

Restriction expressions can be composed of variable names, multiplication (�), and addition (C) operators,
and constants. Variable names in restriction expressions must be among the variables whose coefficients are
estimated by the model. The restriction expressions must be a linear function of the variables.

The following is an example of the use of the RESTRICT statement:

proc entropy data=one;
restrict y1.x1*2 <= x2 + y2.x1;
model y1 = x1 x2;
model y2 = x1 x3;

run;

This example illustrates the use of compound names, y1.x1, to specify coefficients of specific equations.

TEST Statement
TEST < “name” > test1 < , test2 . . . > < ,/ options > ;

The TEST statement performs tests of linear hypotheses on the model parameters.

The TEST statement applies only to parameters estimated in the model. You can specify any number of
TEST statements.

Each test is written as an expression optionally followed by an equal sign (=) and a second expression:
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expression <= expression>

Test expressions can be composed of variable names, multiplication (�), addition (C), and subtraction (�)
operators, and constants. Variables named in test expressions must be among the variables estimated by the
model.

If you specify only one expression in a TEST statement, that expression is tested against zero. For example,
the following two TEST statements are equivalent:

test a + b;

test a + b = 0;

When you specify multiple tests on the same TEST statement, a joint test is performed. For example, the
following TEST statement tests the joint hypothesis that both of the coefficients on a and b are equal to zero:

test a, b;

To perform separate tests rather than a joint test, use separate TEST statements. For example, the following
TEST statements test the two separate hypotheses that a is equal to zero and that b is equal to zero:

test a;
test b;

You can use the following options in the TEST statement:

WALD
specifies that a Wald test be computed. WALD is the default.

LM

RAO

LAGRANGE
specifies that a Lagrange multiplier test be computed.

LR

LIKE
specifies that a pseudo-likelihood ratio test be computed.

ALL
requests all three types of tests.

OUT=
specifies the name of an output SAS data set that contains the test results. The format of the OUT=
data set produced by the TEST statement is similar to that of the OUTEST= data set.
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WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters.

If the weight of an observation is nonpositive, that observation is not used for the estimation. Variable must
be a numeric variable in the input data set. The regressors and the dependent variables are multiplied by the
square root of the weight variable to form the weighted X matrix and the weighted dependent variable. The
same weight is used for all MODEL statements.

Details: ENTROPY Procedure
Shannon’s measure of entropy for a distribution is given by

maximize �

nX
iD1

pi ln.pi /

subject to
nX
iD1

pi D 1

where pi is the probability associated with the ith support point. Properties that characterize the entropy
measure are set forth by Kapur and Kesavan (1992).

The objective is to maximize the entropy of the distribution with respect to the probabilities pi and subject to
constraints that reflect any other known information about the distribution (Jaynes 1957). This measure, in
the absence of additional information, reaches a maximum when the probabilities are uniform. A distribution
other than the uniform distribution arises from information already known.

Generalized Maximum Entropy
Reparameterization of the errors in a regression equation is the process of specifying a support for the errors,
observation by observation. If a two-point support is used, the error for the tth observation is reparameterized
by setting et D wt1 vt1 C wt2 vt2, where vt1 and vt2 are the upper and lower bounds for the tth error et ,
and wt1 and wt2 represent the weight associated with the point vt1 and vt2. The error distribution is usually
chosen to be symmetric, centered around zero, and the same across observations so that vt1 D �vt2 D R,
where R is the support value chosen for the problem (Golan, Judge, and Miller 1996).

The generalized maximum entropy (GME) formulation was proposed for the ill-posed or underdetermined
case where there is insufficient data to estimate the model with traditional methods. ˇ is reparameterized by
defining a support for ˇ (and a set of weights in the cross entropy case), which defines a prior distribution for
ˇ.

In the simplest case, each ˇk is reparameterized as ˇk D pk1 zk1 C pk2 zk2, where pk1 and pk2 represent
the probabilities ranging from [0,1] for each ˇ, and zk1 and zk2 represent the lower and upper bounds placed
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on ˇk . The support points, zk1 and zk2, are usually distributed symmetrically around the most likely value
for ˇk based on some prior knowledge.

With these reparameterizations, the GME estimation problem is

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to y D X Z p C V w

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

where y denotes the column vector of length T of the dependent variable; X denotes the .T �K / matrix of
observations of the independent variables; p denotes the LK column vector of weights associated with the
points in Z; w denotes the LT column vector of weights associated with the points in V; 1K , 1L, and 1T are
K-, L-, and T-dimensional column vectors, respectively, of ones; and IK and IT are .K �K / and .T � T /
dimensional identity matrices.

These equations can be rewritten using set notation as follows:

maximize H.p;w/ D �

LX
lD1

KX
kD1

pkl ln.pkl/ �
LX
lD1

TX
tD1

wtl ln.wtl/

subject to yt D

LX
lD1

"
KX
kD1

.Xkt Zkl pkl/ C Vtl wtl

#
LX
lD1

pkl D 1 and
LX
lD1

wtl D 1

The subscript l denotes the support point (l=1, 2, ..., L), k denotes the parameter (k=1, 2, ..., K), and t denotes
the observation (t=1, 2, ..., T).

