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Abstract

We develop a benchmark model to study the equilibrium consequences of index-

ing in a standard rational expectations setting (Grossman and Stiglitz (1980); Hellwig

(1980); Diamond and Verrecchia (1981)). Individuals must incur costs to participate

in financial markets, and these costs are lower for individuals who restrict themselves

to indexing strategies. Individuals’ participation decisions exhibit strategic comple-

mentarity, and consequently, equilibrium effects reinforce the direct consequences of

declining costs of indexing. As indexing becomes cheaper (1) indexing increases, while

individual stock trading decreases; (2) aggregate price efficiency falls, while relative

price efficiency increases; (3) the welfare of relatively uninformed traders increases; (4)

for well-informed traders, the share of trading gains stemming from market timing in-

creases, and the share of gains from stock selection decreases; (5) market-wide reversals

become more pronounced. We discuss empirical evidence for these predictions.
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1 Introduction

The standard investment recommendation that academic financial economists offer to indi-

vidual retail investors it to purchase a low-fee index mutual fund or exchange-traded fund

(ETF), a strategy often describe as “index investing,” or simply “indexing.” An increasing

number of indexing products are available, and are increasingly inexpensive and accessible,

and an increasing number of investors follow this advice. In this paper, we develop a bench-

mark model to analyze the equilibrium consequences of a decrease in indexing costs, paying

particular attention to consequences for participation and welfare.1

The direct consequence of a fall in indexing costs is, naturally, to draw investors into

indexing, and away from both more active trading strategies and non-participation in finan-

cial markets. The marginal investor who switches out of active trading into indexing is one

who is relatively uninformed. The same is true for the marginal investor who switches from

non-participation to indexing. So the direct consequence of falling indexing costs is to reduce

the price efficiency of the index and introduce a common “noise” factor to stock prices of

firms covered by the index,2 while simultaneously reducing “liquidity” in individual stocks.

The central questions we ask in this paper are: What equilibrium effects follow from

these direct consequences of a fall in indexing costs? And what is the net effect on investors’

welfare? In particular, do equilibrium forces dampen the direct consequences, or are the

direct consequences instead self-reinforcing?

In our analysis, the direct consequences are self-reinforcing. Although the reduction in

price efficiency associated with indexing may sound undesirable, investor welfare increases,

even for the least informed investors, as we discuss below. The increase in the welfare of

indexing investors draws in more relatively uninformed investors, amplifying the original

effect.

Conversely, the direct consequence of relatively uninformed investors switching from ac-

tive trading to index investing is to increase the price efficiency of individual stock prices.

Although this sounds desirable, it reduces investor welfare. This induces yet more investors

to abandon active trading, again amplifying the original effect.

As the above discussion suggests, our key analytical result is that increases in participa-

tion in the market for a financial asset increase the welfare of those already participating.

Put differently, participation decisions are strategic complements.3 The underlying economic

1Our focus on welfare differentiates us from related papers on index futures and exchange traded funds by
Subrahmanyam (1991), Cong and Xu (2016), Bhattacharya and O’Hara (2017), all of which employ models
with exogenous “noise” trade.

2See, e.g., Ben-David, Franzoni, and Moussawi (2018).
3Grossman and Stiglitz (1980) analyze traders’ decisions to become informed, taking the set of trading

agents as given, and show that information acquisition decisions are strategic substitutes: the incremental
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force is that an individual investor prefers to trade in a market in which the average investor

is relatively uninformed; since the marginal investor is less informed than the average in-

vestor, this generates strategic complementarity. Although it may seem intuitive that an

investor prefers his average counterparty to be uninformed, this same force leads to prices

which are more divorced from cash flows, i.e., lower price efficiency, which is often interpreted

as being undesirable. Concretely, lower price efficiency in our framework means that prices

are more exposed to fluctuations in non-financial income that investors wish to partially

hedge. As such, establishing an investor’s preference for less informed counterparties entails

establishing that the benefits of a less informed average counterparty exceed the costs of

lower price efficiency.4 Perhaps surprisingly, and despite the fact that we work with a canon-

ical model of the type introduced by Diamond and Verrecchia (1981), this analysis has not

been conducted by the existing literature.

The central empirical predictions of our analysis are about price efficiency. As indexing

costs fall, and indexing increases, price efficiency of the index as a whole falls, while the

relative price efficiency of individual stocks increases. Moreover, price efficiency is lower for

stocks covered by the index than for those outside. As a consequence of these predictions

for price efficiency, index reversals become more pronounced, and a greater fraction of the

trading profits of relatively informed investors are attributable to “market timing” strategies

as opposed to “stock selection” strategies. Section 5 reviews empirical support for these

findings.

Asides from its implications for the equilibrium effects of indexing, our paper also con-

tributes to the wider debate of the extent to which the financial sector contributes to social

welfare (see, e.g, Baumol (1965)). In particular, we work with a canonical model in which

a financial market exists because it facilitates risk-sharing, and show that informed trading

generally worsens this risk-sharing function, while uninformed trading improves it. While

we believe there is considerable value in isolating the effect of informed trading on a specific

function of the financial sector, we also fully acknowledge that our analysis is silent on how

informed trading affects other possible functions of the financial sector. For example, we do

not speak to the question of whether information produced be financial markets is valuable

in incentive contracts or in guiding resource allocation decisions (see Bond, Goldstein, and

Edmans (2012) for a survey).

Related literature: In addition to the papers noted in footnote 1, our paper is also related

trading profits from private information decline as more traders become informed. In contrast, we consider
a setting without exogenous noise traders, and analyze traders’ participation decisions.

4This result is related to the so-called “Hirshleifer effect” (Hirshleifer (1971)), but does not follow directly
from it; see subsection 3.1 below, and also related discussions in Maŕın and Rahi (1999) and Dow and Rahi
(2003).
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to Stambaugh (2014), who considers the implications of a decline in noise trade in individual

assets. In our paper, a somewhat analogous decline in trading by relatively uninformed

agents occurs. In contrast to Stambaugh’s paper, this decline is an endogenous reaction to

a decline in the cost of indexing strategies. Moreover, many of our results relate to welfare,

which is absent in Stambaugh’s analysis. A separate advantage to analyzing a model in

which all agents optimize is that it avoids the need to make assumptions about how noise

traders spread their trading volume over different assets.5

In an independent, contemporaneous, and complementary paper, Baruch and Zhang

(2017) likewise study the equilibrium consequence of indexing, though from a very differ-

ent perspective. They consider a multi-asset version of Grossman (1976), so that without

indexing prices fully reveal agents’ private signals. In this setting they show that an exoge-

nous increase in indexing reduces the amount of information prices contain about individual

assets, while the amount of information prices contain about aggregates is unaffected.

We have delibrately based our analysis on the canonical model of financial markets of

Diamond and Verrecchia (1981). Like Grossman and Stiglitz (1980) and Hellwig (1980), these

authors analyze trade between differentially informed agents, but different from these papers,

there are no exogenous “noise” or “liquidity” trades. Instead, agents have heterogeneous and

privately observed exposures to risk. Consequently, financial markets hold the potential to

increase welfare by allowing agents to redistribute risk. Perhaps surprisingly, and although

a model of this type has been analyzed by a significant number of authors, results on welfare

are scarce.6 One significant algebraic complication in characterizing welfare is that, when

combined with the asset price, each agent’s private exposure shock contains information

about expected asset payoffs. To avoid this complication, Verrecchia (1982) and Diamond

(1985) both consider a sequence of economies in which the variance of each individual’s

exposure shock grows with the number of agents, and directly study the limit of this sequence.

In the limit economy, each agent’s exposure shock has infinite variance, and so expected

utility prior to the realization of the exposure shock is undefined, in turn making it impossible

5Subrahmanyam (1991), and Cong and Xu (2016) allow for some optimization by noise traders.
6For results on the effect of information on welfare in different equilibrium models of financial markets,

see, for example, Schlee (2001) and Kurlat (forthcoming). The former paper analyzes the value of public
signals in a setting in which individual endowments are public once they are realized, and so trades can
be conditioned on them, and chacterizes conditions in which improvements in public information cause a
Pareto deterioration. In contrast, in our setting (inherited from Diamond and Verrecchia (1981)), individual
signals are private, and individual endowments are likewise private, even after they are realized. The latter
paper analyzes what is essentially an over-the-counter market in which sellers are strictly better informed
than buyers, and characterizes the ratio of the social to private value of seller information. In this setting,
improvements in seller information reduce adverse selection, and so the social value of information is positive.
In contrast, in our setting improvements in trader information do not necessarily reduce adverse selection,
and we show that improvements in information of a positive measure of agents reduce the welfare of all
counterparties.
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to analyze participation decisions prior to the realization of exposure shocks.7

In an independent, contemporaneous, and complementary paper, Kawakami (2017) also

makes progress in characterizing welfare in a setting along the lines of Diamond and Ver-

recchia (1981). Whereas we focus on an economy with a continuum of agents and allow for

heterogeneity in the precision of signals about cash flows that agents observe, thereby al-

lowing us to consider the effect an increase in participation by relatively uninformed agents,

Kawakami instead considers a finite-agent economy with homogeneous signal precisions, in

which an increase in the size of the market is associated with better diversification of indi-

vidual exposure shocks. Analytically, we make more explicit use than Kawakami of market-

clearing conditions, which allows us to incorporate heterogeneity in signal precisions in a

tractable way.

Maŕın and Rahi (1999) obtain welfare results in a relatively specialized setting: there

are two classes of agents, one class of which sees identical signals about asset payoffs and

private endowments, and another class of completely uninformed agents. Moreover, the

traded asset is in zero net supply. Dow and Rahi (2003) also analyze welfare, and obtain

some tractability by inserting a risk-neutral market maker into the economy, which reduces

the applicability of the model for analyzing aggregate financial markets. In closely related

settings, Vives and Medrano (2004) argue that “the expressions for the expected utility of

a hedger . . . are complicated,” whereas Kurlat and Veldkamp (2015) write that “there is no

closed-form expression for investor welfare.” The complications, common to our model as

well, stem from the role of exposure shocks as signals about asset cash flows, on top of the

standard risk sharing role that motivates trade.

2 The model

2.1 Preferences, assets, endowments, information

We work with a version of Diamond and Verrecchia (1981) in which there are a continuum

of agents (see Ganguli and Yang (2009) and Manzano and Vives (2011)), indexed by the

unit interval, i ∈ [0, 1], and multiple assets. We emphasize that this is a canonical setting,

in which risk-sharing benefits lead to gains from trade, which in turn allows for informed

trading.

Each agent i has preferences with constant absolute risk aversion (CARA) over terminal

wealth Wi, and a coefficient of absolute risk aversion of γ. There are m risky assets available

7If instead one modeled participation decisions as being made after the exposure shock, then almost all
agents would participate, since their exposure shocks are so large.
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for trading. Each asset k ∈ {1, . . . , m} produces a normally distributed payoff X̃k. The

asset payoffs
{

X̃k

}

are identically and independently distributed, with common variance

τ−1
X . The price of asset k is P̃k, which is determined in equilibrium. We characterize the

competitive equilibrium of the economy, where agents are small relative to the market, and

act as price-takers.

Each asset k is in positive net supply, where agent i’s initial endowment of asset k is given

by s̃ik. The aggregate (and hence per capita) endowment of each asset k is S̃ =
∫ 1

0
sikdi, and

is equal across different assets. We denote by θ̃ik agent i’s trading strategy in asset k.

In addition, agents have other sources of income (e.g., labor income, non-traded capital

income) that are correlated with the cash flows of the risky assets. For simplicity, we assume

the correlation is perfect, and write agent i’s income from sources other than the risky asset

as
m
∑

k=1

(

Z̃k + ũik

)

X̃k. (1)

Here, Z̃k + ũik represents agent i’s non-financial exposure to the cash flow risk X̃k. Agent

i privately observes the sum Z̃k + ũik, but not its individual components Z̃k and ũik. So

agent i knows his own income exposures Z̃k+ ũik, but remains uncertain about the aggregate

component of other agents’ exposures, Z̃k. Both Z̃k and ũik are randomly distributed normal

variables, which are independent across assets k, and in the case of ũik independent across

agents i also. The variances of Z̃k and ũik are τ−1
Z and τ−1

u respectively, and E

[

Z̃k

]

= 0. We

assume throughout that, for all agents i,

s̃ik + E [ũik] = S̃. (2)

Hence while some agents may have greater endowments of the financial asset k, and other

agents may have more non-financial exposure to cash flow risk X̃k, the net exposure of

all agents is the same. This assumption is important in allowing us to tractably analyze

expected utilities and participation decisions; specifically, we use (1) to obtain the expression

for expected utility in Proposition 2.

Note that agents’ differential and privately observed exposures Z̃k + ũik are the source

of gains from trade in the financial market, since these differences lead agents to seek to

improve risk sharing. It is also worth noting that it is possible to put a more behavioral

interpretation on Z̃k + ũik; looking ahead to agents’ optimal trade (14), Z̃k + ũik can be

interpreting simply as a shock to agent i’s desired holding of asset k, independent of the

source of this shock.

The terminal wealth of agent i is determined by the combination of trading profits, initial
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asset endowments s̃ik, and other income (1). For notational convenience, define

ẽik = s̃ik + Z̃k + ũik

to represent agent i’s net exposure to cash flow X̃k, stemming from both his initial holding

of the financial asset k, and his non-financial exposure. From (2), it follows that

E

[

ẽik|Z̃k

]

= S̃ + Z̃k.

