
The Expert’s Guide to Running
Apache Kafka on Kubernetes

2

SUMMARY� 4

1. INTRODUCTION: WHY KAFKA?� 4

1.1 Data-Driven Realities��� 4

1.2 New Sources of Data�� 5

1.3 Microservices�� 5

1.4 What is Kafka?�� 5

2. KAFKA FEATURES AND USE CASES� 6

3. KAFKA ARCHITECTURE� 7

3.1 Topics, Partitions, Segments��7

3.2 Consumers��� 8

3.3 Brokers�� 9

3.4 Other Innovative Features�� 9

3.4.1 Message Set Abstraction and Batching��� 9

3.4.2 Byte Copying �� 9

3.4.3 Efficient Log Retention Policies��10

4. KAFKA PERFORMANCE AND CONFIGURATION BEST PRACTICES � 11

4.1 Hardware, Runtime, and OS requirements ��� 11

4.1.1 Java�� 11

4.1.2 RAM��� 11

4.1.3 OS Configuration ��� 11

4.1.4 File Descriptor Limits��� 11

4.1.5 Max Socket Buffer Size��12

4.1.6 Maximum Number of Memory Map Areas��12

4.2 Disks and Filesystems Configurations���12

4.3 Topic Configuration���13

4.3.1 Replicate Partitions ���13

4.3.2 Control Maximum Message Size���13

4.3.3 Calculate Data Rate of a Partition���13

4.3.4 Isolate Mission-Critical Topics���13

4.3.5 Create a Clear Policy Regarding the Cleanup of Unused Topics ���13

4.4 Consumer Configuration���14

4.4.1 Socket Buffer Size��14

4.4.2 Avoid Over-Consumption of Data��14

4.4.3 Enforce Data Batching for Consumers���14

4.5 Producers Configuration ���14

4.5.1 Control Durability and Retention of Producer Messages ���14

4.5.2 Configure Optimal Batch Size��15

4.6 Broker Configuration��15

3

WHO SHOULD READ THIS GUIDE?

Application Architects or

Site Reliability Engineers (SRE)

building or running a SaaS

application on Kubernetes that

requires a high-performance

Kafka cluster

Platform Architects building a

Container-as-a-Service platform

that offers Kafka as a stream-

processing option to end users

Database-as-Service Architects

offering multi-tenant Kafka as a

service to end users

4.6.1 Keep Your Broker Resources Consumption in Check�� 15

4.6.2 Manage Log Compaction��� 15

4.6.3 Leader Rebalancing�� 16

5. BEST PRACTICES FOR RUNNING KAFKA ON KUBERNETES � 16

5.1 Why Run Kafka on Kubernetes?��� 16

5.2 How to Deploy Kafka on Kubernetes �� 17

5.2.1 Using Kafka Helm Chart�� 18

5.2.2 Using Kafka Operator�� 18

5.2.3 Manual Deployment�� 18

5.2.4 Storage and Network Considerations �� 19

5.3 Kafka Fault Tolerance and High Availability�� 19

5.3.1 Kafka’s Approach to Leader Election and Quorum �� 19

5.3.2 Extending Kafka High Availability for Storage on Kubernetes �� 20

5.3.3 Portworx Solution��� 21

5.4 Kafka Security in Kubernetes��23

5.4.1 Authentication��24

5.4.2 Data Encryption (SSL/TLS)���24

5.4.3 Authorization Using Access Control Lists (ACLs) ���24

5.4.4 Extending Kafka Security with Portworx��24

5.5 Kafka Metrics Pipeline on Kubernetes��� 26

6. KAFKA CLUSTER BACKUP AND MIGRATION� 27

6.1 Kafka Connect��27

6.2 MirrorMaker��� 28

6.3 Kafka Backup and Recovery with Portworx��� 28

7. KAFKA CLUSTER MIGRATION ON KUBERNETES WITH PORTWORX� 30

8. CONCLUSION� 31

4

SUMMARY

Apache Kafka is a distributed messaging and stream-processing platform originally developed at LinkedIn

in 2011 and donated to the Apache Software Foundation. The platform offers several broad capabilities,

such as publishing, subscribing to and processing real-time streams of records and events, and durably

storing them. These features enable a broad array of use cases, including but not limited to message

queues, event processing, website activity tracking, log aggregation, etc.

Recently, with the rise of containers and microservices, IoT, and Big Data, Kafka has become one of the

most popular open-source tools employed in many applications and data platforms. In particular, more

people are interested in integrating Kafka in their containerized applications and container orchestration

platforms.

In this guide, you’ll learn best practices for running Kafka on Kubernetes. In particular, we discuss:

•	 Kafka’s features and use cases

•	 Architecture and innovative solutions (brokers, topics, consumers, producers, etc.)

•	 Important configuration for Kafka’s High Availability (HA), high performance, throughput, etc.

•	 Key prerequisites for the stable deployment of Kafka on Kubernetes

•	 Building a highly available Kafka cluster on Kubernetes using Kafka’s built-in features and Portworx

volume replication

•	 Storage requirements for Kafka in Kubernetes and how to meet them using Portworx

•	 How to make Kubernetes-based storage for Kafka more secure

•	 How to ensure Kafka’s fault tolerance using cross-cluster migration

•	 Using the Portworx platform to enable efficient Kafka disaster recovery and backup

1. INTRODUCTION: WHY KAFKA?

Kafka had a great rise in popularity over the last couple of years, becoming the platform of first choice for

many tech companies and applications. This trend is the result of a combination of several factors: the

spread of data-driven architectures, the proliferation of data (IoT, Big Data), and the rise of microservices

architecture.

1.1 Data-Driven Realities

Over the 2010s, we have witnessed the spectacular growth of data-driven and event-driven applications

as a result of the reduced cost of cloud infrastructure, the proliferation of Big Data, and the development

of new, more robust business analytics and machine intelligence methods. Real-time data has become

a crucial component of applications’ business logic, feature personalization, and dynamic adjustment of

5

pricing. In this context, the ability to instantly process data events becomes the core requirement of many

applications (online games, e-commerce, social media platforms, etc.).

The event-driven model built into Kafka allows multiple actions to be triggered based on some metric.

Also, Kafka enables sending messages to multiple event handlers in different subsystems, which provides

scalability and resiliency required by many business applications.

1.2 New Sources of Data

Today, web applications are no longer the exclusive sources of valuable data. We see growing diversification

of sources of data with IoT, sensors, self-driving vehicles, and literally any digital device turning into a source

of real-time operational data and critical real-time insights that help manage commercial and enterprise

digital systems. Growing streams of data should be processed more effectively to keep important systems

operational and make customers happy. Kafka was designed to handle data and events processing in a

distributed way with higher throughput and lower latency.

1.3 Microservices

Event-driven architectures fit well into cloud-native applications and microservices—an emerging

approach for running distributed enterprise-grade applications at scale. Microservices are composed of

multiple moving parts (micro-applications) that communicate over the network, sending and generating

large volumes of messages and events.

Microservices run in distributed environments (e.g., computer clusters), and, correspondingly, event-

processing pipelines that underlie microservices should also be distributed. Along with that, these

stream-processing pipelines should have high I/O throughput, resilience, HA, and fault tolerance to

keep microservices operational. Traditional message queue systems were not designed for emerging

distributed use cases and microservices.