The GME objective is strictly concave; therefore, a unique solution exists. The optimal estimated probabilities,
p and w, and the prior supports, Z and V, can be used to form the point estimates of the unknown parameters,
ˇ, and the unknown errors, e.

Generalized Cross Entropy
Kullback and Leibler (1951) cross entropy measures the “discrepancy” between one distribution and another.
Cross entropy is called a measure of discrepancy rather than distance because it does not satisfy some of the
properties one would expect of a distance measure. (See Kapur and Kesavan (1992) for a discussion of cross
entropy as a measure of discrepancy.) Mathematically, cross entropy is written as

minimize
nX
iD1

pi ln. pi = qi /

subject to
nX
iD1

pi D 1;
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where qi is the probability associated with the ith point in the distribution from which the discrepancy is
measured. The qi (in conjunction with the support) are often referred to as the prior distribution. The measure
is nonnegative and is equal to zero when pi equals qi . The properties of the cross entropy measure are
examined by Kapur and Kesavan (1992).

The principle of minimum cross entropy (Kullback 1959; Good 1963) states that one should choose prob-
abilities that are as close as possible to the prior probabilities. That is, out of all probability distributions
that satisfy a given set of constraints which reflect known information about the distribution, choose the
distribution that is closest (as measured by p.ln.p/ � ln.q//) to the prior distribution. When the prior
distribution is uniform, maximum entropy and minimum cross entropy produce the same results (Kapur
and Kesavan 1992), where the higher values for entropy correspond exactly with the lower values for cross
entropy.

If the prior distributions are nonuniform, the problem can be stated as a generalized cross entropy (GCE)
formulation. The cross entropy terminology specifies weights, qi and ui , for the points Z and V, respectively.
Given informative prior distributions on Z and V, the GCE problem is

minimize I.p; q; w; u/ D p0 ln.p=q/C w0 ln.w=u/
subject to y D X Z p C V w

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

where y denotes the T column vector of observations of the dependent variables; X denotes the .T � K /
matrix of observations of the independent variables; q and p denote LK column vectors of prior and posterior
weights, respectively, associated with the points in Z; u and w denote the LT column vectors of prior and
posterior weights, respectively, associated with the points in V; 1K , 1L, and 1T are K-, L-, and T-dimensional
column vectors, respectively, of ones; and IK and IT are (K � K ) and (T � T ) dimensional identity matrices.

The optimization problem can be rewritten using set notation as follows

minimize I.p; q; w; u/ D

LX
lD1

KX
kD1

pkl ln.pkl=qkl/ C
LX
lD1

TX
tD1

wtl ln.wtl=utl/

subject to yt D

LX
lD1

"
KX
kD1

.Xkt Zkl pkl/ C Vtl wtl

#
LX
lD1

pkl D 1 and
LX
lD1

wtl D 1

The subscript l denotes the support point (l=1, 2, ..., L), k denotes the parameter (k=1, 2, ..., K), and t denotes
the observation (t=1, 2, ..., T).

The objective function is strictly convex; therefore, there is a unique global minimum for the problem (Golan,
Judge, and Miller 1996). The optimal estimated weights, p and w, and the prior supports, Z and V, can be
used to form the point estimates of the unknown parameters, ˇ, and the unknown errors, e, by using
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ˇ D Z p D

26664
z11 � � � zL1 0 0 0 0 0 0 0

0 0 0 z12 � � � zL2 0 0 0 0

0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 z1K � � � zLK

37775

26666666666666666664

p11
:::

pL1
p12
:::

pL2
:::

p1K
:::

pLK

37777777777777777775

e D V w D

26664
v11 � � � vL1 0 0 0 0 0 0 0

0 0 0 v12 � � � vL2 0 0 0 0

0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 v1T � � � vLT

37775

26666666666666666664

w11
:::

wL1
w12
:::

wL2
:::

w1T
:::

wLT

37777777777777777775
Computational Details

This constrained estimation problem can be solved either directly (primal) or by using the dual form. Either
way, it is prudent to factor out one probability for each parameter and each observation as the sum of the other
probabilities. This factoring reduces the computational complexity significantly. If the primal formalization
is used and two support points are used for the parameters and the errors, the resulting GME problem
is O..nparms C nobs/3/. For the dual form, the problem is O..nobs/3/. Therefore for large data sets,
GME-M should be used instead of GME.

Moment Generalized Maximum Entropy
The default estimation technique is moment generalized maximum entropy (GME-M). This is simply GME
with the data constraints modified by multiplying both sides by X 0. GME-M then becomes

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to X 0y D X 0X Z p C X 0V w

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w
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There is also the cross entropy version of GME-M, which has the same form as GCE but with the moment
constraints.

