
The eXtreme Programming (XP) Metaphor
and Software Architecture

James Herbsleb, David Root, and James Tomayko

August 2003
CMU-CS-03-167 3

Also published as CMU-ISRI-03-103

School of Computer Science
Carnegie Mellon

Pittsburgh, PA, USA



Keywords: software architecture, extreme programming



Abstract

The Metaphor is intended to contribute to the Agile Programming value of
communication. Previously, some of the author studied the Metaphor as a
means of communication among team members and between them and
clients. This paper examines the Metaphor's contribution to the software
architecture. Both experiments seem to reveal that the Metaphor has poor
effectiveness.



 



Earlier this year, two of the authors did a study of the effectiveness of the XP Metaphor,
concentrating on evaluating it as a communications mechanism and later we planned
examining it in developing the software architecture of a project [1]. The "metaphor" is
the practice of agile processes most ignored by practitioners. Almost all agile methods
explicitly cite "communication" as a key value. This is meant to be communication about
the software among the development team, as well as among and with the clients.

The use of a metaphor is a powerful tool to achieve this [2]. There is a "naive metaphor,"
which is a metaphor very close to the actual product. The financial planner product
described in this experiment is an example. Also, there is a more complex, natural
language, metaphor.

The metaphor has two purposes. The first is the communication described above. A user
ought to have an easier time speaking and giving examples about an "accountant," than
about Quicken. A second reason is that the metaphor is supposed to contribute to the
team's development of software architecture. Ken Auer and Roy Miller describe the XP
metaphor as being "analogous to what most methodologies call architecture"[6]. The
purpose of this paper is to study the effectiveness of the metaphor in this light..

Kent Beck, originator of eXtreme Programming (XP), recently felt the need to justify the
practice in a recent keynote talk, and offered, depending on the outcome of an audience
vote, to "just shut up about it" [3]. While such a vote makes for good theater,
practitioners would be better advised to base such a decision on evidence of
effectiveness, such as these two papers.

A metaphor is meant to be agreed upon by all members of a project as a means of guiding
the structure of the architecture [4]. As an example, "check writer" is a poor metaphor for
financial software tools like Quicken, but "accountant" reveals more functionality to
users and provides more guidance for high-level design.

There are two times where the metaphor can be tested for effectiveness: soon after it is
developed, to see if it helps with design and with communication, and when the
architecture is finally developed, to see how the metaphor influenced it. This study
focuses on the latter. Two authors examined the former in [1].

The Use of the Metaphor to Explain the Architecture

This is how information relative to the architecture was gathered:

Each team was asked to develop a metaphor for their software (see attached assignment,
Appendix A). They were asked, as part of the assignment, to keep track of all of the
metaphors they considered, and the amount of time they spent on the assignment (neither
of which would affect their grades). This data was more extensively used in [1].

Toward the end of the course, students were given individual semi-structured interviews
to find out if their descriptions of the metaphor matched that of the other members of



their team, and the extent to which they were using their metaphor as a means of
communicating their project. They were also asked to sketch the architecture. An analysis
of how these sketches matched their final team architecture is the subject of this paper.
The key questions are:

Cost: What was the cost (in time) for generating a metaphor? (Answered more fully in
[1].

Utility: Were the metaphors considered to be useful in the design process? Were they
considered to be useful for developing architecture?

Experimental Context

The initial and later experiment was conducted in the context of a software development
Studio course and a software requirements course. There were 27 software engineers,
seven architects, and one civil engineer in the requirements course. For the computational
architecture majors, this is a required course; for the engineers, it is an elective. Some of
the software engineers are taking a program that requires them to work on a project
during their entire year of study in school (the Studio project course). All Studio projects
have actual clients with real needs, specific deliverables, and regular meetings with the
client. Typically these projects are assigned five to six Masters of Software Engineering
students, not all of whom were in the software requirements course. Some of these
members were also queried about use of a metaphor on the Studio project.