We need a stream-processing platform designed with new principles in mind. Kafka enables microservices

to have architectural flexibility and can be used for applications that need pub-sub/streaming/event-

driven models or any combination of the above.

1.4 What is Kafka?

Kafka is a message and stream processing platform that naturally addresses all of these innovative use

cases. It is event-driven, distributed, multi-tenant, highly available, easily integrable with diverse data

sources, and performant. It supports message queues, stream processing, and publish-subscribe in one

uniform model.

In this article, you’ll see how to make the most out of Kafka by integrating it with containers and container

orchestration platforms. Once you have built a robust Kafka deployment on Kubernetes, the road to better

data-driven and event-driven applications is open.

6

2. KAFKA FEATURES AND USE CASES

As we’ve already mentioned, Apache Kafka is a distributed message and event processing system that

runs in a cluster of connected servers that can span multiple data centers.

Kafka can be used for the following purposes:

•	Publishing and subscribing to streams of records. Multiple producers can produce messages to

different categories, and multiple consumers can process them from these categories in parallel.

•	Storing messages and records. Records published to Kafka can be stored in partitioned append-

only logs distributed across the cluster for fault-tolerance. However, Kafka should not be used as a

permanent storage location for records. Messages published to Kafka are usually retained until all

customers have read them and then deleted or moved to another location (e.g., database or data

warehouse).

•	Message stream filtering and transformation. Published records can be processed using

Kafka Streams API that enables message filtering, transformation, and analysis to inform real-time

application logic and power business analytics platforms. For example, an e-commerce application

might take a stream of sales and output a stream of price adjustments computed based on this data.

After processing, messages may be sent to a data warehouse or passed to other consumers.

•	Consuming messages from diverse sources with the Connector API. Kafka can consume

messages in different formats from different sources. Producers can connect to any event and to

message streams and pipe them into the Kafka cluster. Kafka supports Elasticsearch, Splunk,

Cassandra, ActiveMQ, AWS Lambda, and many more.

The above-described basic functionality can be leveraged for a broad array of use cases. Here is a list of

the most important ones:

•	Message brokers and message queues. Kafka allows building a message processing pipeline

that connects producers and consumers of messages. In this pipeline, Kafka acts as a middle layer

distributing messages among consumers and ensuring that messages are not lost due to node

failures. Message brokers are used for multiple reasons, such as decoupling data processing from

data producers and/or buffering unprocessed messages. Kafka enables this model for microservices

thanks to its distributed nature, built-in message partitioning, replication, and fault-tolerance.

•	Application activity tracking. Modern mobile and web applications generate large streams of data,

such as page views, clicks, messages, and other events that can be processed to get business insights,

customize ads, personalize features, etc. Kafka can be used for efficient parallel processing of these

events.

•	Metrics. A common use case for Kafka is the monitoring of operational data. This can involve

aggregating statistics from applications and producing centralized feeds of operational data.

•	Log aggregation. In comparison to file-based log systems, Kafka provides a cleaner and more

abstract view of logs as a stream of messages. It allows for lower latency processing of log data, saving

on storage, enabling distributed data consumption, and providing support for multiple data sources.

7

•	Event sourcing. Event sourcing is a style of application design where state changes are logged

as a time-ordered sequence of records. Kafka’s partitioned log architecture with strong ordering

guarantees makes it a good fit for such types of applications.

3. KAFKA ARCHITECTURE

Kafka uses many conventional approaches for the design of distributed applications and message queue

systems as well as some innovative solutions that make it a good fit for the above-described use cases.

Key architectural concepts of Kafka discussed in this section include topics, partitions, consumers, and

brokers. You’ll also learn how Kafka’s approach differs from traditional message queues and publish-

subscribe platforms.

3.1 Topics, Partitions, Segments

Kafka is built around a concept called a topic. A topic can be thought of as an abstract category to which

records are published. Topics help abstract a message processing pipeline from how records persistence

is implemented. Kafka topics are multi-subscriber and multi-consumer: each topic can have multiple

consumer groups and multiple consumers within these groups.

At the lower abstraction level, topics consist of one or more partitions that represent commit logs stored

in actual files. Partitions are atomic units of topics that store actual messages.

Partitions are designed as ordered and immutable sequences of records that are appended to a structured

commit log. Each record in a partition has a sequential ID called an offset. This offset identifies each record

within the partition and lets the message consumers attend to different points of time in a commit log.

Partitions are designed with parallelism in mind. If a topic has several partitions, messages to them are

saved in a round-robin fashion. This is to ensure that the load between partitions is evenly distributed.

Consumers listen to message events in specific partitions. Once the partition gets a message, it is

processed by its exclusive consumer. Other consumers can process messages arriving at other partitions

in parallel. In a sense, partitions work as a message queue, but one that supports parallelism.

Also, partitions enable distributed message processing by allowing the message log to scale beyond the

size of a single server. As a result, any given topic can encompass an arbitrary amount of data.

Last but not least, partitions make storing messages and records more efficient. Each partition in a Kafka

topic is subdivided into segments, collections of partition messages. Splitting partition data into segments

makes delete and read operations cheaper. If you have all logs in a single file, seek operation becomes

computationally expensive. Kafka has index files that store the offsets and physical positions of messages

in the log files, which makes navigation across logs easier.

8

3.2 Consumers

As we’ve already mentioned, records in Kafka topics are processed by consumers which can run as a

separate process on separate machines. Consumers can be joined into consumer groups organized by a

topic or several topics. A consumer group may be described as a ‘logical subscriber’ to a group of topics.

Each consumer in any consumer group reads messages from exactly one partition of the topic. Because

messages are load-balanced between partitions, they are automatically load-balanced between consumer

instances as well.

Consumers have the liberty of attending to different parts of the commit log using message offsets. Kafka

remembers the position of each consumer in the log, and the consumer can change it. Changing an offset

may be useful when the customer wants to catch up with the previous messages or skip ahead to the

most recent records. For example, if a consumer code has a bug, the consumer can re-consume certain

messages once the bug is fixed.

At the same time, topics are broadcasted to all consumer groups. Thus, if all consumer instances belong

to different consumer groups, each record is broadcasted to all the consumer processes.

You can see how this combination of consumers and consumer groups enables parallelism and a publish-

subscribe pattern.

On the one hand, having multiple consumers read from specific partitions with load-balanced messages

enables a message queue architecture. On the other hand, having multiple consumer groups enables a

publish-subscribe pattern. There is no need to select between those two patterns—Kafka enables both

message broadcasting and parallel processing simultaneously by design.

This provides an obvious benefit over traditional message brokers that usually implement either message

queues or parallel processing. Similarly to a queue, the consumer group abstraction in Kafka allows

dividing up processing over a group of processes. And, as with publish-subscribe, Kafka lets you broadcast

Image: Partition Distribution Among Kafka Consumers and Consumer Groups

Consumer 2

Consumer Group 1

Topic 1

Consumer 1

10 11 12 13 14 15

Consumer 2

Consumer Group 2

Topic 2

8 9 10 11 12 13

4 5 6 7 8 9

Consumer 1

1 2 3 4 5 6

9

messages to multiple groups. Each topic and each broker in Apache Kafka has both of these properties.

Finally, it’s worth mentioning that Kafka is a pull-based system by design. Consumers are free to pull

messages whenever they want. This is important because consumers may have different consumption

rates, and pushing large volumes of messages will make them too busy when the message volume is high.

A pull-based system has a good property that the consumer simply falls behind and catches up when it’s

possible.

3.3 Brokers

A broker is a server that participates in the Kafka cluster. Each broker can be a ‘leader’ or ‘follower’ for a

given partition. In Kafka, leadership and followership are distributed: each broker acts as a leader for some

of the cluster partitions and a follower for the others, so the load is well-balanced within the cluster.

If the broker is a partition leader, it performs the following tasks:

•	 Handles all read and write requests and replicates them to followers

•	 Commits messages to the log when all in-sync replicas acknowledge that the message is received

•	 Mediates communication between consumers and producers

•	 Controls the overall state of the cluster

On the other hand, a ‘follower’ replicates partitions to their log. Any ‘follower’ can become a new leader if

the current leader exits the cluster.

3.4 Other Innovative Features

Kafka incorporates several innovative features that enable high performance and throughput of messaging

pipelines.

3.4.1 Message Set Abstraction and Batching

Along with topics, partitions, and segments, Kafka groups messages into an abstraction called a ‘message

set’ that represents a batch of messages. This approach allows reducing the overhead of the network

round trip when sending a single message at a time. Message batching results in larger network packets,

bigger sequential disk operations, contiguous memory blocks, and other performance benefits.

3.4.2 Byte Copying

Kafka employs a standardized binary message format shared by producers, brokers, and consumers.

This format allows data to be transferred without modification. Maintaining this common format helps

optimize the most important operation: transferring persistent logs over the network.

10

3.4.3 Efficient Log Retention Policies

In a traditional logging system, logs are normally deleted after a certain amount of time. This works well

for temporal data, but keyed data and mutable data—such as changes to a database table—require a

different retention policy. For example, many applications would like to have a way to retain only the most

recent changes to a database record—such as a user password—and delete all previous ones.

Kafka’s log compaction feature allows implementing such a log retention policy. It ensures that Kafka

retains at least the last known value of any given message within a log of data for a single topic partition.

Log compaction provides a more granular retention mechanism that allows reducing the log size while

maintaining critical data. As a result, consumers can restore their state of the topic without Kafka having

to retain a complete log. In Kafka, log compaction can be set per-topic, so you can have topics where

retention policy is enforced by size or time as well as by the age of the record.

Kafka Broker

1 2 3 4 5 6 7 8

K1 K2 K2 K4 K3 K1 K2 K4

V1 V2 V3 V4 V5 V6 V7 V8

Offset

Key

Value

Partition 1

After Compaction

5 6 7 8

K3 K1 K2 K4

V5 V6 V7 V8

Offset

Key

Value

Image: Kafka Log Compaction

11

4. KAFKA PERFORMANCE AND CONFIGURATION BEST PRACTICES

As you now have a general idea of how Kafka works, let’s discuss how to configure Kafka for high

performance. In this section, we focus on general best practices applicable in any environment—on-

premises bare metal, cloud, Kubernetes, etc.

4.1 Hardware, Runtime, and OS requirements

4.1.1 Java

Kafka is written in Scala and Java. To ensure optimal performance, you should run Kafka on the latest

version of JDK (Java Development Kit). At the time of writing, JDK 12 (released on March 29, 2019) is the

latest one. As far as JVM min/max heap settings are concerned, Kafka uses heap space very sparingly—

you do not need more than 6GB on a 32 GB machine, for example.

4.1.2 RAM

In most cases, Kafka can perform optimally with 6GB of RAM for Java heap space. For large production

loads, it is recommended to use machines with 32 GB or more. The LinkedIn setup described in the official

documentation uses dual quad-core Intel Xeon machines with 24 GB of memory. You can estimate a

required memory by assuming you want to buffer active readers and writers for 30 seconds and computing

your memory needs as write _ througput * 30.

Also, enough memory should be provided to the main Kafka dependency, Zookeeper. The recommended

minimum is 4GB, which can be specified in resource requests if running Kafka on Kubernetes.

4.1.3 OS Configuration

Kafka runs well on any Unix-based system and has been extensively tested on Linux and Solaris.

4.1.4 File Descriptor Limits

The number of open file descriptors directly depends on the number of open connections and partition

count. By default, most Linux OS set a limit on this number, and it may be insufficient if your broker has

many partitions and open connections. To determine the required limit, consider that a broker needs at

least

(number _ of _ partitions)*(partition _ size/segment _ size)

to track all log segments in addition to the number of connections the broker makes. Kafka developers

recommend at least 100,000 allowed file descriptors for the broker processes as a starting point.

When running Kafka on Linux, you can edit /etc/sysctl.conf and configure Ulimit to allow 100,000 or

more open files.

https://www.codejava.net/java-se/java-se-versions-history
https://kafka.apache.org/documentation/#java
https://kafka.apache.org/documentation/#java

12

4.1.5 Max Socket Buffer Size

This OS setting controls how much data a sender of the message can buffer into the network socket. The

larger the buffer, the more throughput the network connection has.

4.1.6 Maximum Number of Memory Map Areas

The vm.max _ map _ count kernel setting on Linux defines the number of virtual memory pages that a

process can use. Each log segment in any partition requires a pair of index/timeindex files, each of

which consumes 2 map areas. Correspondingly, each partition with a single log segment requires 2 map

areas. Thus, if you have 50,000 partitions on a broker, you’ll need to allocate at least 100,000 map areas.

By default, the value of vm.max _ map _ count that regulates this configuration is the region of 65,500.

This number may be increased to avoid OutOfMemoryError when running Kafka.

4.2 Disks and Filesystems Configurations

Kafka immediately writes all data to the file system (OS page cache) and avoids storing it in the process’s

in-memory cache. This approach is preferred because storing data in process memory is associated with

higher JVM memory overhead of objects and slow Java garbage collection when the used heap size is big.

Instead, Kafka developers rely on OS-level memory caching system and flush settings.

Common recommendations for configuring a Kafka storage system and file system include the following:

•	 Use multiple drives to get higher writing and reading throughput. Disk throughput is always the

performance bottleneck, and more disks are better.

•	 Do not share the same drives used for Kafka data with other applications and/or system processes to

avoid high latency.

•	 Kafka’s storage performance may be enhanced by RAIDing multiple drives together into a single

volume or formatting each drive as its own directory.

•	 NAS (Network-Attached Storage) is not recommended to use for Kafka.

•	 SSDs can be used, but they don’t deliver too many performance benefits due to Kafka’s sequential

disk I/O approach.

•	 Two filesystems that are used the most with Kafka are EXT4 and XFS. Recently, the XFS filesystem has

demonstrated better performance than other filesystems with no deterioration in stability.

•	 Kafka documentation recommends using the default flush settings which disable application fsync

entirely.

13

4.3 Topic Configuration

4.3.1 Replicate Partitions

For fault tolerance and HA, it is recommended to have 2 or more replicas for each partition in a topic.

The precise choice of partition count depends on the throughput you want to achieve for your hardware.

The more partitions, the greater parallelization of message processing you can achieve. For example,

it is estimated that one partition on a single topic can produce 10 MB/s. You can use this estimate to

assess how many partitions you’ll need to secure jobs for each of the consumers in each of the topics.

Alternatively, you can test by setting one partition per broker per topic and then increase partitions if more

throughput is needed. A good rule of thumb is to keep total partitions for a topic below 10 and the total

partitions in a cluster below 10,000.