GME versus GME-M

GME-M is more computationally attractive than GME for large data sets because the computational com-
plexity of the estimation problem depends primarily on the number of parameters and not on the number of
observations. GME-M is based on the first moment of the data, whereas GME is based on the data itself. If
the distribution of the residuals is well defined by its first moment, then GME-M is a good choice. So if the
residuals are normally distributed or exponentially distributed, then GME-M should be used. On the other
hand if the distribution is Cauchy, lognormal, or some other distribution where the first moment does not
describe the distribution, then use GME. See Example 13.1 for an illustration of this point.

Maximum Entropy-Based Seemingly Unrelated Regression
In a multivariate regression model, the errors in different equations might be correlated. In this case,
the efficiency of the estimation can be improved by taking these cross-equation correlations into account.
Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation,
is a generalization of OLS for multi-equation systems.

Like SUR in the least squares setting, the generalized maximum entropy SUR (GME-SUR) method assumes
that all the regressors are independent variables and uses the correlations among the errors in different
equations to improve the regression estimates. The GME-SUR method requires an initial entropy regression
to compute residuals. The entropy residuals are used to estimate the cross-equation covariance matrix.

In the iterative GME-SUR (ITGME-SUR) case, the preceding process is repeated by using the residuals
from the GME-SUR estimation to estimate a new cross-equation covariance matrix. ITGME-SUR method
alternates between estimating the system coefficients and estimating the cross-equation covariance matrix
until the estimated coefficients and covariance matrix converge.

The estimation problem becomes the generalized maximum entropy system adapted for multi-equations as
follows:

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to y D X Z p C V w

1KM D .IKM ˝ 10L/ p

1MT D .IMT ˝ 10L/ w

where

ˇ D Z p
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Z D

2666666666664

z111 � � � z1L1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
: : : 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 zK11 � � � zKL1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
: : : 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 z11M � � � z1LM 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 zK1M � � � zKLM

3777777777775

p D
�
p111 � p1L1 � pK11 � pKL1 � p11M � p1LM � pK1M � pKLM

�0

e D V w

V D

2666666666664

v111 � � � vL11 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
: : : 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 v11T � � � vL1T 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
: : : 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 v1M1 � � � vLM1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 v1MT � � � vLMT

3777777777775

w D
�
w111 � wL11 � w11T � wL1T � w1M1 � wLM1 � w1MT � wLMT

�0
y denotes the MT column vector of observations of the dependent variables; X denotes the (MT x KM )
matrix of observations for the independent variables; p denotes the LKM column vector of weights associated
with the points in Z; w denotes the LMT column vector of weights associated with the points in V; 1L,
1KM , and 1MT are L-, KM-, and MT-dimensional column vectors, respectively, of ones; and IKM and IMT
are (KM x KM) and (MT x MT) dimensional identity matrices. The subscript l denotes the support point
.l D 1; 2; : : : ; L/, k denotes the parameter .k D 1; 2; : : : ; K/, m denotes the equation .m D 1; 2; : : : ;M/,
and t denotes the observation .t D 1; 2; : : : ; T /.

Using this notation, the maximum entropy problem that is analogous to the OLS problem used as the initial
step of the traditional SUR approach is

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to .y � X Z p/ D

p
† V w

1KM D .IKM ˝ 10L/ p

1MT D .IMT ˝ 10L/ w
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The results are GME-SUR estimates with independent errors, the analog of OLS. The covariance matrix O† is
computed based on the residual of the equations, Vw D e. An L0L factorization of the O† is used to compute
the square root of the matrix.

After solving this problem, these entropy-based estimates are analogous to the Aitken two-step estimator.
For iterative GME-SUR, the covariance matrix of the errors is recomputed, and a new O† is computed and
factored. As in traditional ITSUR, this process repeats until the covariance matrix and the parameter estimates
converge.

The estimation of the parameters for the normed-moment version of SUR (GME-SUR-NM) uses an identical
process. The constraints for GME-SUR-NM is defined as:

X 0y D X 0.S�1˝I/X Z p C X 0.S�1˝I/V w

The estimation of the parameters for GME-SUR-NM uses an identical process as outlined previously for
GME-SUR.

Generalized Maximum Entropy for Multinomial Discrete Choice Models
Multinomial discrete choice models take the form of an experiment that consists of n trials. On each trial,
one of k alternatives is observed. If yij is the random variable that takes on the value 1 when alternative
j is selected for the ith trial and 0 otherwise, then the probability that yij is 1, conditional on a vector of
regressors Xi and unknown parameter vector ˇj , is

Pr.yij D 1jXi ; ˇj / D G.X 0iˇj /

where G./ is a link function. For noisy data the model becomes:

yij D G.X
0
iˇj /C �ij D pij C �ij

The standard maximum likelihood approach for multinomial logit is equivalent to the maximum entropy
solution for discrete choice models. The generalized maximum entropy approach avoids an assumption of
the form of the link function G./.

The generalized maximum entropy for discrete choice models (GME-D) is written in primal form as

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to .Ij ˝X

0y/ D .Ij ˝X
0/p C .Ij ˝X

0/V wPk
j pij D 1 for i D 1 toNPL
mwijm D 1 for i D 1 toN and j D 1 to k

Golan, Judge, and Miller (1996) have shown that the dual unconstrained formulation of the GME-D can
be viewed as a general class of logit models. Additionally, as the sample size increases, the solution of the
dual problem approaches the maximum likelihood solution. Because of these characteristics, only the dual
approach is available for the GME-D estimation method.