The terminal wealth of an agent who makes the vector of trades θ̃i is

Wi

(

θ̃i

)

≡
m
∑

k=1

(

θ̃ik

(

X̃k − P̃k

)

+ s̃ikX̃ik +
(

Z̃k + ũik

)

X̃k

)

=

m
∑

k=1

((

θ̃ik + ẽik

)(

X̃k − P̃k

)

+ ẽikP̃k

)

.

(3)

Prior to trading, each agent i observes private signals of the form

ỹik = X̃k + ǫ̃ik,

where ǫ̃ik is normally distributed with mean 0 and variance τ−1
i , and independent across

agents and assets.8

Note that the precisions of private signals are heterogeneous across agents, so that some

agents are more informed than others. Without loss of generality, we order agents so that

signal precision τi is decreasing in i; and for simplicity, we assume τi is strictly decreasing.9

An agent’s information set at the time of trading is hence the triple ofm-vectors
(

ỹi, ẽi, P̃
)

,

which consists of his signals about cash flows ỹi, his own exposure ẽi, and the price P̃ . We

remark that, in contrast to models based on noise traders or other random supply (Grossman

and Stiglitz, 1980), agents in our model have free signals that are relevant at the trading

stage, namely their observations of exposure shocks ẽi, on top of the information conveyed

by their private signals ỹi, and by prices P̃ .

8Note that an agent i has the same quality signal about all assets. We leave the interaction of heterogeneity
of signal precision across assets with heterogeneity of signal precisions across agents for future research.

9Formally, our model is one in which all agents either invest directly in individual stocks, or else invest via
passive index funds (see below). An alternative interpretation is that agents with a low i index (and hence
precise signals) are relatively good at identifying skilled mutual and hedge funds (Gârleanu and Pedersen
(2018)), and the direct investments in the model are made through such intermediaries. (Looking ahead, and
as one would expect, agents’ desired trades depend on their exposure realizations. So in the intermediated
investment interpretation just described, agents would also pay attention to general “styles” of funds, in
addition to the skill of managers.) See also Garćıa and Vanden (2009).
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2.2 Indexing and participation

Agents incur a cost κ > 0 of fully participating in financial markets, reflecting a combination

of information collection and processing costs, psychic costs, expected trading costs, and the

cost of potentially trading in a less than optimal way. Agents make participation decisions

prior to observing any of
(

ỹi, ẽi, P̃
)

. This timing assumption for the participation decision is

important for tractability, since it ensures that all random variables are normally distributed

at the trading stage.

In addition to fully participating in financial markets, agents have the option of partici-

pating only via trading an “index” asset. The index covers the first l ≤ m of the m assets,

where we assume that l is a power of 2 (this greatly enhances tractability, as will become

clear in the next subsection). Since all assets have the same supply S̃, equal-weighted and

value-weighted indices coincide. The cash flow produced by the index is hence

X1 ≡ l−
1

2

l
∑

k=1

X̃k, (4)

where l
1

2 is an index divisor, chosen so that var (X1) = τ−1
X .

Formally, we denote by Θ̃l the set of trade vectors that are feasible for an indexing agent,

i.e., trades in which agent i buys or sells equal amounts of all assets in the index, and zero

units of any asset outside the index:

Θ̃l =
{

θ̃i ∈ R
m : θ̃ij = θ̃ik for any j, k ∈ {1, . . . , l} and θ̃ik = 0 for k > l

}

.

The advantage of participating in financial markets only via indexing is that the par-

ticipation cost is lower, which we denote by κ1 ∈ (0, κ). The lower participation cost of

indexing reflects lower trading costs, because of the availability of low cost index mutual

funds and exchange traded funds (ETFs); lower cognitive demands and attention costs; and

lower information costs, since as our formal analysis will show, a sufficient statistic for an

agent’s private information if he is indexing is the sum of signals related to the assets in

the index,
∑l

k=1 ỹik, which can be interpreted as agent i simply paying attention to broad

economic aggregates, instead of individual stocks.

Looking ahead, the main comparative static we will be interested in is a fall in κ1,

the participation cost associated with indexing. This corresponds to falling fees, greater

availability, and greater awareness of products such as low-cost index funds and ETFs. It

may also reflect an increase in public awareness of the standard advice given by finance

academics.
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Finally, if an individual does not participate in financial markets at all, he pays no

participation cost, but does not trade, i.e., θ̃ik = 0 for all assets k.

The definition of an equilibrium in terms of pricing, participation decisions, and trading

strategies is standard. However, we postpone a formal statement of equilibrium conditions

until Definition 1. This allows us to give the definition directly in terms of a spanning set of

synthetic assets, which we introduce next, and use to conduct our analysis.

2.3 Disentangling markets

Although the fundamentals of different assets are independent in all dimensions, the presence

of indexing agents introduces a link between the prices of distinct assets. For example, if j

and k are two distinct assets covered by the index, then an indexing agent’s exposure ẽij to

cash flow risk X̃j affects the agent’s desired trade of asset k as well as of asset j.

Because of the entanglement that indexing produces between different assets covered by

the index, it is analytically very convenient to change basis and study the economy in terms

of a set of synthetic assets that are mutually independent even in the presence of indexers.10

The case of two assets (l = m = 2) is simple. The first synthetic asset is the index

portfolio, X1 = X̃1+ X̃2. The second synthetic asset is X2 = X̃1− X̃2, which can be labelled

a “spread” asset, as it allows agents to trade on the relative mispricing between assets 1 and

2. We next generalize this construction to l > 2 assets in the index. We first give a simple

example, and then we formalize our change of basis.

Example: Suppose there are m = 5 assets and the index covers the first l = 4. Then

consider the following set of 5 synthetic assets, where the 1st synthetic asset pays X1 as

defined in (4); the 5th synthetic asset coincides with the underlying asset 5, i.e., it pays

X5 = X̃5; and the remaining 3 synthetic assets pay X2, X3, X4 defined by

X2 =
1

2

(

X̃1 + X̃3 − X̃2 − X̃4

)

,

X3 =
1

2

(

X̃1 + X̃2 − X̃3 − X̃4

)

,

X4 =
1

2

(

X̃1 + X̃4 − X̃2 − X̃3

)

.

The five synthetic assets span the underlying assets X̃k. Moreover, they are uncorrelated

(i.e., cov (Xj , Xk) = 0 for all j, k), and each has variance τ−1
X . The first synthetic asset

is simply the index, while synthetic assets 2, 3, and 4 constitute three different long-short

trades of assets within the index.

10This change of basis is not essential to solve for equilibrium prices; see Admati (1985)’s analysis of a
multi-asset version of Hellwig (1980).
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We construct synthetic assets in a way that generalizes the properties in the example. In

particular, the first synthetic asset corresponds to the index, while synthetic assets 2, . . . , l

correspond to long-short trades of assets contained in the index. Mathematically, this gen-

eralization follows from the following straightforward result in matrix algebra:

Lemma 1 For any positive integers m and l ≤ m such that l is a power of 2, there exists an

m×m matrix A with the following properties: A is symmetric and invertible, with A−1 = A

(i.e., A is involutory); Ajk = 0 if j 6= k and either j > l or k > l; Ajk = 1 if j = k > l;

A1k = l−
1

2 and |Ajk| = l−
1

2 for all j, k ≤ l; for any j, j′ 6= j,
∑m

k=1AjkAj′k = 0; and
∑l

k=1Ajk = 0 for j = 2, . . . , l.

Given the existence of a matrix A of the type established in Lemma 1, we define synthetic

assets 1, . . . , m as paying off

Xk ≡
m
∑

j=1

AkjX̃j . (5)

In matrix form, the vector of cash flows produced by synthetic assets is hence X = AX̃ ,

which is equivalent to X̃ = AX , where both here and below we use the Lemma 1 property

that A = A⊤ = A−1. As in the example, the synthetic assets are uncorrelated, and each has

variance τ−1
X . The mean of synthetic asset X1 is

√
lE
[

X̃1

]

, the mean of assets 2, . . . , l is 0,

and the mean of assets k > l is simply E

[

X̃k

]

.

For all exogenous variables, we use tildes to denote the underlying fundamental quantity,

and the absence of a tilde to denote a variable constructed analogously to (5). For example,

we define Zk ≡
∑m

j=1AkjZ̃j. Note that E [ei1|Z1] =
√
lS̃+Z1; E [eik|Zk] = Zk for k = 2, . . . , l;

and E [eik|Zk] = S̃ + Zk for k > l. Accordingly, define S1 =
√
lS̃, Sk = 0 for k = 2, . . . , l;

and Sk = S̃ for k > l.

Let θ̃i denote the m-vector of agent i’s trades of the underlying assets. This delivers

income X̃⊤θ̃i to agent i. Since A is symmetric, X̃⊤θ̃i = X⊤Aθ̃i. So the corresponding trade

in synthetic assets is θi = Aθ̃i, which implies θ̃i = Aθi. Similarly, let P̃ denote the m-vector

of prices of the underlying assets. So a trade θ̃i of the underlying assets costs P̃⊤θ̃i, which

equals
(

AP̃
)⊤

θi. So the price vectors P and P̃ are related by P = AP̃ and P̃ = AP .

Finally, the terminal wealth of agent i is (in matrix form) is
(

X̃ − P̃
)⊤ (

θ̃i + ẽi

)

+ P̃⊤ẽi,

which equals (X − P )⊤ (θi + ei) + P⊤ei.

Consequently, to solve for equilibrium prices and welfare, we work directly with the

synthetic assets described above. By construction, the synthetic assets are independent

of each other in all respects. Moreover, and importantly, indexing corresponds simply to

the constraint that an agent can trade only synthetic asset 1, with no trade of any of the
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other synthetic assets. This means we can analyze the equilibrium in the market for each

synthetic asset in isolation. Formally, we denote the set of trades available to agents who

pay the reduced participation cost κ1 by Θ1 ≡ {θi ∈ R
m : θij = 0 if j 6= 1}.

2.4 Equilibrium

The equilibrium definition is a straightforward extension of that used in competitive rational

expectations models (Grossman and Stiglitz (1980), Hellwig (1980)), with the participation

decision incorporated. To ease the formal statement of the participation decision, we start

by defining the expected utilities UA
i (ei), U I

i (ei), U0
i (ei) associated with full participation,

i.e., active trading; with indexing; and with non-participation. For consistency with notation

later in the paper, we define these objects conditional on the vector of exposure realizations,

ei, and exclusive of the participation costs κ and κ1. In particular, it is unnecessary for our

analysis to explicitly integrate out uncertainty over exposures ei. (Nonetheless, we remind

the reader that agents make participation decisions before learning the exposure realization.)

UA
i (ei) ≡ E

[

max
θi

E [u (Wi (θi)) |yi, ei, P ] |ei
]

,

U I
i (ei) ≡ E

[

max
θi∈Θ1

E [u (Wi (θi)) |yi, ei, P ] |ei
]

,

U0
i (ei) ≡ E

[

u

(

m
∑

k=1

eikXk

)

|ei
]

.

Definition 1 A rational expectations equilibrium consists of non-overlapping sets of agents

who fully participate, N , and who index, N1; trading strategies {θi (yi, ei, P )} i∈[0,1] ; and

price functions P (X,Z). The equilibrium conditions are that markets clear almost surely,

∫ 1

0

θi (yi, ei, P ) di = 0; (6)

each agent i’s trading strategy is optimal given his participation decision and prices,

θi (yi, ei, P ) ∈ argmax
θ̂i

E

[

u
(

Wi

(

θ̂i

))

|yi, ei, P
]

if i ∈ N, (7)

θi (yi, ei, P ) ∈ arg max
θ̂i∈Θl

E

[

u
(

Wi

(

θ̂i

))

|yi, ei, P
]

if i ∈ N1, (8)

θik (yi, ei, P ) = 0 for all assets k if i /∈ N ∪N1; (9)
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and participation decisions are optimal, i.e.,

E
[

UA
i (ei) exp (γκ)

]

≥ max
{

E
[

U I
i (ei) exp (γκ1)

]

,E
[

U0
i (ei)

]}

if i ∈ N,

E
[

U I
i (ei) exp (γκ1)

]

≥ max
{

E
[

UA
i (ei) exp (γκ)

]

,E
[

U0
i (ei)

]}

if i ∈ N1,

E
[

U0
i (ei)

]

≥ max
{

E
[

UA
i (ei) exp (γκ)

]

,E
[

U I
i (ei) exp (γκ1)

]}

if i /∈ N ∪N1.

Throughout, we assume

4γ2(τ−1
Z + τ−1

u ) < τX (10)

γ2 > 4τ0τu, (11)

where τ0 is the precision of agent 0’s information, i.e., the highest precision in the population

of agents. Condition (10) ensures that expected utility is well-defined for an agent who

behaves autarchicly, and does not trade. Without this condition, an autarchic agent is

exposed to so much risk that his expected utility is infinitely low. Condition (11) ensures

that an equilibrium exists at the trading stage (see Proposition 1 below). Loosely speaking,

without this condition there is too much trading based on information relative to trading

based on risk-sharing; Ganguli and Yang (2009) impose essentially the same condition.11

3 Informed trading and welfare in each asset market

Given our construction of synthetic assets as being independent from each other in all re-

spects, in this section we analyze the equilibrium of the market for the kth synthetic asset

in isolation, where 1 ≤ k ≤ m. Likewise, we evaluate the expected utility associated with

trading asset k in isolation.