4.3.2 Control Maximum Message Size

Messages fed into Kafka should not be too large because it increases seek time. If your producers generate

large messages (~ 1 GB or more), you should consider splitting them into ordered pieces or using pointers

to data (e.g., links to S3). In any case, messages should not exceed 1GB, which is the default segment size.

4.3.3 Calculate Data Rate of a Partition

The partition data rate is the rate at which data is produced to a partition. This metric is important for

evaluating the minimum viable performance of consumers as well as the retention space and periods

needed. The data rate can be calculated by the following formula: average message size * the

number of messages per second.

4.3.4 Isolate Mission-Critical Topics

For a cluster with high-throughput SLOs, you can isolate some topics to the most performant subset of

brokers. For example, if you have multiple transaction systems channeling data to your Kafka cluster,

consider allocating a special subset of brokers for each of these systems. This may have an added benefit

of decreasing the blast radius in case of a cluster incident.

4.3.5 Create a Clear Policy Regarding the Cleanup of Unused Topics

It may be useful to delete unused topics to free up some space. For instance, if no messages are received

by a topic for N days, consider the topic to be dead and clear it from the cluster.

14

4.4 Consumer Configuration

4.4.1 Socket Buffer Size

Kafka batches messages both for consumers and producers to achieve a higher network throughput. To

take advantage of this feature, Kafka users may need to increase the default TCP socket buffer sizes for

brokers, consumers, and producers because the default value of 102,400 KB may not be enough. The

TCP socket buffer size is controlled by the socket.send.buffer.bytes and socket.receive.buffer.

bytes configurations on the consumer, broker, and producer. You can consider setting the socket buffers

to 8 or 16MB for high-bandwidth networks (10 Gbps or higher). If your memory is scarce, 1MB would be a

minimum viable configuration.

4.4.2 Avoid Over-Consumption of Data

Customers should get as much data as they are able to process at any given time. Therefore, it is

recommended for them to digest fixed-sized buffers, preferably off-heap if running in a JVM. This will

prevent consumers from pulling so much data that the JVM would spend all of its time performing garbage

collection instead of processing messages.

4.4.3 Enforce Data Batching for Consumers

It may be desirable to let consumers digest messages only when a certain amount of data is accumulated.

The amount of data to be accumulated before sending to consumers may be configured in fetch.min.

bytes setting. If insufficient data is accumulated by the server, it will wait for more data to arrive before

returning the fetch response. The default setting of 1 byte may be too small for your configuration. Setting

this value higher can improve server throughput at the cost of some latency.

4.5 Producers Configuration

4.5.1 Control Durability and Retention of Producer Messages

Normally, producers keep their messages before the Kafka broker acknowledges the commit. You can

decide how long producers should wait until removing the messages using the acks setting. It controls

the number of acknowledgments the producer requires the leader to have received to consider a request

complete.

If acks is set to None, the producer will behave in a ‘fire and forget’ fashion, deleting the messages once

they are sent without waiting for the acknowledgement. It is recommended to set acks to some reasonable

small value to ensure that messages are not lost but also not overloading the producer’s retention space.

Some trade-offs should be made here. The strongest available guarantee is acks=all. In this case, the

leader will wait for the full set of in-sync replicas to acknowledge the record.

15

4.5.2 Configure Optimal Batch Size

There is a trade-off between different batch sizes for producers. Too small off a batch size can decrease

throughput, whereas a very large size may result in the wasteful use of memory and higher latency. Ideally,

you should select the batch size based on the producer’s data rate, message size, number of partitions

it produces, and available memory. Batch buffer sizes and batch sizes are controlled per partition by the

buffer.memory and batch.size parameters.

4.6 Broker Configuration

4.6.1 Keep Your Broker Resources Consumption in Check

Kafka provides the ability to enforce quotas on requests to control the broker resources used by clients.

You can enforce network bandwidth quotas that define byte-rate thresholds and request rate quotas that

define CPU utilization thresholds as a percentage of network and I/O threads. These settings will help you

to ensure that brokers are not out of CPU and memory.

4.6.2 Manage Log Compaction

Failed log compaction may lead to partitions

that grow without bounds. Log compaction

requires RAM and CPU cycles on the brokers

to complete successfully. To provide more

memory for log compaction threads, you can

tune log.cleaner.dedupe.buffer.size

(total memory used for log dedupe across all

threads) and log.cleaner.threads on your

brokers, but keep in mind that these settings

affect heap usage on the brokers.

You should also consider log retention

settings for standard retention logs:

•	 log.retention.bytes: the maximum

size of the log before deletion

•	 log.retention.hours: the number of

hours to keep a log file before deleting it

•	 log.segment.bytes: the maximum

size of a single log file

Non In-Sync In-Sync

In-Sync In-Sync

In-Sync Not In-Sync

Producer Consumer

Image: In-Sync Replica Sets

16

4.6.3 Leader Rebalancing

Partition leadership must be evenly distributed among brokers in the cluster. Because leadership requires

a lot of computing resources, leader imbalances in the cluster may result in low memory for some brokers.

You should ensure that the setting auto.leader.rebalance.enable is set to True to let Kafka rebalance

leaders if the leader imbalance exceeds leader.imbalance.per.broker.percentage.

5. BEST PRACTICES FOR RUNNING KAFKA ON KUBERNETES

5.1 Why Run Kafka on Kubernetes?

Setting up, configuring, and managing bare metal production Kafka clusters involves a lot of repetitive

tasks and manual procedures that are prone to errors and require significant effort from your infrastructure

and DevOps team. These tasks may include:

•	 Initial infrastructure provisioning, Kafka configuration, and deployment

•	 Configuring and managing ZooKeeper

•	 Decommissioning or adding new brokers

•	 Topic partition rebalancing

•	 Responding to critical events

•	 Performing manual backups

•	 Performing cluster upgrades

To get an idea of some difficulties involved in managing a Kafka cluster, let’s take a look at the cluster

upgrade scenario.

Normally, Kafka version upgrade to a new version (e.g from 2.2.x to 2.4.0) involves the following steps:

•	 Modify server properties such as inter.broker.protocol.version to match the currently installed

version and log.message.format.version to match current message format version.

•	 Upgrade all Kafka brokers one at a time; shut down the broker, update the code, and restart.

•	 Change inter.broker.protocol version to a new version (e.g., 2.4).

•	 Restart brokers one by one again for the new protocol to take effect.

•	 Make one more rolling restart to upgrade log.message.format.version to a new version.

•	 Upgrade ZooKeeper if needed.

17

As you can see, Kafka’s rolling upgrade involves three ‘rolling restarts.’ Each step of the process includes

additional activities, such as secure login to brokers, configuration linting, graceful shutdown of brokers,

broker initialization, etc.

All these operations are error-prone if done manually and are difficult to model declaratively using

generalized infrastructure automation tools.

What is the solution? One option is to write some scripts to automate the process. However, this script

should also be maintained, and possible conflicts with new Kafka versions might arise.

Another option is to use a deployment automation and orchestration tool that supports rolling upgrades

and other administration tasks.

Kubernetes was designed precisely for this—to automate routine tasks of managing distributed

applications reliably by providing a set of orchestration services needed to manage applications at scale.

Kubernetes automates many basic cluster administration tasks, such as rolling updates, upgrades, scaling

up, down, and out, blue-green deployments, addition and removal of nodes, application health checks,

etc. Your administration goals and the desired cluster state can be specified in a declarative way, leaving it

up to Kubernetes Control Plane to maintain the desired state.

Running Kafka in Kubernetes means that the cluster also leverages the power of containerization and

developed infrastructure of tools. For example, you can easily connect Kafka to monitoring and logging

pipelines running in Kubernetes and configure Kafka cluster communication with the outside world using

Kubernetes Services, load balancers, Ingress, and other networking tools provided by Kubernetes.

If these advantages of Kubernetes seem compelling, you can now learn how to deploy and configure Kafka

on Kubernetes in the most efficient way.

5.2 How to Deploy Kafka on Kubernetes

Kubernetes is a mature platform with developed tooling for all major enterprise applications, including

Kafka. Whether you are planning to run Kafka in the self-hosted or bare metal Kubernetes clusters, there

are several deployment options that may suit different levels of expertise and different tasks. Let’s briefly

discuss these methods.

18

5.2.1 Using Kafka Helm Chart

Helm is the same to Kubernetes as apt to Linux and Brew to MacOs—a package manager of pre-configured

Kubernetes resources called charts. A Helm chart contains configuration of all Kubernetes resources

(Deployments, Services, service accounts, etc.) needed to deploy an application on Kubernetes. Charts

embody best practices for configuring dependencies and Kubernetes resources for containerized

applications. There are several Helm charts for Kafka available from the official Helm incubator repository,

Bitnami, and Confluent.

5.2.2 Using Kafka Operator

An Operator is a method of packaging, deploying, and managing an application on Kubernetes. It is a more

comprehensive deployment solution than Helm charts. A Kafka Operator may be thought of as runtime

that manages the full lifecycle of Kafka, including deployment, rolling upgrades, authentication, data

backup, etc. It can be used by a person who knows Kafka well without necessarily having a comparable

level of Kubernetes expertise. There are several Kafka operators out there, including Kafka Strimzi and

Confluent Operator, developed by the creators of Kafka.

5.2.3 Manual Deployment

Manual deployment gives you the most control over how Kafka runs on Kubernetes. If you plan to do

a manual deployment of Kafka on Kubernetes, you need to ensure that Kafka brokers have persistent

identity and storage.

Kafka is a stateful platform strongly dependent on data consistency and durability and persistent

network identifiers. To run Kafka efficiently on Kubernetes, we need to deploy it using Kubernetes stateful

components—StatefulSets and Headless services.

Unlike Deployments and Pods, StatefulSets provide stable identity (IPs) for each pod in a stateful set. If a

pod from a StatefulSet is rescheduled, it gets the same IP as before. This is important because the address

on which clients and consumers connect to brokers should not change. Also, StatefulSets guarantee

ordered, graceful deployment and scaling and ordered rolling updates.

Another useful Kubernetes resource for manual deployment of Kafka is Headless services. By default,

a Kubernetes Service load balances requests between Pods of the service; however, we need clients to

access specific brokers where the partition resides. Headless services provide a single Service IP and allow

interfacing with Kafka service discovery mechanisms without being tied to Kubernetes implementation.

https://github.com/helm/charts/tree/master/incubator/kafka
https://github.com/bitnami/charts/tree/master/bitnami/kafka
https://github.com/confluentinc/cp-helm-charts
https://strimzi.io/
https://www.confluent.io/confluent-operator/

19

5.2.4 Storage and Network Considerations

Kafka requires a low-latency network and storage with high throughput and fast linear writes. Dedicating

fast media such as SSDs to brokers and enabling data locality can increase the overall performance of the

system. We’ll discuss Kubernetes storage for Kafka in the next sections in more detail. In what follows,

we’ll see how to meet all requirements for enterprise-grade Kubernetes deployment of Kafka using Kafka’s

built-in features, Kubernetes features, and Portworx Enterprise storage platform.

5.3 Kafka Fault Tolerance and High Availability

Fault tolerance and High Availability (HA) of a Kafka cluster are achieved through partition replication

and quorum-based mechanisms of leader election which complement each other. Let’s discuss these

mechanisms in more detail.

The first mechanism is partition replication. By default, each partition has one replica that can be scaled

up with a user-defined replication factor (2, 3). Users can set the replication factor on a topic-by-topic

basis.

After the partition is created, Kafka distributes its replicas across the cluster. Replica distribution is done

in a round-robin fashion to avoid stocking all partition replicas on a small number of nodes.

Also, for each partition, Kafka assigns a ‘leader’ of this partition from the list of running brokers. The

partition ‘leader’ manages all data writes and reads to that partition and ensures that all partition replicas

are up-to-date in the partition ‘followers.’ Followers consume messages for replication from the ‘leader’

much like a normal Kafka consumer and apply them to their replicated partition logs.

In Kafka, each broker can be a ‘leader’ of one or more partitions, and each ‘leader’ can be a ‘follower’ for

other partitions at the same time. Obviously, such an approach helps avoid a single point of failure. Also,

because the ‘leader’ role is more computationally intensive, it helps distribute the load between multiple

brokers.

If a partition ‘leader’ fails for some reason, another leader is selected from brokers who have up-to-

date replicas of the partitions—so-called in-sync replicas (ISR). This allows for automatic failover to new

replicas. A leader failure event is managed by a ‘controller,’ who can be any broker elected for this role. The

‘controller’ is responsible for detecting ‘leader’ failures and replacing leaders for all the affected partitions.

A new leader is elected based on the procedure discussed in the following sub-section.

5.3.1 Kafka’s Approach to Leader Election and Quorum

Kafka’s procedure for leader election deviates from the ‘majority vote’ approach used in many popular

consensus algorithms, such as Raft, for example.

In this family of algorithms, the ‘leader’ failure is handled as follows. When the ‘leader’ exits the cluster,

the first follower who receives an election timeout that indicates the absence of a ‘leader’ becomes a new

20

candidate and sends vote requests to other servers. If this candidate has a log that is more complete or as

complete as the logs of other servers in the cluster, it gets a majority vote and is elected as a new leader.

In contrast, Kafka does not use a majority vote but dynamically maintains a set of ISR defined as replicas

that are caught up to the leader. A partition leader regularly monitors the set of ‘in sync’ nodes and,

if a follower exits or falls behind, removes it from the list. Any partition is guaranteed to have at least

one in-sync follower because otherwise, no message will be committed. In fact, any write to a partition is

considered committed only after all in-sync replicas have received the write.

This ensures high fault-tolerance for messages in a partition. Since messages need to be replicated by all

in-sync replicas before commit, consumers only get those messages that will never be lost. This approach

is better for the Kafka usage model where there are many partitions and ensuring leadership balance is

important.

The discussed Kafka’s HA model can be further strengthened with the built-in Rack Awareness feature.

It allows spreading replicas of the same partition across different racks. This feature can be applied to

different broker groupings, such as availability zones in EC2.

5.3.2 Extending Kafka High Availability for Storage on Kubernetes

As we showed, Kafka offers strong fault tolerance guarantees for topics including replication, efficient

mechanism of in-sync followers, and leader election.

Additional HA guarantees can be provided by Kubernetes when you

deploy Kafka on it. By default, Kubernetes knows how to recover

failed pods and place them on new nodes. You can also configure

liveness and readiness probes, Horizontal Pod Autoscaler (HPA),

and implement a cluster auto-scaler to improve the durability of

your Kubernetes-based Kafka cluster even further.