The parameters ˇj are the Lagrange multipliers of the constraints. The covariance matrix of the parameter
estimates is computed as the inverse of the Hessian of the dual form of the objective function.
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Censored or Truncated Dependent Variables
In practice, you might find that variables are not always measured throughout their natural ranges. A given
variable might be recorded continuously in a range, but, outside of that range, only the endpoint is denoted.
In other words, say that the data generating process is:

yi D xi ˛C �:

However, you observe the following:

y?i D

8<:
ub W yi � ub

xi ˛C � W lb < yi < ub

lb W yi � lb

The primal problem is simply a slight modification of the primal formulation for GME-GCE. You specify
different supports for the errors in the truncated or censored region, perhaps reflecting some nonsample
information. Then the data constraints are modified. The constraints that arise in the censored areas
are changed to inequality constraints (Golan, Judge, and Perloff 1997). Let the variable Xu denote the
observations of the explanatory variable where censoring occurs from the top, Xl from the bottom, and Xa in
the middle region (no censoring). Let, Vu be the supports for the observations at the upper bound, Vl lower
bound, and Va in the middle.

You have:24 yu � ub
ya

yl � lb

35 D
24 Xu

Xa

Xl

35ZpC

24 Vuwu

Vawa

Vlwl

35
The primal problem then becomes

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to ya D Xa Va p C Va wa

yu � XuVu p C Vu wu

yl � Xl Vl p C Vl wl

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

PROC ENTROPY requires that the number of supports be identical for all three regions.

Alternatively, you can think of cases where the dependent variable is observed continuously for most of its
range. However, the variable’s range is reported for some observations. Such data is often found in highly
disaggregated state level employment measures.

y?i D

8̂̂̂<̂
ˆ̂:

missing W l1 � y � r1
::: W

:::

missing W lk � y � rk
xi ˛C � W otherwise

Just as in the censored case, each range yields two inequality constraints for each observation in that range.
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Information Measures
PROC ENTROPY returns several measures of fit. First, the value of the objective function is returned. Next,
the signal entropy is provided followed by the noise entropy. The sum of the noise and signal entropies
should equal the value of the objective function. The next two metrics that follow are the normed entropies
of both the signal and the noise.

Normalized entropy (NE) measures the relative informational content of both the signal and noise components
through p and w, respectively (Golan, Judge, and Miller 1996). Let S denote the normalized entropy of the
signal, Xˇ, defined as:

S. Qp/ D
� Qp0 ln. Qp/
�q0 ln.q/

where S. Qp/ � Œ0; 1�. In the case of GME, where uniform priors are assumed, S can be written as:

S. Qp/ D
� Qp0 ln. Qp/P
i ln.Mi /

where Mi is the number of support points for parameter i. A value of 0 for S implies that there is no
uncertainty regarding the parameters; hence, it is a degenerate situation. However, a value of 1 implies that
the posterior distributions equal the priors, which indicates total uncertainty if the priors are uniform.

Because NE is relative, it can be used for comparing various situations. Consider adding a data point to
the model. If STC1 D ST , then there is no additional information contained within that data constraint.
However, if STC1 < ST , then the data point gives a more informed set of parameter estimates.

NE can be used for determining the importance of particular variables with regard to the reduction of the
uncertainty they bring to the model. Each of the k parameters that is estimated has an associated NE defined
as

S. Qpk/ D
� Qp0

k
ln. Qpk/

� ln.qk/

or, in the GME case,

S. Qpk/ D
� Qp0

k
ln. Qpk/

ln.M/

where Qpk is the vector of supports for parameter ˇk and M is the corresponding number of support points.
Since a value of 1 implies no relative information for that particular sample, Golan, Judge, and Miller (1996)
suggest an exclusion criteria of S. Qpk/ > 0:99 as an acceptable means of selecting noninformative variables.
See Golan, Judge, and Miller (1996) for some simulation results.

The final set of measures of fit are the parameter information index and error information index. These
measures can be best summarized as 1 – the appropriate normed entropy.
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Parameter Covariance For GCE
For the cross-entropy problem, the estimate of the asymptotic variance of the signal parameter is given by:

OVar. Ǒ/ D
O�2 .
Ǒ/

O 2. Ǒ/
.X 0X/�1

where

O�2 .
Ǒ/ D

1

N

NX
iD1

2i

and i is the Lagrange multiplier associated with the i th row of the Vw constraint matrix. Also,
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Parameter Covariance For GCE-M
Golan, Judge, and Miller (1996) give the finite approximation to the asymptotic variance matrix of the
moment formulation as:

OVar. Ǒ/ D †zX
0XC�1DC�1X 0X†z

where

C D X 0X†zX
0X C†v

and

D D X 0†eX

Recall that in the moment formulation, V is the support of X
0e
T

, which implies that †v is a k-dimensional
variance matrix. †z and †v are both diagonal matrices with the form

†z D
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Statistical Tests
Since the GME estimates have been shown to be asymptotically normally distributed, the classical Wald,
Lagrange multiplier, and likelihood ratio statistics can be used for testing linear restrictions on the parameters.