Intuitively, one would expect agents with more precise private information (i.e., low τi)

to gain more from participation. Accordingly, we conjecture, and later verify, that the set

of agents participating in each market k is [0, nk] for some nk.

For clarity, we retain the asset subscript k in the main text, while generally omitting it

in proofs in the appendix.

11The main extension in Manzano and Vives (2011) relative to Ganguli and Yang (2009) is that they allow
for the error terms in the trader’s signals to be correlated. Non-zero correlation eliminates the existence
issues in our model. Since our focus is on welfare, we choose to study the slightly more tractable model with
conditionally independent estimation errors.
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3.1 Welfare benchmarks

In order to gain some intuition regarding our welfare results, it is useful to consider a couple

of welfare benchmarks. First, in the (symmetric)12 unconstrained solution to the social

planner’s problem each agent i has terminal wealth associated with Xk of

Wik = (Sk + Zk)Xk. (12)

That is, the aggregate endowment (Sk + Zk)Xk is simply split equally among agents. This is

the outcome that would be obtained if agents could pool risk before knowing their exposures

eik, and if contracts could be written contingent on the realizations of eik.

A second useful benchmark is the case in which the private signals yik are replaced with

a finite number of public signals about Xk, with all other aspects the same as in the model

described above (in particular, exposures eik are private information, and trade occurs only

after agents observe these exposures). In this case, all agents have the same posterior of Xk

at the trading stage, and so by market clearing (6) and the expression for trade θik in (14)

below,

θik + eik = Sk + Zk.

So each agent’s terminal wealth is

Wik = eikPk + (Sk + Zk) (Xk − Pk) = (uik + sik − Sk)Pk + (Sk + Zk)Xk. (13)

Note that in this second benchmark, each agent is exposed to an additional risk term,

(uik + sik − Sk)Pk.

The comparison of these two benchmarks illustrates the challenge of characterizing how

information about Xk affects welfare. For example, comparing (12) and (13), one can see

that ceteris paribus agents prefer the price Pk to have low variance. In turn, Pk has low

variance if it is relatively unaffected by both the realization of the cash flow Xk and the

aggregate exposure Zk. But higher-precision signals about Xk may increase Pk’s dependence

onXk (increasing the variance of Pk, and corresponding to the Hirshleifer effect) but decrease

Pk’s dependence on Zk (reducing the variance of Pk), so that the overall effect is unclear.13

12In non-symmetric solutions, each agent has terminal wealth Wi = (Sk + Zk)Xk + Ki, where Ki is a
constant, and

∫

Kidi = 0.
13It is worth noting that the limiting case of perfect information about Xk is straightforward. In this

case, the price Pk simply equals Xk, and so (13) reduces to Wi = eikXk, which is the autarchy outcome.
Hence welfare is minimized by perfect information about Xk, since in this case the financial market cannot
provide any risk sharing (the Hirshleifer effect). Our analysis below concerns the more relevant non-limit
case. Moreover, note that Diamond (1985) characterizes how welfare changes as the precision of public
information changes, though with the mathematical compromises discussed earlier. In Appendix B, we show
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3.2 Basic equilibrium properties

As standard in the literature, to characterize an equilibrium we first conjecture key equilib-

rium characteristics, and then verify that an equilibrium with these characteristics indeed

exists. More concretely, we characterize linear equilibria, where the price is a linear function

of the cash flow Xk and the aggregate exposure Zk, in which all agents with sufficiently

precise signals participate. In such equilibria, there is a cutoff agent nk such that all agents

i ≤ nk participate, and agents i > nk do not participate. In this subsection we establish

some key equilibrium properties that hold in any equilibrium of this type. While some of

these properties are well-known from prior analyses of related economies, to the best of our

knowledge Lemma 2, Corollary 1 and Lemma 6 are new. To maximize transparency, we es-

tablish these properties as directly as possible, making use primarily of the market clearing

condition (6).

In a linear equilibrium, each agent i’s optimal trade has the standard mean-variance

form,

θik + eik =
1

γ

E [Xk − Pk|yik, eik, Pk]

var (Xk − Pk|yik, eik, Pk)
=

1

γ

E [Xk|yik, eik, Pk]− Pk

var (Xk|yik, eik, Pk)
. (14)

The form of the optimal trade (14) indicates that the reciprocal of conditional variance,

var (Xk|yik, eik, Pk)
−1, is an important quantity. Lemma 2 relates the average reciprocal of

conditional variance in the economy to the equilibrium covariance between returns Xk − Pk

and cash flows Xk. This relationship turns out to be crucial for establishing our central

welfare results in Propositions 2 and 3. We stress that the proof makes use only of the market

clearing condition (6), the general form of demand (14), and the assumption that random

variables are distributed normally. As such the result holds in a large class of economies.

Nonetheless, we are unaware of a statement of this result in the existing literature.

Lemma 2 In a linear equilibrium,

1

nk

∫ nk

0

1

var (Xk|yik, eik, Pk)
di =

1

cov (Xk − Pk, Xk)
. (15)

Note that Lemma 2 nests the special case in which all agents are completely uninformed

about the cash flow Xk, so that the price is unrelated to Xk, and so for any agent i,

var (Xk|yik, eik, Pk) = var (Xk) = cov (Xk − Pk, Xk).

Among other things, we use Lemma 2 to characterize the equilibrium risk premium

that welfare in this benchmark case indeed monotonically declines in the precision of public information,
though the proof is non-trivial, consistent with the discussion in the main text.
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E [Xk − Pk]. Taking the unconditional expectation of (14) gives

E [θik] + Sk =
1

γ

E [Xk − Pk]

var (Xk|yik, eik, Pk)
.

Combined with market clearing (6) (specifically,
∫ nk

0
E [θik] di = 0), we obtain:

Corollary 1 In a linear equilibrium,

E [Xk − Pk] = γSkcov (Xk − Pk, Xk) .

As for Lemma 2, it may help to note that Corollary 1 nests the special case in which no

agent has any information, and so E[Xk − Pk] = γSkvar(Xk).

Both prices and exposure shocks play two distinct roles in determining an agent’s demand:

they directly affect demand, and separately, they also affect an agent’s beliefs about the

cash flow X , thereby indirectly affecting demand. To clarify this dual role, we will write

θik

(

yik, eik, êik, Pk, P̂k

)

for the demand of an agent who has exposure eik and can trade at

price Pk, but who evaluates his conditional distribution over Xk using the the information

set
(

yik, êik, P̂k

)

. Even though êik = eik and P̂k = Pk, keeping separate track of the two roles

of prices and exposure shocks is conceptually useful.

As typical for this class of models, an important equilibrium quantity is the relative

sensitivity of price Pk to the true cash flow Xk and aggregate exposure Zk, which we denote

by ρk:

ρk ≡ −
∂Pk

∂Xk

∂Pk

∂Zk

.

We refer to ρk as the price efficiency of the risky asset, since

var(Xk|Pk)
−1 = τX + ρ2kτZ , (16)

var(Xk|yik, eik, Pk)
−1 = τX + ρ2k(τZ + τu) + τi. (17)

These expressions (derived in the proof of Lemma 4) measure the ability of an outside

observer and agent i, respectively, to forecast the cash flow Xk.

Price efficiency ρk is sufficiently central to our analysis that, before proceeding further,

we establish:

Lemma 3 In a linear equilibrium, ∂Pk

∂Zk

6= 0, and hence ρk is well-defined.

The following properties of individual demand follow only from Bayesian updating. They

hold whenever price Pk is a linear function of Xk and Zk, regardless of whether Pk is an

14



equilibrium price.

Lemma 4 If Pk is a linear function of Xk and Zk then the effects of non-informational

factors on demand θik are given by

∂θik
∂eik

= −1;
∂θik
∂Pk

= −1

γ

1

var (Xk|yik, eik, Pk)
; (18)

while the effects of informational factors on demand θik satisfy

∂θik
∂yik

=
τik
γ
;

∂θik
∂êik

=
ρk
γ
τu;

∂Pk

∂Zk

∂θik

∂P̂k

= −ρk
γ

(τZ + τu) ;
∂Pk

∂Xk

∂θik

∂P̂k

=
ρ2k
γ

(τZ + τu) . (19)

Furthermore, these imply that

∂Pk

∂Zk

∂θik
∂P̂k

∂θik
∂êik

= −τZ + τu
τu

, (20)

∂Pk

∂Zk

∂θik

∂P̂k

+
∂θik
∂êik

= −ρk
γ
τZ . (21)

The direct effects of a higher exposure shock and a higher price are negative, and shown

in (18). The exposure shock actually moves one-to-one with the trading strategy, as agents

offset their exposure with their trading. On the other hand, in equilibrium ∂Pk

∂Zk

< 0 and

ρk ≥ 0 (see Lemma 5 immediately below), and so the informational factors go in the opposite

direction: both a higher exposure shock and a higher price lead agents to update their beliefs

above the underlying asset in a positive way, increasing their demand, as shown in (19).

Moreover, the informational effects of eik and Zk (as reflected in the price Pk) on demand

are related by the precisions of the idiosyncratic and aggregate components of exposure

shocks, as shown in (20) and (21). As noted, in equilibrium ∂Pk

∂Zk

< 0 and ρk ≥ 0. So a higher

Zk is associated with lower prices, which in turn are associated with lower estimates of Xk.

Holding uik fixed, a higher Zk also leads to a higher value of eik, thereby raising an agent’s

estimate of Zk, and hence (given equilibrium prices) an agent’s estimate of Xk. Equation

(21) shows that the first of these effects dominates. Intuitively, this is because the exposure

shock eik contains information about future cash flows only because it allows agents to better

interpret the information in prices.

We next establish the basic result that aggregate demand for the risky asset is decreasing

in the price. Because of the informational content of prices, this is not completely obvious.

At the same time, we show that the price is increasing in the asset’s payoff, and the price is

decreasing in the aggregate exposure shock. We highlight that the proof of this result makes
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use only of the market clearing condition (6), along with the signs (but not magnitudes)

established in Lemma 4.

Lemma 5 In a linear equilibrium, the aggregate demand curve slopes down, i.e.,

∫ nk

0

∂θik
∂Pk

di+

∫ nk

0

∂θik

∂P̂k

di < 0, (22)

and the price is an increasing function of Xk, and a strictly decreasing function of Zk,

∂Pk

∂Xk
≥ 0 and

∂Pk

∂Zk
< 0,

and so in particular ρk ≥ 0.

As noted above, knowledge of individual exposure eik contains information about Xk

only because it helps agent i interpret the price (for example, it provides information about

whether a high price is due to a high cash flow Xk or a low aggregate exposure Zk). Because

the information in exposure is subsidiary to the information in prices, it is intuitive that

prices contain more information than exposures, as formalized in the following result:

Lemma 6 In a linear equilibrium, the ratio of the informational to non-informational effect

of prices on demand exceeds the ratio of the informational to non-informational effect of

exposures on demand,
∣

∣

∣

∫ nk

0
∂θik
∂P̂k

di
∣

∣

∣

∣

∣

∣

∫ nk

0
∂θik
∂Pk

di
∣

∣

∣

>

∣

∣

∣

∫ nk

0
∂θik
∂êik

di
∣

∣

∣

∣

∣

∣

∫ nk

0
∂θik
∂eik

di
∣

∣

∣

. (23)

Lemma 6 turns out to be critical to establishing that participation decisions exhibit

strategic complementarity (Proposition 3). We again highlight that its proof makes use only

of basic equilibrium properties established above, along with the signs (but not magnitudes)

established in Lemma 4.

3.3 Equilibrium at the trading stage

The trading stage of our model is almost exactly as in Ganguli and Yang (2009) and Manzano

and Vives (2011), with the only difference being that agents in our model have heterogeneous

signal precisions. As such, our next result represents a minor extension of these previous

papers, to characterize price efficiency under heterogeneous signal precision. Note that, as

in these previous analyses, our trading stage features two equilibria; we follow Manzano

16



and Vives (2011) and focus on the stable equilibrium, which is the one with lower price

efficiency.14

Proposition 1 Given participation nk, there is unique stable linear equilibrium, in which

price efficiency is ρk = γ
2τu

−
√

(

γ
2τu

)2

− 1
τu

1
nk

∫ nk

0
τidi. Price efficiency ρk is decreasing in

participation nk.

From Proposition 1, price efficiency is determined by the average information precision

of agents who actively trade, given by the term 1
nk

∫ nk

0
τidi. As participation increases, newly

participating agents lower this average. Even though these agents bring more information to

the market, they also bring more trade motivated by risk-sharing concerns, which function in

the same way as noise. The hedging needs of the marginal traders, who possess lower quality

signals, lead the financial market to reveal less information about the firm’s fundamentals.

We note that the comparative static in Proposition 1 would be reversed if we had instead

assumed that all agents observe cash flow signals with the same precision, but have heteroge-

neous variances of exposure, i.e., if non-financial income related to X̃k were ai

(

Z̃k + ũik

)

X̃k,

with ai varying across agents. In this case, increased participation would correspond to a re-

duction in the average non-financial exposure of participating agents, and this would increase

rather than decrease price efficiency.

3.4 Expected utility from participation

We next turn to agents’ participation decisions. To do so, we first characterize an agent’s

expected utility from participation. As noted in the introduction, a concise representation of

expected utility in economies of this type has proved challenging to obtain in related work.