At the same time, however, running Kafka on Kubernetes means

that you should take care of the Kubernetes HA. How to make

Kubernetes highly available is beyond the scope of this article, but

it’s just worth mentioning that you should enable HA for Kubernetes

cluster components (kube-proxy, kubelet, kube-apiserver, etc.) as

well as nodes, load balancers, and other important components.

Also, keep in mind that although Kubernetes scheduler may ensure

that the Kafka pod is relocated to another node, it does not ensure

that it automatically has access to partition data. Therefore, it is

important to consider what happens to the Kafka data when the

broker moves to another node in the Kubernetes cluster.

When the new broker is
started, Kafka will try to
ensure that it is provided with
the in-sync topic replicas
from the cluster ‘leader.’
However, if the broker
replicates data from scratch,
this process may come at the
cost of lower I/O and higher
Kafka cluster latency during
the rebuild. The recovery
time of the failed node and
the broker will depend on
the volume of data to be
synchronized and network
latencies in the cluster during
the rebuild phase.”

21

Therefore, when running Kafka in Kubernetes, we need to devise a data replication strategy that enables

faster failover to replicated partition data in case of broker failure. In the real-world production deployment,

we need Kafka data to be instantly available to a new broker and the entire cluster to have high-throughput

for service producers and consumers at any point in time.

5.3.3 Portworx Solution

The Portworx Enterprise container storage

platform is a natural choice for addressing

the challenges discussed above. In what

follows, we’ll discuss how Portworx works in

general and how it can enable faster failover

of Kafka brokers running in the Kubernetes

cluster.

In a nutshell, Portworx is a software-defined

storage solution for containers that provides

container-granular storage, security,

capacity management, backup, and disaster

recovery features to containers running

in distributed computing environments.

Portworx can be tightly integrated with all

major container orchestrators, such as

Kubernetes or OpenShift, which makes it

easy to use Portworx as a storage solution

for containers in these environments.

At the most basic level, Portworx works as a software-defined storage virtualization solution that can

aggregate all storage resources available in your cluster and create a unified storage layer to manage

them and provide to containers on demand. The storage pool can aggregate different storage types and

classes, including SANs, SSD, HDD, cloud block storage (EBS), etc.

kubernetes storage platform

PX-Autopilot PX-Store

PX-MigratePX-Migrate

PX-SecurePX-DR

22

Kubernetes users can allocate storage from this pool to create Persistent Volumes for applications running

in the cluster. Portworx can ensure that this storage is highly available using replication. It can create

volume replicas according to the user-defined replication factor and distribute those replicas evenly and

dynamically across the Kubernetes cluster. Being tightly integrated into a Kubernetes cluster, Portworx

has built-in cluster topology awareness that helps auto-detect availability zones, regions, or racks and

provision replicas across them.

For these replicas, Portworx uses synchronous replication—each write is automatically synchronized for

each replica. This secures data consistency among them. Also, volume replicas can be accessed from any

node where Portworx runs.

Let’s see how the Kafka broker can quickly rebuild with Portworx in the scenario discussed above.

Once Kubernetes node failure is detected by the Kubernetes API-server, Portworx will ensure that a new

Kafka broker is placed on a node that has replicas of all Kafka topics. This is enabled by the Portworx

Platform’s storage-aware scheduling and hyperconvergence runtime called STORK (STorage Orchestrator

Runtime for Kubernetes). STORK performs health monitoring of Portworx services, kubelet, and other

components of the system, and when a broker failure is detected, it will react faster than kube-scheduler

in rescheduling the broker to a healthy node. This in turn minimizes Kafka’s ISR contractions/expansions.

“Leader” Broker “New” Broker

... ...32 3233 3334 3435 3536 37

PX1 PX1-RPX2 PX2-R

Partition

Image:Kafka Partition Replication with Portworx

23

More precisely, this means that when a failed broker is spun up to the new node, this node already has all

topics and partitions for it to join the list of in-sync replicas. Correspondingly, the broker does not need

to replicate large volumes of data from the ‘leader’ across the network. Thus, using a storage system for

replication avoids the problem of network latencies. Once the data is rebuilt using the Portworx replica,

the broker can quickly catch up with the leader, replicating only those offsets that were added when the

broker was offline.

A special note should be made regarding Zookeeper replication

strategies for Kubernetes. It is known that ZooKeeper is designed to

store configuration and state information. It does not require large

storage capacity because it keeps all state machines in-memory

for high performance. ZooKeeper writes every change to the state

to a durable Write Ahead Log (WAL) on storage media. If a server

fails, ZooKeeper can quickly recover from the WAL by loading them

directly into memory. Thus, because ZooKeeper keeps all data in

memory and has a built-in recovery mechanism, we don’t need to

configure Portworx replication for it.

Portworx unified storage layer can also automatically create disks

based on input disk templates whenever a new node spins up. This

allows for automatic provisioning of storage when auto-scaling

functionality is embedded.

In sum, Portworx Enterprise storage platform can be used to enable

storage- or device-level HA, which complements Kafka application-

level HA and Kubernetes cluster HA. With Portworx, you can further

improve the fault tolerance and resilience of your Kafka cluster on

Kubernetes.

5.4 Kafka Security in Kubernetes

Kafka provides basic security features needed to protect a cluster. The platform ships with the basic

mechanism for authentication, in-flight data encryption, and authorization. Let’s briefly discuss them.

Overall, this approach
significantly reduces the
recovery time. As a result,
Kafka continues to run at
high performance, I/O, and
throughput during the rebuild
process.

Also, since Portworx provides
storage High Availability for
Kafka, users can run fewer
brokers with the same level of
reliability while dramatically
reducing compute costs. For
example, running 3 brokers
instead of 5 brings a 40%
cost savings.”

24

5.4.1 Authentication

Authentication allows verifying the identity of consumers and brokers connecting to Kafka clusters. Kafka

provides SSL and SASL authentication methods. Among the SASL mechanisms, Kafka supports the

following:

•	 SASL/GSSAPI (Kerberos) - starting at version 0.9.0.0

•	 SASL/PLAIN - starting at version 0.10.0.0

•	 SASL/SCRAM-SHA-256 and SASL/SCRAM-SHA-512 - starting at version 0.10.2.0

•	 SASL/OAUTHBEARER - starting at version 2.0

Kafka also provides delegation token-based auth, a lightweight authentication mechanism to complement

existing SASL/SSL methods.

5.4.2 Data Encryption (SSL/TLS)

Kafka provides SSL/TLS encryption of data transferred between brokers and clients as well as consumers

and producers. You can create SSL Certificate Authority and issue certificates for clients and brokers to

enable SSL. This encryption mechanism encrypts only in-flight data passed along the network.

5.4.3 Authorization Using Access Control Lists (ACLs)

Kafka ships with a pluggable Authorizer and an out-of-box authorizer implementation that uses Zookeeper

to store all the ACLs. The Authorizer enables assigning different roles and rights to different clients and

consumers in the cluster. Kafka will check the ACL list to see if a given consumer has the rights to read a

particular topic or whether a certain producer can post messages to a topic. Also, Kafka can be integrated

with external authorization services.

5.4.4 Extending Kafka Security with Portworx

When running Kafka on Kubernetes, there are additional layers of security to be addressed: physical

storage security, Kubernetes authentication, and RBAC and storage management security.

First, we should mention that SSL encryption in Kafka works only on in-flight data passed along the

network. Data sitting in Kafka volumes is not encrypted by default. Ideally, organizations should protect at

the application level but also secure the data layer along with it for added security.