Wald Tests

Let H0 W Lˇ D m, where L is a set of linearly independent combinations of the elements of ˇ. Then under
the null hypothesis, the Wald test statistic,

TW D .Lˇ �m/
0
�
L. OVar. Ǒ//L0

��1
.Lˇ �m/

has a central �2 limiting distribution with degrees of freedom equal to the rank of L.

Pseudo-Likelihood Ratio Tests

Using the conditionally maximized entropy function as a pseudo-likelihood, F , Mittelhammer and Cardell
(2000) state that:

2 O . Ǒ/

O�2 .
Ǒ/

�
F. Ǒ/ � F. Q̌/

�

has the limiting distribution of the Wald statistic when testing the same hypothesis. Note that F. Ǒ/ and
F. Q̌/ are the maximum values of the entropy objective function over the full and restricted parameter spaces,
respectively.

Lagrange Multiplier Tests

Again using the GME function as a pseudo-likelihood, Mittelhammer and Cardell (2000) define the Lagrange
multiplier statistic as:

1

O�2 .
Q̌/
G. Q̌/0.X 0X/�1G. Q̌/

where G is the gradient of F , which is being evaluated at the optimum point for the restricted parameters.
This test statistic shares the same limiting distribution as the Wald and pseudo-likelihood ratio tests.

Missing Values
If an observation in the input data set contains a missing value for any of the regressors or dependent values,
that observation is dropped from the analysis.
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Input Data Sets

DATA= Data Set

The DATA= data set specified in the PROC ENTROPY statement is the data set that contains the data to be
analyzed.

PDATA= Data Set

The PDATA= data set specified in the PROC ENTROPY statement specifies the support points and prior
probabilities to be used in the estimation. The PDATA= can be used in lieu of a PRIORS statement, but
is intended for use in conjunction with the OUTP= option. Once priors are entered through a PRIORS
statement, they can be reused in subsequent estimations by specifying the PDATA= option.

The variables in the data set are as follows:

• BY variables (if any)

• _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMEM. This
is an optional column.

• variable, a character variable of length 32 that indicates the name of the regressor. The regressor name
and the equation name identify a unique coefficient. This is required.

• _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the
observation number when the probabilities are for the residual terms. The _OBS_ and the equation
name identify which residual the probability is associated with. This an optional column.

• equation, a character variable of length 32 indicating the name of the dependent variable. This is a
required column.

• NSupport, a numeric variable that indicates the number of support points for each basis. This variable
is required.

• support, a numeric variable that is the support value the probability is associated with. This is a
required column.

• prior, a numeric variable that is the prior probability associated with the probability. This is a required
column.

• Prb, a numeric variable that is the estimated probability. This is optional.

SDATA= Data Set

The SDATA= data set specifies a data set that provides the covariance matrix of the equation errors. The
matrix read from the SDATA= data set is used for the equation covariance matrix (S matrix) in the estimation.
(The SDATA= S matrix is used to provide only the initial estimate of S for the methods that iterate the S
matrix.)
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Output Data Sets

OUT= Data Set

The OUT= data set specified in the PROC ENTROPY statement contains residuals of the dependent variables
computed from the parameter estimates. The ID and BY variables are also added to this data set.

OUTEST= Data Set

The OUTEST= data set contains parameter estimates and, if requested via the COVOUT option, estimates of
the covariance of the parameter estimates.

The variables in the data set are as follows:

• BY variables

• _NAME_, a character variable of length 32, blank for observations that contain parameter estimates or
a parameter name for observations that contain covariances

• _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMEM

• the parameters estimated

If the COVOUT option is specified, an additional observation is written for each row of the estimate of the
covariance matrix of parameter estimates, with the _NAME_ values containing the parameter names for the
rows.

OUTP= Data Set

The OUTP= data set specified in the PROC ENTROPY statement contains the probabilities estimated for
each support point, as well as the support points and prior probabilities used in the estimation.

The variables in the data set are as follows:

• BY variables (if any)

• _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMEM.

• variable, a character variable of length 32 that indicates the name of the regressor. The regressor name
and the equation name identify a unique coefficient.

• _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the
observation number when the probabilities are for the residual terms. The _OBS_ and the equation
name identify which residual the probability is associated with.

• equation, a character variable of length 32 that indicates the name of the dependent variable

• NSupport, a numeric variable that indicates the number of support points for each basis

• support, a numeric variable that is the support value the probability is associated with

• prior, a numeric variable that is the prior probability associated with the probability

• Prb, a numeric variable that is the estimated probability
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OUTL= Data Set

The OUTL= data set specified in the PROC ENTROPY statement contains the Lagrange multiplier values for
the underlying maximum entropy problem.

The variables in the data set are as follows:

• BY variables

• equation, a character variable of length 32 that indicates the name of the dependent variable

• variable, a character variable of length 32 that indicates the name of the regressor. The regressor name
and the equation name identify a unique coefficient.

• _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the
observation number when the probabilities are for the residual terms. The _OBS_ and the equation
name identify which residual the Lagrange multiplier is associated with

• LagrangeMult, a numeric variable that contains the Lagrange multipliers

ODS Table Names
PROC ENTROPY assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table.

Table 13.2 ODS Tables Produced in PROC ENTROPY
ODS Table Name Description Option
ConvCrit Convergence criteria for estimation default
ConvergenceStatus Convergence status default
DatasetOptions Data sets used default
MinSummary Number of parameters, estimation kind default
ObsUsed Observations read, used, and missing default
ParameterEstimates Parameter estimates default
ResidSummary Summary of the SSE, MSE for the equations default
TestResults Test statement table TEST statement

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).
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Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the ENTROPY procedure.

ODS Graph Names

PROC ENTROPY assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 13.3.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 13.3 ODS Graphics Produced by PROC ENTROPY

ODS Graph Name Plot Description
DiagnosticsPanel Includes all the plots listed below
FitPlot Predicted versus actual plot
CooksD Cook’s D plot
QQPlot Q-Q plot of residuals
StudentResidualPlot Studentized residual plot
ResidualHistogram Histogram of the residuals

Examples: ENTROPY Procedure

Example 13.1: Nonnormal Error Estimation
This example illustrates the difference between GME-M and GME. One of the basic assumptions of OLS
estimation is that the errors in the estimation are normally distributed. If this assumption is violated, the
estimated parameters are biased. For GME-M, the story is similar. If the first moment of the distribution of
the errors and a scale factor cannot be used to describe the distribution, then the parameter estimates from
GME-MN are more biased. GME is much less sensitive to the underlying distribution of the errors than
GME-M.

To illustrate this, data for the following model is simulated with three different error distributions:

y D a � x1 C b � x2 C �:

For the first simulation, � is distributed normally, then a chi-squared distribution with six degrees of freedom
is assumed for the second simulation, and finally � is assumed to have a Cauchy distribution in the third
simulation.

In each of the three simulations, 100 samples of 10 observations each were simulated. The data for the model
with the Cauchy error distribution is generated using the following DATA step code:
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data one;
call streaminit(156789);
do by = 1 to 100;

do x2 = 1 to 10;
x1 = 10 * ranuni( 512);
y = x1 + 2*x2 + rand('cauchy');
output;

end;
end;

run;

The statements for the other distributions are identical except for the argument to the RAND() function.

The parameters to the model were estimated by using maximum entropy with the following programming
statements:

proc entropy data=one gme outest=parm1;
model y = x1 x2;
by by;

run;

The estimation by using moment-constrained maximum entropy was performed by changing the GME option
to GMEM. For comparison, the same model was estimated by using OLS with the following PROC REG
statements:

proc reg data=one outest=parm3;
model y = x1 x2;
by by;

run;

The 100 estimations of the coefficient on variable x1 are then summarized for each of the three error
distributions by using PROC UNIVARIATE, as follows:

proc univariate data=parm1;
var x1;

run;

The following table summarizes the results from the estimations. The true value for the coefficient on x1 is
1.0.

Estimation Normal Chi-Squared Cauchy
Method Mean Std Deviation Mean Std Deviation Mean Std Deviation

GME 0.418 0.117 0.626 .330 0.818 3.36
GME-M 0.878 0.116 0.948 0.427 3.03 13.62

OLS 0.973 0.142 1.023 0.467 5.54 26.83

For normally distributed or nearly normally distributed data, moment-constrained maximum entropy is a good
choice. For distributions not well described by a normal distribution, data-constrained maximum entropy is a
good choice.
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Example 13.2: Unreplicated Factorial Experiments
Factorial experiments are useful for studying the effects of various factors on a response. For the practitioner
constrained to the use of OLS regression, there must be replication to estimate all of the possible main and
interaction effects in a factorial experiment. Using OLS regression to analyze unreplicated experimental
data results in zero degrees of freedom for error in the ANOVA table, since there are as many parameters
as observations. This situation leaves the experimenter unable to compute confidence intervals or perform
hypothesis testing on the parameter estimates.

Several options are available when replication is impossible. The higher-order interactions can be assumed to
have negligible effects, and their degrees of freedom can be pooled to create the error degrees of freedom
used to perform inference on the lower-order estimates. Or, if a preliminary experiment is being run, a normal
probability plot of all effects can provide insight as to which effects are significant, and therefore focused, in
a later, more complete experiment.

The following example illustrates the probability plot methodology and the alternative by using PROC EN-
TROPY. Consider a 24 factorial model with no replication. The data are taken from Myers and Montgomery
(1995).

data rate;
do a=-1,1; do b=-1,1; do c=-1,1; do d=-1,1;

input y @@;
ab=a*b; ac=a*c; ad=a*d; bc=b*c; bd=b*d; cd=c*d;
abc=a*b*c; abd=a*b*d; acd=a*c*d; bcd=b*c*d;
abcd=a*b*c*d;
output;

end; end; end; end;
datalines;
45 71 48 65 68 60 80 65 43 100 45 104 75 86 70 96
;

run;

Analyze the data by using PROC REG, then output the resulting estimates.

proc reg data=rate outest=regout;
model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

run;

proc transpose data=regout out=ploteff name=effect prefix=est;
var a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

run;

Now the normal scores for the estimates can be computed with the rank procedure as follows:

proc rank data=ploteff normal=blom out=qqplot;
var est1;
ranks normalq;

run;
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To create the probability plot, simply plot the estimates versus their normal scores by using PROC SGPLOT
as follows:

title "Unreplicated Factorial Experiments";
proc sgplot data=qqplot;

scatter x=est1 y=normalq / markerchar=effect
markercharattrs=(size=10pt);

xaxis label="Estimate";
yaxis label="Normal Quantile";

run;

Output 13.2.1 Normal Probability Plot of Effects

The plot shown in Output 13.2.1 displays evidence that the a, b, d, ad, and bd estimates do not fit into the
purely random normal model, which suggests that they may have some significant effect on the response
variable. To verify this, fit a reduced model that contains only these effects.

proc reg data=rate;
model y=a b d ad bd;

run;

The estimates for the reduced model are shown in Output 13.2.2.
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Output 13.2.2 Reduced Model OLS Estimates

Unreplicated Factorial Experiments

The REG Procedure
Model: MODEL1

Dependent Variable: y

Unreplicated Factorial Experiments

The REG Procedure
Model: MODEL1

Dependent Variable: y

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 70.06250 1.10432 63.44 <.0001

a 1 7.31250 1.10432 6.62 <.0001

b 1 4.93750 1.10432 4.47 0.0012

d 1 10.81250 1.10432 9.79 <.0001

ad 1 8.31250 1.10432 7.53 <.0001

bd 1 -9.06250 1.10432 -8.21 <.0001

These results support the probability plot methodology.

PROC ENTROPY can directly estimate the full model without having to rely upon the probability plot for
insight into which effects can be significant. To illustrate this, PROC ENTROPY is run by using default
parameter and error supports in the following statements:

proc entropy data=rate;
model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

run;

The resulting GME estimates are shown in Output 13.2.3. Note that the parameter estimates associated with
the a, b, d, ad, and bd effects are all significant.
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Output 13.2.3 Full Model Entropy Results

Unreplicated Factorial Experiments

The ENTROPY Procedure

Unreplicated Factorial Experiments

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 5.688414 0.7911 7.19 <.0001

b 2.988032 0.5464 5.47 <.0001

c 0.234331 0.1379 1.70 0.1086

d 9.627308 0.9765 9.86 <.0001

ab -0.01386 0.0270 -0.51 0.6149

ac -0.00054 0.00325 -0.16 0.8712

ad 6.833076 0.8627 7.92 <.0001

bc 0.113908 0.0941 1.21 0.2435

bd -7.68105 0.9053 -8.48 <.0001

cd 0.00002 0.000364 0.05 0.9569

abc -0.14876 0.1087 -1.37 0.1900

abd -0.0399 0.0516 -0.77 0.4509

acd 0.466938 0.1961 2.38 0.0300

bcd 0.059581 0.0654 0.91 0.3756

abcd 0.024785 0.0387 0.64 0.5312

Intercept 69.87294 1.1403 61.28 <.0001

Example 13.3: Censored Data Models in PROC ENTROPY
Data available to an analyst might sometimes be censored, where only part of the actual series is observed.
Consider the case in which only observations greater than some lower bound are recorded, as defined by the
following process:

y D max .Xˇ C �; lb/ :

Running ordinary least squares estimation on data generated by the preceding process is not optimal because
the estimates are likely to be biased and inefficient. One alternative to estimating models with censored data
is the tobit estimator. This model is supported in the QLIM procedure in SAS/ETS and in the LIFEREG
procedure in SAS/STAT. PROC ENTROPY provides another alternative which can make it very easy to
estimate such a model correctly.
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The following DATA step generates censored data in which any negative values of the dependent variable, y,
are set to a lower bound of 0.

data cens;
do t = 1 to 100;

x1 = 5 * ranuni(456);
x2 = 10 * ranuni(456);
y = 4.5*x1 + 2*x2 + 15 * rannor(456);
if( y<0 ) then y = 0;
output;

end;
run;

To illustrate the effect of the censored option in PROC ENTROPY, the model is initially estimated without
accounting for censoring in the following statements:

title "Censored Data Estimation";
proc entropy data = cens gme primal;

priors intercept -32 32
x1 -15 15
x2 -15 15;

model y = x1 x2 /
esupports = (-25 1 25);

run;

Output 13.3.1 GME Estimates

Censored Data Estimation

The ENTROPY Procedure

Censored Data Estimation

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 2.377609 0.000503 4725.98 <.0001

x2 2.353014 0.000255 9244.87 <.0001

intercept 5.478121 0.00188 2906.41 <.0001

The previous model is reestimated by using the CENSORED option in the following statements:

proc entropy data = cens gme primal;
priors intercept -32 32

x1 -15 15
x2 -15 15;

model y = x1 x2 /
esupports = (-25 1 25)
censored(lb = 0, esupports=(-15 1 15) );

run;
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Output 13.3.2 Entropy Estimates

Censored Data Estimation

The ENTROPY Procedure

Censored Data Estimation

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 4.429697 0.00690 641.85 <.0001

x2 1.46858 0.00349 420.61 <.0001

intercept 8.261412 0.0259 319.51 <.0001

The second set of entropy estimates are much closer to the true parameter estimates of 4.5 and 2. Since
another alternative available for fitting a model of censored data is a tobit model, PROC QLIM is used in the
following statements to fit a tobit model to the data:

proc qlim data=cens;
model y = x1 x2;
endogenous y ~ censored(lb=0);

run;

Output 13.3.3 QLIM Estimates

Censored Data Estimation

The QLIM Procedure

Censored Data Estimation

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.979455 3.824252 0.78 0.4359

x1 1 4.882284 1.019913 4.79 <.0001

x2 1 1.374006 0.513000 2.68 0.0074

_Sigma 1 13.723213 1.032911 13.29 <.0001

For this data and code, PROC ENTROPY produces estimates that are closer to the true parameter values than
those computed by PROC QLIM.

Example 13.4: Use of the PDATA= Option
It is sometimes useful to specify priors and supports by using the PDATA= option. This example illustrates
how to create a PDATA= data set which contains the priors and support points for use in a subsequent PROC
ENTROPY step. In order to have a model to estimate in PROC ENTROPY, you must first have data to
analyze. The following DATA step generates the data used in this analysis:

title "Using a PDATA= data set";
data a;

array x[4];
do t = 1 to 100;

ys = -5;
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do k = 1 to 4;
x[k] = rannor( 55372 ) ;
ys = ys + x[k] * k;

end;
ys = ys + rannor( 55372 );
output;

end;
run;

Next you fit this data with some arbitrary parameter support points and priors by using the following PROC
ENTROPY statements:

proc entropy data = a gme primal;
priors x1 -10(2) 30(1)

x2 -20(3) 30(2)
x3 -15(4) 30(4)
x4 -25(3) 30(2)

intercept -13(4) 30(2) ;
model ys = x1 x2 x3 x4 / esupports=(-25 0 25);

run;

These statements produce the output shown in Output 13.4.1.

Output 13.4.1 Output From PROC ENTROPY

Using a PDATA= data set

The ENTROPY Procedure

Using a PDATA= data set

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 1.195688 0.1078 11.09 <.0001

x2 1.844903 0.1018 18.12 <.0001

x3 3.268396 0.1136 28.77 <.0001

x4 3.908194 0.0934 41.83 <.0001

intercept -4.94319 0.1005 -49.21 <.0001

You can estimate the same model by first creating a PDATA= data set, which includes the same information
as the PRIORS statement in the preceding PROC ENTROPY step.
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A data set that defines the supports and priors for the model parameters is shown in the following statements:

data test;
length Variable $ 12 Equation $ 12;
input Variable $ Equation $ Nsupport Support Prior ;

datalines;
Intercept . 2 -13 0.66667
Intercept . 2 30 0.33333

x1 . 2 -10 0.66667
x1 . 2 30 0.33333
x2 . 2 -20 0.60000
x2 . 2 30 0.40000
x3 . 2 -15 0.50000
x3 . 2 30 0.50000
x4 . 2 -25 0.60000
x4 . 2 30 0.40000

;

The following statements reestimate the model by using these support points.

proc entropy data=a gme primal pdata=test;
model ys = x1 x2 x3 x4 / esupports=(-25 0 25);

run;

These statements produce the output shown in Output 13.4.2.

Output 13.4.2 Output From PROC ENTROPY with PDATA= option

Using a PDATA= data set

The ENTROPY Procedure

Using a PDATA= data set

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 1.195686 0.1078 11.09 <.0001

x2 1.844902 0.1018 18.12 <.0001

x3 3.268395 0.1136 28.77 <.0001

x4 3.908194 0.0934 41.83 <.0001

Intercept -4.94319 0.1005 -49.21 <.0001

These results are identical to the ones produced by the previous PROC ENTROPY step.

Example 13.5: Illustration of ODS Graphics
This example illustrates how to use ODS graphics in the ENTROPY procedure. This example is a continuation
of the example in the section “Simple Regression Analysis” on page 750. Graphical displays are requested by
specifying the ODS GRAPHICS statement. For information about the graphics available in the ENTROPY
procedure, see the section “ODS Graphics” on page 794.

The following statements show how to generate ODS graphics plots with the ENTROPY procedure. The
plots are displayed in Output 13.5.1.
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proc entropy data=coleman;
model test_score = teach_sal prcnt_prof socio_stat

teach_score mom_ed;
run;

Output 13.5.1 Model Diagnostics Plots
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