Operating System 101:
The Evolution of Operating Systems

Tag: CTSS, Multics, Unix, BSD, Linux, Android, mbed

Jim Huang (=HET) <jserv>

What are we about to reach?

Programs

User Applications

e
| ___ Substrate / Architecture ___

 Platforms

* Performance
Operating System

Substrate / Architecture

“The system is all the code your program uses that you didn’t have to write.”

“Software Architecture”

(~ User Applications
Software <
architecture
- Physics stops here. > Operating SyStem(S)
Computer <

architecture

" Substrate / Architecture

Comparative architecture: what works
Reusable / recurring design patterns

* Usedin OS

* Supported by OS

Platform abstractions

* Platforms provide “building blocks™...

- ...and APIs to use them to construct software E 7
— Instantiate/create/allocate s
— Manipulate/configure
— Attach/detach
— Combine in uniform ways
— Release/destroy

* Abstractions are layered.
— What to expose? What to hide?

The choice of abstractions reflects a philosophy
of how to build and organize software systems.

Managing Complexity

System

3

\ 4

Environment

Systems are built from
components.

Operating systems define
styles of software
components and how they
interact.

OS maps components onto
the underlying machine.

...and makes it all work
together.

Comparative software architecture

Large, long-lived software systems are like buildings.
They are built by workers using standard design patterns.

They depend on some underlying infrastructure.
But they can evolve and are not limited by the laws of physics.

A simple module

* A set of procedures/functions/methods.

* An interface (API) that defines a template
for how to call/invoke the procedures.

« State (data) maintained and accessed by
the procedures.

* A module may be a class that defines a
template (type) for a data structure, which
may have multiple instances (objects).

Abstract Data Type (ADT): the module’s state is manipulated only
through its API (Application Programming Interface).

Code: instructions in memory

_p1

pUShq %rbp /—_

movq %rsp, %rbp
movl $1, %eax
movqg %rdi, -8(%rbp)
popg %rbp

ret

load X, R2 ; load global variable x
add R2,1,R2 ;increment: x=x+ 1
store R2, X ; store global variable x

A Peek Inside a Running Program

CPU core

RO

Rn

PC—=

registers

SP Y E—

common runtime

your program

code library
|

your data

“memory”

address space
(virtual or physical)

e.g., a virtual memory
for a running program
(process)

Data in memory
64 bytes: 3 ways

p + 0x0
0x0
int p[]
int* p
char pl]
char *p Ox1f
char* p[]
0x0 char** p

Ox1f

Pointers (addresses) are 8
bytes on a 64-bit machine.

Ox1f

Heap: dynamic memory

The “heap” is an ADT in a
runtime library: the code to
maintain the heap is a
heap manager.

It allocates a contiguous
slab of virtual memory from

the OS kernel, then
“carves it up” as needed.

It enables the programming
language environment, to
store dynamic objects.

E.g., with Unix malloc and
free library calls.

—

Allocated heap blocks
for structs or objects.
Align!

Free block

But some programs are interpreted
They run on an “abstract machine” (e.g., JVM)
implemented in software.

1) Write a program
File name:; ' Proe

Lava languags)

2 Compile it

main(..) {

} .

Intermediate 3 Execute it
files (intermedate larEuase)
"bytecode”
3 w il | |
File name;

- Actually in many cases, a program is
distributed in the form of a JAR file,
which stands for Java ARchive file.

http://www.media-art-online.org/java/help/how-it-works.html

Platforms are layered/nested

Some lessons of history

* At the time it was created, Unix was the “simplest
multi-user OS people could imagine.”

— It’s in the name: Unix vs. Multics
* Simple abstractions can deliver a lot of power.
— Many people have been inspired by the power of Unix.

* The community spent four decades making Unix
complex again....but the essence is unchanged.

* Unix is a simple context to study core issues for
classical OS design. “It’s in there.”

 Unix variants continue to be in wide use.