Thus, when running Kafka in a distributed compute environment like Kubernetes and using third-party

storage, it’s reasonable to add this additional layer of disk encryption. You can encrypt your Kafka volumes

with Portworx.

25

Portworx implementation of volume encryption is based on dm-crypt, a disk encryption subsystem of the

Linux kernel that can create, access, and manage encrypted devices. Volumes provisioned with Portworx

can be encrypted with cluster-wide secrets shared by other volumes or per-volume secrets unique to each

volume. Portworx provides an opportunity to encrypt data at rest as well as in transit.

As we’ve mentioned, Kafka supports SSL and SASL authentication mechanism and authorization. They

are enough for enabling authentication in a Kafka cluster. However, we need an additional authentication

mechanism for users, applications, and services interacting with Kafka as part of a Kubernetes cluster

and Kubernetes API server. Kubernetes provides many useful authentication methods, including client

certificates, bearer tokens, an authenticating proxy, HTTP basic auth, SSL, and more. Also, Kubernetes

has a built-in RBAC model that allows assigning different roles to pods and users in different namespaces.

Both Kafka and Kubernetes layers of security can be further extended with Portworx storage authentication

and authorization that allow you to control how volumes are accessed and managed by Kafka users.

For authentication, Portworx accepts OIDC and self-generated JWT tokens, which makes it easy to use

Portworx for enterprise-grade authentication systems, such as SAML 2.0, LDAP or Active Directory.

Also, Portworx supports RBAC for authorization. Once the user is authenticated, Portworx will read the

user roles from the JWT token to determine what actions the user can perform with volumes.

User name: user 1
Groups: group1
Role: system.user

Vol 1User name: user 2
Groups: group2
Role: system.user

User name: user 3
Groups: group3
Role: system.user

Owner: user 1
Groups: group1, group2

Role: system.user

Create Snapshot

Create Snapshot

Send create vol with token
(group, collaborators)

Request token

from OIDC

Validate token
public key

Image: Portworx Security Model

https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/

26

You can also specify ownership rights to control types of access (read, write, administrator) for specific

volumes.

Kubernetes and Portworx RBAC models meet when the user aims to create a Kubernetes resource using

a Portworx volume. Here, the user does not only need RBAC authorization from Kubernetes but also

provides a token generated for Portworx that contains the roles and groups of the user trying to create a

volume.

This completes our security model for Kafka in Kubernetes. By adding a storage security layer, we can

have multi-modal security that covers Kafka application-level security, cluster-level security, and storage-

level security, dramatically decreasing the potential vectors of attacks against your deployments.

5.5 Kafka Metrics Pipeline on Kubernetes

Real-time monitoring of Kafka consumption and production rates, network latency, request and response

times, number of in-sync replicas, and other metrics helps in keeping your Kafka cluster performant and

resilient. A stable monitoring pipeline thus becomes an intrinsic component of Kafka’s daily administration.

Important monitoring targets for your Kafka deployment are the following:

•	 The number of produced messages, average message size, and number of consumed messages

are important metrics for understanding production and consumption rate and calculating required

resources for the Kafka cluster.

•	 Broker’s network throughput, disk I/O, storage space, and CPU usage—monitoring these metrics will

help you prevent out of memory and low disk issues beforehand.

•	 In-sync replica (ISR) shrinks and under-replicated partitions—for example, in-sync shrinks are good

indicators that the data for that partition is in excess of the leader’s resources.

•	 Partitions without an active leader and leader imbalances.

•	 Latency of end-to-end message delivery between Kafka producers and consumers.

Apache Kafka publishes these and other metrics via Java Management Extensions (JMX) by default. To

collect Kafka metrics in Kubernetes, you’ll thus need a solution that understands JMX metrics format.

Prometheus is one of the most popular cloud-native metrics solutions for Kubernetes that understands

JMX metrics. It ships with the JMX exporter—a collector that can scrape and expose mBeans of a JMX

target. This exporter runs as a Java Agent that exposes an HTTP server and serving metrics of the local

JVM.

27

To scrape Kafka metrics to Prometheus, you can deploy JMX Exporter as a sidecar container in Kafka

pods and then configure the JMX agent in the Kafka container to report its metrics to the JMX Exporter

(this can be set in the KAFKA_OPTS environment variable). Eventually, your Prometheus deployment can

be configured to receive and process the JMX-exported metrics.

To visualize and analyze the metrics, you can connect Grafana to Prometheus or ship metrics to

Elasticsearch to visualize and process it in Kibana.

6. KAFKA CLUSTER BACKUP AND MIGRATION

Kafka replication is good at handling issues such as broker failure. However, there are many more disaster

scenarios that necessitate a responsible backup policy, which can be implemented using Kafka built-in

tools as well as third-party solutions. For example, what if your entire datacenter goes down? Or some

topics are deleted due to Kafka’s bug or the error of Kafka administrator? These scenarios require a clear

back up policy for your Kafka cluster.

Overall, there are two broad options to back up your Kafka data using Kafka built-in tools:

•	 Real-time cross-cluster replication/migration with Kafka’s MirrorMaker

•	 Using Kafka Connector to source Kafka topics to a remote database or backup store

6.1 Kafka Connect

Kafka Connect is a built-in component that allows users to connect to outside data sources to import and

export data from/to them. To back up your Kafka data to an outside data store like Amazon S3, you’ll need

a ‘sink’ collector designed for this purpose. The Kafka community has a developed ecosystem of open

source connectors to the most popular data services, such as Elasticsearch, Splunk, ActiveMQ, Amazon

JMX
Exporter

Pod

Image: Sending Kafka Metrics to Prometheus

Container Sidecar

Kafka broker

JMX

JVM

28

Lambda, and more. You can find most of them in the Confluent Connector Hub. Overall, Kafka Connect

is useful if you want to back up the most critical topics, but it does not provide a replica for your entire

cluster. If you want to have a consistent and regularly updated replica of the entire cluster, you should

consider using another option—Kafka MirrorMaker.

6.2 MirrorMaker

MirrorMaker is a built-in tool in Kafka that allows replicating partitions and messages across multiple

datacenters and cloud regions. This feature can be used for cross-cluster backup and recovery or placing

data closer to its consumer (a data locality requirement).

When using MirrorMaker, you mark your current cluster as a source cluster and the cluster you want to

replicate your data to as a destination cluster. Later, source and destination clusters interact as producers

and consumers according to the Kafka built-in paradigm. Data is read by the destination cluster and

written to a topic with the same name in a destination cluster.

It’s worth mentioning that source and destination clusters may be completely independent entities. In

other words, a destination cluster may have its own topics and partitions along with those replicated from

the source cluster.

So, cluster mirroring is not just for fault-tolerance. Its use cases include the following:

•	 Aggregation—Kafka deployment may consist of a single regional cluster in each datacenter and one

aggregate cluster for the data warehouse. Regional clusters can collect data and mirror it to the data

warehousing cluster using MirrorMaker.

•	 Cross-cluster replication

•	 Testing new Kafka versions

6.3 Kafka Backup and Recovery with Portworx

When running on Kubernetes, you also need a way to back up Kubernetes PersistentVolumes Kafka uses

and underlying storage (e.g., SSD) that provide the physical capacity to these Kubernetes abstractions.

