
The Functional Side of Logic Programming

Massimo Marchiori

Department of Pure and Applied Mathematics

University of Padova

Via Belzoni �� ����� Padova� Italy

max�hilbert�math�unipd�it

Abstract

In this paper we study the relationships between logic pro�
gramming and functional programming� trying to answer
the following basic question� to what extent is logic pro�
gramming just functional programming in disguise� We
develop a theory to formally express this correspondence�
and exhibit a class that can by right be considered as the
functional core of logic programming� Moreover� since the
functional meaning of each program in this class is provided
constructively� via a transformation from logic to functional
programs� we show how the obtained theoretical results are
useful also in the study of languages integration� termination
issues� and practical implementations�

� Introduction

During the recent years� a huge amount of e�ort was devoted
to integrating the two paradigms of functional programming
and logic programming� and to develop languages combining
them �see for instance �	
��� However� much less attention
was devoted to the basic problem of studying what are the
intimate relationships between logic programming and func�
tional programming� So far� the research only scratched the
surface
nding out the di�erences �e�g� usage of uni
cation
versus matching� resolution vs� reduction� nondeterminism
vs� determinism etc�� see for example ��� 	
��� but not the
connections� that is how much they do have in common� To
the best of our knowledge� only Reddy �e�g� in �
��
��� tried
to shed some light on this fundamental topic�

In this paper we aim to answer the following basic ques�
tion� to what extent is logic programming just functional
programming in disguise� That is to say� what class of logic
programs can be considered the functional core of logic pro�
gramming�

A
rst requirement we impose on such a class �if it ex�
ists� is to be a neat sub�language of logic programming� one
should be able to say of every clause of a logic program
whether it is �functional� or not� the functional �avor should
a fundamental property� visible at clause level� This will be
referred to as locality� every class we consider henceforth
will be understood to be local�

Reddy in his work �
�� started studying the relationships

between functional and logic programming� its outcome was
a transformation from a �local� class of logic programs to
functional programs that is �sound�� that is informally ev�
erything calculated by the obtained functional program is
calculated by the original logic program too�

However� Reddy�s transformation fails to identify a �func�
tional� class of logic programming for various reasons�

First� for the transformation to be sound the target func�
tional language must employ an ad hoc fair�parallel reduc�
tion strategy� This means that the translation of a logic
program �its functional meaning� is not a pure functional
program� which is quite unsatisfactory� We also remark that�
from a practical point of view� not only the obtained code
cannot in general run on any implementation not supporting
fair parallelism� but even using a parallel functional language
an e�ective use is unfeasible� indeed� the degree of paral�
lelism required is far beyond the so called or�parallelism�

of logic programming �which is already considered imprac�
tical�� since even shallow backtracking� can instigate an ar�
bitrary number of in
nite computations �see also below��

Second� the transformation is not complete� that is the
obtained functional program may not terminate despite the
original logic program terminates� Of course� this is unac�
ceptable for a �functional� class of logic programs� a mini�
mal requirement should be that its transformed functional
program behaves just in the same way� not losing a funda�
mental property like termination �in fact� we guess Reddy
was aware of this problem since� albeit not mentioning the
lack of completeness� he only refers to his transformation as
being sound��

Thus� Reddy�s transformation only started shaping the
borders of the problem� In fact� the
rst thing that should
be clari
ed is what means for a logic program to be �func�
tional� in nature� As hinted before� this should mean it is
equivalent to a functional program behaving in the same
way� hence the need for a transformation from logic to func�
tional programs to
nd out the �functional meaning�� How�
ever� the problem lies in what �behaving in the same way�
should signify� A natural response is requiring the trans�
formation to functional programs to be complete� that is to
preserve termination and computed answers� this way an
external observer should not see any di�erence on what the
program computes� Completeness is a minimal requirement
but� still� is not the full answer since it does not rule out
�Turing�carpet� low�level transformations� such a transfor�
mation would be complete for the whole class of logic pro�
grams� hence identifying logic programming with functional

�Backtracking due to nondeterminism is implemented via parallel
processes�

�Failure of a goal to resolve with a clause�

programming� a not very interesting result� This is nothing
more than a restatement of the Church�Turing thesis� ev�
ery other Turing�complete paradigm for calculation would
be equivalent having the same computational power�

The answer we found is to slightly stress the notion of
equivalence� we said an external observer should not see
any di�erence on what the program computes� We also re�
quire he should not see any di�erence on how the program
computes� it should not increase in time complexity� More
formally� logic programs belonging to a certain complexity
class should be transformed into functional programs of the
same �or lower� complexity class� This turns out to be a
good answer� with this requirement� a class can be found
that is maximal among those complete� A great surprise is
that this result holds all the same even if the requirement is
considerably weakened� we can allow the transformation to
arbitrarily worsen the time complexity of a program� pro�
vided only this �worsening� is computable�

These results will be proven
rst on de
nite logic pro�
gramming� and then also extended to normal logic program�
ming where use of negation is allowed�

Also� as a by�product of these correspondence results we
will show how such transformational methodology can pro�
vide new contributions to a clean integration of logic and
functional programming� and to the study of termination
properties for logic programs� Finally� we will test this ap�
proach from a practical point of view� benchmarking the
code produced by the transformation�

� Preliminaries

��� Notation

Sequences of terms will be written in vectorial notation �e�g�
�t�� and j�tj denotes their length �viz� if �t � t�� � � � � tm� m � ��
then j�tj � m�� Sequences in formulas should be seen just as
abbreviations� for instance� ��t�� with �t � t�� � � � � tm� denotes
the string �t�� � � � � tm�� Accordingly� given two sequences �s �
s�� � � � � sn and �t � t�� � � � � tm� �s� �t stands for the sequence
s�� � � � � sn� t�� � � � � tm�

Given a family S of objects �terms� atoms� etc��� Var�S�
is the set of all the variables contained in it� moreover� S
is said to be linear if no variable occurs more than once
in it� To make formulas more readable� we will sometimes
omit brackets from the argument of unary functions �e�g�
f�g�X�� may be written fgX��

For standard logic programming terminology� we will
mainly follow �	��� Logic programs will be considered as
executed with leftmost selection rule and depth�
rst search
rule� that is the standard way in which logic programming
is implemented �for example� in Prolog�� With mgu�s� t� we
indicate a most general uni
er of two terms s and t�

Finally� eIN stands for the set IN�f�g of natural numbers
extended with the ordinal ��

��� Functional Programs

To give relevance to a characterization of a �functional core�
of logic programs� the considered functional language should
not employ features particular to a given language� but in�
stead be somehow the common kernel of the various ML�
Haskell� Miranda�and so on� The functional language con�
sidered here is to a certain extent the most �basic� possible�
it just has function de
nition with patterns�

�Miranda is a trademark of Research Software Ltd�

We will consider functional programs of the following

kind� a �
nite� sequence

����
���

op�pat� � eP�
op�pat� � eP�

���
opnpatn � ePn

����
��� of function

de
nitions� where the opi are operators �not necessarily dis�
tinct�� the pati are patterns and the ei are expressions� As
usual� in this basic functional language operators are func�
tion symbols that cannot occur in patterns� patterns are
linear terms and expressions are terms� We remark that
patterns in a program can also be overlapping �that is� two
or more pati �s in the de
nitions of some operator could be
uni
able�� in which case the di�erent alternatives are tried
out one at a time� from top to bottom�

As far as the reduction strategy is concerned� in accor�
dance to what said above on the generality of the language�
we leave it unspeci�ed� that is to say� all the results we are
going to prove should hold independently on the particular
reduction strategy� be it strict or lazy �when this is not the
case� we will say it explicitly��

Given a functional program F and an expression e� we
will indicate with �F ��e� the result of reducing e w�r�t� F �

��� Locality

We study classes of logic programs under a local point of
view� that is requiring their description can be given clause�
by�clause�

De�nition ��� A class of logic programs is said to be local
when every program belongs to it i� each of its clauses does�

�

Such local classes are very useful because� as mentioned in
the Introduction� they allow to neatly de
ne a sub�language
of logic programming simply restricting the syntax of each
program clause to those characterizing the class�

Non local classes� instead� are in general not very useful
for de
ning a sub�language� not only do they require the
programmer to take into account many program lines all at
once� but in case of program development two fundamental
operations like deleting a clause or adding a clause of the
class to the program can be dangerous �indeed� they are
both safe operations if and only if the class is local��

Thus� from now on we assume that every class of logic
programs we talk about is understood to be local�

Also� we will consider in full generality classes that can
constrain both the logic program and the goal� for nota�
tional convenience we will talk by abuse of a class � of logic
programs meaning a collection both of logic programs and
of goals�

� Functionally Moded Programs

The starting idea is quite natural� since logic programming
deals with relations whereas functional programming deals
with functions� we could try to give some directionality to
the predicates� turning them into functions� Indeed� Reddy
in �
��
�� followed this path� employing the concept of mod�
ing�

De�nition ��� A mode for a n�ary predicate p is a map
from f	� � � � � ng to fin� outg� A moding is a map associating
to every predicate p a mode for it� A moded program is
a program endowed with a moding� An argument position
of a moded predicate is called input �resp� output� if it is
mapped by the mode into in �resp� out�� �

If m is a moding� we sometimes write p�m�	�� � � � �m�k��
�or simply �m�	�� � � � �m�k��� to show the mode of a k�ary
predicate p� Also� p��s� �t� denotes a moded atom p having its
input positions
lled in by the sequence of terms �s� and its
output positions
lled in by �t�

A moded predicate can be roughly seen as a function
from its input arguments to its output ones� For instance�
a predicate p with moding �in� in� out� should be viewed as
a function having two inputs �the
rst two arguments� and
one output �the third one��

Some conditions are needed to ensure this informal in�
terpretation of moded programs is assured�

The idea is to identify the concept of �being an input
argument� with a datum that does not need to be processed
further �being an input its value should be
xed and well
determined�� a safe condition is to require the datum to be
ground� so that its value cannot be modi
ed by some calcu�
lation �if some variable is present� it could be instantiated to
some term� hence modifying the datum�� This is formalized
via the following de
nition�

De�nition ��� A derivation is data driven if in it every
time an atom is selected for uni
cation in a goal� the input
arguments of the atom are ground� �

The syntactical criterion used by Reddy to impose direc�
tionality on logic programs is the Well Moding�

De�nition ��� A goal � p���s�� �t��� � � � � pn��sn� �tn� is Well

Moded if �i � �	� n� � Var��si� �
Si��

j��
Var��tj��

A program is said to be Well Moded �WM� if for each of
its clauses p���t�� �sn���� p���s�� �t��� � � � � pn��sn� �tn� we have

�i � �	�n � 	� � Var��si� �
Si��

j��
Var��tj�� �

This de
nition roughly says that every variable in an
input argument �si of the body �hence� according to our in�
tended interpretation� required as input by some predicate�
must appear earlier in the clause as an output argument �tj
�so it must have been calculated��

Example ��� The usual program to add two numbers

add���X�X��
add�s�X��Y�s�Z��� add�X�Y�Z�

with moding add�in� in� out� is Well�Moded� �

Well Modedness is an appropriate criterion� since�

Theorem ��� ����� If P and G are respectively a Well
Moded program and goal� then every derivation of P � fGg
is data driven�

Using Well Modedness� Reddy in �
�� introduced a trans�
formation of Well Moded logic programs into �parallel� func�
tional programs� This transformation� as said in the Intro�
duction� was there proved to be sound � that is informally
everything calculated by the obtained functional program is
calculated by the original logic program too�

The above result� however� gives only one side of the
coin� since the transformation is not complete� the obtained
functional programs might not terminate� As said in the
Introduction� this is not satisfactory� since completeness is a
minimal requirement that should be asked of a logic program
which is inherently functional� The problem is that so far
only input arguments were considered� imposing on them a
�direction� �groundness� via the Well Moding criterion� but
output arguments were neglected�

So� some other condition should be imposed on the out�
put arguments� but what� Intuitively� we will require the
output arguments of a predicate to be di�erent variables� In�
deed� recall the idea that led to constraining the input argu�
ments� analogously� viewing a predicate as a function from
its input to its output arguments should imply we cannot
predict in advance the result� But if some output argument
is not a variable� this means we know in advance something
about the output� and analogously if some variable occurs
more than once in di�erent arguments� The proper formal�
ization of this idea is�

De�nition ��� A goal � p���s�� �t��� � � � � pn��sn� �tn� is Func�
tionallyModed if it is Well Moded and the sequence �t�� � � � � �tn
is linear and composed only of variables�
A program is said to be Functionally Moded �FM� if its
every clause p���t�� �sn���� p���s�� �t��� � � � � pn��sn� �tn� is Well
Moded� the sequence �t�� � � � � �tn is linear and �t�� � � � � �tn is com�
posed only of variables� �

For instance� it is immediate to check that the program
seen in Example ��� is Functionally Moded�

It is interesting to notice that many parts of logic pro�
gramming codes are written� more or less consciously� in the
�functional� form given by this class� Also� a great deal of
basic logic programs �like e�g� append � reverse� quicksort �
member etc�� belong to it�

We remark how the above de
nition concerns de�nite
logic programs only �i�e� programs without negation�� In
Section � the full de
nition of the class for normal logic
programs �i�e� with negation� will be given�

� Semantics

Suppose a logic program P is run with goal G� Let us denote
with answerP�G�	� the
rst obtained answer� it is equal to

	� � if the computation terminates successfully giving �

as computed answer substitution�

� Fail if the computation terminates with failure�

�� � if the computation does not terminate�

In case 	� the user can activate backtracking to look for the
second answer answerP�G�
�� and so on till for some k � 	
answerP�G�k� returns Fail or � �in case of in
nite answers�
we assume k � � and answerP�G��� � ���

Now� the answer semantics �P �G� of a logic program P

w�r�t� a goal G is de
ned as the �possibly in
nite� sequence

�P �G� � answerP�G�	�� � � � � answerP�G�k�

We can now provide a formal de
nition of termination�

De�nition ��� A program P is said to terminate w�r�t� a
goal G if �P �G� � ��� � � � � �k with �k �� �� �

This kind of termination is usually referred to as universal
�see e�g� ����� to distinguish it from existential termination
�viz� �� �� ��� we will come back on other kinds of termina�
tion later in Section � and Subsection 		�
�

So far� � was considered a special symbol to indicate
nontermination� however� in the following it may also in�
dicate a nonterminating expression� we will write e � �
�for some expression e� meaning that e is a nonterminating
expression in the given functional program� Also� for nota�
tional convenience we will allow usage of every answer � as
substitution� in the special cases � � Fail �resp� � � �� we
assume e� � Fail �resp� e� � �� for every expression e�

D� D
�n�

	
x�y������yn � � t
��x� y�� � � � � yn� � t

D� D
�n�

	
x�y������yn � � t
Fail � Fail

D� D
�n�

	
x�y������yn � � t
��xjFail� � Fail

D� D
�n�

	
x�y������yn � � t
J���x� y�� � � � � yn�� v� � J�t� D

�n�

	
x�y� �����yn� � t
v�

D� D
�n�

	
x�y������yn � � t
J�Fail� v� � D

�n�

	
x�y������yn � � t
v

D� D
�n�

	
x�y������yn � � t
J���xjFail�� v� � D

�n�

	
x�y������yn� � t
v

D	 D
�n�

	
x�y������yn � � t
J���xjJ�u�v��� w� � D

�n�

	
x�y� �����yn � � t
J���xju�� J���xjv�� w��

D
 D
�n�

	
x�y������yn � � t
J�J�u� v�� w� � D

�n�

	
x�y� �����yn� � t
J�u� J�v�w��

D� D
�n�

	
x�y������yn � � t
��xjJ�u�v�� � D

�n�

	
x�y������yn � � t
J���xju�� ��xjv��

Table 	� The Data�handler equations schema�

� Completeness

De�nition ��� A transformation � for a class � of logic
programs is a computable map sending goals of � into ex�
pressions and logic programs of � into functional programs�

�

De�nition ��� A transformation � is said to be complete
for a class � of logic programs if there is a computable func�
tion A such that for every program P � � and goal G � ��
P terminates w�r�t� G implies

A
�
Var�G��

�
��P �

	�
��G�

		
� �P �G� �

The presence of Var�G� in the above formula is to make
explicit that to get a computed answer substitution we have
to remember the names of the variables present in G� we
could however shorten the de
nition omitting Var�G�� since
the variable names could be encoded directly in the trans�
formation ��G� of the goal�

Observe that for a complete � if P terminates w�r�t� G
then also ��P � terminates w�r�t� ��G� �that is� � is termina�
tion preserving�� indeed� if it is not the case then ���P �����G��
� �� and so also A �Var�G�� ���P �����G��� � �� a contra�
diction since �P �G� does not contain � by assumption�

� The Transformation

The transformation � we will now introduce is composi�
tional � that is for every two programs P and Q� ��P 	Q� �
��P �
��Q� for a suitable map
� Hence� we can describe it
giving its de
nition only for a goal� a clause and the map
�

From now on we will assume that the goal is of the
form � p��s� �t�� this is not restrictive since� e�g�� a Func�
tionally Moded goal of the form � p���s�� �t��� � � � � pn��sn� �tn�
can be split into a goal � p��s�� �t�� � � � � �tn� and a clause
p��s�� �t�� � � � � �tn� � p���s�� �t��� � � � � pn��sn� �tn� �where p is a new
predicate� that are both Functionally Moded� giving an equiv�
alent program� This assumption is not necessary� but it is
adopted since it shortens some de
nitions and results�

Logic programming is intrinsically nondeterministic �mul�
tiple choices are processed via backtracking�� to utilize this
feature into functional programming we use a binary sym�
bols J as �pairing operator� to Join together the di�erent
possibilities arising from the nondeterminism� For instance�
if in the logic program a predicate p is nondeterministi�
cally de
ned via two clauses p� q and p� r� in the corre�
sponding functional program we will join these two di�erent
choices via the single rule p� J�q� r��

A constant Fail will be used to denote failure of a logic
program derivation�

We will also employ so�called Data�handler operators�

A Data�handler of the form D
�n�

t� � t�

can be roughly seen as

the function �t��t� �i�e� it expects a datum of the form t�
and gives as output t��� this is formalized by the rule D	
of Table 	� The di�erence is that it also has to cope with
di�erent structures than t�� namely when the J and the
Fail operators crop up �the superscript n helps to determine
what structures are in principle possible�� This is illustrated
by the remaining rules D
 � D� of Table 	� Essentially� it
produces a failure whenever a Fail result is found �rules D
�
D��� otherwise it processes the
rst result among the ones
joined with J � if it is t� �resp� a failure� then via rule D�

�resp� D�� D�� the Data�handler D
�n�

t� � t�

transforms it into

t� �resp� skips it�� and goes on processing the other results�

De�nition ��� If G � � p��s� �t� is Functionally Moded�

then ��G� is D
�j
tj�

	X������Xj�tj� � 	X������Xj�tj�
p��s��

If P � p���t�� �sn��� � p���s�� �t��� � � � � pn��sn� �tn� is Function�
ally Moded� then ��P � is�

�� The equation

p���t�� � D
�j
tn j�

	NV �n��
tn � � 	
sn���
D

�j
tn�� j�

	NV �n����
tn�� � � 	NV �n�jpn 	
sn��

	 	 	

	 	 	 D
�j
t� j�

	NV ����
t�� � 	NV ���jp� 	
s���
��t��

where NV �k� � ��n��j�k��Var��sj�� n ��nj�kVar��tj���
Incidentally� observe that by the de
nition of Functionally
Moded program it follows NV ��� � ��

�� For every predicate p��s� �t� in P � the Data�handler equa�

tions for D
�j
tj�

	
t� � 	
t�
�see Table 	�� and the otherwise�equation�

px � Fail

�� For every occurrence of a function D
�n�

	���� � 	����
in the equa�

tion of point
� the corresponding Data�handler equations
�see Table 	�� �

The idea behind the transformation is that every clause

p���t�� �sn��� � p���s�� �t��� � � � � pn��sn� �tn�

provides an equation de
ning p���t�� �i�e� p� applied to its
input arguments�� Its output value ��sn��� is obtained in the
following way�

Informally� NV �k�� for 	
 k
 n� denotes the Variables
of p�� � � � � pk�� that are Needed for the input arguments of
pk��� � � � � pn and for the output argument of the head pred�
icate p� �i�e� �sk��� � � � � �sn����

We start with the input data ��t��� Then� applying the

rst Data�handler D
�j
t� j�

	NV ����
t� � � 	NV ���jp� 	
s���
� we calculate

p���s�� �that gives its output values for �t�� together with
the values from �t� that are needed in the sequel to calcu�
late some other pi��si� or the
nal output �sn�� �i�e� NV �	���
The process goes on till all the p�� � � � � pn have been pro�

cessed� and the last Data�handler D
�j
tn j�

	NV �n��
tn � � 	
sn���
sim�

ply passes to the
nal output �sn�� the values previously
computed �present in �NV �n�� �tn���

A graphical representation of the followed approach is
illustrated in Figure 	�

In point
�� an otherwise�equation �that is� an equation
where the pattern is a variable� is introduced� indeed� just
like in a logic program a failure occurs when the selected
atom of the goal do not unify with every clause head� here
when no other equation is applicable to solve a function
the otherwise�equation is selected producing Fail as result
�having a variable as pattern ensures it behaves like a �catch�
all���

Note that the Data�handler equations produced by points

� and �� of the transformation can be deduced from the sin�
gle equation produced in 	�� hence� for brevity� from now on
we will omit them in program listings�

Another useful simpli
cation can be obtained observ�
ing that in the equation of point 	� the rightmost Data�
handler can be applied right away to the argument ��t���
Indeed� since NV ��� � �� the rightmost Data�handler is

D
�j
t� j�

	
t�� � 	
s��
if the clause is a fact �i�e� the body is empty�� and

D
�j
t� j�

	
t�� � 	NV ���jp� 	
s���
otherwise�

Hence point 	� can be modi
ed saying that the corre�
sponding equation is

p���t�� � ��s��

when the clause is a fact� and

p���t�� � D
�j
tn j�

	NV �n��
tn � � 	
sn���
D

�j
tn�� j�

	NV �n����
tn�� � � 	NV �n�jpn 	
sn��

	 	 	

	 	 	 D
�j
t� j�

	NV ����
t� � � 	NV ���jp� 	
s���
�NV �	�jp���s���

otherwise� We will assume this modi
cation in the following
examples�

Example ��� Consider the well known append program
used to split a list� i�e� with moding append�out�out�in� �we
will refer to this usage of append as split�append��

append����X�X��
append��A�X��Y��A�Z��� append�X�Y�Z�

The transformation of the
rst clause yields

append�X�� ����X�
append X � Fail

and the transformation of the second gives

append��A�Z�� � D
���

	A�X�Y� � 		AjX��Y�
�A�append�Z��

append X � Fail �

De�nition ��� �
 map�
Let a function M be de
ned this way�

M�flhsP � rhsP g	P ��Q� � N�flhsP � rhsP g�Q� 	 M�P ��Q�
M�f g�Q� � f g
N�flhsP � rhsP g� flhsQ � rhsQg 	Q�� �

if �	 � mgu�lhsP � lhsQ� then

flhsp � J�rhsP 	� rhsQ	�g 	 N�flhsP � rhsP g�Q��
else N�flhsP � rhsP g�Q��

N�flhsp � rhsP g� f g� � f g

Let normalize be a function that deletes from its input
program S all the otherwise�equations and appends at the
end of the program new otherwise�equations corresponding
to all the operators in S�

Then� P
Q � normalize
�
M�P�Q� 	 ��P � 	 ��Q�

	
�

�

The function M can be expressed in this equivalent� more
readable way�

Let P be

����
���

opP� ��s�� � eP�
opP� ��s�� � eP�

���

opPn ��sn� � ePn

����
��� and Q be

�����
����

opQ� ��t�� � e
Q
�

opQ
�

��t�� � e
Q
�

���

opQm ��tn� � eQn

�����
����

Then M�P�Q� is simply

fopPi ��si	� � J�ePi 	� e
Q
j 	� � �	 � mgu�opPi ��si�� op

Q
j ��tj��g

where the equations are ordered lexicographically w�r�t� �i� j�
�viz� the indexes i of the
rst program P have precedence
over the indexes j of the second program Q��

The behaviour of the
 map should be quite clear� First�
employing M� whenever two equations overlap in some cases�
insert an equation that Joins them for these cases only �this
is why a most general uni
er is used� via the binary symbol
J � Then� the original equations are concatenated �to cope
with the other cases�� Finally� the result is normalize�d
in the sense that the otherwise�equations are placed in the
correct position �at the end� to work properly�

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQk
�

B
B
B
B
BBN �

�
�
�
���

�

B
B
B
B
BBN

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

�
�
�
�
��� B

B
B
B
BBN

� �
�
�
�
�
��� JJ

JJ

JJ� ��

��

���

p���t�� � �sn��

DD

pn��sn� � �tn

D

p���s�� � �t�

D

Figure 	� Data�ow representation of a clause p���t�� �sn��� � p���s�� �t��� � � � � pn��sn� �tn��

Although
 as it is works
ne� a useful improvement is
to get rid of useless equations via the following transition
rule�

P 	 fop pat� � e�g 	 Q 	 fop pat� � e�g 	R

P 	 fop pat� � e�g 	Q 	 R
���pat�� � pat��

expressing the fact that the equation op pat� � e� can be
deleted since op pat� � e� will be always selected before�
We will assume this simpli
cation is added to the de
nition
of
 in the further examples�

Example ��� The transformation of the program split�
append �cf� Example ��
� is�

append��A�Z��� J������A�X��� D���

	A�X�Y� � 		AjX��Y�
�A�append�Z���

append�X�� J�����X��Fail�

append X � Fail �

Theorem ��� Let G � � p��s� �t� and P a program� both
Functionally Moded� If �P �G� � ��� ��� � � � � �k then�
��P �

	�
��G�

	
� J���t���� J���t���� � � � J���t�k���� ��t�k�� � � ���

Example ��� We will calculate all the possible splittings
of the list �a� via the translation by � of the split�append
program�

The goal is � append�X�Y��a��� that is transformed via

� into D
���

	X� �X� � � 	X��X� �
append��a���

Reducing this expression yields �when a Data�handler
equation is applied� it is indicated under the equality sym�
bol��

D���

	X��X� � � 	X��X� �
append��a��

� D���

	X��X� � � 	X��X� �
J��� ���a��� D���

	A�X�Y� � 		AjX��Y�
�ajappend������

� D���

	X��X� � � 	X��X� �
J��� ���a��� D���

	A�X�Y� � 		AjX��Y�
�ajJ��� ��� ���Fail���

�
D�

D���

	X��X� � � 	X��X� �
J��� ���a��� D���

	A�X�Y� � 		AjX��Y�
J��a�� ��� ����ajFail���

�
D

D���

	X��X� � � 	X��X� �
J��� ���a��� J���a��� ��� D���

	A�X�Y� � 		AjX��Y�
�ajFail���

�
D�

D���

	X��X� � � 	X��X� �
J��� ���a��� J���a��� ���Fail��

�
D

J��� ���a��� D���

	X��X� � � 	X� �X� �
J���a��� ���Fail��

�
D

J��� ���a��� J���a��� ��� D���

	X��X� � � 	X��X� �
Fail��

�
D�

J��� ���a��� J���a��� ���Fail��

�

From Theorem ��� it easily follows�

Corollary ��	 The transformation � is complete�

��� Modular Programming

An important feature of the transformation � is that it in�
tegrates well with modular programming� Indeed� let us
denote with
 the module relation �that is� P
 Q if P

does not de
ne predicates�functions that are de
ned in Q��
The transformation is module�preserving in the sense that�

Lemma ��
 P
 Q� ��P �
 ��Q�

�to be fussy� note that actually if P
 Q some Data�handler
equation de
ned in ��P � could be repeated in ��Q�� besides
this is not a problem in practice� it can be
xed via a suitable
renaming of the Data�handler equations��

Also� the compositional behaviour of � gets simpler�

Lemma ��� P
 Q� ��P 	Q� � ��P � 	 ��Q�

Hence when dealing with modules
 becomes program com�
position�

Thanks to Lemmata ��� and ���� all the bene
ts of mod�
ular programming can be retained when passing from logic
to functional programming� modules�libraries in logic pro�
gramming can be translated into corresponding modules of
the target functional language� Also� in project development
this avoids global re�transformation in case a single module
is modi
ed�

� Complexity

As said in the Introduction� we are going to use complexity
arguments to provide a suitable notion of functionality�

We take as �time� complexity of a logic program �resp�
of a functional program� P which is run with a goal �resp�
an expression� G� the number of resolution steps �resp� of

rewrite steps� it performs� and denote this measure by C
�
P�G

	
�

Having de
ned a suitable measure of the execution time of
a program� it makes sense to talk about the corresponding
complexity classes with respect to this measure� Now we
have at our disposal a mean to say when a class � of logic
programs is inherently functional in nature� it must have a
transformation that translates every logic program in � into
a functional program having the same �or lower� complexity�
This is expressed by the following de
nition�

De�nition 	�� A transformation � for a class � of logic
programs is said to be complexity preserving if there is a
k � IN such that for every program P � � and goal G � �

C
�
��P �� ��G�

	

 k 	 C

�
P�G

	
�

Observe that the linear factor k is necessary to ensure the
independence of the particular unity measure employed�

With the aid of this new requirement� we can formalize
the vague concept of �being functional��

De�nition 	�� A class of logic programs � is functional
if it has a transformation which is complete and complexity
preserving� �

Functionally Moded programs� as expected� satis
es the
above condition�

Theorem 	�� The class of Functionally Moded programs
is functional�

��� Optimality

We will now show that the class of Functionally Moded pro�
grams can be by right considered the functional core of logic
programs� since it cannot be enlarged without losing func�
tionality� In fact� we will prove even more� Let us weaken
the notion of functional class this way�

De�nition 	�� A class of logic programs � is hardly func�
tional if it has a transformation � which is complete and
there is a computable function F such that for every pro�
gram P � � and goal G � �

C
�
��P �� ��G�

	

 F

�
C
�
P�G

		
�

Hence� we allow the transformation to arbitrarily worsen
the run�time behaviour of the logic program� only provided
the worsening can be expressed by a computable function F
�for instance� with F�x� �
��

x� a class of logic programs in
P could be translated into one in
�EXPTIME��

We can now state the following surprising result�

Theorem 	�� �Optimality
 Every class of logic programs
that properly contains the Functionally Moded programs is
not hardly functional�

Since by Theorem ��� FM is also functional� and func�
tional implies hardly functional� we obtain straight away the
following corollary�

Corollary 	�� The class of Functionally Moded programs
is maximal among the functional ones�

That is to say� we cannot improve on the FM class without
loosing functionality �even hardly functionality ��

	 Beyond Completeness

As we have seen� completeness su!ces to prove the Opti�
mality Theorem� However� from a practical point of view�
we could be interested in a stronger correspondence� This
happens when we are not interested in all the answers of a
logic program� but only in part of them� For instance� if
�P �G� � ���� the logic program yields one answer� and
a complete transformation could not grasp this information
because the program is nonterminating� A natural way to

x this problem is to employ a lazy reduction strategy for
the functional program� and de
ning a corresponding notion
of completeness� However� we stick to the generality require�
ments expressed in Subsection
�
� and de
ne an extension
of completeness that also preserves the answers contained
in a nonterminating logic program disregarding the speci
c
reduction strategy�

De�nition
�� A transformation � is said to be hyper�
complete for a class � of logic programs if there are two
families �A n �

n�eIN and �B n �
n�eIN of computable functions

such that for every program P � � and goal G � �� if
�P �G� � ��� � � � � �k then

�i � eIN� A i

�
Var�G��

�
��P �

	�
B i ���G�

			
� ��� � � � � �min�i�k�

�

If for a transformation hypercompleteness holds when
the reduction strategy is
xed to be lazy� then we call such
a transformation lazy�complete�

Thus� an hypercomplete transformation allows to cal�
culate also
nite approximations of the answer semantics�
allowing to fully reconstruct the answer semantics not only
of terminating� but also of nonterminating logic programs�

The transformation � here presented is not hypercom�
plete� It can however be modi
ed to be such� essentially
making all the functions parametric to store how many an�
swers have been so far calculated� and modifying the equa�
tions using continuations techniques �cf� �
���

Being completeness implied by hypercompleteness� the
existence of such a transformation for the class of Function�
ally Moded programs makes possible to restate the analo�
gous of the Optimality Theorem� where functionality is re�
placed by the stronger notion of �hyperfunctionality� �replac�
ing completeness by hypercompleteness in De
nition ��
��
FM is maximal among the �hyperfunctional� classes of logic
programs
�

Using lazy reduction� however� makes things simpler� In�
deed� Theorem ��� holds for nonterminating logic programs
as well� Hence if a logic program P is run with a goal G �both
in FM of course� yielding �P �G� � ��� � � � � �k with �k � ��

then
�
��P �

	�
��G�

	
� J���t���� J���t���� � � � J���t�k������ � � ����

Thus via lazy reduction one can extract one by one the an�
swers �i �i
 k� avoiding to calculate the inner nontermi�
nating part corresponding to �k�

This can be formally expressed by saying that � is lazy�
complete� it su!ces to take B � �x� � x� and for i
 �

B i �x� � E�s�� � � s�
 �z �
i times

�� � � ��� x�

where E is so de
ned�

E�s�s�x��� J�u� J�v�w��� � J�u�E�s�x�� J�v�w���
E�s�x��Fail� � Fail
E�s���� J�u� J�v�w��� � u