Experimental Design

The student teams had an assignment in their requirements engineering class to develop a
metaphor for their project, and to track how long it took them to develop one. The teams
had two weeks to complete the assignment. (The exact assignment is reproduced in
Appendix A.) Each team submitted a written statement of their final metaphor, along
with a description of any false starts and the total time they spent on the assignment. The
interviews were recorded on paper, and the early architecture collected on the back of the
sheet.

Even though there was no formal instruction in metaphors or how to create them, the
teams had little difficulty developing metaphors that seemed, to them and to us,
meaningful and appropriate. To our knowledge, there are no suggestions in the agile
literature that formal instruction in metaphor is needed, so this procedure seems close to
what one would expect in industrial settings.

Several weeks after the assignment was turned in, the authors met with each team
member individually to conduct semi-structured interviews according to Appendix B.
The interviews began with fairly general, open-ended questions about what the team was
building, how it would work, and what the main components would be. Next the team
member was asked to describe the metaphor developed by the team, with follow-up
questions as needed until the interviewer understood the metaphor and how it applied to



the project. Finally we asked each interviewee to respond to six statements about the
utility of the team's metaphor with respect to coming up with a design, communication
among team members, communication with the customer, and whether they recommend
metaphor development for future classes. The interviewee was given five possible
responses: strongly agree, agree, neutral, disagree, or strongly disagree. The interviewee
was shown both the statements and the possible responses.

Answers to a slightly modified set of questions and an architectural sketch were extracted
from a single Studio member in each team who did not take the requirements course. The
questionnaire used for this is in Appendix C. If the metaphor has any use, then we think it
will show up in a comparison of the architecture drawings made by team members who
did the assignment, and those who worked with them.

Results

The Metaphors

The metaphors generated by the five Studio teams are presented in the table below.

Project
Wrist camera

Wrist camera

Financial planner

Department of
Transportation
(DOT) web site

Ford Motor
Company software
architecture tool

Metaphor
Portrait
studio

Cities and
Towns

Human
financial
planner
TurboTax

C compiler

Explanation
The software has the capability for transferring
images from one device (e.g., PDA, PC) to another,
and some image processing capabilities. It is much
like a portrait studio, where a camera takes a picture,
which is developed, retouched, printed, and
distributed.
(same assignment as above). Larger, more capable
devices are like cities, in which many services are
available. Smaller, less capable devices are like
small cities, or even villages, where fewer services
are available. Transfer of files is like a train moving
from one municipality to another.
The software follows a specific 5-step method for
preparing a financial plan. The metaphor is that the
program will behave, as would a human planner.
Allows a person to register cars, transfer titles, and
perform other standard DOT functions. Will be
driven by a script that asks questions meaningful to
users, automatically populate new forms with data, in
a way similar to TurboTax.
A tool is being developed to combine architectures of
components into one major architectural artifact.



A way to test the usefulness of the metaphors is to see the extent to which the metaphor is
reflected in the architecture. We had each student indicate through drawings and words
on the back of the interview sheet the nature and form of the architecture as they imagine
it. The final architecture is not done, but nearly all of the students were able to draw a
"preliminary" architecture when requested.

These will be compared to the final architectures. Our preliminary results showed that 4
persons could not draw architecture. For the others, we looked for evidence of at least
one word or concept either in the drawing itself (including text labels), or in the
explanation they gave of the drawing as they described it to us. While 6 showed some
evidence of the metaphor, 14 showed no evidence of the metaphor at all.
On the other hand, the original architectural drawings for the projects are nearly identical.
The drawing made by the other team members later had all the components mentioned by
the students in the first round, plus some additional ones. This might represent additional
understanding, or that the student in question already had, or was taking concurrently, a
software architecture course.

The results from examining the architecture drawings of the other team members are
similarly unsupportive of the metaphor. Only in very few cases did concepts and
terminology from the metaphors seep into the anticipated architecture or the students'
explanations of their architectures.

Conclusion

These studies indicate that natural language metaphors are relatively useless for either
fostering communication among technical and non-technical project members or in
developing architecture.

Admittedly this is a relatively small sample size mostly comprised of relatively
experienced professional software engineers (minimum of 5 years industry experience)
that are highly screened students in the Carnegie Mellon program. However, the
anecdotal data from the field almost universally supports these conclusions.

Why is the metaphor so difficult? Mostly because originators are engineers, and they do
not have the proper skill set. Add to this rather poor presentation of the metaphor [4, 5 ,
6,, 7], and the inability for non-technical people to add to it, and the results are not
surprising. Many teams fall back to the "we built one like this last July" type of
metaphor,

References

[1] Herbsleb, Jim and Jim Tomayko, "How Useful Is the Metaphor Component of Agile
Methods? A Preliminary Study," CMU-CS-03-152, 2003.

[2] Bipin Indurkhya, Metaphor and Cognition, Kluwer, 1992.



[3] http://oopsla.acm.org/fp/files/spe-metahpor.html

[4] Beck, Kent, Extreme Programming Explained, Addison-Wesley, 2000.

[5] Newkirk, James, and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley,2001.

[6] Auer, Ken, and Roy Miller, Extreme Programming Applied, Addison-Wesley, 2002.

[7] Wake, William C , Extreme Programming Explored, Addison-Wesley, 2002.

Appendix A: The Metaphor Assignment

Due: Friday, 1 November 2002

Making a Metaphor

In agile methods, especially eXtreme Programming, a metaphor of the project is
developed to help guide a team toward a good architecture and a clearer way to discuss
the structure of the software with the client.

For more information, read Kent Beck's Extreme Programming Explained [Addison-
Wesley, 1999, Ch. 10] or look at web links. Basically, an 'automated checkbook' is a
poor metaphor for Quicken, as it does much more. An 'automated accountant' is better,
as it captures more functionality.

Try to develop a metaphor for your project among your team. Submit the final metaphor
and all the drafts, false starts, etc. Also, keep careful track of the time it takes to build the
metaphor, and submit that figure also.

Appendix B: The Interview Questionnaire

[The first several questions were designed to see if the students spontaneously used the
metaphor to explain their project. In all interviews, there was at least one person, either a
note-taker or the interviewer, who was unfamiliar with the projects. The interviewee was
asked to give a quick description of what they were building, ostensibly just to provide
some background.]

Background
First, could you give us a little background about your project? Can you describe very
briefly what is it that your group is building?
What are the main parts?
How it will work?

Metaphor
Would you describe the metaphor your group came up with?



Utility of metaphor
For the next several questions, I'll read you a short statement and ask you to tell me how
much you agree or disagree with the statement, from strongly disagree, disagree, neutral,
agree, or strongly agree. [Show them a piece of paper with the rating scale on it.]

The metaphor has been helpful in figuring out the overall design of the program.

The metaphor has helped the team find a common vocabulary.

We often use the metaphor in conversations with each other.

We often use the metaphor in conversations with our customer.

The metaphor is useful in helping everyone reach agreement about our requirements.

I recommend that future classes create metaphors for their projects.

Appendix C

1. Have the members of your Studio project team used a metaphor other than the
software project objective itself to discuss the software? If so, what was it?

2. On the reverse side of this sheet, draw and label the software architecture, as you
presently understand it.

Utility of metaphor for developing the architecture

For the next several questions, read the short statement and indicate how much you agree
or disagree with the statement, from strongly disagree, disagree, neutral, agree, or
strongly agree.

The metaphor has been helpful in figuring out the overall design of the program.

The metaphor has helped the team find a common vocabulary.

We often use the metaphor in conversations with each other.

We often use the metaphor in conversations with our customer.

The metaphor is useful in helping everyone reach agreement about our requirements.

I recommend that future classes create metaphors for their projects.