Portworx enables Kubernetes-level backup policy and data backup policy for Kafka with the following

tools:

•	PersistentVolume snapshots

•	 3DSnaps

•	 PX-migrate

Volume snapshots allow creating copies of PersistentVolumes used in Kafka pods. With Portworx, you

can create on-demand (one-time) and scheduled volume snapshots.

https://www.confluent.io/hub/

29

Image: Cross-Cluster Migration of Kafka Data with Portworx

The first method allows taking per-volume snapshots of Persistent Volumes. These snapshots can be

used in PersistentVolumeClaims if Kafka data needs to be restored.

Also, using the scheduled volume snapshots, you can specify a snapshotting schedule for each volume in

your Kafka cluster. Portworx will periodically take snapshots of Kafka volumes and store the most recent

snapshots in your Kubernetes cluster according to the retention policy.

Snapshots created with Portworx can be stored locally or in the cloud using STORK (STorage Orchestration

Runtime for Kubernetes). Cloud snapshots can be automatically uploaded to the configured S3-compliant

endpoint (e.g., AWS S3).

Taking snapshots of application data at the storage level, however, may not be enough in a production

setting. With such platforms as Kafka, you need to ensure that snapshots are consistent with the

application’s state. With Portworx, you can ensure snapshot consistency using 3DSnaps.

3DSnaps are application-consistent snapshots. For each 3DSnap, users can specify pre and post rules

that are run on the application pods using the volumes. This feature allows users to pause the applications

before the snapshot is taken and resume I/O after the snapshot is taken. In this way, the snapshots reflect

the application’s state.

1 2 3 4 5 6 1 2 3 4 5 6

Source Cluster Remote Cluster

PV1 PV1PV2 PV2PV3 PV3PV4 PV4

30

7. KAFKA CLUSTER MIGRATION ON KUBERNETES WITH PORTWORX

What Kubernetes MirrorMaker does for the Kafka cluster running on bare metal, Portworx PX-migrate

can provide for the Kubernetes-based Kafka cluster. PX-Migrate is a Portworx tool that lets you migrate

data, configuration, and Kubernetes objects (ConfigMas, Secrets, etc.) across your Kubernetes clusters

seamlessly and with almost no effort. The tool is tightly integrated with the Kubernetes Control Plane and

is aware of all Kubernetes abstractions that should be migrated.

Common use cases for migrating a Kubernetes-backed Kafka cluster to a remote cluster may include:

•	 Maintaining a full up-to-date replica of the Kubernetes-based Kafka cluster

•	 Moving low-priority topics to secondary clusters

•	 Testing new versions of Kafka, Kubernetes, or Portworx using the same application and data

•	 Moving workloads from development/test environments to production without the need to manually

provision the data

•	 Moving workloads from private on-premises clusters to cloud-hosted Kafka clusters like Amazon EKS

or Google GKE

8. CONCLUSION

Deploying Kafka on Kubernetes is the first step towards transforming your message-processing pipeline

into a distributed container-based service. Building a performant Kafka cluster is, in and of itself, a rather

complex task that requires a lot of planning, configuration, making correct architectural decisions, and

clear assessment of infrastructure needs. Deploying Kafka on Kubernetes introduces additional challenges

and new layers of complexity associated with storage, microservices, fault tolerance, and HA.

Since Kubernetes’ open sourcing in 2014, the Kubernetes community has done a lot to make the platform

suitable for stateful applications such as Kafka. Much effort has been made recently to integrate Container

Storage Interface (CSI) and provide stateful features like local persistent volumes, StatefulSets, etc. As

we’ve found in this paper, Portworx can further extend this built-in functionality with container-granular

storage orchestration.

To sum it up, key benefits provided by Portworx for Kafka deployment on Kubernetes include:

•	 Efficient Kafka volumes replication across Kubernetes cluster to enable storage HA and fault tolerance

•	 Data-aware scheduling. Portworx is tightly integrated with the Kubernetes Scheduler to enforce right

broker placement decisions, which reduces time of the new broker syncing with the cluster. This

means lower latency and higher throughput

•	 Extending Kafka built-in security with storage-level authentication, authorization, and ownership

•	 Efficient backup and cross-cluster migration

All these features enable seamless and smooth deployment of Kafka on Kubernetes, which meets all data

persistence and performance guarantees defined by Kafka. We hope that the real-world Kafka deployment

tips discussed in this article make your Kubernetes journey more comfortable and productive.

Portworx, Inc.

4940 El Camino Real, Suite 200

Los Altos, CA 94022

Tel: 650-241-3222 | info@portworx.com | www.portworx.com

mailto:info@portworx.com
http://www.portworx.com

	Summary
	1. Introduction: Why Kafka?
	1.1 Data-Driven Realities
	1.2 New Sources of Data
	1.3 Microservices
	1.4 What is Kafka?

	2. Kafka Features and Use Cases
	3. Kafka Architecture
	3.1 Topics, Partitions, Segments
	3.2 Consumers
	3.3 Brokers
	3.4 Other Innovative Features
	3.4.1 Message Set Abstraction and Batching
	3.4.2 Byte Copying
	3.4.3 Efficient Log Retention Policies

	4. Kafka Performance and Configuration Best Practices
	4.1 Hardware, Runtime, and OS requirements
	4.1.1 Java
	4.1.2 RAM
	4.1.3 OS Configuration
	4.1.4 File Descriptor Limits
	4.1.5 Max Socket Buffer Size
	4.1.6 Maximum Number of Memory Map Areas

	4.2 Disks and Filesystems Configurations
	4.3 Topic Configuration
	4.3.1 Replicate Partitions
	4.3.2 Control Maximum Message Size
	4.3.3 Calculate Data Rate of a Partition
	4.3.4 Isolate Mission-Critical Topics
	4.3.5 Create a Clear Policy Regarding the Cleanup of Unused Topics

	4.4 Consumer Configuration
	4.4.1 Socket Buffer Size
	4.4.2 Avoid Over-Consumption of Data
	4.4.3 Enforce Data Batching for Consumers

	4.5 Producers Configuration
	4.5.1 Control Durability and Retention of Producer Messages
	4.5.2 Configure Optimal Batch Size

	4.6 Broker Configuration
	4.6.1 Keep Your Broker Resources Consumption in Check
	4.6.2 Manage Log Compaction
	4.6.3 Leader Rebalancing

	5. Best Practices for Running Kafka on Kubernetes
	5.1 Why Run Kafka on Kubernetes?
	5.2 How to Deploy Kafka on Kubernetes
	5.2.1 Using Kafka Helm Chart
	5.2.2 Using Kafka Operator
	5.2.3 Manual Deployment
	5.2.4 Storage and Network Considerations

	5.3 Kafka Fault Tolerance and High Availability
	5.3.1 Kafka’s Approach to Leader Election and Quorum
	5.3.2 Extending Kafka High Availability for Storage on Kubernetes
	5.3.3 Portworx Solution

	5.4 Kafka Security in Kubernetes
	5.4.1 Authentication
	5.4.2 Data Encryption (SSL/TLS)
	5.4.3 Authorization Using Access Control Lists (ACLs)
	5.4.4 Extending Kafka Security with Portworx

	5.5 Kafka Metrics Pipeline on Kubernetes

	6. Kafka Cluster Backup and Migration
	6.1 Kafka Connect
	6.2 MirrorMaker
	6.3 Kafka Backup and Recovery with Portworx

	7. Kafka Cluster Migration on Kubernetes with Portworx
	8. Conclusion