ﬁ"ClnD:s‘OID

DEVELOPER CHALLENGE

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Aind o
Activity Manager Window

Content
Manager

Providers

Package Manager Telephony

Resource
Manager

Locaton
Manager

Manager

Virtual Machine

Motification
Manager

LIBERARIES ANDROID RUNTIME
Surface Manager Media

S0Lite Core Libraries
Framework

OpenGL | ES

i S = MAEhRE™

SGL S5L libe

| “Classical OS”
LiINUX KERMEL
Display

e Flash Memory Binder (IPC)
Drriver Camera Driver Drriver Diriver

A o
Keypad Driver WiFi Driver S e

Drivers Management Re I oad e d]

[http://www.android.com]

End-to-end application delivery

Where is your application?
Where is your data?
Where is your OS?

Cloud and Software-as-a-Service (SaaS)
Rapid evolution, no user upgrade, no user data management.
Agile/elastic deployment on virtual infrastructure.

SaaS platform elements

container

Clients browser Web
Application
E 4/ Server
e, A 'ih A

Internet

“| HTTP over
TCP/IP

o _ “Classical OS”
[wiki.eeng.dcu.ie]

OpenStack, the Cloud Operating System

Management Layer That Adds Automation & Control

Self-service

Connects to apps
via APls PP 888 = #&38 Portals for

APPS USERS , ADMINS USErs

n openstack cLoub OPERATING SYSTEM

Creates Pools of Resources . Automates The Network
) / ‘ﬁJ} (&
- - - ICELEY. X Sy
\ \I"‘\ "‘l"\. .-'IIIII
M A M A b ..r':l f\.h A

[Anthony Young @ Rackspace]

amazon FEC2

webservices™
Launch
different
frstan o
e« B
=
Virtual
Appliance
Image Terﬁplata
(AMI)
Amazon EC2

Region: us-east-1

P '
Availability Zone %

Availability Zone
P
EEKY

Availability Zone

e

Other Region...

The canonical public cloud

Large
Instance

High-CPU
Extra Large
Instance

High-Memaory
Double Extra
Large Instance

% Paid

Workload

Number of Nodes

Time

Canonical OS Example: “Classical OS”

+ Unix/Linux, Windows, Mac OS X i
* Research systems |

— Multics EU
— Mach -

— Minix

o

Drivers of Change

Increasing diversity Exponential growth
F N
5 Substrate/Architectre

Aggregation Backward compatibility

Composition
Orchestration

Broad view: smartphones to servers, web, and cloud.

Key Interfaces

B [nstruction set architecture (ISA)

A
A

0

0

0

0

ication binary interface (ABI)

ication programming interface (API)

Operating System
as Software

B Functions in the same way as ordinary
computer software

B Program, or suite of programs,
executed by the processor

B Frequently relinquishes control and
must depend on the processor to allow
it to regain control

Operating
System
as
Resource
Manager

Computer System

Memory

Operating
System
Software

Programs
and Data

Processor

/'O Controller

F 3

I/O Devices

1/'O Controller

'O Controller

F 3

Processor

Figure 2.2 The Operating System as Resource Manager

Storage

0S5

Programs

Data

Printers,
keyboards,
digital camera,
etc.

Evolution of Operating Systems

" A major OS will evolve over time for a
number of reasons:

Hardware
upgrades

New types of
hardware
services

Fixes

Evolution of
Operating Systems

" Stages include:

Time
Sharing
Multiprogrammed Systems
Batch Systems

Simple
Batch

. Systems
Serial

Processing

Desirable Hardware
Features

Memory protection for monitor

* while the user program is executing, it must not alter the memory area
containing the monitor

Timer

* prevents a job from monopolizing the system

Privileged instructions

* can only be executed by the monitor

Interrupts

* gives OS more flexibility in controlling user programs

Modes of Operation

pPassaloe
aq Aew Alowaw
JO seaJe pajydaloud

P31NJ3X? 3

Aew suonanasul

pPa33|IALId

9pOoW [aUJ3) Ul
S91NJ3X? Jolluow .

9POIN [SUJI)

P91NJ3X3
9g 10U Aew
SUOI1DNJISUIl UIe1ID
$S920k J3sn
w04} paldajoud
aJe Alowsw
JO SeaJe ule1dd
apowl
13sSN Ul S9INJ2X3
weJadoid J1asn .

3POIA J3sN

System Call

* Challenge: Interaction Despite Isolation

— How to isolate processes and their resources...