The key to a concise representation is Corollary 1’s link between the risk premium E[Xk−Pk],

the aggregate amount of risk to share, Sk, and the endogenous covariance between returns

Xk − Pk and asset cash flows Xk. Looking ahead, a concise representation is important in

order to establish the strategic complementarity of participation decisions (Proposition 3),

which in turn allows us to take comparative statics in participation costs.

14Manzano and Vives (2011) give a mathematical definition of stability. One way to think about stability
is in terms of condition (A-11) in the proof of Proposition 1. The right hand side (RHS) describes agents’
demands, which in turn depend on price efficiency (this can be seen explicitly from (A-12)). The left hand
side (LHS) of (A-11) describes how prices must behave to clear the market, given agents’ demands on the
RHS. Equilibrium price efficiency is a fixed point of this relation. Moreover, the RHS is increasing in ρk,
at least in the neighborhood of any solution. If the RHS crosses the 45o line from below, the corresponding
equilibrium is unstable in the following sense: A small upwards perturbation in agents’ beliefs about price
efficiency affects agents’ demands and increases the RHS. To preserve market clearing, this then pushes ρk
up, and precisely because the RHS crosses the 45o line from below, the change in ρk is greater than the
original perturbation in agents’ beliefs about ρk, i.e., instability.
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We define the single-asset analogues of UA
i (ei) and U0

i (ei) by

UA
ik (eik) ≡ E

[

max
θik

E [u ((θik + eik) (Xk − Pk) + eikPk) |yi, eik, Pk] |eik
]

,

U0
ik (eik) ≡ E [u (eikXk) |eik] = − exp

(

−γeikE[Xk] +
γ2e2ik
2τx

)

, (24)

i.e., respectively, the expected utility from participation in the market for asset k (active

trading), and the expected utility from not trading asset k (autarchy). As before, we write

both quantities conditional on the exposure realization eik, and write UA
ik exclusive of the

participation cost. Note that the expected utility under autarchy follows from the usual

certainty equivalence formula.

Proposition 2 In a linear equilibrium with price efficiency ρk,

UA
ik(eik) = (dik (ρk)Dk (ρk))

−1/2 exp

(

−1

2
Λk (ρk) (eik − Sk)

2

)

U0
ik, (25)

where

dik (ρk) ≡ var (Xk|ei, Pk)

var(Xk|yi, ei, Pk)
, (26)

Dk (ρk) ≡ var (Xk − Pk|ei)
var (Xk|ei, Pk)

, (27)

Λk (ρk) ≡

(

cov(Pk,eik)
var(eik)

+ γcov(Xk − Pk, Xk)
)2

var(Xk − Pk|ei)
. (28)

Moreover, participation nk affects dik (ρk), Dk (ρk), and Λk (ρk) only via price efficiency ρk.

In light of Proposition 2, we often write UA
ik(eik; ρk) to make explicit its dependence on

price efficiency ρk,

A participating agent’s gain relative to autarchy utility U0
ik is represented by the benefits

Λk and Dk, which stem from risk-sharing and are the same for all agents, no matter how

precise or imprecise their private information; and dik, which stems from the the advantages

of more precise private information.

We note that the risk-sharing gains are increasing in the absolute difference of an agent’s

exposure shock eik relative to the average endowment in the economy, as such agents have

more to gain from trade. These risk-sharing gains are also increasing in Λk, defined in (28),

and a composite of three component terms. To interpret these terms, note first that Lemma

2 implies cov(Xk − Pk, Xk) is positive; that Lemma 5 implies cov(Pk, eik) is negative; and
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that Lemma 6 implies that the combined numerator term cov(Pk ,eik)
var(eik)

+ γcov (Xk − Pk, Xk) is

positive.15 The three component terms in Λk have the following interpretation. First, agents’

final wealth depends on their exposure shocks eik only to the extent that they cannot hedge

these at the trading stage: as standard in models with CARA preferences, agents undo their

risk exposure by trading against it (see (14)). Thus, they prefer prices to covary as little as

possible with their exposures, i.e., for |cov(eik, Pk)| to be small. Second, welfare is decreasing

in cov(Pk, Xk), which is closely related to price efficiency ρk (in particular, by Lemma 2 it is

increasing in price efficiency), capturing the Hirshleifer effect that risk-sharing is hampered

when agents have accurate information at the time of trading. Third, welfare is decreasing

in the variance of trading profits, var(Xk − Pk|eik), as one would expect.

Turning to Dk, the denominator var (Xk|eik, Pk) is decreasing price efficiency ρk. Loosely

speaking, one would also expect the numerator var (Xk − Pk|eik) to decrease in price effi-

ciency, since in this case Pk is more closely related to Xk, and so Xk − Pk is less volatile.

The proof of Proposition 3 establishes that the numerator indeed falls, and moreover is the

dominant effect, so Dk is decreasing in price efficiency, and hence increasing in participation.

The key step in the proof of this fact is to use Lemma 5’s result that the demand curve

slopes down.

The gains from trading on private information are captured by dik, which has a form

familiar from existing literature. In particular, dik directly measures the extent to which

observing the private signal yik improves agent i’s forecast of the cash flow Xk, relative to

forming forecasts based only on the publicly observable price Pk and the agent’s private

exposure eik.

An immediate and intuitive implication of Proposition 2 is that expected utility is increas-

ing in the precision of an agent’s information, τi. So consistent with our initial conjecture,

linear equilibria are characterized by some nk such that agents i ≤ nk participate, and agents

i > nk do not.

3.5 Strategic complementarity in participation decisions

Next, we show that agents’ individual participation decisions exhibit strategic complemen-

tarity. As discussed in the introduction, this is the key analytical result in the paper. And

as noted earlier, the key step in the proof is Lemma 6’s implication that the information in

prices affects demand more than the information in exposure shocks.

Proposition 3 As participation nk increases, each individual agent’s gain from participation

UA
ik (eik; ρk)− U0

ik (eik) increases.

15This last implication is established in (A-29) in the proof of Proposition 3.
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Economically, the key driving force behind strategic complementarity is that, as par-

ticipation nk increases, price efficiency ρk drops (see Proposition 1 and related discussion).

Loosely speaking, lower price efficiency increases the amount of risk-sharing that the finan-

cial market enables. Specifically, the risk sharing function of the financial market is to enable

agents with high idiosyncratic exposures uik to share cash flow risk uikXk with other agents

with low idiosyncratic exposures.

Lower price efficiency corresponds to agents having less information about the cash flow

Xk, which makes risk sharing easier to sustain as in Hirshleifer (1971). However, and as

discussed in the context of the public information benchmark of subsection 3.1, the risk

sharing benefits of less efficient prices must be compared to the potential costs that arise

from more volatile prices, since if prices are less efficient, they are relatively more exposed to

the aggregate exposure shock Zk (essentially, the discount rate), and this can easily lead to

greater volatility. Proposition 3 establishes that the benefits of lower price efficiency always

dominate the potential costs.

4 The effect of declining indexing costs

We are now in a position to address our main question: How does a decline in the cost of

indexing, as represented by the parameter κ1, affect equilibrium outcomes?

For use throughout this section: Since the same number of agents participate in all the

non-index assets k 6= 1, by Proposition 1, price efficiency is the same for all non-index assets

k 6= 1. We write ρ−1 for this common level of price efficiency, along with ρ1 for the price

efficiency of the index asset.

We start by explicitly writing the expected utilities for agents who fully participate, who

index, and who do not participate. Using the asset-by-asset utility for agents who do not

participate in a given asset market, the expected utility of agents who do not participate is:

U0
i (ei) = −

∣

∣

∣

∣

∣

m
∏

k=1

U0
ik(eik)

∣

∣

∣

∣

∣

. (29)

These agents do not trade, and so simply receive the autarky allocation. Similarly, the

expected utility of agents who fully participate in financial markets is:

UA
i (ei; ρ1, ρ−1) = −

∣

∣

∣

∣

∣

m
∏

k=1

UA
ik(eik; ρk)

∣

∣

∣

∣

∣

. (30)
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The expected utility of indexers is a mixture of these two cases:

U I
i (ei; ρ1) = −

∣

∣

∣

∣

∣

UA
i1(ei1; ρ1)

m
∏

k=2

U0
ik(eik)

∣

∣

∣

∣

∣

. (31)

Relative to “active traders,” these agents miss out on the gains from trading assets outside

the index (k = l+1, . . . , m), as well from trading assets covered by the index in different pro-

portions to their index weights (as represented by non-zero positions in assets k = 2, . . . , l).

On the other hand, indexing agents benefit from lower participation costs, κ1 < κ. (Recall

that UA
i and U I

i are defined as exclusive of participation costs κ and κ1.)

From Proposition 2, an agent’s welfare UA
ik(eik; ρk) associated with participation in the

market for asset k is increasing in the precision τi of the agent’s private information, and

hence decreasing in i. Consequently, the sets of agents who participate fully, N , and who

participate either fully or via indexing, N∪N1, must both consist of all agents with precision

levels below some cutoff. That is, bothN andN∪N1 are lower intervals of [0, 1]. Accordingly,

define

n1 ≡ supN ∪N1,

n−1 ≡ supN.

Hence n1 is the number of agents who trade the index asset 1, while n−1 is the number

of agents trading all the remaining assets. Note that certainly n−1 ≤ n1, i.e., more agents

trade the index asset than any other asset, because all agents participate either fully or via

indexing trade the index asset. The number of agents who index, in the sense of participating

only via indexing, is n1 − n−1.

In particular, there are two distinct possible types of equilibrium. An indexing equilibrium

is one in which n1 − n−1 > 0; and a no-indexing equilibrium is one in which n1 − n−1 = 0.

Given these observations, an equilibrium is fully characterized by the values of n1 and n−1,

i.e., by the marginal agents who trade the index asset 1 and other assets k 6= 1. Accordingly,

we frequently denote a specific equilibrium by (n1, n−1).

Note that because of the strategic complementarities established in Proposition 3, partic-

ipation is self-reinforcing, and so thee may simultaneously exist equilibria with high partici-

pation levels, and equilibria with low participation levels. Whether such multiplicity in fact

arises depends on the distribution of information precisions, given by {τi}, on which we have

imposed almost no assumptions. We state our results below so as to allow for equilibrium

multiplicity.
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4.1 The prevalence of indexing

With these preliminaries in place, we can state our main result on how indexing costs affect

participation decisions. In particular, we consider what happens as the indexing cost κ1 falls.

This corresponds to falling fees, greater availability, and greater awareness of products such

as low-cost index funds and ETFs. It may also reflect an increase in public awareness of the

standard advice given by finance academics.

We take this comparative static while leaving the cost of full participation, κ, unchanged;

however, our results remain qualitatively unchanged if κ also falls, but does by less than κ1.

As indexing costs κ1 fall, indexing equilibria are easier to support, and feature more

agents indexing and fewer agents fully participating. Conversely, no-indexing equilibria are

harder to support.

Proposition 4

(A) For any indexing cost κ1, at least one equilibrium exists.

(B) As the indexing cost falls, indexing equilibria are easier to support, and feature more

indexing. That is, for indexing costs κ1, κ
′
1 such that κ1 < κ′

1:

(i) If an indexing equilibrium exists at κ′
1, an indexing equilibrium exists at κ1 also. Moreover,

indexing equilibria at κ1 feature more total participation, i.e., higher values of n1.
16

(ii) If an indexing equilibrium exists at κ′
1, the maximum amount of indexing in equilibria at

κ1 exceeds the maximum amount of indexing in equilibria at κ′
1.

(C) As the indexing cost falls, no-indexing equilibria are harder to support. That is, for

indexing costs κ1, κ
′
1 such that κ1 < κ′

1, if a no-indexing equilibrium exists at κ1, a no-

indexing equilibrium exists at κ′
1 also.

The economics behind Proposition 4 are relatively straightforward given the strategic

complementarity of participation decisions (Proposition 3). As indexing costs κ1 fall, this di-

rectly increases the gain to participation-via-indexing. This increase in participation in turn

raises the gain to other agents of participating-via-indexing, further increasing participation-

via-indexing. At the same time, the fall in indexing costs κ1 raises the marginal cost κ− κ1

of full participation, with analogous effects: there is both a direct fall in full participation,

which reduces the gain to other agents of fully participating, in turn further reducing full

participation. Combining, the amount of indexing increases, with entry at both margins—

some people who did not previously participate start trading the index, and some people

who previously traded non-index assets switch to trading just the index.

16When multiple indexing equilibria exist, this statement should be interpreted as in Milgrom and Roberts
(1994), i.e., as referring to equilibria with minimum and maximum participation levels. Note also that
Milgrom and Roberts (1994)’s analysis ensures that these equilibria are well defined (i.e., an equilibrium
with maximum participation indeed exists).
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Given the strategic complementarity of participation decisions, the proof of Proposition

4 largely consists of applying monotone comparative statics (Milgrom and Roberts (1994)).

The main difficulties, which are handled in the formal proof, lie in simultaneously allow-

ing for the possibility of indexing and no-indexing equilibria, and in the fact that a fall

in κ1 simultaneously makes index participation more attractive but full participation less

attractive.

4.2 Indexing and price efficiency

As discussed, reductions in indexing costs affect agents’ trading decisions both directly, and

indirectly because of changes in price efficiency. Indeed, by Proposition 2 the spillover effect

of other agents’ trading decision can be summarized entirely by equilibrium price efficiency.

Here, we collect our analysis’s implications for how reductions in indexing costs affect

price efficiency. A necessary preliminary is to relate the price efficiency of synthetic assets,

which is what our analysis makes direct predictions about, to the price efficiency of actual

assets. To do so, it is in turn useful to define the relative price efficiency of assets j, k by

var(X̃j − X̃k|P̃j − P̃k)
−1.

That is, the relative price efficiency of assets j and k is the extent to which the relative price

of assets j and k forecasts the relative future cash flows of this same pair of assets. Empirical

papers such as Bai, Philippon, and Savov (2016) estimate relative price efficiency because

they include time fixed effects.

Lemma 7 The relative price efficiency of any pair of assets in the index, and also of any

pair of assets outside the index, is measured by ρ−1.

Index price efficiency, i.e., var(X1|P1)
−1, is directly measured by ρ1 (recall (16)). For

a broad-based index, such as the S&P 500, index price-efficiency is close to market price

efficiency.

The following is then immediate from Propositions 1 and 4:

Corollary 2 Let κ1 be an indexing cost such that an indexing equilibrium exists. If the

indexing cost falls, then index price efficiency falls, while relative price efficiency of assets

both inside and outside the index rises.

We reiterate that agents benefit from the fall in index price efficiency, because it increases

the gains from trade to agents trading the index.
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A separate and basic prediction of our analysis is that the index asset has lower price

efficiency than all other synthetic assets, i.e., ρ1 < ρ−1. This prediction maps to a statement

about actual assets. Assets covered by the index are linear combinations of the index asset

with other synthetic assets. In contrast, assets outside the index coincide with synthetic

assets. Intuitively, an “averaging” argument then suggests that assets covered by the index

have lower price efficiency. The following result makes this intuition precise.

Lemma 8 In any indexing equilibrium, the price efficiency of assets covered by the index is

strictly lower than the price efficiency of assets not covered by the index, i.e., for j, k such

that j ≤ l < k, var
(

X̃j |P̃j

)−1

< var
(

X̃k|P̃k

)−1

.

The proof of Lemma 8 consists of establishing that while the equilibrium price of assets

k > l outside the index take the form

P̃k = constant + bmρ−1X̃k − bmZ̃k,

for some constant bm, the equilibrium price of assets j ≤ l covered by the index take the

form

P̃j = constant + blρ̃X̃j − blZ̃j +X0 + Z0, (32)

for some constant b̃l, ρ̃ < ρ−1, and random variables X0 and Z0 that are independent of

both X̃j and Z̃j. Moreover, the random variables X0 and Z0 are linear combinations of,

respectively, cash flows of stocks in the index,
{

X̃k′

}l

k′=1
, and exposure shocks related to

stocks in the index,
{

Z̃k′

}l

k′=1
. So in particular, X0 and Z0 correspond to correlated factors

that index trading introduces to stocks covered by the index.

As discussed in the introduction, one might have conjectured that the fall in the price

efficiency of the index associated with lower indexing costs would make indexing less attrac-

tive for uninformed investors, thereby generating a countervailing force. Instead, our analysis

shows that the entry of uninformed investors is self-reinforcing: as more such invetsors enter,

and price efficiency drops, indexing becomes more attractive rather than less, attracting still

more uninformed investors.

Conversely, one might have conjectured that the rise in relative price efficiency of assets

covered by the index would make individual trades more attractive. Again, this is not the

case: this increase makes trading individual assets less attractive for uninformed investors,

and so is again self-reinforcing.
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4.3 Indexing and expected utilities

As the cost κ1 of indexing falls, the expected utility of indexing agents increases, reflecting

both the lower cost, and also the lower price efficiency of the index asset. In contrast, the

expected utility of fully participating agents is subject to conflicting forces. On the one

hand, fully participating agents benefit from the lower price efficiency of the index asset. On

the other hand, they are harmed by the higher price efficiency of other assets.

Combining:

Corollary 3 Let κ1 be an indexing cost such that an indexing equilibrium exists. If the

indexing cost falls, the expected utility of indexing agents increases. For agents who fully

participate, the share of trading gains stemming from trading the index asset increase.

4.4 Indexing, reversals, and informed trading

A direct implication of market-clearing (6) and agents’ trading decisions (14) is that

1

γ
E [X1 − P1|P1]

1

n1

∫ n1

0

1

var (X1|yi1, ei1, P1)
= S1 + E [Z1|P1] , (33)

with analogous identities for other assets. Moreover, from Lemma 5, we know E [Z1|P1] is

decreasing in P1, i.e., prices and exposure shocks are negatively correlated. Consequently, our

framework naturally generates a reversal pattern in prices, with high prices today associated

with lower expected returns.17

The strength of reversals is captured by the steepness of the negative slope of E [X1 − P1|P1],

i.e., when this relation is strongly negative, the expected returns following high prices are

much lower than following low prices. This is determined by price efficiency, and hence in

turn by participation decisions:

Lemma 9 ∂
∂P1

E [X1 − P1|P1] is negative, and decreases (i.e., becomes further from 0) as

price efficiency ρ1 declines, and hence as the cost of index-participation κ1 decreases.

Economically, high prices are more likely when the average exposure Z1 is high. Conse-

quently, agents who observe a high asset price are unable to fully infer whether the high price

indicates a high future cash flow, or a high value of Z1 (i.e., high aggregate unwillingness to

buy the asset). Although all agents face this inference problem, agents with more precise

17Consequently, if an investor observes a low price for an asset, and has no exposure to economic shocks,
he should take a long position in the asset, since its conditional expected return is high. That is, an investor
can profit from buying “value” stocks. Although this point is often overlooked, it is nonetheless a standard
implication of models of the type we consider here (see, e.g., Biais, Bossaerts, and Spatt, 2010).
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private signals are better able to resolve it, and to shy away from the asset when future cash

flows are in fact low. To express this formally, fix an arbitrary n̂ ∈ (0, n1), so that agents [0, n̂]

correspond to relatively well-informed investors, while agents [n̂, n1] correspond to relatively

uninformed investors. Then a direct application of the formulas for agents’ optimal trades

implies that the difference in the average position of well-informed to uninformed investors

is given by
1

γ

(

1

n̂

∫ n̂

0

τidi−
1

n1 − n̂

∫ n1

n̂

τidi

)

(X1 − P1) . (34)

That is, informed investors own a disproportionately high share of the asset precisely when

returns are high, and a disproportionately low share precisely when returns are low.

Conversely, relatively uninformed investors own a disproportionately high share of the

asset precisely when returns are low. By Lemma 9, it further follows that relatively unin-

formed investors own a high share when current prices are high. Hence relatively uninformed

investors engage in behavior that resembles “trend chasing,” and experience lower average

returns. (We stress that all agents in our model are fully rationally.)

5 Empirical implications

The sharpest predictions of our model are regarding price efficiency (subsection 4.2). To

recap, our analysis predicts that (i) as indexing becomes easier, relative price efficiency rises,

(ii) price efficiency is lower for stocks covered by the index than for those outside it, and (iii)

as indexing becomes easier, the price efficiency of the index as a whole decreases.

A number of recent empirical papers have studying related predictions, especially in re-

gard to ETFs. With regard to (i), Bai, Philippon, and Savov (2016) and Farboodi, Matray,

and Veldkamp (2018) find that relative price efficiency has trended upwards over approxi-

mately the last 50 years, over broadly the same time period in which indexing has become

more prevalent. Over a more recent period, Glosten, Nallareddy, and Zou (2016) document

that relative price efficiency increases precisely as ETF ownership of the underlying shares

increases.18

With regard to (ii), Farboodi, Matray, and Veldkamp (2018) show that for stocks that

have been included in the S&P 500 as some point in time, price efficiency is lower during

periods in which they are included. Ben-David, Franzoni, and Moussawi (2018) document

18We also note that Farboodi, Matray, and Veldkamp (2018) additionally show that relative price efficiency
has declined for stocks outside the S&P 500, a finding that is inconsistent with our model. Among other
things, these authors emphasize the importance of accounting for changes in firm size, which is outside the
scope of our analysis. Israeli, Lee, and Sridharan (2017) estimate similar empirical specifications to Glosten,
Nallareddy, and Zou (2016), but use lagged changes in ETF ownership, and show that these are associated
with decreases rather than increases in relative price efficiency.
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that ETF ownership increases stock volatilty, consistent with the hypothesis that ETFs

enable “liquidity shocks [to] propogate.” Also consistent with our analysis, they provide

evidence that the increase in volatility is not due to increased price efficiency. Using a

measure of weak-form price efficiency, Coles, Heath, and Ringgenberg (2017) show that

inclusion in the Russell 2000 reduces price efficiency. Antoniou et al. (2019) show that

ETF ownership is associated with a weakening of the link between a firm’s investment and

its own stock price, suggesting that managers believe that ETF ownership reduced price

efficiency.19 Similarly, Brogaard, Ringgenberg, and Sovich (forthcoming) show that firms

that use commodities covered by leading commodity indices make less efficient production

decisions than firms that use commodities outside these indices.

While prediction (iii) is harder to directly test, a closely related prediction is that, as

indexing increases, informed trading profits will stem increasingly from “timing” strategies

based on the entire index, rather than individual asset trades. (See Corollary 3, with the

caveat that expected utilities are distinct objects from expected profits.) There is at least

some empirical evidence supporting this prediction. AQR document that the correlation

between hedge fund returns and market returns has risen from 0.6 to 0.9 over the last two

decades.20 Related, Stambaugh (2014) documents a decline in asset-selection strategies by

active mutual funds over the same period. Also related, and using data since 2000, Gerakos,

Linnainmaa, and Morse (2017) show that a significant fraction of returns generated by active

mutual funds stem from market timing strategies.

Our model can also be used to study the effect of index inclusion on correlation etc. For

example, and as one would expect, index inclusion introduces a common component to stock

prices; see discussion immediately following Lemma 9. Da and Shive (2018) and Leippold,

Su, and Ziegler (2016) present evidence that individual stock correlations have risen with

ETF ownership. As noted, Ben-David, Franzoni, and Moussawi (2018) present evidence that

ETF owneship raises the volatility of individual stock prices.

The analysis in subsection 4.4 predicts that relatively uninformed ownership of an asset

increases when prices are high, and that this is followed by low subsequent returns. This

is consistent with the empirical evidence in Ben-Rephael, Kandel, and Wohl (2012) for

the market as a whole (i.e., the index asset), and in Jiang, Verbeek, and Wan (2017) and

Grinblatt et al. (2016) in the cross-section.21 Furthermore, Lemma 9 is consistent with the

19We also note that Li, Liu, and Sun (2019) document just the opposite relation, i.e., that ETF ownership
is associated with a strengthening of the link between a firm’s investment and its own stock price These
authors present additional evidence that the effect is due to ETF ownership leading a firm’s stock price to
load on index fundamentals, which is consistent with our analysis (specifically, this corresponds to the term
X0 in (32)).

20See “Hedge fund correlation risk alarms investors,” Financial Times, June 29th, 2014.
21Less directly, this prediction is also consistent with the finding in Kacperczyk, Van Nieuwerburgh, and
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empirical findings of Baltussen, van Bekkum, and Da (2019), who document a negative serial

correlation in index returns that is associated with the increase in indexing around the globe.

Finally, it is worth noting that our model does not generate a price premium for index

inclusion, contrary to at least some empirical evidence. The reason is that changes in par-

ticipation in our model are always accompanied by changes in the effective supply of the

asset being traded, by virtue of assumption (2).22 Because of this, index inclusion affects

prices only via its effect on price efficiency; and since price efficiency falls, this leads to a

fall in prices. In contrast, if one were to relax assumption (2), the effect on prices would be

determined by the relative strength of changes in price efficiency and changes in the aggre-

gate risk-sharing capacity of participating agents. In general, we emphasize again that our

model’s primary empirical predictions operate via price efficiency.

6 Discussion

We have analyzed what we believe is the most direct impact of a decline in the costs of

indexing, namely those that stem from the entry of new participants into financial markets

in response to lower costs, along with substitution of other traders away from full partici-

pation to index-only strategies. Nonetheless, our analysis inevitably omits other potentially

important forces.

6.1 Multiple indices

We have considered the case of a single index trades, and in empirical discussions often think

of this single index as a broad-based market index such as the S&P500. In reality of course,

a large number of indices co-exist, and investment vehicles such as ETFs are increasingly

available on this assortment of indices (see, for example, Lettau and Madhaven (2018) and

Easley et al. (2018)).

Our analysis straightforwardly extends to multiple indices in the case that the indices

are statistically independent. To the extent to which our indices often relate to asset pricing

factors, and these factors have been constructed to have minimal correlation with each other,

this case is empirically relevant.

Veldkamp (2014) that the fraction of mutual fund returns stemming from timing strategies is greater in
recessions. Specifically, in our setting informed investors should shift into the index when index prices
are low, and out of the index when index prices are high. To the extent to which the second half of
this strategy is constrained by difficulties shorting the index, this generates the findings of Kacperczyk,
Van Nieuwerburgh, and Veldkamp (2014). (We should also note that the same authors suggest a distinct
explanation in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016).)

22Recall, in turn, that we use this assumption in the proof of Proposition 2.
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The analysis of multiple correlated indices would require a larger departure from our

current analysis, which is based on a set of synthetic assets that are constructed to be

statistically independent. We leave the exploration of this case for future research.

6.2 Intensive margin of information acquisition

While the participation decision in our model can be though of as an information acquisition

decision on the extensive margin, we have abstracted away from the intensive margin of

agents’ information acquisition efforts. In an earlier draft of this paper we fully analyzed a

model that includes this force. In brief, consider the consequences of an exogenous increase

in indexing among agents with low-precision private signals. The direct effect is an increase

in the price efficiency of the spread asset, with no effect on price efficiency of the market asset

(because, by assumption, the increase in indexing simply consists of agents with low-precision

signals shifting to trading the index asset, with no increase in trade of the index asset).

Allowing agents to reoptimize the precision of their private signals, these changes in price

efficiency in turn induce agents to acquire less precise signals about non-index assets, since

this information is now less valuable; and in turn to substitute their information collection

activities towards acquiring information about economic aggregates that are important for

the index. The net effect is price efficiency increases for both the index and non-index assets.

The same economic forces as in our current analysis then lead to a reduction in expected

utility, since (exactly as in Proposition 2) agents prefer to participate in financial markets

where price efficiency is low.

So to summarize: by themselves, information acquisition decisions in response to an

exogenous rise in indexing end up reducing rather than increasing the welfare of agents with

low-precision private signals, who can be interpreted as retail investors.

More generally, our analysis highlights that the welfare consequences of shifts in indexing—

or, indeed, or other changes to financial markets—depend critically on how such shifts affect

price efficiency. At least when the gains from trade that underpin financial markets are

driven by the benefits from risk sharing, as is the case of many standard models, agents

generally prefer low levels of price efficiency.

6.3 Indexing and firm performance

Increases in index investing have led to a variety of concerns about the effect of indexing

on firm performance, including (a) the fear that indexing investors will spend less effort

on firm governance, and (b) the fear that indexing results in extensive common ownership,
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leading to reduced competition between firms, thereby reducing consumer surplus.23 We

have delibrately focused our analysis on indexing’s effects in an endowment economy, in

order to clearly delineate what we believe is an important channel.

The most direct way to extend our analysis beyond an endowment economy would be

to consider how changes in price efficiency affect firms’ cash flows (see Bond, Goldstein,

and Edmans (2012) for a survey of the literature). Such an extension would be analytically

feasible; papers such as Sockin and Xiong (2015), Bond and Goldstein (2015), Sockin (2018),

and Goldstein and Yang (2018) all contain competitive models of financal markets with

asymmetric information in which economic agents extract information from financial prices

and use this information to affect firm cash flows.

7 Conclusion

We develop a benchmark model to study the equilibrium consequences of indexing in a stan-

dard rational expectations setting (Grossman and Stiglitz (1980); Hellwig (1980); Diamond

and Verrecchia (1981)). Individuals must incur costs to participate in financial markets, and

these costs are lower for individuals who restrict themselves to indexing strategies. Individu-

als’ participation decisions exhibit strategic complementarity, and consequently, equilibrium

effects reinforce the direct consequences of declining costs of indexing. As indexing becomes

cheaper (1) indexing increases, while individual stock trading decreases; (2) aggregate price

efficiency falls, while relative price efficiency increases; (3) the welfare of relatively unin-

formed traders increases; (4) for well-informed traders, the share of trading gains stemming

from market timing increases, and the share of gains from stock selection decreases; (5)

market-wide reversals become more pronounced. We discuss empirical evidence for these

predictions.

23For a discussion of the first point, along with some evidence against, see for example Appel, Gormley,
and Keim (2016). For a discussion of the second point, see, for example, Azar, Schmalz, and Tecu (2018)
and Schmalz (2018).
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Appendix A

Note: Throughout the appendix, we frequently omit asset subscripts in order to enhance

notational transparency.

Results omitted from main text

Lemma A-1 Suppose X is a normally distributed random variable, and that an information

set F consists of a set of normally distributed random variables. Then the derivative of the

conditional expectation E [X|F ] with respect to a realization X̂ of X is

∂

∂X̂
E [X|F ] = 1− var (X|F)

var (X)
.

Proof of Lemma A-1 Let Σ22 be the variance matrix of the random variables in F ; and

Σ12 be the row vector of covariances between X and the random variables in F . The vector

of coefficients from the regressing each variable in F on X is Σ12

var(X)
. So by the properties of

multivariate normality,
∂

∂X̂
E [X|F ] = Σ12Σ

−1
22

Σ⊤
12

var (X)
.

Also from multivariate normality,

var (X|F) = var (X)− Σ12Σ
−1
22 Σ

⊤
12.

Combining these two equations completes the proof.

Lemma A-2 Let ξ ∈ R
n be a normally distributed random vector with mean µ and variance-

covariance matrix Σ. Let b ∈ R
n be a given vector, and A ∈ R

n×n a symmetric matrix. If

I − 2ΣA is positive definite, then E
[

exp(b⊤ξ + ξ⊤Aξ)
]

is well defined, and given by:

E
[

exp
(

b⊤ξ + ξ⊤Aξ
)]

= |I−2ΣA|−1/2 exp

(

b⊤µ+ µ⊤Aµ+
1

2
(b+ 2Aµ)⊤(I − 2ΣA)−1Σ(b+ 2Aµ)

)

.

(A-1)

Proof of Lemma A-2: Standard result.

Proofs of results stated in main text

Proof of Lemma 1: We focus on cases l = m, since the generalization to l < m is trivial.

The proof is inductive: Given the existence of an m×m matrix A with the stated properties,
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we construct a 2m× 2m matrix B with the same properties. Specifically, define

B =
1√
2

(

A A

A −A

)

.

With the exception of the symmetry and inversion properties, it is straightforward to see

that B has the desired properties. To establish that B is involutory, simply note that

BB =
1

2

(

A A

A −A

)(

A A

A −A

)

=
1

2

(

AA + AA AA− AA

AA−AA AA + AA

)

=
1

2

(

2Im 0m

0m 2Im

)

= I2m,

where Im denotes the m×m identity matrix and 0m denotes the m×m matrix in which all

entries are zero. To establish that B is symmetric, simply note that

B⊤ =
1√
2

(

A⊤ A⊤

A⊤ −A⊤

)

=
1√
2

(

A A

A −A

)

= B.

Finally, for the base case of m = 1, simply define A = (1). This completes the proof.

Proof of Lemma 2: For use throughout, note that the price P is normally distributed in

a linear equilibrium. Differentiation of market clearing (6) with respect to X gives

∂

∂X

∫ n

0

θidi = 0.

Substituting in the portfolio θi from (14); recalling the property of multivariate normality

that conditional variances do not depend on the realizations of random variables; and noting

that ∂P
∂X

= cov(P,X)
var(X)

, it follows that

∫ n

0

∂
∂X

E [X|yi, ei, P ]

var (X|yi, ei, P )
di =

∫ n

0

cov(P,X)
var(X)

var (X|yi, ei, P )
di. (A-2)

By Lemma A-1,
∂

∂X
E [X|yi, ei, P ] = 1− var (X|yi, ei, P )

var (X)
. (A-3)

(Note that the RHS of (A-3) is simply the R2 of regressing cash flows on (yi, ei, P ).) Substi-

tution of (A-3) into (A-2) yields

(

1− cov (P,X)

var (X)

)∫ n

0

1

var (X|yi, ei, P )
di =

∫ n

0

1

var (X)
di,

which is equivalent to (15), completing the proof of Lemma 2.

36



Proof of Lemma 3: Differentiation of market clearing (6) with respect to Z yields

∂P

∂Z

∫ n

0

∂θi
∂P

di+
∂P

∂Z

∫ n

0

∂θi

∂P̂
di+

∫ n

0

∂θi
∂ei

di+

∫ n

0

∂θi
∂êi

di = 0. (A-4)

Suppose that, contrary to the claimed result, ∂P
∂Z

= 0. Then Z and ei provide no information

about the cash flow X , so that ∂θi
∂êi

= 0 for all agents. In contrast, the non-informational

effect of exposure shocks on the portfolio decision is certainly negative (see (14)). But then

the LHS of (A-4) is strictly negative, a contradiction.

Proof of Lemma 4: Consider first the case in which ∂P
∂X

6= 0. The information content of

(yi, ei, P ) is the same as the information content of

(

yi,
P − E [P ]

∂P
∂X

+ E [X ] ,
P − E [P ]

∂P
∂X

+ E [X ] + ρ−1 (ei − S)

)

=
(

X + ǫi, X − ρ−1Z,X + ρ−1 (ui + si − S)
)

.

Since ǫi, Z, and ui + si − S are independent and all have mean 0, the conditional variance

expressions (16) and (17) follow by standard normal-normal updating. Using ∂P
∂X

= −ρ∂P
∂Z

,

the corresponding conditional expectation E [X|yi, ei, P ] is given by

E [X|yi, ei, P ]

var (X|yi, ei, P )
= τXE [X ] + ρ (τZ + τu)

(

ρE [X ]− P − E [P ]
∂P
∂Z

)

+ ρτu (ei − S) + τiyi.(A-5)

Finally, if ∂P
∂X

= 0 then neither the price nor the exposure shock ei contains any information

about X ; and ρ = 0; so (16), (17), and (A-5) are all immediate.

The expressions in Lemma 4 are then immediate from the demand equation (14), com-

pleting the proof.

Proof of Lemma 5: From Lemma 4, ∂θi
∂P

< 0 for all agents.

If ∂P
∂X

= 0, then P contains no information about X , so
∫ n

0
∂θi
∂P̂

di = 0, and (22) is then

immediate.

If instead ∂P
∂X

6= 0, then ∂P
∂X

∫ n

0
∂θi
∂P̂

di > 0 by Lemma 4. By (A-10) and Lemma 4,

∂P

∂X

∫ n

0

∂θi
∂P

di+
∂P

∂X

∫ n

0

∂θi

∂P̂
di = −

∫ n

0

∂θi
∂yi

di < 0. (A-6)

Hence ∂P
∂X

> 0, which (again using (A-6)) implies (22).

Note that the above arguments also establish that ∂P
∂X

≥ 0.

Lemma 3 establishes that ∂P
∂Z

6= 0. So to establish ∂P
∂Z

< 0, suppose to the contrary that
∂P
∂Z

> 0. Then ρ ≤ 0, and Lemma 4 implies
∫ n

0
∂θi
∂ei

di < 0 and
∫ n

0
∂θi
∂êi

di ≤ 0. Combined

with (22), this in turn implies that the LHS of (A-4) is strictly negative. The contradiction
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completes the proof.

Proof of Lemma 6: At various points in the proof, we make use of ρ < 0 and ∂P
∂Z

< 0 (by

Lemma 5), and ∂θi
∂P̂

> 0 (by Lemma 4).

Re-arranging market-clearing (A-4) gives

0 =
∂P

∂Z

∫ n

0

∂θi
∂P

di+

∫ n

0

∂θi
∂ei

di+

(

∂P
∂Z

∫ n

0
∂θi
∂P̂

di
∫ n

0
∂θi
∂ẽi

di
+ 1

)

∫ n

0

∂θi
∂êi

di. (A-7)

By Lemma 5 and market-clearing (A-4), we know

∫ n

0

∂θi
∂ei

di+

∫ n

0

∂θi
∂êi

di < 0. (A-8)

From (21) of Lemma 4, ∂P
∂Z

∂θi
∂P̂

+ ∂θi
∂êi

< 0, which together with ∂θi
∂êi

> 0 implies

∂P
∂Z

∫ n

0
∂θi
∂P̂

di
∫ n

0
∂θi
∂êi

di
+ 1 < 0.

So substituting (A-8) into (A-7) gives

0 >
∂P

∂Z

∫ n

0

∂θi
∂P

di+

∫ n

0

∂θi
∂ei

di−
(

∂P
∂Z

∫ n

0
∂θi
∂P̂

di
∫ n

0
∂θi
∂êi

di
+ 1

)

∫ n

0

∂θi
∂ei

di

=
∂P

∂Z

∫ n

0

∂θi
∂P

di− ∂P

∂Z

∫ n

0

∂θi

∂P̂
di

∫ n

0
∂θi
∂ei

di
∫ n

0
∂θi
∂êi

di
. (A-9)

Using ∂P
∂Z

< 0 and the signs established in Lemma 4, inequality (A-9) is equivalent to

∫ n

0
∂θi
∂P

di
∫ n

0
∂θi
∂P̂

di
>

∫ n

0
∂θi
∂ei

di
∫ n

0
∂θi
∂êi

di
,

which is in turn equivalent to (23), completing the proof.

Proof of Proposition 1: Differentiation of market clearing (6) with respect to X yields

∂P

∂X

∫ n

0

∂θi
∂P

di+
∂P

∂X

∫ n

0

∂θi

∂P̂
di+

∫ n

0

∂θi
∂yi

di = 0. (A-10)

Combined with (A-4), it follows that

−
∂P
∂X
∂P
∂Z

= −
∫ n

0
∂θi
∂yi

di
∫ n

0
∂θi
∂ei

di+
∫ n

0
∂θi
∂êi

di
. (A-11)
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Substituting in from Lemma 4,

ρ =

1
γ

∫ n

0
τidi

∫ n

0

(

1− ρ
γ
τu

)

di
, (A-12)

and so

ρ2τu − γρ+
1

n

∫ n

0

τidi = 0,

leading to ρ = γ
2τu

−
√

(

γ
2τu

)2

− 1
τu

1
n

∫ n

0
τidi . The comparative statics of price efficiency is

immediate from the fact that 1
n

∫ n

0
τidi is decreasing in n.

