
Operating System 101:
The Evolution of Operating Systems

Tag: CTSS, Multics, Unix, BSD, Linux, Android, mbed

Jim Huang (黃敬群) <jserv>

What are we about to reach?

• Programs

• Platforms

• Performance

• …

User Applications

Operating System

Substrate / Architecture

“The system is all the code your program uses that you didn’t have to write.”

“Software Architecture”

User Applications

Operating System(s)

Substrate / Architecture

Software
architecture

Computer
architecture

Comparative architecture: what works
Reusable / recurring design patterns

• Used in OS
• Supported by OS

Physics stops here.

Platform abstractions

• Platforms provide “building blocks”…

• …and APIs to use them to construct software.
– Instantiate/create/allocate

– Manipulate/configure

– Attach/detach

– Combine in uniform ways

– Release/destroy

• Abstractions are layered.
– What to expose? What to hide?

The choice of abstractions reflects a philosophy
of how to build and organize software systems.

Managing Complexity

Environment

System

Component

Component

Component
Com

po nent

System
Systems are built from
components.

Operating systems define
styles of software
components and how they
interact.

OS maps components onto
the underlying machine.

…and makes it all work
together.

Comparative software architecture

Large, long-lived software systems are like buildings.
They are built by workers using standard design patterns.
They depend on some underlying infrastructure.
But they can evolve and are not limited by the laws of physics.

A simple module

• A set of procedures/functions/methods.

• An interface (API) that defines a template
for how to call/invoke the procedures.

• State (data) maintained and accessed by
the procedures.

• A module may be a class that defines a
template (type) for a data structure, which
may have multiple instances (objects).

P1()

P2()

P3()

P4()

state

Abstract Data Type (ADT): the module’s state is manipulated only
through its API (Application Programming Interface).

Code: instructions in memory

_p1:
pushq %rbp
movq %rsp, %rbp
movl $1, %eax
movq %rdi, -8(%rbp)
popq %rbp
ret

load _x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, _x ; store global variable x

A Peek Inside a Running Program

0

high

code library

your data

heap

registers

CPU core

R0

Rn

PC

“memory”

x

x

your program

common runtime

stack

address space
(virtual or physical)

e.g., a virtual memory
for a running program

(process)

SP

y

y

Data in memory
64 bytes: 3 ways

p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[]
char *p

int p[]
int* p

p

char* p[]
char** p

Pointers (addresses) are 8
bytes on a 64-bit machine.

Heap: dynamic memory

Allocated heap blocks
for structs or objects.

Align!

The “heap” is an ADT in a
runtime library: the code to

maintain the heap is a
heap manager.

It allocates a contiguous
slab of virtual memory from

the OS kernel, then
“carves it up” as needed.

It enables the programming
language environment, to

store dynamic objects.

E.g., with Unix malloc and
free library calls.

Free block

http://www.media-art-online.org/java/help/how-it-works.html

But some programs are interpreted
They run on an “abstract machine” (e.g., JVM)
implemented in software.

”bytecode”

Platforms are layered/nested

Some lessons of history

• At the time it was created, Unix was the “simplest
multi-user OS people could imagine.”
– It’s in the name: Unix vs. Multics

• Simple abstractions can deliver a lot of power.
– Many people have been inspired by the power of Unix.

• The community spent four decades making Unix
complex again....but the essence is unchanged.

• Unix is a simple context to study core issues for
classical OS design. “It’s in there.”

• Unix variants continue to be in wide use.

[http://www.android.com]

“Classical OS”

Reloaded.

Virtual Machine

End-to-end application delivery

Cloud and Software-as-a-Service (SaaS)
Rapid evolution, no user upgrade, no user data management.
Agile/elastic deployment on virtual infrastructure.

Where is your application?
Where is your data?
Where is your OS?

SaaS platform elements

[wiki.eeng.dcu.ie]
“Classical OS”

browser
container

OpenStack, the Cloud Operating System

Management Layer That Adds Automation & Control

[Anthony Young @ Rackspace]

 EC2
 The canonical public cloud

Virtual
Appliance

Image

Canonical OS Example: “Classical OS”

• Unix/Linux, Windows, Mac OS X

• Research systems
– Multics

– Mach

– Minix

– …

User Applications

Operating System

Substrate / Architecture

Aggregation
Composition
Orchestration

Exponential growthIncreasing diversity

Backward compatibility

Drivers of Change

Broad view: smartphones to servers, web, and cloud.

Key Interfaces

 Instruction set architecture (ISA)
Application binary interface (ABI)
Application programming interface (API)

Operating System
as Software

Functions in the same way as ordinary
computer software

Program, or suite of programs,
executed by the processor

Frequently relinquishes control and
must depend on the processor to allow
it to regain control

Operating
System

as
Resource
Manager

Evolution of Operating Systems

 A major OS will evolve over time for a
number of reasons:

Hardware
upgrades

New types of
hardware

New
services

Fixes

Evolution of
Operating Systems

 Stages include:

Serial
Processing

Simple
Batch
Systems

Multiprogrammed
Batch Systems

Time
Sharing
Systems

Desirable Hardware
Features

• while the user program is executing, it must not alter the memory area
containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation
U

se
r

M
od

e
•

us
er

 p
ro

gr
am

ex

ec
ut

es
 in

 u
se

r
m

od
e

•
ce

rt
ai

n
ar

ea
s

of

m
em

or
y

ar
e

pr
ot

ec
te

d
fr

om

us
er

 a
cc

es
s

•
ce

rt
ai

n
in

st
ru

ct
io

ns

m
ay

 n
ot

 b
e

ex
ec

ut
ed

Ke
rn

el
 M

od
e

•
m

on
ito

r
ex

ec
ut

es

in
 k

er
ne

l m
od

e
•

pr
iv

ile
ge

d
in

st
ru

ct
io

ns
 m

ay

be
 e

xe
cu

te
d

•
pr

ot
ec

te
d

ar
ea

s
of

m

em
or

y
m

ay
 b

e
ac

ce
ss

ed

• Challenge: Interaction Despite Isolation
– How to isolate processes and their resources…

» While permitting them to request help from the kernel

» Processes interact while maintaining policies such as security, QoS, etc

– Letting processes interact with one another in a controlled way
» Through messages, shared memory, etc

• Enter the System Call interface
– Layer between the hardware and user-space processes
– Programming interface to the services provided by the OS

• Mostly accessed by programs via a high-level
Application Program Interface (API) rather than directly

– Get at system calls by linking with libraries in glibcCall to
printf()

printf() in the
C library

write()
system call

System Call

Modes of Operation
U

se
r

M
od

e
•

us
er

 p
ro

gr
am

ex

ec
ut

es
 in

 u
se

r
m

od
e

•
ce

rt
ai

n
ar

ea
s

of

m
em

or
y

ar
e

pr
ot

ec
te

d
fr

om

us
er

 a
cc

es
s

•
ce

rt
ai

n
in

st
ru

ct
io

ns

m
ay

 n
ot

 b
e

ex
ec

ut
ed

Ke
rn

el
 M

od
e

•
m

on
ito

r
ex

ec
ut

es

in
 k

er
ne

l m
od

e
•

pr
iv

ile
ge

d
in

st
ru

ct
io

ns
 m

ay

be
 e

xe
cu

te
d

•
pr

ot
ec

te
d

ar
ea

s
of

m

em
or

y
m

ay
 b

e
ac

ce
ss

ed

Uniprogramming

Multiprogramming

Effects on Resource
Utilization

Table 2.2 Effects of Multiprogramming on Resource Utilization

Utilization Histograms

Compatible Time-
Sharing Systems
CTSS

 One of the first time-sharing
operating systems

 Developed at MIT by a group
known as Project MAC

 Ran on a computer with 32,000
36-bit words of main memory, with
the resident monitor consuming
5000 of that

 To simplify both the monitor and
memory management a program
was always loaded to start at the
location of the 5000th word

Time Slicing
 System clock generates interrupts at a

rate of approximately one every 0.2
seconds

 At each interrupt OS regained control
and could assign processor to
another user

 At regular time intervals the current
user would be preempted and
another user loaded in

 Old user programs and data were
written out to disk

 Old user program code and data were
restored in main memory when that
program was next given a turn

CTSS Operation

Major Advances

 Operating Systems are among the most
complex pieces of software ever
developed

Major advances in
development include:
• Processes
• Memory management
• Information protection and

security
• Scheduling and resource

management
• System structure

Process

 Fundamental to the structure of operating
systems

A process can be defined as:

a program in execution

an instance of a running program

the entity that can be assigned to, and executed on, a processor

a unit of activity characterized by a single sequential thread of
execution, a current state, and an associated set of system resources

Development of the
Process

 Three major lines of computer system development
created problems in timing and synchronization that
contributed to the development:

• processor is switched among the various programs residing in
main memory

multiprogramming batch operation

• be responsive to the individual user but be able to support many
users simultaneously

time sharing

• users are entering queries or updates against a database
real-time transaction systems

Causes of Errors
 Nondeterminate program

operation
 program execution is interleaved

by the processor when memory is
shared

 the order in which programs are
scheduled may affect their
outcome

 Deadlocks
 it is possible for two or

more programs to be hung
up waiting for each other

 may depend on the chance
timing of resource
allocation and release

 Improper
synchronization
 a program must wait until the

data are available in a buffer
 improper design of the

signaling mechanism can result
in loss or duplication

 Failed mutual exclusion
 more than one user or program

attempts to make use of a
shared resource at the same
time

 only one routine at at time
allowed to perform an update
against the file

Components of
a Process

 The execution context is
essential:
 it is the internal data by which

the OS is able to supervise
and control the process

 includes the contents of the
various process registers

 includes information such as
the priority of the process and
whether the process is waiting
for the completion of a
particular I/O event

 A process contains
three components:
 an executable

program
 the associated data

needed by the
program (variables, work
space, buffers, etc.)

 the execution context
(or “process state”) of
the program

Process
Management

 The entire state of the
process at any instant is
contained in its context

 New features can be
designed and
incorporated into the OS
by expanding the context
to include any new
information needed to
support the feature

Memory Management

 The OS has five principal storage
management responsibilities:

process
isolation

automatic
allocation

and
management

support of
modular

programming

protection
and access

control
long-term

storage

Virtual Memory
 A facility that allows programs to address

memory from a logical point of view,
without regard to the amount of main
memory physically available

 Conceived to meet the requirement of
having multiple user jobs reside in main
memory concurrently

Paging

 Allows processes to be comprised of a number of
fixed-size blocks, called pages

 Program references a word by means of a virtual
address

 consists of a page number and an offset within the
page

 each page may be located anywhere in main memory

 Provides for a dynamic mapping between the virtual
address used in the program and a real (or physical)
address in main memory

Virtual Memory
 A facility that allows programs to address

memory from a logical point of view,
without regard to the amount of main
memory physically available

 Conceived to meet the requirement of
having multiple user jobs reside in main
memory concurrently

Virtual Memory
 Addressing

Information Protection
and Security

 The nature of the
threat that concerns
an organization will
vary greatly
depending on the
circumstances

 The problem involves
controlling access to
computer systems
and the information
stored in them

Main
issues availability

confidentiality

data
integrity

authenticity

Key Elements of an
 Operating System

Different Architectural
Approaches

Demands on operating systems require
new ways of organizing the OS

• Microkernel architecture
• Multithreading
• Symmetric multiprocessing
• Distributed operating systems
• Object-oriented design

Different approaches and design elements have been
tried:

Microkernel
Architecture

 Assigns only a few essential functions to kernel:

 The approach:

address
spaces

interprocess
communication

(IPC)
basic

scheduling

simplifies
implementation

provides
flexibility

is well suited to
a distributed
environment

Multithreading
 Technique in which a process, executing an application, is

divided into threads that can run concurrently

Thread
• dispatchable unit of work
• includes a processor context and its own data area to enable subroutine

branching
• executes sequentially and is interruptible

Process
• a collection of one or more threads and associated system resources
• programmer has greater control over the modularity of the application and

the timing of application related events

Symmetric
Multiprocessing (SMP)

 Term that refers to a computer hardware architecture and
also to the OS behavior that exploits that architecture

 Several processes can run in parallel

 Multiple processors are transparent to the user
 these processors share same main memory and I/O

facilities
 all processors can perform the same functions

 The OS takes care of scheduling of threads or processes
on individual processors and of synchronization among
processors

SMP Advantages
Performance

more than one process can be
running simultaneously, each on a

different processor

Availability failure of a single process does
not halt the system

Incremental
Growth

performance of a system can
be enhanced by adding an

additional processor

Scaling
vendors can offer a range of products
based on the number of processors

configured in the system

Multiprogramming

Multiprocessing

OS Design

Distributed
Operating System

 Provides the illusion of
 a single main memory space
 single secondary memory

space
 unified access facilities

 State of the art for distributed
operating systems lags that of
uniprocessor and SMP
operating systems

Object-Oriented
Design

 Used for adding modular
extensions to a small kernel

 Enables programmers to
customize an operating system
without disrupting system
integrity

 Eases the development of
distributed tools and full-
blown distributed operating
systems

Virtual Machines and
Virtualization
 Virtualization

 enables a single PC or server to simultaneously run multiple
operating systems or multiple sessions of a single OS

 a machine can host numerous applications, including those
that run on different operating systems, on a single
platform

 host operating system can support a number
of virtual machines (VM)

 each has the characteristics of a particular OS and, in some
versions of virtualization, the characteristics of a particular
hardware platform

Virtual
Memory
Concept

Virtual Machine
Architecture

• the machine on which it executes consists of the virtual memory space
assigned to the process

• the processor registers it may use
• the user-level machine instructions it may execute
• OS system calls it may invoke for I/O
• ABI defines the machine as seen by a process

Process perspective:

• machine characteristics are specified by high-level language capabilities
and OS system library calls

• API defines the machine for an application

Application perspective:

• processes share a file system and other I/O resources
• system allocates real memory and I/O resources to the processes
• ISA provides the interface between the system and machine

OS perspective:

Process and System Virtual Machines

 Process and System Virtual Machines

SMP OS Considerations
 A multiprocessor OS must provide all the functionality of a

multiprogramming system plus additional features to accommodate
multiple processors

 Key design issues:

– The design challenge for a many-core multicore system is to
efficiently harness the multicore processing power and intelligently
manage the substantial on-chip resources efficiently

Virtual Machine
Approach

 Allows one or more cores to be dedicated to a
particular process and then leave the
processor alone to devote its efforts to that
process

 Multicore OS could then act as a hypervisor
that makes a high-level decision to allocate
cores to applications but does little in the way
of resource allocation beyond that

Description
of UNIX

Traditional
UNIX

Kernel

Monolithic Structure: UNIX System Structure

• Two-Layered Structure: User vs Kernel
– All code representing protection and management of resources

placed in same address space
– Compromise of one component can compromise whole OS

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Modern
UNIX
Kernel

Microkernel Structure

• Moves functionality from the kernel into “user” space
– Small core OS running at kernel level
– OS Services built from many independent user-level processes
– Communication between modules with message passing

• Benefits:
– Easier to extend
– Easier to port OS to new architectures
– More reliable (less code is running in kernel mode)
– Fault Isolation (parts of kernel protected from other parts)
– More secure

• Detriments:
– Performance overhead can be severe for naiïve implementation

M
on

ol
it
hi
c

Ke
rn

el
M

icro kern el

Modules-based Structure

• Most modern operating systems implement
modules

– Uses object-oriented approach
» careful API design/Few if any global variables

• Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible
– May or may not utilize hardware enforcement

ExoKernel: Separate Protection from Management

• Thin layer exports hardware resources directly to users
– As little abstraction as possible
– Secure Protection and Multiplexing of resources

• LibraryOS: traditional OS functionality at User-Level
– Customize resource management for every application
– Is this a practical approach?

• Very low-level abstraction layer
– Need extremely specialized skills to develop LibraryOS

Linux Kernel Components

Two Level Scheduling

• Split monolithic scheduling into two pieces:
– Course-Grained Resource Allocation and Distribution to Cells

» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
» Ultimately a hierarchical process negotiated with service providers

– Fine-Grained (User-Level) Application-Specific Scheduling
» Applications allowed to utilize their resources in any way they see fit
» Performance Isolation: Other components of the system cannot interfere with

Cells use of resources

Monolithic
CPU and Resource

Scheduling
Application Specific

Scheduling

Resource Allocation
And

Distribution

Two-Level Scheduling

Concurrency

• “Thread” of execution
– Independent Fetch/Decode/Execute loop
– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, Batch processing
– Easier for operating system builder
– Get rid concurrency by defining it away
– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X
– Often called “multitasking”, but multitasking has other

meanings (talk about this later)

How can we give the illusion of multiple processors?

CPU3CPU2CPU1

Shared Memory

• Assume a single processor. How do we provide the
illusion of multiple processors?

– Multiplex in time!
• Each virtual “CPU” needs a structure to hold:

– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)
– Call result a “Thread” for now…

• How switch from one CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other thread

(good for sharing, bad for protection)
– Threads can share instructions

(good for sharing, bad for protection)
– Can threads overwrite OS functions?

• This (unprotected) model common in:
– Embedded applications
– Windows 3.1/Machintosh (switch only with yield)

What needs to be saved in Modern X86?
64-bit Register Set Traditional 32-bit subset

EFLAGS Register

Modern Technique: SMT/Hyperthreading

• Hardware technique
– Exploit natural properties

of superscalar processors
to provide illusion of
multiple processors

– Higher utilization of
processor resources

• Can schedule each thread
as if were separate CPU

– However, not linear
speedup!

– If have multiprocessor,
should schedule each
processor first

• Original technique called “Simultaneous Multithreading”
– See http://www.cs.washington.edu/research/smt/
– Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

How to protect threads from one another?

• Need three important things:
1. Protection of memory

» Every task does not have access to all memory
2. Protection of I/O devices

» Every task does not have access to every device
3. Protection of Access to Processor:

Preemptive switching from task to task
» Use of timer
» Must not be possible to disable timer from

usercode

Progra m
 A

d dress Spa ce

Program’s Address Space

• Address space the set of 
accessible addresses + state
associated with them:
– For a 32-bit processor there are 232 = 4

billion addresses
• What happens when you read or

write to an address?
– Perhaps Nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

X86 Memory model with segmentation

Process
Control
Block

How do we multiplex processes?

• The current state of process held in a
process control block (PCB):
– This is a “snapshot” of the execution and

protection environment
– Only one PCB active at a time

• Give out CPU time to different processes
(Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary multiplexing of
I/O through system calls

CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but… contention

for resources instead

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are

Scheduling decisions
– Many algorithms possible

	Slide 1
	What is this course about?
	“Software Architecture”
	Platform abstractions
	Managing Complexity
	Comparative software architecture
	A simple module
	Code: instructions in memory
	A Peek Inside a Running Program
	Data in memory 64 bytes: 3 ways
	Heap: dynamic memory
	Slide 12
	Platforms are layered/nested
	Some lessons of history
	Slide 15
	End-to-end application delivery
	SaaS platform elements
	OpenStack, the Cloud Operating System
	Slide 19
	Canonical OS Example: “Classical OS”
	Drivers of Change
	Key Interfaces
	Operating System as Software
	Operating System as Resource Manager
	Evolution of Operating Systems
	Evolution of Operating Systems
	Desirable Hardware Features
	Modes of Operation
	Recall: System Calls: Details
	Modes of Operation
	Slide 31
	Effects on Resource Utilization
	Utilization Histograms
	Compatible Time-Sharing Systems
	CTSS Operation
	Major Advances
	Process
	Development of the Process
	Causes of Errors
	Components of a Process
	Process Management
	Memory Management
	Virtual Memory
	Paging
	Slide 45
	Virtual Memory Addressing
	Information Protection and Security
	Key Elements of an Operating System
	Different Architectural Approaches
	Microkernel Architecture
	Multithreading
	Symmetric Multiprocessing (SMP)
	SMP Advantages
	Slide 54
	OS Design
	Virtual Machines and Virtualization
	Slide 57
	Virtual Machine Architecture
	Slide 59
	Slide 60
	Symmetric Multiprocessor OS Considerations
	Virtual Machine Approach
	Description of UNIX
	Traditional UNIX Kernel
	Monolithic Structure: UNIX System Structure
	Modern UNIX Kernel
	Microkernel Structure
	Modules-based Structure
	ExoKernel: Separate Protection from Management
	Linux Kernel Components
	Two Level Scheduling
	Concurrency
	How can we give the illusion of multiple processors?
	Properties of this simple multiprogramming technique
	What needs to be saved in Modern X86?
	Modern Technique: SMT/Hyperthreading
	How to protect threads from one another?
	Recall from CS162: Program’s Address Space
	Slide 79
	X86 Memory model with segmentation
	How do we multiplex processes?
	CPU Switch From Process to Process
	Process Scheduling