» While permitting them to request help from the kernel

» Processes interact while maintaining policies such as security, QoS, etc

— Letting processes interact with one another in a controlled way

» Through messages, shared memory, etc

Enter the System Call interface
— Layer between the hardware and user-space processes

— Programming interface to the services provided by the OS

Mostly accessed by programs via a high-level
Application Program Interface (API) rather than directly

Call to calls prlntf () inthe > in gli wrlte()
prlntf () C I|brary system call

Modes of Operation

pPassaloe
aq Aew Alowaw
JO seaJe pajydaloud

P31NJ3X? 3

Aew suonanasul

pPa33|IALId

9pOoW [aUJ3) Ul
S91NJ3X? Jolluow .

9POIN [SUJI)

P91NJ3X3
9g 10U Aew
SUOI1DNJISUIl UIe1ID
$S920k J3sn
w04} paldajoud
aJe Alowsw
JO SeaJe ule1dd
apowl
13sSN Ul S9INJ2X3
weJadoid J1asn .

3POIA J3sN

Uniprogramming

Program A Run Wait Run Wait

Time >
{a) Uniprogramming

Multiprogramming

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
. Run | Run . Run | Run .
Combined A B Wait A B Wait
Time >

(b) Multiprogramming with two programs

Effects on Resource

Utilization

Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

Table 2.2 Effects of Multiprogramming on Resource Utilization

Utilization Histograms

1005 1005
B
CPU
0 0
1005 1005
Memory | Memory
LTS LTS
1005 1005
Disk | Drislc
LTS LTS
1005 1005
Terminal | Terminal |
LTS
1004 1004
Printer [Printer
I I I I I 0% I
T]] T] FE—
Job History OB1 FOB2 [OE3 1 Job History | JOEL 1|
'] ! T JOB2
o A 10 1= 20 25 30 =
minutes JDIB3' |
e o & . i 15
aElnntes tine
(a} Uniprogranmmning () Multiprogramniing

Figure 2.6 Utilization Histograms

Compatible Time-
Sharing Systems

CTSS

One of the first time-sharing
operating systems

Developed at MIT by a group
known as Project MAC

Ran on a computer with 32,000
36-bit words of main memory, with
the resident monitor consuming
5000 of that

To simplify both the monitor and
memory management a program
was always loaded to start at the
location of the 5000t word

Time Slicing

System clock generates interrupts at a
rate of approximately one every 0.2
seconds

At each interrupt OS regained control
and could assign processor to
another user

At regular time intervals the current
user would be preempted and
another user loaded in

Old user programs and data were
written out to disk

Old user program code and data were
restored in main memory when that
program was next given a turn

CTSS Operation

0 0 0

~ Monitor ~ Monitor ~ Monitor
5000 5000 5000
10000 JOB 3
JOB 1
JOB 2
20000 (JOB 2)
Free 25000 25000
Free Free
32000 32000 32000
(2) (b) (c)
0 0 0
~ Monitor ~ Monitor ~ Monitor
5000 5000 5000
JOB1 JOB 4
15000 OB 2
(JOB 1) I
20000 20000
_ (JOBE 2) _ (JOBE 2) _
25000 25000 25000
Free Free Free
32000 32000 32000
(d) (e) ()

Figure 2.7 CTSS Operation

Major Advances

B Operating Systems are among the most
complex pieces of software ever

developed

Major advances in
development include:

* Processes

* Memory management

* Information protection and
security

* Scheduling and resource
management

* System structure

Process

® Fundamental to the structure of operating
systems

A process can be defined as:

a program in execution

an instance of a running program

the entity that can be assigned to, and executed on, a processor

a unit of activity characterized by a single sequential thread of
execution, a current state, and an associated set of system resources

Development of the
Process

® Three major lines of computer system development
created problems in timing and synchronization that
contributed to the development:

multiprogramming batch operation

* processor is switched among the various programs residing in
main memory

time sharing

* be responsive to the individual user but be able to support many
users simultaneously

real-time transaction systems

* users are entering queries or updates against a database

Causes of Errors

" Improper = Nondeterminate program

synchronization operation

® program execution is interleaved
by the processor when memory is
shared

® the order in which programs are
scheduled may affect their
outcome

" Deadlocks
® jtis possible for two or

B 3 program must wait until the
data are available in a buffer

® improper design of the e
signaling mechanism can result
in loss or duplication

® Failed mutual exclusion
B more than one user or program

attempts to make use of a more programs to be hung

shared resource at the same up waiting for each other

time | | = may depend on the chance
= only one routine at at time timing of resource

allowed to perform an update

against the file allocation and release

Components of
a Process

® A process contains = The execution context is
three components: essential:

B jtis the internal data by which

0
an executable the OS is able to supervise

program and control the process
B the associated data " includes the contents of the
needed by the \\\ |, /// various process registers
_ \\ N includes information such as
program (variables, work M} the priority of the process and

space, buffers, etc.)

B the execution context
(or “process state”) of |§
the program

whether the process is waiting
for the completion of a
particular I/0 event

MMain Processor
Memory Registers

Processindex[1 |
: PCC ——
Process ol =
1
Management 2
1
Context |
Process
® The entire state of the A %
process at any instant is (code)
contained in its context
P [Contest '
® New features can be process | | | Data
designed and Program |_
incorporated into the OS e
by expanding the context

to include any new
information needed to

: h . .
support the feature Figure 2.8 Typical Process Implementation

Memory Management

B The OS has five principal storage
management responsibilities:

automatic
process allocation

support of protection
modular and access
programming control

long-term

isolation and
management

storage

Virtual Memory

B A facility that allows programs to address
memory from a logical point of view,
without regard to the amount of main
memory physically available

B Conceived to meet the requirement of

having multiple user jobs reside in main
memory concurrently

Paging

B Allows processes to be comprised of a number of
fixed-size blocks, called pages

B Program references a word by means of a virtual
address
B consists of a page number and an offset within the
Page
B each page may be located anywhere in main memory

B Provides for a dynamic mapping between the virtual
address used in the program and a real (or physical)
address in main memory

Virtual Memory

B A facility that allows programs to address
memory from a logical point of view,
without regard to the amount of main
memory physically available

B Conceived to meet the requirement of

having multiple user jobs reside in main
memory concurrently

Virtual Memory
Addressing

Real
Memory Address
Virtual Unit

Address

Figure 2.10 Virtual Memory Addressing

Information Protection
and Security

® The nature of the
threat that concerns
an organization will Main

vary greatly issues availability
depending on the
circumstances

= The problem involves authenticity " SRS

controlling access to
computer systems
and the information
stored in them

data
integrity

Key Elements of an
Operating System

Service Call
from Process

Interrupt
from Process

Interrupt
from I'O

Figure 2.11 Key Elements of an Operating System for Multiprogramming

Operating System
Service
* Call
Handler {code)
Long- Short- 'O
" Interrupt Term Term Queues
Handler (code) Queue Queue
Short-Term
Scheduler
(code)
L 4
Pass Control
to Process

Different Architectural
Approaches

®Demands on operating systems require
new ways of organizing the OS

Different approaches and design elements have been

tried:

* Microkernel architecture

* Multithreading

* Symmetric multiprocessing

* Distributed operating systems
* Object-oriented design

Microkernel
Architecture

B Assigns only a few essential functions to kernel:

basic
B The aiiroach:

Multithreading

® Technique in which a process, executing an application, is
divided into threads that can run concurrently

* dispatchable unit of work

* includes a processor context and its own data area to enable subroutine
branching

Process

* a collection of one or more threads and associated system resources

* programmer has greater control over the modularity of the application and
the timing of application related events

Symmetric
Multiprocessing (SMP)

B Term that refers to a computer hardware architecture and
also to the OS behavior that exploits that architecture

B Several processes can run in parallel

® Multiple processors are transparent to the user
B these processors share same main memory and I/0
facilities
B 3|l processors can perform the same functions
B The OS takes care of scheduling of threads or processes

on individual processors and of synchronization among
processors

SMP Advantages

more than one process can be
Performance running simultaneously, each on a
different processor

failure of a single process does
not halt the system

Availability

performance of a system can
be enhanced by adding an
additional processor

Incremental
Growth

vendors can offer a range of products
based on the number of processors
configured in the system

Multiprogramming ™ g

Process 1 L T

Process 2 I s I
Process 3 s

(a) Interleaving (muliiprogramming, one pProcessor)

Multiprocessing

Process 1 L T e
Process 2 .
Process 3 [

(b} Imterleaving and overlapping (muliiprocessing; two processors)

e Blocked [Running

Figure 2.12 Multiprogramming and Multiprocessing

OS Design

Distributed
Operating System

® Provides the illusion of

B 3single main memory space

B single secondary memory
space

® ynified access facilities

m State of the art for distributed

operating systems lags that of
uniprocessor and SMP
operating systems

Object-Oriented
Design

B Used for adding modular

extensions to a small kernel

Enables programmers to
customize an operating system
without disrupting system
integrity

Eases the development of
distributed tools and full-
blown distributed operating
systems

Virtual Machines and
Virtualization

® \irtualization

B enables a single PC or server to simultaneously run multiple
operating systems or multiple sessions of a single OS

® a machine can host numerous applications, including those
that run on different operating systems, on a single
platform

B host operating system can support a number
of virtual machines (VM)
B each has the characteristics of a particular OS and, in some

versions of virtualization, the characteristics of a particular
hardware platform

Virtual
Memory
Concept

Applications Applications Applications
and and and
Processes Processes Processes
Virtual Virtual Virtual
Machine 1 Machine 2 Machine n

Virtual Machine Monitor

Host Operating System

Shared Hardware

Figure 2.13 Virtual Memory Concept

Virtual Machine
Architecture

Process perspective:

* the machine on which it executes consists of the virtual memory space
assigned to the process

* the processor registers it may use

* the user-level machine instructions it may execute
* OS system calls it may invoke for 170

* ABI defines the machine as seen by a process

Application perspective:

* machine characteristics are specified by high-level language capabilities
and OS system library calls

* API defines the machine for an application

OS perspective:

* processes share a file system and other I/0 resources
* system allocates real memory and I/0 resources to the processes
* ISA provides the interface between the system and machine

Process and System Virtual Machines

Virtualizing Application
architecture view
F — " " — "
Guest Application Application
process process
ABI
VM Virtualizing
software | software Process
i . virtual
Qs machine
Host ..1 ABI
Hardware
(a) Process VM

Figure 2.14 Process and System Virtual Machines

Process and System Virtual Machines

Applications Applications
Guest .4
0s » 0s
= API
VMM Virtualizing
software System
ISA virtual
Host Hardware machine
(b) System VM

Figure 2.14 Process and System Virtual Machines

SMP OS Considerations

® A multiprocessor OS must provide all the functionality of a

multiprogramming system plus additional features to accommodate
multiple processors

® Key design issues:

The design challenge for a many-core multicore system is to

efficiently harness the multicore processing power and intelligently
manage the substantial on-chip resources efficiently

Virtual Machine
Approach

® Allows one or more cores to be dedicated to a
particular process and then leave the
orocessor alone to devote its efforts to that
Drocess

® Multicore OS could then act as a hypervisor
that makes a high-level decision to allocate
cores to applications but does little in the way
of resource allocation beyond that

UNIX commands
and hibraries

System call
interface

Description
of UNIX

Kernel

General UNIX Architecture

Trap

User level

Kemel level

~~~~~~

User programs

| Libraries

.....
““““

Process
control
subsystem

]
L J

kR |

Character

Block

Device drivers

-~

L

Interprocess
communication

Scheduler

Memory
management

Hardware control

Kemel level

Hardware level

Hardware

Traditional UNIX Kernel

Traditional
UNIX

Kernel



Monolithic Structure: UNIX System Structure

Applications Sul B Je)
User Mode
, shells and commands
Standard Libs compilers and interpreters
system libraries
system-call interface to the kernel
signals terminal file system CPU scheduling
Kernel Mode handling swapping block I/O page replacement

character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
Hardware terminals disks and tapes physical memory

* Two-Layered Structure: User vs Kernel

— All code representing protection and management of resources
placed in same address space

— Compromise of one component can compromise whole OS




Modern
UNIX
Kernel

coff

) . NFS
File mappings

FF5
Device
MEpPIngS "
s5fs
Anonymous
mappings RFS
Disk driver Time-sharing
: Block processes

device
switch

System
PIOCESSES

Tape driver

Network tty
driver driver

Modern UNIX Kernel



Microkernel Structure

application Sestem Call

IFC SErFEr  Drteer

kernel
mode

Monolithic
Kernel
|2ud2){0ud1W

* Moves functionality from the kernel into “user” space
— Small core OS running at kernel level
— OS Services built from many independent user-level processes
— Communication between modules with message passing

* Benefits:
— Easier to extend
— Easier to port OS to new architectures
— More reliable (less code is running in kernel mode)
— Fault Isolation (parts of kernel protected from other parts)
— More secure

* Detriments:
— Performance overhead can be severe for naive implementation



Modules-based Structure

scheduling

device and classes
bus drivers

core Solaris
miscellaneous kernel loadable
| modules system calls
STREAMS executable
modules formats

* Most modern operﬁng systems implement
modules

— Uses object-oriented approach
» careful API design/Few if any global variables

* Each core component is separate

— Each talks to the others over known interfaces
— Each is loadable as needed within the kernel

* Overall, similar to layers but with more flexible

— May or may not utilize hardware enforcement




ExoKernel: Separate Protection from Management

/ Mosaic Y Applications ! Bameg—lbx

|IIII %
Lo Www_ ) LD

CP | \ /“1PC

'\._.I . ll/ } _|-h \L- . Jllu"l
Library operating Wﬁ:{p{/ /

-
Exokernel S bindingsT—__
{ ecure bin jgj@, —

=

e —— N —=
Hardware |Frame buffer| TLB NE~'r'LJ'.'u:-I]::K"‘ak Memory Disk

* Thin layer exports hardware resources directly to users
— As little abstraction as possible
— Secure Protection and Multiplexing of resources
* LibraryOS: traditional OS functionality at User-Level
— Customize resource management for every application
— Is this a practical approach?
* Very low-level abstraction layer
— Need extremely specialized skills to develop LibraryOS



Linux Kernel Components

Processes

—— e e e e e e 8

Network
protocols

Y
Network
device drivers

V_
User level

—_— e = ==

Signals * System calls
-~
Processes
& scheduler File
rd systems
Virtual
memory Y
Char Device Block device
drivers drivers
Traps & Physical Interrupts
faults memory
A ~——
R e S A A "?r'\"\ ¥
CPU System Terminal Disk
memory

Network interface
controller

Linux Kernel Components

Kernel

Hardware



Two Level Scheduling

Resource Allocation

And
Monolithic Distribution
CPU and Resource Two-Level Scheduling
Scheduling

Application Specific
Scheduling

Split monolithic scheduling into two pieces:

— Course-Grained Resource Allocation and Distribution to Cells
» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
» Ultimately a hierarchical process negotiated with service providers

— Fine-Grained (User-Level) Application-Specific Scheduling
» Applications allowed to utilize their resources in any way they see fit

» Performance Isolation: Other components of the system cannot interfere with
Cells use of resources



Concurrency

* “Thread” of execution
— Independent Fetch/Decode/Execute loop
— Operating in some Address space
* Uniprogramming: one thread at a time
— MS/DOS, early Macintosh, Batch processing
— Easier for operating system builder
— Get rid concurrency by defining it away
— Does this make sense for personal computers?
* Multiprogramming: more than one thread at a time
— Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X

— Often called “multitasking”, but multitasking has other
meanings (talk about this later)



How can we give the illusion of multiple processors?

CPU1 CPU2 CPU3 CPU1 cCPU2

Auoway pauoys Time :

Assume a single processor. How do we provide the
illusion of multiple processors?
— Multiplex in time!

Each virtual “CPU” needs a structure to hold:
— Program Counter (PC), Stack Pointer (SP)
— Registers (Integer, Floating point, others...?)
— Call result a “Thread” for now...

How switch from one CPU to the next?

— Save PC, SP, and registers in current state block
— Load PC, SP, and registers from new state block

What triggers switch?
— Timer, voluntary yield, I/0, other things




Properties of this simple multiprogramming technique

* All virtual CPUs share same non-CPU resources
—1/0 devices the same
— Memory the same

* Consequence of sharing:

— Each thread can access the data of every other thread
(good for sharing, bad for protection)

— Threads can share instructions
(good for sharing, bad for protection)

— Can threads overwrite OS functions?
* This (unprotected) model common in:
— Embedded applications
— Windows 3.1/Machintosh (switch only with yield)



What needs to be saved in Modern X867
64-bit Register Set

General Purpose

Registers (GPRs) Address Space

Also: 6 segment registers, control, status, debug, more

Legacy x86 registers
New x64 registers

Byte
Word
Doubleword

Quadword
Double Quadword

XMMe
XMM1
XMM2
XMM3

XMM5
XMM6
XMM7
XMM8
XMMO
XMM10
XMM11
XMM12
XMM13
XMM14

RBX Stack
RCX . R
RDX Instruction Pointer/Flags
REP
RSI
RDI
RSP
R8
RO 2] 15
Rla 3Hji-gn HLw -
R11 63 Word Word
127 High Doubleword | Low doubleword
:i: | High Quadward Low Quadward
R14 4— Increasing Addresses
R15 128-bit XMM Registers
63 e
88-bit floating point
and 64-bit MMX registers
(overlaid)
MMX Part FPRE/MMX&
FPR1/MMX1
FPR2/MMX2
FPR3/MMX3
FPR4 /MMX4
FPR5/MMX5
FPR6/MMX6
FPR7 /MMX7
79 63 o

127

XMM15

>

X\

X
x

G Wwo 0

=W

Traditional 32-bit subset

General-Purpose Registers

1615 87 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX  EDX
BP EBP
S ESl
DI EDI
SP ESP

EFLAGS Register

G130 92T A6 A5 A4 2322 21 20181E17 161514 131217109 8 7 6 54 3 2 1 0

ofojojojo|0

1
DiDjO (DG ]I

W
M

(a4

s
F

0

N
1

[l = B

olo|1|T|s[z|g|alglF
FIF[F|F|F|F|°|F|®|F

1

[
F

1D Flag (1D}
Virtual Interrupt Pending

(VIP)
X Virtual Interrupt Flag (VIF)

Alignment Check (AC)
Wirtual-8086 Mode (VM)
Resume Flag (RF)
Mested Task [NT)

IO Privilege Level {IOPL)

Overflow Flag (OF)

Direction Flag (DF)
Interrupt Enable Flag (IF)

Trap Flag (TF)

Sign Flag (SF)
Zero Flag (ZF)

Auxiliary Carry Flag (AF)

Parity Flag (PF)

Carry Flag (CF)

Ingicates a Status Flag
Indicates a Control Flag
Indicates a System Flag




Modern Technique: SMT/Hyperthreading

* Hardware technique 2 suparscair | 6) multiprocessor =) Hyper-

— Exp|0|t natural properties architecture architecture Threading
of superscalar processors
to provide illusion of
multiple processors

— Higher utilization of
processor resources

* Can schedule each thread
as if were separate CPU

— However, not linear
speedup!

— If have multiprocessor,
should schedule each
processor first

Thread 0 W Thread 1

Time {CPU cycles)

<€

I

* Original technique called “Simultaneous Multithreading”
— See http://www.cs.washington.edu/research/smt/
— Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5



How to protect threads from one another?

* Need three important things:

1. Protection of memory
» Every task does not have access to all memory

2. Protection of I/0 devices

» Every task does not have access to every device
3. Protection of Access to Processor:

Preemptive switching from task to task

» Use of timer

» Must not be possible to disable timer from
usercode



Program’s Address Space

* Address space — the set of
accessible addresses + state
associated with them:

— For a 32-bit processor there are 232 =4
billion addresses

* What happens when you read or
write to an address?

— Perhaps Nothing
— Perhaps acts like regular memory
— Perhaps ignores writes

— Perhaps causes I/0 operation
» (Memory-mapped 1/0)

— Perhaps causes exception (fault)

3
o
>

2o0dg ssauppy wouboud

o

stack

heap

data

text




Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Data 2
Stack 1

X

o
)
>
o
=)
©
Qo

eap 1
Code 1
Stack 2

Data 1

Virtual Virtual

Address Heap 2 Address

Space 1 Code 2 Space 2
[ OS code \

OS data

Translation Map 1 Translation Map 2

Stacks
Physical Address Space



X86 Memory model with segmentation

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
I | | I Space
Global Descriptor
Table (GDT)
Segment
Segment
| | DesCriptor
r Lin. Addr.
4
Segment -
Base Address \

Linear Address

—» Dir | Table | Offset |

Segmentation

-

Physical
Address
Space

Phy. Addr.

Fage Table
Page Directory
|——1- Entry
=  Entry
[ Page
| Paging




How do we multiplex processes?

* The current state of process held in a

process control block (PCB): process state
— This is a “snapshot” of the execution and process number
protection environment
— Only one PCB active at a time B
* Give out CPU time to different processes .
(Scheduling): registers
— Only one process “running” at a time o
— Give more time to important processes AL e
* Give pieces of resources to different list of open files
processes (Protection):
— Controlled access to non-CPU resources s
— Sample mechanisms:
» Memory Mapping: Give each process their Process
own address space
» Kernel/User duality: Arbitrary multiplexing of Control

I/0 through system calls Block



CPU Switch From Process to Process

process P,

-

- idle

P

executing IL /

operating system process P,

interrupt or system call

save state into PCB,

reload state from PCB, 1
interrupt or system call

h i ""-!

save state into PCB,

reload state from PCB,

* This is also called a “context switch”
* Code executed in kernel above is overhead
— Overhead sets minimum practical switching time

— Less overhead with SMT/hyperthreading, but... contention
for resources instead

idle

executing

idle

|executing x




Process Scheduling

Y
y

» e E G HEHE ERL
I/O queue <« |[/Orequest [
time slice
expired

child fork a
executes child

interrupt wait for an
occurs interrupt

A

* PCBs move from queue to queue as they change state

— Decisions about which order to remove from queues are
Scheduling decisions

— Many algorithms possible



	Slide 1
	What is this course about?
	“Software Architecture”
	Platform abstractions
	Managing Complexity
	Comparative software architecture
	A simple module
	Code: instructions in memory
	A Peek Inside a Running Program
	Data in memory 64 bytes: 3 ways
	Heap: dynamic memory
	Slide 12
	Platforms are layered/nested
	Some lessons of history
	Slide 15
	End-to-end application delivery
	SaaS platform elements
	OpenStack, the Cloud Operating System
	Slide 19
	Canonical OS Example: “Classical OS”
	Drivers of Change
	Key Interfaces
	Operating System as Software
	Operating System as Resource Manager
	Evolution of Operating Systems
	Evolution of Operating Systems
	Desirable Hardware Features
	Modes of Operation
	Recall: System Calls: Details
	Modes of Operation
	Slide 31
	Effects on Resource Utilization
	Utilization Histograms
	Compatible Time-Sharing Systems
	CTSS Operation
	Major Advances
	Process
	Development of the Process
	Causes of Errors
	Components of a Process
	Process Management
	Memory Management
	Virtual Memory
	Paging
	Slide 45
	Virtual Memory Addressing
	Information Protection and Security
	Key Elements of an Operating System
	Different Architectural Approaches
	Microkernel Architecture
	Multithreading
	Symmetric Multiprocessing (SMP)
	SMP Advantages
	Slide 54
	OS Design
	Virtual Machines and Virtualization
	Slide 57
	Virtual Machine Architecture
	Slide 59
	Slide 60
	Symmetric Multiprocessor OS Considerations
	Virtual Machine Approach
	Description of UNIX
	Traditional UNIX Kernel
	Monolithic Structure: UNIX System Structure
	Modern UNIX Kernel
	Microkernel Structure
	Modules-based Structure
	ExoKernel: Separate Protection from Management
	Linux Kernel Components
	Two Level Scheduling
	Concurrency
	How can we give the illusion of multiple processors?
	Properties of this simple multiprogramming technique
	What needs to be saved in Modern X86?
	Modern Technique: SMT/Hyperthreading
	How to protect threads from one another?
	Recall from CS162: Program’s Address Space
	Slide 79
	X86 Memory model with segmentation
	How do we multiplex processes?
	CPU Switch From Process to Process
	Process Scheduling