Proof of Proposition 2: The final wealth of agent i, given optimal trading (14), is

Wi = eiP +
E[X − P |yi, ei, P ] (X − P )

γvar(X|yi, ei, P )
.

So by the standard expression for the expected utility of an agent with CARA utility facing

normally shocks, combined with simple manipulation, agent i’s expected utility at the time

of trading is

E [u (Wi) |yi, ei, P ] = − exp

(

−γ

(

eiP +
1

2

E[X − P |yi, ei, P ]2

γvar(X|yi, ei, P )

))

. (A-13)

To obtain (25), we proceed in two stages. First, we integrate over realizations of the private

signal yi in (A-13). Second, we integrate over realizations of the price P . Note that the

first stage is relatively standard, and similar algebraic arguments can be found in the related

literature. Readers familiar with these arguments should proceed directly to the second

stage.

For the first stage, define ξi = E [X − P |yi, ei, P ] and Ai = −1/ (2var(X|yi, ei, P )). Minor

algebraic manipulation of Lemma A-2 implies

E
[

exp
(

ξ2iAi

)

|ei, P
]

= (1− 2Aivar(ξi|ei, P ))−
1

2 exp

(

Ai

1− 2Aivar(ξi|ei, P )
E[ξi|ei, P ]2

)

.

(A-14)

By the law of total variance,

var(X − P |ei, P ) = var(E[X − P |yi, ei, P ]|ei, P ) + E[var(X − P |yi, ei, P )|ei, P ]

which implies

var(ξi|ei, P ) = var(X|ei, P )− var(X|yi, ei, P ),
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and so

1− 2Aivar(ξi|ei, P ) =
var(X|ei, P )

var(X|yi, ei, P )
= di,

where di is as defined in (26). Substitution and straightforward manipulation implies that

expression (A-14) equals

d
− 1

2

i exp

(

−1

2

E[X − P |ei, P ]2

var(X|ei, P )

)

,

and so

E [u (Wi) |ei, P ] = −d
− 1

2

i exp

(

−γeiP − 1

2

E[X − P |ei, P ]2

var(X|ei, P )

)

, (A-15)

completing the first stage.

In the second stage, we integrate over realizations of P . Since P = (P − E[P |ei]) +
E[X|ei]− E[X − P |ei], the expression in the exponent of (A-15) equals

−1

2

E[X − P |ei, P ]2

var(X|ei, P )
− γei(P − E[P |ei])− γeiE[X|ei] + γeiE[X − P |ei]. (A-16)

Denote the expected return X − P given exposure ei by αe, and recall that E [ei] = S:

αe ≡ E[X − P |ei] = E[X − P ]− cov(P, ei)

var (ei)
(ei − S) . (A-17)

Hence

E[X − P |ei, P ] =
cov (X − P, P |ei)

var (P |ei)
(P − E[P |ei]) + αe. (A-18)

By substitution and Lemma A-2, the expectation of (A-15) conditional on ei is given by

E [u (Wi) |ei] = −d
− 1

2

i D
1

2 exp (−γei (E [X ]− αe))

× exp

(

−1

2

α2
e

var(X|ei, P )
+

1

2

(

αecov(X − P, P |ei)
var(P |ei)var(X|ei, P )

+ γei

)2
var(P |ei)

D

)

(A-19)

where

D = 1 +
cov (X − P, P |ei) 2

var (X|ei, P ) var (P |ei)
. (A-20)

The law of total variance and (A-18) together yield

var (E [X − P |ei, P ] |ei) = var (X − P |ei)− var (X|ei, P ) =
cov (X − P, P |ei)2

var (P |ei)
, (A-21)

and substitution into (A-20) delivers (27).
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For use below, note also that (A-21) implies that

var (P |ei)
D

=
var (P |ei) var(X|ei, P )

Dvar(X|ei, P )
=

var (P |ei) var (X − P |ei)− cov (X − P, P |ei)2
Dvar(X|ei, P )

=
var (X|ei) var (X − P |ei)− cov (X − P,X|ei)2

Dvar(X|ei, P )

= var (X|ei)−
cov (X − P,X|ei)2
Dvar(X|ei, P )

(A-22)

where the penultimate equality follows from the fact that for any random variables r1, r2,

cov (r1 − r2, r1)
2 − cov (r1 − r2, r2)

2 = var (r1 − r2) (var (r1)− var (r2)) ,

and the final equality follows from (27).

By a combination of algebraic manipulation and (A-20), (27), (A-22), expected utility

(A-19) equals

− (diD)−
1

2 exp

(

−γeiE [X ] +
1

2

α2
e

var(X|P, ei)

(

cov(X − P, P |ei)2
Dvar(P |ei)var(X|ei, P )

− 1

))

× exp

(

γeiαe

(

cov(X − P, P |ei)
Dvar(X|ei, P )

+ 1

)

+
1

2
γ2e2i

var(P |ei)
D

)

= − (diD)−
1

2 exp

(

−γeiE [X ]− 1

2

α2
e

Dvar(X|ei, P )

)

× exp

(

γeiαe
cov(X − P,X|ei)
Dvar(X|ei, P )

+
1

2
γ2e2i

(

var(X|ei)−
cov(X − P,X|ei)2
Dvar(X|ei, P )

))

.

By further manipulation, and substitution of αe using (A-17), expected utility (A-19) equals

− (diD)−
1

2 exp

(

−γeiE [X ] +
γ2ei

2

2τX
− 1

2

(αe − cov(X − P,X)γei)
2

Dvar(X|ei, P )

)

= − (diD)−
1

2 exp

(

−γeiE [X ] +
γ2ei

2

2τX

)

× exp






−1

2

(

E[X − P ]− cov(X − P,X)γS − cov(X − P,X)γ (ei − S)− cov(P,ei)
var(ei)

(ei − S)
)2

Dvar(X|ei, P )






.

Substituting Corollary 1’s expression for E[X − P ] into this last expression yields (28).

Finally, the fact that each of di, D, and Λ can be written as functions of exogenous

parameters and price efficiency ρ is established in the proof of Proposition 3.
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Proof of Proposition 3: For use below, recall that ∂P
∂X

= cov(X,P )
var(X)

, ∂P
∂Z

= cov(Z,P )
var(Z)

, and hence

var (P |ei) =
cov (X,P )2

var (X)2
var (X) +

cov (Z, P )2

var (Z)2
var (Z|ei) , (A-23)

var (X − P |ei) =

(

cov (X − P,X)

var (X)

)2

var (X) +

(

cov (P, Z)

var (Z)

)2

var (Z|ei) . (A-24)

Note also that Lemmas 2 and 4 directly imply the following expression for the non-informational

effect of prices on aggregate demand:

1

n

∫ n

0

∂θi
∂P

di = −1

γ

1

cov (X − P,X)
. (A-25)

We use repeatedly Proposition 1’s result that price efficiency decreases in participation n.

To establish the result, we show that each of the three terms di, D, and Λ are increasing

in participation n. We start with the term di, which corresponds to an agent’s expected

trading gains from her private information. Substitution of (17) delivers

di =
τX + ρ2(τZ + τu) + τi
τX + ρ2(τZ + τu)

.

Because price efficiency ρ is decreasing in participation n, the private gains from information,

di, are increasing in participation. Economically, when prices convey less information about

cash flows X , an agent’s private information about X is more valuable.

Next, we consider the term Λ. As a first step, (A-25) implies that

cov(P, ei)

var(ei)
+ γcov(X − P,X) = −γcov (X − P,X)

var (Z)

var (ei)

(

− 1

γcov (X − P,X)

cov (P, ei)

var (Z)
− var (ei)

var (Z)

)

= −γcov (X − P,X)
var (Z)

var (ei)

(

1

n

∫ n

0

∂θi
∂P

di
cov (P, Z)

var (Z)
− var (ei)

var (Z)

)

.(A-26)
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Substituting (A-24) and (A-26) into (28), and again using (A-25), gives

Λ =
γ2cov (X − P,X)2 var(Z)2

var(ei)
2

(

1
n

∫ n

0
∂θi
∂P

di cov(P,Z)
var(Z)

− var(ei)
var(Z)

)2

(

cov(X−P,X)
var(X)

)2

var (X) +
(

cov(P,Z)
var(Z)

)2

var (Z|ei)

=

var(Z)2

var(ei)
2

(

1
n

∫ n

0
∂θi
∂P

di cov(P,Z)
var(Z)

− var(ei)
var(Z)

)2

1
γ2

1
var(X)

+
(

− cov(P,Z)
var(Z)

1
γcov(X−P,X)

)2

var (Z|ei)

=

var(Z)2

var(ei)
2

(

1
n
∂P
∂Z

∫ n

0
∂θi
∂P

di− var(ei)
var(Z)

)2

1
γ2

1
var(X)

+
(

1
n
∂P
∂Z

∫ n

0
∂θi
∂P

di
)2

var (Z|ei)
. (A-27)

We next show that a key term in the numerator of (A-27) is negative, i.e.,

1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di− var (ei)

var (Z)
< 0. (A-28)

Inequality (A-28) holds because, by (20), it is equivalent

1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di+
1
n

∫ n

0
∂P
∂Z

∂θi
∂P̂

di
1
n

∫ n

0
∂θi
∂êi

di
< 0,

and since ∂θi
∂ei

= −1, ∂θi
∂P̂

> 0 and ∂P
∂Z

< 0, this inequality is in turn equivalent (23), i.e., prices

contain more information than exposure shocks.

Note also that, since cov(X − P,X) > 0 (by Lemma 2), equation (A-26) implies that

(A-28) is equivalent to
cov(P, ei)

var(ei)
+ γcov(X − P,X) > 0, (A-29)

a fact we refer to in the main text.

From (A-28) and (A-27), Λ is decreasing in 1
n
∂P
∂Z

∫ n

0
∂θi
∂P

di. Substitution of (21) into the

market clearing condition (A-4), along with the basic property that the non-informational

effect of exposure shocks on demand is ∂θi
∂ei

= −1, yields

1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di = 1 +
ρ

γ
τZ . (A-30)

Hence 1
n
∂P
∂Z

∫ n

0
∂θi
∂P

di is increasing in price efficiency ρ, and hence is decreasing in participation

n, implying that Λ is increasing in participation n.

Finally, we consider the term D, which we start by re-expressing. By the law of total
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variance,

var (X|ei, P ) var (P |ei) =

(

var (X|ei)−
cov (X,P |ei)2
var (P |ei)

)

var (P |ei)

= var (X|ei) var (P |ei)− cov (X,P |ei)2 .

Substituting in (A-23) gives

var (X|ei, P ) var (P |ei) =
cov (Z, P )2

var (Z)2
var (Z|ei) var (X) . (A-31)

Also by (A-23), and making use of (A-25),

cov (X − P, P |ei) = cov (X,P |ei)− var (P |ei)

=
cov (X,P )

var (X)
(var (X)− cov (X,P ))− cov (Z, P )2

var (Z)2
var (Z|ei)

=

( cov(X,P )
var(X)

cov(Z,P )
var(Z)

−
cov(Z,P )
var(Z)

var (Z|ei)
cov (X − P,X)

)

cov (Z, P )

var (Z)
cov (X − P,X)

=

(

−ρ+ γvar (Z|ei)
1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di

)

cov (Z, P )

var (Z)

(

− 1

γ 1
n

∫ n

0
∂θi
∂P

di

)

.(A-32)

Substitution of (A-31) and (A-32) into (A-20) yields:

D = 1 +

(

−ρ+ γvar (Z|ei) 1
n
∂P
∂Z

∫ n

0
∂θi
∂P

di
)2

γ2var (Z|ei) var (X)
(

1
n

∫ n

0
∂θi
∂P

di
)2 . (A-33)

By (A-30) and the fact that var (Z|ei) = 1
τZ+τu

,

−ρ+ γvar (Z|ei)
1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di = (γ − ρτu) var (Z|ei) , (A-34)

and so

D = 1 +
(γ − ρτu)

2 var (Z|ei)
γ2var (X)

(

1
n

∫ n

0
∂θi
∂P

di
)2 . (A-35)

Note also that (A-34) implies that

γ − ρτu > 0, (A-36)
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since, using 1
n
∂P
∂Z

∫ n

0
∂θi
∂P̂

di = − ρ
γvar(Z|ei) (see Lemma 4), the LHS of (A-34) equals

−ρ

(

1 +
1
n
∂P
∂Z

∫ n

0
∂θi
∂P

di
1
n
∂P
∂Z

∫ n

0
∂θi
∂P̂

di

)

. (A-37)

Expression (A-37) is strictly positive because ∂θi
∂P̃

> 0 and demand slopes down (Lemma 5).

Finally, from Lemma 4 and (17),

1

n

∫ n

0

∂θi
∂P

di = −1

γ

1

n

∫ n

0

1

var (X|yi, ei, P )
di = −τX + ρ2(τZ + τu) +

1
n

∫ n

0
τidi

γ
. (A-38)

So as participation n increases,
∣

∣

1
n

∫ n

0
∂θi
∂P

di
∣

∣ declines, both because price efficiency declines;

and because the average signal precision of participating agents, 1
n

∫ n

0
τidi, declines.

It then follows from (A-35) and (A-36) that D increases as participation n increases.

Finally, substitution of Proposition 1’s expression for ρ into (A-38) yields

∣

∣

∣

∣

1

n

∫ n

0

∂θi
∂P

di

∣

∣

∣

∣

=
τX + ρ2τZ + γρ

γ
,

thereby establishing that D can be expressed as a function of ρ only, completing the proof.

Proof of Proposition 4: For use throughout the proof, we write A �ρ1,ρ−1

i 0 if agent

i prefers full participation to non-participation when price efficiency is (ρ1, ρ−1), i.e., if

E
[

UA
i (ei; ρ1, ρ−1)

]

exp (γκ) ≥ E [U0
i (ei)]. We define the relations I �ρ1

i 0 and A �ρ−1

i I

etc analogously, where “I” corresponds to participation via indexing. Note that the com-

parison between index-participation and non-participation depends only on ρ1, and not on

ρ−1; while the comparison between full participation and index-participation depends only

on ρ−1, and not on ρ1.

Also for use below, define

f (n) ≡ γ

2τu
−
√

(

γ

2τu

)2

− 1

τu

1

n

∫ n

0

τidi,

i.e., price efficiency associated with participation n (see Proposition 1).

Observe that n1 is an equilibrium level of participation in the index asset 1 only if it is

a fixed point of either the function

gA (n) ≡ max
{

i : A �f(n),f(n)
i 0

}

,

where both here and below we adopt the adopt the convention that the maximum of an
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empty set is 0; or of the function

gI (n; κ1) ≡ max
{

i : I �f(n)
i 0 given κ1

}

.

Moreover, if n1 is fixed point of gA, then (n1, n−1 = n1) is a no-indexing equilibrium if and

only if

A �f(n1)
n1

I; (A-39)

and if n1 is a fixed point of gI , then there is an indexing equilibrium with participation n1

in the index asset if and only if for some j ≤ n1,

I ≻ f(j)
j A. (A-40)

Finally, define

gAI (n; κ1) = max
{

i : A �f(n)
i I given κ1

}

.

By Propositions 1 and 3, the function gA (respectively, gI , gAI) is continuous and weakly

increasing in n, and is strictly increasing in the neighborhood of any n for which gA (n) ∈
(0, 1) (respectively, gI (n) ∈ (0, 1), gAI (n) ∈ (0, 1)).

(A) Let n1 be a fixed point of max {gA, gI} (at least one fixed point exists by Tarski), i.e.,

n1 = {gA (n1) , gI (n1)}. To establish the result, we show there is an n−1 ∈ [0, n1] such that

(n1, n−1) is an equilibrium. First, consider the case in which gA (n1) < n1. So 0 ≻ f(n1),f(n1)
n1

A.

Moreover, I ≈f(n1)
n1

0. Hence I ≻ f(n1)
n1

A, implying gAI (n1) < n1. So gAI maps [0, n1] into

itself, and hence (by Tarski) has at least one fixed point in [0, n1], say n−1. By construction,

(n1, n−1) is an equilibrium. Second, consider the case in which gI (n1) ≤ n1. So 0 � f(n1)
n1

I.

Moreover, A ≈f(n1),f(n1)
n1

0. Hence A � f(n1)
n1

I, establishing that (n1, n1) is an equilibrium.

(B) As κ1 falls, the function gI strictly increases at any value of n for which gI (n) ∈ (0, 1).

So by Corollary 1 of Milgrom and Roberts (1994), the extremal fixed points of gI increase.

Moreover, condition (A-40) is easier to satisfy. This establishes (i).

For (ii), let
(

n′
1, n

′
−1

)

be the equilibrium with the most indexing at κ′
1. Note that n′

−1 is

the smallest fixed point of gAI (·; κ′
1). As κ1 falls, the function gAI decreases. So again by

Milgrom and Roberts’s Corollary 1, the smallest fixed point of gAI (·; κ1) is weakly smaller

than n′
−1 (and strictly so if n′

−1 > 0). Combined with (i), the result follows.

(C) The function gA has the same set of fixed points at κ1 and κ′
1. Condition (A-39) is

more demanding to satisfy at κ1. This completes the proof.

Proof of Lemma 7: Throughout the proof, we use the fact that in equilibrium there

exist scalars a and b such that the price of any non-index synthetic asset k 6= 1 is Pk =

a+ bρ−1Xk − bZk.
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For assets j, k outside the index, the result is almost immediate, since the synthetic and

actual assets coincide, and so

P̃j − P̃k = bρ−1

(

X̃j − X̃k

)

− b
(

Z̃j − Z̃k

)

, (A-41)

and so

var(X̃j − X̃k|P̃j − P̃k)
−1 =

1

2
τX +

1

2
ρ2−1τZ ,

establishing the result.

For assets j, k covered by the index, synthetic and actual assets differ, and so an addi-

tional step is required. The key step is to establish that the relative payoff of actual assets

1 and 2 (and hence, by symmetry, any pair of assets covered by the index) equals the lin-

ear combination payoffs of a set of synthetic assets that does not include the index asset,

specifically,
l

2
∑

i=1

X2i =

√
l

2

(

X̃1 − X̃2

)

. (A-42)

We establish (A-42) below. But taking this equality as given, along with the directly analo-

gous equalities
∑

l

2

i=1 Z2i =
√
l

2

(

Z̃1 − Z̃2

)

and
∑

l

2

i=1 P2i =
√
l

2

(

P̃1 − P̃2

)

, we know

√
l

2

(

P̃1 − P̃2

)

=

l

2
∑

i=1

P2i = bρ−1

l

2
∑

i=1

X2i − b

l

2
∑

i=1

Z2i = bρ−1

√
l

2

(

X̃1 − X̃2

)

− b

√
l

2

(

Z̃1 − Z̃2

)

,

which coincides with (A-41), and hence establishes the result for assets 1 and 2, and hence

(by symmetry) for any pair of assets j, k that are covered by the index.

It remains to establish (A-42). To do so, we show that the row vectors Ai of the matrix

A satisfy
l

2
∑

i=1

A2i =

√
l

2
(1,−1, 0m−2) , (A-43)

where 0m−2 denotes a row vector of length m − 2 in which all entries equal 0. The proof

of (A-43) can be rolled into the existing inductive proof of Lemma 1, where recall that we

focus on the case m = l, since the extension to m > l is trivial. The base case is l = 2, and

holds since A = 1√
2

(

1 1

1 −1

)

. For the inductive step, suppose that (A-43) holds for some

l; the matrix for the case 2l is

B =
1√
2

(

A A

A −A

)

.
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Hence
2l

2
∑

i=1

B2i = 2
1√
2

√
l

2
(1,−1, 0l−2, 0l) =

√
2l

2
(1,−1, 02l−2) ,

thereby completing the proof.

Proof of Lemma 7: By symmetry of assets covered by the index, it suffices to establish

the result for the underlying asset j = 1. From Lemma 1, the underlying asset 1 is related

to synthetic assets 1, . . . , l by X̃1 = 1√
l

∑l
i=1Xi, with analogous equalities for P̃1 and Z̃1.

In equilibrium, there are constants a1, b1, b−1 such that synthetic asset prices are given by

P1 = a1 + b1ρ1X1 − b1Z1, and for any j = 2, . . . , l, by Pj = b−1ρ−1Xj − b−1Zj . Moreover,

ρ1 ≤ ρ−1, where the inequality is strict in any indexing equilibrium. Combining these

observations,

P̃1 =
1√
l

l
∑

i=1

Pi

=
1√
l

(

a1 + b1ρ1X1 + b−1ρ−1

l
∑

i=2

Xi − b1Z1 − b−1

l
∑

i=2

Zi

)

=
1√
l

(

b1ρ1 + (l − 1) b−1ρ−1

l

l
∑

i=1

Xi +
l − 1

l
(b1ρ1 − b−1ρ−1)X1 −

b1ρ1 − b−1ρ−1

l

l
∑

i=2

Xi

)

+
1√
l

(

a1 −
b1 + (l − 1) b−1

l

l
∑

i=1

Zi −
l − 1

l
(b1 − b−1)Z1 +

b1 − b−1

l

l
∑

i=2

Zi

)

=
1√
l

(

b1ρ1 + (l − 1) b−1ρ−1

l

l
∑

i=1

Xi +
b1ρ1 − b−1ρ−1

l

(

(l − 1)X1 −
l
∑

i=2

Xi

))

+
1√
l

(

a1 −
b1 + (l − 1) b−1

l

l
∑

i=1

Zi −
b1 − b−1

l

(

(l − 1)Z1 −
l
∑

i=2

Zi

))

.

Note that

cov

(

l
∑

i=1

Xi, (l − 1)X1 −
l
∑

i=2

Xi

)

= 0

cov

(

l
∑

i=1

Zi, (l − 1)Z1 −
l
∑

i=2

Zi

)

= 0.
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Hence

P̃1 =
b1ρ1 + (l − 1) b−1ρ−1

l
X̃1 +

b1ρ1 − b−1ρ−1

l

1√
l

(

(l − 1)X1 −
l
∑

i=2

Xi

)

+
a1√
l
− b1 + (l − 1) b−1

l
Z̃1 −

b1 − b−1

l

1√
l

(

(l − 1)Z1 −
l
∑

i=2

Zi

)

, (A-44)

where X̃1, Z̃1,
(

(l − 1)X1 −
∑l

i=2Xi

)

and
(

(l − 1)Z1 −
∑l

i=2 Zi

)

are mutually indepen-

dent. Consequently, since ρ1 < ρ−1,

var
(

X̃1|P̃1

)−1

< τX +

(

b1ρ1 + (l − 1) b−1ρ−1

b1 + (l − 1) b−1

)2

τZ < τX + ρ2−1τZ = var
(

X̃k|P̃k

)−1

,

completing the proof.

Proof of Lemma 9: From (33), Lemma 4, and (A-30),

E [X1 − P1|P1] =
S1 + E [Z1|P1]

1
γ

1
n1

∫ n1

0
1

var(X1|Yi1,ei1,P1)
di

= −S1 + E [Z1|P1]
1
n1

∫ n1

0
∂θi1
∂P1

di
= −S1 + E [Z1|P1]

1 + ρ1
γ
τZ

∂P1

∂Z1

.

Note that

∂

∂P1
E [Z1|P1] =

cov (Z1, P1)

var (P1)
=

cov (Z1, P1)

var (Z1)

var (Z1)

var (P1)
=

∂P1

∂Z1

var (Z1)
(

∂P1

∂X1

)2

var (X1) +
(

∂P1

∂Z1

)2

var (Z1)
.

Hence (and using the fact that ∂P1

∂Z1

is independent of Z1)

∂

∂P1

E [X1 − P1|P1] = − 1
(

1 + ρ1
γ
τZ

)(

ρ21
var(X1)
var(Z1)

+ 1
) ,

completing the proof.
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Appendix B

For notational transparency, we consider a single-asset version of our economy, and omit all

asset subscripts.

Proposition B-1 Consider the benchmark economy described in subsection 3.1, in which

agents do not possess any private information about the asset’s cash flow X, but instead all

observe a public signal of the form Y = X + ǫ, where ǫ ∼ N (0, τ−1
ǫ ). In such a setting, each

agent’s expected utility is decreasing in the precision of the public signal, τǫ.

Proof: Agent i’s terminal wealth is

Wi = eiP + (θi + ei) (X − P ) ,

and he optimally chooses the portfolio

θi + ei =
1

γ

E [X|Y ]− P

var (X|Y )
.

So agent i’s expected utility at the trading stage is

E [− exp (−γWi) |Y, P ] = E

[

− exp

(

−γeiP − E [X|Y ]− P

var (X|Y )
(X − P )

)

|Y, P
]

= − exp

(

−γeiP − (E [X|Y ]− P )2

var (X|Y )
+

1

2

(E [X|Y ]− P )2

var (X|Y )

)

= − exp

(

−γeiP − 1

2

(E [X|Y ]− P )2

var (X|Y )

)

.

We evaluate

E

[

− exp

(

−γeiP − 1

2

(E [X|Y ]− P )2

var (X|Y )

)

|ei
]

. (B-1)

Expanding, this expression equals

E

[

− exp

(

−γeiE [X|Y ] + γei (E [X|Y ]− P )− 1

2

(E [X|Y ]− P )2

var (X|Y )

)

|ei
]

.

By market clearing,
1

γ

E [X|Y ]− P

var (X|Y )
= S + Z,
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i.e.,

E [X|Y ]− P = γvar (X|Y ) (S + Z) ,

and so (B-1) equals

E

[

− exp

(

−γeiE [X|Y ] +
γ2var (X|Y )

2

(

2ei (S + Z)− (S + Z)2
)

)

|ei
]

.

Moreover,

E [X|Y ] =
τXE [X ] + τǫY

τX + τǫ
=

τ−1
ǫ E [X ] + τ−1

X Y

τ−1
X + τ−1

ǫ

=
(var (Y )− var (X))E [X ] + var (X)Y

var (Y )
.

Hence (B-1) equals

E

[

exp

(

−γeiE [X ] +
γ2e2i
2

var (X)2

var (Y )
+

γ2var (X|Y )

2

(

2ei (S + Z)− (S + Z)2
)

)

|ei
]

.

By the law of total variance,

var (X) = var (X|Y ) + var (E [X|Y ]) = var (X|Y ) +
var (X)2

var (Y )
.

So (B-1) equals

E

[

− exp

(

−γeiE [X ] +
γ2e2i
2

var (X) +
γ2var (X|Y )

2

(

2ei (S + Z)− (S + Z)2 − e2i
)

)

|ei
]

= E

[

− exp

(

−γeiX − γ2var (X|Y )

2
(ei − (S + Z))2

)

|ei
]

.

This expression is increasing in var (X|Y ), completing the proof.
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