Of course this follows from a stronger result �cf� Theorem ���� of
maximality among the �hardly hyperfunctional� classes� � �

	�� In
nite Lists

As said� usage of logic programming directly in functional
programming can be extremely useful when lazy reduction
is used� In this case� besides the usual advantages of using
logic programming when expressing relations� it is added the
further power of expressing in
nite lists via logic programs
with in
nite answers�

As a simple example� the in
nite list of naturals ���s����
s�s������ � �� can be expressed in a functional program just
using the de
nition of natural number ��
����

natural����
natural�s�X��� natural�X�

where the moding is natural�out��

� Normal Logic Programs

After having analyzed de
nite logic programming� we ex�
tend the results previously obtained to normal logic pro�
gramming� that is allowing usage of negation� As usual in
Prolog� negated atoms are solved using the negation as
�
nite failure procedure� i�e� they succeed if and only if they

nitely fail �see e�g� �����

Since we have already given the de
nition of functionally
moded for a de
nite goal�clause� we can give the de
nition of
Functionally Moded for a normal logic program only giving
it for goal or clauses with at least one occurrence of the not
operator�

De�nition ��� A goal not �p��s� �t�� is functionallymoded if
p��s� �t� is such� A clause p���t�� �sn��� � p���s�� �t��� � � � �
not �pk��sk� �tk��� � � � � pn��sn� �tn� of a normal logic program is
functionally moded if both p���t�� �sn��� � p���s�� �t��� � � � �
pk��sk� �tk� and p���t�� �sn���� p���s�� �t��� � � � � pk����sk��� �tk����
pk����sk��� �tk���� � � � � pn��sn� �tn� are such� A program is Func�
tionally Moded if each its clause is such� �

Example ��� Suppose p and q are both moded �in� out��
Then p�X�f�Z��� q�X�Y ��not �p�Y�Z��� q�Y� Z� is Func�
tionally Moded since both p�X�f�Z��� q�X�Y �� p�Y� Z� and
p�X�f�Z��� q�X�Y �� q�Y�Z� are� �

The transformation � can be extended to cope with Func�
tionally Moded �normal� logic programs with little modi
�
cations�

First� new equations de
ning the not are added �see Ta�
ble
��

Second� every literal of the form not p��s� �t� that appears
in a goal or a clause is viewed by the transformation like
�not p���s� � �that is� the compound function not p has as in�
puts the old inputs of p but produces no output� correspond�
ingly to the fact that a successful negative literal produce
no bindings��

For instance� p�x� y� � not q�x� z�� r�y� z� is seen as
p�x� y� � �not q��x� �� r�y� z��

With these simple extensions� all the results previously
proved only for de
nite programs generalize verbatim to nor�
mal logic programs�

Example ��� In order to brie�y illustrate the behaviour
of the not� suppose the usual split�append program is called
with the goal � not �append�X�Y� �a���� � translates this

goal into the expression D
���

	 � � 	 �
not �append��a���� Analo�

gously to the reduction seen in Example ���� this expression

reduces to D
���

	 � � 	 �
not J��� �� �a��� J���a�� � ���Fail�� that via the

not equation N� reduces to D
���

	 � � 	 �
Fail� and via the Data�

handler equation D

nally gives Fail� �

N� not � � � Fail
N� not �ujv� � Fail
N� not Fail � � �
N� not J�� �� v� � Fail
N� not J��ujv��w� � Fail
N� not J�Fail� v� � not v
N	 not J�J�u�v�� w� � not J�u� J�v�w��

Table
� The not equations�

�� Integration of Languages

The transformation � presented here is of obvious impor�
tance also in the integration of logic and functional pro�
gramming �cf� �	
� for a survey�� since it allows to combine
in a direct and clean way logic programming with functional
programming�

The
rst and simpler form of integration o�ered by the
transformation is to mix every functional language with the
functionally moded logic programs� functional code can be
interleaved directly with such logic programming code� and
hence the programmer can decide to write a certain part
of the program in functional or logic programming style ac�
cording to what paradigm suites better�

Another kind of integration is to allow external functions
directly in the logic program �this is also known as amal�
gamation�� Much work has been done on this topic� like
usage of residuation principles together with sophisticated
forms of incomplete equational uni
cation �e�g� S�uni
cation
in ���� and P�uni
cation in �	���� along with these studies
also a concrete language� GAPlog� has been implemented
�cf� �	�� 	����

All these approaches have to face many di!culties both
of theoretical and of practical �implementative� nature� es�
sentially due to the fact that logic programming as a whole
is not functional� as shown in this paper�

Instead� focusing only on the functional core of logic
programming here found� we can give a much simpler and
cleaner solution to the amalgamation problem�

Call P the Functionally Moded logic program� and F
the functional program to be amalgamated� We divide the
function symbols that can be used in a logic program into
external and internal ones� external symbols can appear
outside the logic program �i�e� in F �� while internal symbols
cannot�

The amalgamation condition for P and F is simply� in
every clause p���t�� �sn���� p���s�� �t��� � � � � pn��sn� �tn� of P � ex�
ternal symbols that are operators in F cannot occur in �t��

Example ���� As a simple example� consider the follow�
ing GAPlog program to compute the factorial� using the
external symbols �� 	� � and � �interpreted as usual in the
functional program to amalgamate��

factorial���	��
factorial�X�X
Y�� factorial�X�	�Y�

This program is Functionally Moded taking factorialmoded
�in� out�� and satis
es the amalgamation condition� �

The amalgamation condition is completely natural in
view of the functional nature of the FM class� indeed� a
clause p���t�� �sn��� � � � � is seen as a function de
nition for
p� �i�e� p���t�� � � � ��� and so the unique restriction it should
satisfy is that no operator �i�e� no other de
ned function�
can appear in the pattern ��t��� Hence� the amalgamation
condition for a logic program P and a functional program
F becomes simply the module relation ��P �
 F �cf� Sub�
section ��	��

It should be noted that amalgamated programs as de�

ned in ��� can also cope with external predicate symbols
that can be used as boolean tests� However� we can con�
sider such apparent extra power just as syntactic sugar� ev�
ery occurrence of �external predicates� p��s� can be seen more
properly as an occurrence of test�p��s��� where test is de
ned
in the logic program by test�true�� � and both p and true
are external symbols �true is intended to be interpreted� as
usual in every reasonable functional language� as the boolean
truth function��

Example ���� Consider the following program after ����

leq���x��
leq�y�	�x�� 	
x� leq�y�x�	�

The leq predicate is designed to be the �less than or equal
to� relation on naturals� to be called with its
rst argument
uninstantiated �e�g� � leq�x�
� would give as answers for
x the naturals �� 	 and
��

In ���
 is an external predicate symbol� But� as said�
the above program can be seen as syntactic sugar for the
following one�

leq���x��
leq�y�	�x�� test�	
x�� leq�y�x�	�
test�true��

where now �� 	� �� ��
 and true are all external symbols
�interpreted as usual in the functional program to amalga�
mate��

And� in fact� with moding leq�out� in� and test�in� the
above program is Functionally Moded and satis
es the amal�
gamation condition� �

Let us summarize what are the di�erences of our ap�
proach to the integration of logic and functional programs
with the others present in the literature�

Being logic and functional programming di�erent para�
digms� all their integrations have been so far obtained by
de
ning a new language that extends logic �or functional�
programming to cope with these di�erences�

Here� we follow just the opposite way� we de
ne a new
�sub��language that diminishes logic programming to drop
these di�erences�

On the one hand� all the other approaches try to seize the
whole expressive power of logic programming� On the other
hand� they need to de
ne every time a new language� not
only with theoretical problems �semantics� completeness� ef�

ciency etc�� but also with the practical problem of build�
ing a correct �and possibly fast � speci
c implementation
for the language� Instead� our approach does not try to re�
tain the full power of logic programming� but does not have
the aforementioned problems since via the transformation
we can rely on the existing implementation of the chosen
target functional language�

Also� the amalgamation proposed in all the papers cited
in this section is only �one�way�� that is the logic program
is extended via external functions but not vice versa� Our

proposal� instead� is completely symmetrical� since also the
functional program can be extended using �possibly negated�
atoms �since� via � � they are just syntactic sugaring for func�
tion calls��

�� Further Applications

���� Using � Beyond Functionally Moded

In this subsection we show how in some cases � can be useful
also outside the scope of Functionally Moded programs�

First� when in the de
nition of Functionally Moded pro�
grams we drop the requirement that �t� must be linear in
a clause p���t�� �sn��� � p���s�� �t��� � � � � pn��sn� �tn�� the trans�
formation � produces a functional program with possibly
non�linear patterns� This program is directly utilizable if
the target language supports them �like� for instance� Mi�
randa�� Even if the language does not support non�linear
patterns but support guards and the equality test �as it is
the case for a great deal of functional languages�� then it
can be proved that the usual implementation of non�linear
patterns via guards �see e�g� �
	� Ch� ��� is safe� In most
of cases� both of these two alternatives do not signi
cantly
a�ect the execution time�

Second� FM could be extended by making use of program
transformation� Suppose to have a transformation T from
a class � of logic programs into FM� This transformation
cannot both be complexity preserving and retain the answer
semantics by the Optimality Theorem ���� Anyway� one of
these two properties could be relaxed� and tested singularly
on each program of � using a su!cient criterion� If the test
is passed� the program is functional �and can be transformed
into an equivalent functional program using the compound
transformation � � T��

An example of this method has been given in �	��� where
it is de
ned a transformation C �called conormal� that trans�
lates into FM a big class of normal logic programs �e�g�
all Well Moded programs �Def� ���� belong to this class��
This program transformation is complexity preserving� and
preservation of the answer semantics is relaxed into preser�
vation of the least Herbrand Model �cf� �	���� Also� C is
compositional �more precisely� C�P 	Q� � C�P � 	 C�Q�� and
module�preserving� To check when C preserves the answer
semantics� some global criteria are employed�

Finally� we remark that the program transformation tech�
nique may be also useful to study termination properties of
logic programs �see the next subsection��

���� Termination

An interesting application of hypercomplete transformations
is the study of termination properties of logic programs� In
logic programming� indeed� the study of termination is a
very hard problem already for universal termination� and
existential termination is still an open problem �cf� �����

A hypercomplete transformation � can provide a mean
for studying a whole spectrum of termination properties� the
only requirement is that the functions B i can be de
ned in
the functional language used with � �indeed� this is the case
for the modi
ed � we hinted at in Section ��� Let�s call
def �B i � this de
nition� Then�

� P �universally� terminates w�r�t� G i�
�def �B � � � ��P ���B � ���G��� terminates

� P existentially terminates w�r�t� G i�
�def �B � � � ��P ���B � ���G��� terminates

� P k�terminates w�r�t�G i� �def �B k ����P ���B k ���G���
terminates �a program k�terminates i� its
rst k an�
swers are di�erent from ��

Although we did not explicitly include in this paper the
modi
cations to make � hypercomplete� � itself can be very
useful in view of the following result�

Theorem ���� Let P and G be respectively a Functionally
Moded program and goal� then P terminates w�r�t� G if and
only if ��P � terminates w�r�t� ��G��

Hence the techniques to prove termination of functional
programs �e�g� ��� 	�� 		�� can be used� via � � also for Func�
tionally Moded logic programs�

The above theorem can also be combined with program
transformation� if we have a transformation T from a class
� of logic programs into FM that preserves nontermination
�i�e� if P � fGg does not terminate then T�P � � fT�G�g
does not terminate as well�� then we can look for su!cient
termination criteria of the programs in the whole class �
simply analyzing their corresponding functional programs
�obtained via the composition of � with T�� For instance�
the conormal transformation mentioned in Subsection 		�	
preserves nontermination� and hence it can be used to study
a much bigger class than FM�

It should be noted that there are also other transforma�
tional approaches to study termination of logic programs
�e�g� the works of �
�� and �	���� where a logic program is
translated into a term rewriting system� Anyway� those ap�
proaches are in principle less general than ours� since they
can cope only with universal termination� and cannot treat
negation�

�� E
ciency

We have seen that � � besides its use in the proof of the
Optimality Theorem� can have a variety of applications� In
particular� it can be used to integrate �Functionally Moded�
logic programming directly in functional programming �or
to amalgamate them as seen in Section 	��� In this section
we try to give some indications on how this approach is good
not only in theory� but also in practice�

We will test the possible use of the transformation � in
conjunction with an existing implementation of a functional
language like program compiler of Functionally Moded pro�
grams� comparing the e!ciency of the obtained code with
the original Prolog one�

It should be remarked that the transformation we pre�
sented in this paper has not been speci
cally designed for an
implementation but only for presentation purposes� Among
the practicable improvements we mention�

� Simple and time�gaining optimizations of � are possi�
ble �e�g� via a simple analysis many Data�handlers can
be removed��

� When it is known what reduction strategy is utilized�
further optimizations are possible �for instance� the
Data�handler equations schema can be written in a
more e!cient way��

� The runtime behaviour can be greatly improved mak�
ing use of features typical of the target language� when
this is known in advance �e�g� guards��

Program Sicstus Prolog � � Clean Saving
Ackermann ���� ��	� ����"
Engineering ���� ���� ����"
Fourcolors
�
� ���� ����"
Quicksort ���� ���� 	��
"
Reverse ��	� 	��
 ����"
Split�append 	���� ���� ����"

Table �� Benchmark Comparison with Sicstus Prolog�

Despite of this� in the benchmarks we have used the pure
code described by the transformation � as presented in this
version of the paper�

The languages employed are the commercial compiler
Sicstus Prolog v
�	 �cf� �	��� and Concurrent Clean v�����
�cf� �
��

��� a public domain non�strict functional language
�that can also be used as a strict language on request��

We chose six di�erent programs� Ackermann �from �
��
pag� �	�� is the usual Ackermann function� Reverse is the
list reversal ��
�� pp� �������� Quicksort is the classical sort
program �after �
�� pag� ����� Split�append is the example
program seen in this paper �Example ��
�� Fourcolors is a
program by L� Pereira and A� Porto to solve the four colors
map problem ���� pp�
���
�	��� and Engineering is a plan�
ning problem for civil engineering after ��� pp� 	���	����

All the tests were executed using a Sparc Classic running
SunOS ��	��C with ��Mbytes of RAM and a cache memory
of 	
�Kbytes� Like in �	��� timings are calculated taking the
best value obtained out of ten runs�

Also� the Sicstus Prolog compiler was not used with its
default byte code� but with the fastcode option speci
c for
Sun architectures �roughly three times faster than the de�
fault�� and on the other hand no �heap tuning� �cf� �	��� was
made to improve Clean execution�

The results are presented in Table � �run times are ex�
pressed in seconds�� Although� of course� the transforma�
tion should be tested with heavier applications� we think
the results give the �avor that employing transformational
techniques like that used here can be productive not only
from a theoretical but also from a practical point of view�

Acknowledgements

I wish to thank Krzysztof R� Apt and Jan Willem Klop�
Thanks also to the referees for some useful style hints�

References

�	� J� Andersson� S� Andersson� K� Boortz� M� Carlsson�
H� Nilsson� J� Wid#en� and T� Sj$oland� Sicstus prolog
user�s manual� SICS Technical Report T����	� Swedish
Institute of Computer Science� 	����

�
� A�W� Appel� Compiling with continuations� Cambridge
University Press� 	��
�

��� K�R� Apt and R� Bol� Logic programming and negation�
A survey� Journal of Logic Programming� 	��
�����
�
	����

��� S� Bonnier and J� Ma%luszy#nski� Towards a clean amal�
gamation of logic programs with external procedures� In
International Conference on Logic Programming� pages
�		��
�� MIT Press� 	���� Also in Proc� Int�l Conf� on
Algebraic and Logic Programming� pages
����� LNCS�
Springer� 	����

��� R� Cartwright� Recursive programs as de
nitions in
rst
order logic� SIAM Journal on Computing� 	
�
������
���� 	����

��� H� Coelho and J�C� Cotta� Prolog by Example� Symbolic
Computation Series� Springer�Verlag� 	����

��� J� Darlington� A�J� Field� and H� Pull� The uni
ca�
tion of functional and logic languages� In D� DeG�
root and G� Lindstrom� editors� Logic Programming�
Functions� Relations and Equations� pages ������ En�
glewood Cli�s� New Jersey� 	���� Prentice�Hall�

��� D� de Schreye and S� Decorte� Termination of logic
programs� The never�ending story� Journal of Logic
Programming� 	��
��	���
��� 	����

��� P� Dembinski and J� Ma%luszy#nski� AND�parallelism
with intelligent backtracking for annotated logic pro�
grams� In Proceedings of the International Symposium
on Logic Programming� pages
����� Boston� 	����

�	�� N� Dershowitz� Termination of rewriting� Journal of
Symbolic Computation� �����		�� 	����

�		� S� Feferman� Logics for termination and correctness of
functional programs� In Y�N� Moschovakis� editor� Logic
from Computer Science� Proceedings of a Workshop
held November �	��
� ����� pages ���	
�� Springer�
Verlag� 	��
�

�	
� M� Hanus� The integration of functions into logic pro�
gramming� From theory to practice� Journal of Logic
Programming� 	�&
�������
�� 	����

�	�� P�H� Hartel and K�G� Langedoen� Benchmarking imple�
mentations of lazy functional languages� In Proceedings
FPCA� pages ��	����� 	����

�	�� A� K'agedal and F� Klu#zniak� Enriching Prolog with S�
uni
cation� In J� Darlington and R� Dietrich� editors�
Workshop on Declarative Programming� Workshops in
Computing� pages �	���� Springer� 	��	�

�	�� G� Lindstrom� J� Ma%luszy#nski� and T� Ogi� Our LIPS
are sealed� Interfacing functional and logic program�
ming systems� In Proceedings of the
th International
Symposium on Programming Language Implementation
and Logic Programming� volume ��	 of LNCS� pages
�
����
� Springer� 	��
�

�	�� J�W� Lloyd� Foundations of Logic Programming�
Springer�Verlag� second edition� 	����

�	�� J� Ma%luszy#nski� S� Bonnier� J� Boye� F� Klu#zniak�
A� K'agedal� and U� Nilsson� Logic programs with exter�
nal procedures� In K� Apt� J� de Bakker� and J� Rutten�
editors� Logic Programming Languages� Constraints�
Functions� and Objects� pages
	���� MIT Press� 	����

�	�� M� Marchiori� Logic programs as term rewriting sys�
tems� In G� Levi and M� Rodr#(guez�Artalejo� edi�
tors� Proceedings of the Third International Conference
on Algebraic and Logic Programming� volume ��� of
LNCS� pages

��
�	� Springer�Verlag� 	����

�	�� M� Marchiori� On safe transformation of logic programs�
Draft� Forthcoming as technical report� 	����

�
�� E�G�J�M�H� N$ocker� J�E�W� Smetsers� M�C�J�D� van
Eekelen� and M�J� Plasmeijer� Concurrent Clean� In
E�H�L� Aarts� J� van Leeuwen� and M� Rem� editors� 	rd
Parallel architectures and languages Europe �PARLE��
volume ������� of LNCS� pages
�
�

�� Springer�
Verlag� 	��	�

�
	� S�L� Peyton Jones� The Implementation of Functional
Programming Languages� International Series in Com�
puter Science� Prentice�Hall� 	����

�

� R� Plasmeijer and M� van Eekelen� Functional Pro�
gramming and Parallel Graph Rewriting� International
Computer Science Series� Addison�Wesley� 	����

�
�� K� Rao� D� Kapur� and R�K� Shyamasundar� A transfor�
mational methodology for proving termination of logic
programs� In Proceedings of the Fifth Conference on
Computer Science Logic� volume �
� of LNCS� pages

	��

�� Berlin� 	��
� Springer�Verlag�

�
�� U�S� Reddy� Transformation of logic programs into
functional programs� In Proceedings of the Interna�
tional Symposium of Logic Programming� pages 	���
	��� IEEE� February 	����

�
�� U�S� Reddy� On the relationships between logic and
functional programming� In D� DeGroot and G� Lind�
strom� editors� Logic Programming� Functions� Rela�
tions and Equations� pages ����� Prentice�Hall� Engle�
wood Cli�s� New Jersey� 	����

�
�� L� Sterling and E� Shapiro� The Art of Prolog� MIT
Press� 	����

