The Functional Side of Logic Programming

Massimo Marchiori
Department of Pure and Applied Mathematics
University of Padova
Via Belzoni 7, 35131 Padova, Italy
max@hilbert.math.unipd.it

Abstract

In this paper we study the relationships between logic pro-
gramming and functional programming, trying to answer
the following basic question: to what extent is logic pro-
gramming just functional programming in disguise? We
develop a theory to formally express this correspondence,
and exhibit a class that can by right be considered as the
functional core of logic programming. Moreover, since the
functional meaning of each program in this class is provided
constructively, via a transformation from logic to functional
programs, we show how the obtained theoretical results are
useful also in the study of languages integration, termination
issues, and practical implementations.

1 Introduction

During the recent years, a huge amount of effort was devoted
to integrating the two paradigms of functional programming
and logic programming, and to develop languages combining
them (see for instance [12]). However, much less attention
was devoted to the basic problem of studying what are the
intimate relationships between logic programming and func-
tional programming. So far, the research only scratched the
surface finding out the differences (e.g. usage of unification
versus matching, resolution vs. reduction, nondeterminism
vs. determinism etc., see for example [7, 12]), but not the
connections, that is how much they do have in common. To
the best of our knowledge, only Reddy (e.g. in [24, 25]) tried
to shed some light on this fundamental topic.

In this paper we aim to answer the following basic ques-
tion: to what extent is logic programming just functional
programming in disguise? That is to say, what class of logic
programs can be considered the functional core of logic pro-
gramming?

A first requirement we impose on such a class (if it ex-
ists) is to be a neat sub-language of logic programming: one
should be able to say of every clause of a logic program
whether it is ‘functional’ or not, the functional flavor should
a fundamental property, visible at clause level. This will be
referred to as locality: every class we consider henceforth
will be understood to be local.

Reddy in his work [24] started studying the relationships

between functional and logic programming: its outcome was
a transformation from a (local) class of logic programs to
functional programs that is ‘sound’, that is informally ev-
erything calculated by the obtained functional program is
calculated by the original logic program too.

However, Reddy’s transformation fails to identify a ‘func-
tional’ class of logic programming for various reasons.

First, for the transformation to be sound the target func-
tional language must employ an ad hoc fair-parallel reduc-
tion strategy. This means that the translation of a logic
program (its functional meaning) is not a pure functional
program, which is quite unsatisfactory. We also remark that,
from a practical point of view, not only the obtained code
cannot in general run on any implementation not supporting
fair parallelism, but even using a parallel functional language
an effective use is unfeasible: indeed, the degree of paral-
lelism required is far beyond the so called or-parallelism!
of logic programming (which is already considered imprac-
tical), since even shallow backtracking” can instigate an ar-
bitrary number of infinite computations (see also below).

Second, the transformation is not complete, that is the
obtained functional program may not terminate despite the
original logic program terminates. Of course, this is unac-
ceptable for a ‘functional’ class of logic programs: a mini-
mal requirement should be that its transformed functional
program behaves just in the same way, not losing a funda-
mental property like termination (in fact, we guess Reddy
was aware of this problem since, albeit not mentioning the
lack of completeness, he only refers to his transformation as
being sound).

Thus, Reddy’s transformation only started shaping the
borders of the problem. In fact, the first thing that should
be clarified 1s what means for a logic program to be ‘func-
tional’ in nature. As hinted before, this should mean it is
equivalent to a functional program behaving in the same
way, hence the need for a transformation from logic to func-
tional programs to find out the ‘functional meaning’. How-
ever, the problem lies in what ‘behaving in the same way’
should signify. A natural response is requiring the trans-
formation to functional programs to be complete, that is to
preserve termination and computed answers: this way an
external observer should not see any difference on what the
program computes. Completeness is a minimal requirement
but, still, is not the full answer since it does not rule out
‘Turing-carpet’ low-level transformations: such a transfor-
mation would be complete for the whole class of logic pro-
grams, hence identifying logic programming with functional

1Backtracking due to nondeterminism is implemented via parallel
processes.
2 Failure of a goal to resolve with a clause.

programming, a not very interesting result. This is nothing
more than a restatement of the Church-Turing thesis: ev-
ery other Turing-complete paradigm for calculation would
be equivalent having the same computational power.

The answer we found is to slightly stress the notion of
equivalence: we said an external observer should not see
any difference on what the program computes. We also re-
quire he should not see any difference on how the program
computes: it should not increase in time complexity. More
formally, logic programs belonging to a certain complexity
class should be transformed into functional programs of the
same (or lower) complexity class. This turns out to be a
good answer: with this requirement, a class can be found
that is maximal among those complete. A great surprise is
that this result holds all the same even if the requirement is
considerably weakened: we can allow the transformation to
arbitrarily worsen the time complexity of a program, pro-
vided only this ‘worsening’ is computable.

These results will be proven first on definite logic pro-
gramming, and then also extended to normal logic program-
ming where use of negation is allowed.

Also, as a by-product of these correspondence results we
will show how such transformational methodology can pro-
vide new contributions to a clean integration of logic and
functional programming, and to the study of termination
properties for logic programs. Finally, we will test this ap-
proach from a practical point of view, benchmarking the
code produced by the transformation.

2 Preliminaries

2.1 Notation

Sequences of terms will be written in vectorial notation (e.g.
t), and |t] denotes their length (viz. if t = t1,...,tm, m > 0,
then |¢| = m). Sequences in formulas should be seen just as

abbreviations: for instance, [f], with § = t1,. .., t;, denotes
the string [t1, ..., tm]. Accordingly, given two sequences § =
81,...,8, and t = ¢1,...,tm, 5,1 stands for the sequence
51,...,Sn,t1,...,tm.

Given a family S of objects (terms, atoms, etc.), Var(S)
is the set of all the variables contained in it; moreover, S
is said to be linear if no variable occurs more than once
in it. To make formulas more readable, we will sometimes
omit brackets from the argument of unary functions (e.g.
f(g(X)) may be written fgX),

For standard logic programming terminology, we will
mainly follow [16]. Logic programs will be considered as
executed with leftmost selection rule and depth-first search
rule, that is the standard way in which logic programming
is implemented (for example, in Prolog). With mgu(s,t) we
indicate a most general unifier of two terms s and ¢.

Finally, IN stands for the set INU{w} of natural numbers
extended with the ordinal w.

2.2 Functional Programs

To give relevance to a characterization of a ‘functional core’
of logic programs, the considered functional language should
not employ features particular to a given language, but in-
stead be somehow the common kernel of the various ML,
Haskell, Miranda®and so on. The functional language con-
sidered here is to a certain extent the most ‘basic’ possible:
it just has function definition with patterns.

3Miranda is a trademark of Research Software Ltd.

We will consider functional programs of the following
opypat; = 6£
opgpatz = e

kind: a (finite) sequence of function

opnpaty = 65

definitions, where the op; are operators (not necessarily dis-
tinct), the pat; are patterns and the e; are ezpressions. As
usual, in this basic functional language operators are func-
tion symbols that cannot occur in patterns, patterns are
linear terms and expressions are terms. We remark that
patterns in a program can also be overlapping (that is, two
or more pat;’s in the definitions of some operator could be
unifiable), in which case the different alternatives are tried
out one at a time, from top to bottom.

As far as the reduction strategy is concerned, in accor-
dance to what said above on the generality of the language,
we leave it unspecified: that is to say, all the results we are
going to prove should hold independently on the particular
reduction strategy, be it strict or lazy (when this is not the
case, we will say it explicitly).

Given a functional program F' and an expression e, we
will indicate with (F)(e) the result of reducing e w.r.t. F'.

2.3 Locality

We study classes of logic programs under a local point of
view, that is requiring their description can be given clause-
by-clause:

Definition 2.1 A class of logic programs is said to be local
when every program belongs to it iff each of its clauses does.

d

Such local classes are very useful because, as mentioned in
the Introduction, they allow to neatly define a sub-language
of logic programming simply restricting the syntax of each
program clause to those characterizing the class.

Non local classes, instead, are in general not very useful
for defining a sub-language: not only do they require the
programmer to take into account many program lines all at
once, but in case of program development two fundamental
operations like deleting a clause or adding a clause of the
class to the program can be dangerous (indeed, they are
both safe operations if and only if the class is local).

Thus, from now on we assume that every class of logic
programs we talk about is understood to be local.

Also, we will consider in full generality classes that can
constrain both the logic program and the goal: for nota-
tional convenience we will talk by abuse of a class A of logic
programs meaning a collection both of logic programs and
of goals.

3 Functionally Moded Programs

The starting idea is quite natural: since logic programming
deals with relations whereas functional programming deals
with functions, we could try to give some directionality to
the predicates, turning them into functions. Indeed, Reddy
in [24, 25] followed this path, employing the concept of mod-

ng:

Definition 3.1 A mode for a n-ary predicate p is a map
from {1,...,n} to {in,out}. A moding is a map associating
to every predicate p a mode for it. A moded program is
a program endowed with a moding. An argument position
of a moded predicate is called input (resp. output) if it is
mapped by the mode into in (resp. out). O

If m is a moding, we sometimes write p(m(1),...,m(k))
(or simply (m(1),...,m(k))) to show the mode of a k-ary
predicate p. Also, p(s;t) denotes a moded atom p having its
input positions filled in by the sequence of terms 3, and its
output positions filled in by ¢.

A moded predicate can be roughly seen as a function
from its input arguments to its output ones. For instance,
a predicate p with moding (in,in, out) should be viewed as
a function having two inputs (the first two arguments) and
one output (the third one).

Some conditions are needed to ensure this informal in-
terpretation of moded programs is assured.

The idea is to identify the concept of ‘being an input
argument’ with a datum that does not need to be processed
further (being an input its value should be fixed and well
determined): a safe condition is to require the datum to be
ground, so that its value cannot be modified by some calcu-
lation (if some variable is present, it could be instantiated to
some term, hence modifying the datum). This is formalized
via the following definition:

Definition 3.2 A derivation is data driven if In it every
time an atom is selected for unification in a goal, the input
arguments of the atom are ground. (I

The syntactical criterion used by Reddy to impose direc-
tionality on logic programs is the Well Moding:

Definition 3.3 A goal « pi(s1; El), oy Pn(8n;tn) is Well
Moded if Vi € [1,n] : Var(s;) C |J;Z} Var(f;).

A program is said to be Well Moded (WM) if for each of
its clauses po(to; Snt1) ¢ p1 (51; t1),...,pn(8n;tn) we have
Vi€ [Ln+1] : Var(s;) C JiZ, Var(t;). O

This definition roughly says that every variable in an
input argument s; of the body (hence, according to our in-
tended interpretation, required as input by some predicate)
must appear earlier in the clause as an output argument {;
(so it must have been calculated).

Example 3.4 The usual program to add two numbers

add (0,X,X) <
add(s(X),Y,s(Z)) < add(X,Y,Z)

with moding add(in, in, out) is Well-Moded. O
Well Modedness is an appropriate criterion, since:

Theorem 3.5 ([9]) If P and G are respectively a Well
Moded program and goal, then every derivation of P U {G}
s data driven.

Using Well Modedness, Reddy in [24] introduced a trans-
formation of Well Moded logic programs into (parallel) func-
tional programs. This transformation, as said in the Intro-
duction, was there proved to be sound, that is informally
everything calculated by the obtained functional program is
calculated by the original logic program too.

The above result, however, gives only one side of the
coin, since the transformation is not complete: the obtained
functional programs might not terminate. As said in the
Introduction, this is not satisfactory, since completeness is a
minimal requirement that should be asked of a logic program
which is inherently functional. The problem is that so far
only input arguments were considered, imposing on them a
‘direction’ (groundness) via the Well Moding criterion, but
output arguments were neglected.

So, some other condition should be imposed on the out-
put arguments, but what? Intuitively, we will require the
output arguments of a predicate to be different variables. In-
deed, recall the idea that led to constraining the input argu-
ments: analogously, viewing a predicate as a function from
its input to its output arguments should imply we cannot
predict in advance the result. But if some output argument
is not a variable, this means we know in advance something
about the output, and analogously if some variable occurs
more than once in different arguments. The proper formal-
ization of this idea is:

Definition 3.6 A goal « pi1(51;¢1),...,pn(Sn;tn)is Func-
tionally Moded if it is Well Moded and the sequence {1, ..., .
is linear and composed only of variables.

A program is said to be Functionally Moded (FM) if its

every clause po(fo; §nj-1) epfl(gl; t),..., Pg(gn; E’i) is Well
Moded, the sequence o, ..., t, is linear and t1, ..., t, is com-
posed only of variables. O

For instance, it is immediate to check that the program
seen in Example 3.4 is Functionally Moded.

It is interesting to notice that many parts of logic pro-
gramming codes are written, more or less consciously, in the
‘functional’ form given by this class. Also, a great deal of
basic logic programs (like e.g. append, reverse, quicksort,
member etc.) belong to it.

We remark how the above definition concerns definite
logic programs only (i.e. programs without negation). In
Section 9 the full definition of the class for normal logic
programs (i.e. with negation) will be given.

4 Semantics

Suppose a logic program P is run with goal G. Let us denote
with answerpyg(l) the first obtained answer: it is equal to

1. 9 if the computation terminates successfully giving o
as computed answer substitution.

2. Fail if the computation terminates with failure.
3. L if the computation does not terminate.

In case 1, the user can activate backtracking to look for the
second answer amsu;em:gg(Z)7 and so on till for some k& > 1
answer p (k) returns Fail or L (in case of infinite answers,
we assume k = w and answerpg(w) = 1).

Now, the answer semantics aup(G) of a logic program P
w.r.t. a goal G is defined as the (possibly infinite) sequence

ap(G) = answerp(l),..., answerp (k)

We can now provide a formal definition of termination:

Definition 4.1 A program P is said to terminate w.r.t. a
goal G if ap(G) = ¢1,...,¢r with ¢ # L. |

This kind of termination is usually referred to as universal
(see e.g. [8]), to distinguish it from existential termination
(viz. ¢1 # L1): we will come back on other kinds of termina-
tion later in Section 8 and Subsection 11.2.

So far, | was considered a special symbol to indicate
nontermination; however, in the following it may also in-
dicate a nonterminating expression: we will write e = L
(for some expression €) meaning that e is a nonterminating
expression in the given functional program. Also, for nota-
tional convenience we will allow usage of every answer ¢ as
substitution: in the special cases ¢ = Fail (resp. ¢ = L) we
assume e¢ = Fail (resp. e = L) for every expression e.

D1 D [Z,y1,...,yn] = ¢
[Z,y1,..,un] =t
[Z,y1,..,un] =t
D3 D [Z|Fail] = Fail
[Z,y1,..,un] =t
D4 DO I([@yr, el o) = I D)
[Z,y1,..,un] =t [Z,y1,.-un] = ¢
D5 DM J(Fail,v) = Dy
(2,91, yn]l = ¢ R
[Z,y1, - un] =t [Z,y1, . un] =t
D7 DM J([#](u,v)],w) = D I([zfu], I([2]0], w))
[Z,y1, - un] =t [Z,91, un] =t
[Z,91,. . ,un]=t [Z,y1,.-un] = ¢
D9 D ()] = DM (], [2]])
751,] = ¢ (70, el = ¢

Table

5 Completeness

Definition 5.1 A transformation v for a class A of logic
programs is a computable map sending goals of A into ex-
pressions and logic programs of A into functional programs.

Definition 5.2 A transformation v is said to be complete
for a class A of logic programs if there is a computable func-
tion A such that for every program P € A and goal G € A,
P terminates w.r.t. G implies

A(Var(G), (+(P)) (+(@))) =

The presence of Var(G) in the above formula is to make
explicit that to get a computed answer substitution we have
to remember the names of the variables present in G: we
could however shorten the definition omitting Var((), since
the variable names could be encoded directly in the trans-
formation (@) of the goal.

ap(G) O

Observe that for a complete « if P terminates w.r.t. GG
then also v(P) terminates w.r.t. v(G) (that is, v is termina-
tion preserving): indeed, if it is not the case then (v(P))(v(G))
= 1, and so also A(Var(G), (v(P))(v(G))) = L, a contra-

diction since ap(G) does not contain L by assumption.

6 The Transformation

The transformation T we will now introduce i1s composi-
tional, that is for every two programs P and @, (P - Q) =
7(P)®7(Q) for a suitable map ©®. Hence, we can describe it
giving its definition only for a goal, a clause and the map ©.

From now on we will assume that the goal is of the
form < p(s;¢): this is not restrictive since, e.g., a Func-
tionally Moded goal of the form < pi(51;¢1),...,pn(Sn;tn)
can be split into a goal < p(51;t1,...,8,) and a clause
p(31561, ... tn) < p1(51381), ..., Pn(Sn; tn) (where pis anew
predicate) that are both Functionally Moded, giving an equiv-
alent program. This assumption is not necessary, but it is
adopted since it shortens some definitions and results.

1: The Data-handler equations schema.

Logic programming is intrinsically nondeterministic (mul-
tiple choices are processed via backtracking): to utilize this
feature into functional programming we use a binary sym-
bols J as ‘pairing operator’ to Join together the different
possibilities arising from the nondeterminism. For instance,
if in the logic program a predicate p is nondeterministi-
cally defined via two clauses p + q and p r, in the corre-
sponding functional program we will join these two different
choices via the single rule p — J(q,r).

A constant Fail will be used to denote failure of a logic
program derivation.

We will also employ so-called Data-handler operators:

A Data-handler of the form D)

t) = ta
the function Aép.t» (i.e. it expects a datum of the form ¢;
and gives as output t2); this is formalized by the rule D1
of Table 1. The difference is that it also has to cope with
different structures than ¢;, namely when the J and the
Fail operators crop up (the superscript n helps to determine
what structures are in principle possible). This is illustrated
by the remaining rules D2 — D9 of Table 1. Essentially, it
produces a failure whenever a Fail result is found (rules D2,
D3), otherwise it processes the first result among the ones
joined with J: if it is ¢; (resp. a failure) then via rule D4

pin)
tq = to
t> (resp. skips it), and goes on processing the other results.

If G = <+ p(5;t) is Functionally Moded,
D1

(X1, X] = [X1,0, X gy]
If P= pO(EO§§n+1) — p1(=§1§[1)7~~~
ally Moded, then 7(P) is:

1. The equation

can be roughly seen as

(resp. D5, D6) the Data-handler

transforms it into
Definition 6.1
then 7(@) is p[5]-

. Pn(Sn; ty) is Function-

)

il = (It)
polto] = D
[to] I1=1 [NV (n=1),tn—1] = [NV (n)|pn[s]]

[NV (n),tn] = [5541]

Dol to]
[NV (0),t0] = [NV (1)|p1[=1]]

where NV (k) = (U;l:'é_l_l\/ar(gj)) \ (U] Var(Z;)).
Incidentally, observe that by the definition of Functionally

Moded program it follows NV (0) = 0.
2. For every predicate p(s,t) in P, the Data-handler equa-

tions for ﬂ@(l[? (see Table 1), and the otherwise-equation:
t] = [t

pr = Fail

in the equa-

3. For every occurrence of a function : D)

tion of point 2, the corresponding Data-handler equations

(see Table 1). (I
The idea behind the transformation is that every clause
pO(EO§§n+1) — pl(gl;fl)w'wpn(gn;fn)

provides an equation defining po[to] (i.e. po applied to its
input arguments). Its output value [Sy,41] is obtained in the
following way.

Informally, NV (k), for 1 < k < n, denotes the Variables
of p1,...,pr—1 that are Needed for the input arguments of
Pk+1, - .-, pn and for the output argument of the head pred-
icate Po (1e Skdlye-v, §n+1)~

We start with the input data [to]. Then, applying the

first Data-handler Dl , we calculate
[NV(0),0] = [NV (1)Ip1[21]]

p1[81] (that gives its output values for f;) together with
the values from #, that are needed in the sequel to calcu-
late some other p;[s;] or the final output §,41 (i.e. NV(1)).
The process goes on till all the pi,...,p, have been pro-

cessed, and the last Data-handler Dlltnl) sim-
[NV(n),tn] = [En41]
ply passes to the final output 3,41 the values previously
computed (present in [NV (n),t,]).
A graphical representation of the followed approach is
illustrated in Figure 1.

In point 2., an otherwise-equation (that is, an equation
where the pattern is a variable) is introduced: indeed, just
like in a logic program a failure occurs when the selected
atom of the goal do not unify with every clause head, here
when no other equation is applicable to solve a function
the otherwise-equation is selected producing Fail as result
(having a variable as pattern ensures it behaves like a ‘catch-

all’).

Note that the Data-handler equations produced by points
2. and 3. of the transformation can be deduced from the sin-
gle equation produced in 1.: hence, for brevity, from now on
we will omit them in program listings.

Another useful simplification can be obtained observ-
ing that in the equation of point 1. the rightmost Data-
handler can be applied right away to the argument [fo].
Indeed, since NV(0) = @, the rightmost Data-handler is

[7]D(|E[D|)] if the clause is a fact (i.e. the body is empty), and
o] = [51
PlEah
[fo] = [NV (1)Ip1[21]]
Hence point 1. can be modified saying that the corre-
sponding equation is

otherwise.

polto] = [51]

when the clause is a fact, and

D PUFn-1l)
[

D) JE—
[NV(1),61] = [INV(2)p2[2]] [NV (1)|pi[s1]]

otherwise. We will assume this modification in the following
examples.

Example 6.2 Consider the well known append program
used to split a list, i.e. with moding append(out,out,in) (we
will refer to this usage of append as split-append):
append ([1,X,X)
append ([A[X],Y,[A|Z]) < append(X,Y,Z)
The transformation of the first clause yields
append[X]1=[[],X]
append X = Fail

and the transformation of the second gives

append[[AlZ]] = DA
[AX,Y] = [[A[X],Y]

append X = Fail (I

[Alappend[Z]]

Definition 6.3 (® map)
Let a function M be defined this way:

M({ths® = rhsT}- P, Q) = W({Ihs" = rhsT}, Q) -M(P’, Q)
M{HQ = {}
I\I({lhsP = rhs"}, {Ihs® = rhs9} Q) =
if 38 = mgu(lhs”, hs®) then
{lhs? = J(rhs® 8, rhs?B)} -N({lhs” = rhs"}, Q")
else N({lhs” = rhs"}, Q")
N({ths” = rhs"}, {}) = {}

Let normalize be a function that deletes from its input
program S all the otherwise-equations and appends at the
end of the program new otherwise-equations corresponding
to all the operators in 5.

Then, PG Q = normalize(l"l(P7 Q) -7(P)- T(Q))

(I

The function M can be expressed in this equivalent, more
readable way:

opf[s1] = ef op[f] = €7
opy[s:] = ef 4 = e

0Py [t2] =

Let P be and @} be

opt [sn] = ek

Then M(P, @) is simply

opitn] = €S

{op{ [5:8] = J(el B,e?B) : I8 = mgu(op; [5:],0p7 [£;])}
where the equations are ordered lexicographically w.r.t. (i, 7)
(viz. the indexes ¢ of the first program P have precedence
over the indexes j of the second program Q).

The behaviour of the @ map should be quite clear: First,
employing M, whenever two equations overlap in some cases,
insert an equation that Joins them for these cases only (this
is why a most general unifier is used) via the binary symbol
J. Then, the original equations are concatenated (to cope
with the other cases). Finally, the result is normalize-d
in the sense that the otherwise-equations are placed in the
correct position (at the end) to work properly.

pi[51]

-

]
A
]
Y

|
|
Y
W]
Y
W]

polto] = Snt1

Figure 1: Dataflow representation of a clause po(fo; Sny1) < p1(51;81),...

Although ® as it is works fine, a useful improvement is
to get rid of useless equations via the following transition
rule:

P -{oppat; =e1}- Q- {oppats =e2} - R
P-{oppat; =e1}-Q R

expressing the fact that the equation op pats = e> can be
deleted since op pat; = ey will be always selected before.
We will assume this simplification is added to the definition
of ® in the further examples.

(39 pat; ¥ = paty)

Example 6.4 The transformation of the program split-
append (cf. Example 6.2) is:

append[[A1Z]1= J([[1,[AlX]], D)

[Alappend[Z1])
[AX,Y] = [[A]X],Y]

append[X]1=J([[],X],FaiD
append X = Fail O

Theorem 6.5 Let G = « p(s;t) and P a program, both
Functionally Moded. If aup(G) = ¢1,¢2,...,¢r then

((P)(7(G)) = J([Ed1], J([Eb2], - . . T ([Ebr—1], [E0k]) - ..))

Example 6.6 We will calculate all the possible splittings
of the list [a] via the translation by 7 of the split-append

program.
The goal is + append (X,Y, [al), that is transformed via
T into DA append[[al].

[X1,X2] = [X1,X2]
Reducing this expression yields (when a Data-handler
equation is applied, it is indicated under the equality sym-

bol):

D) append([a]]
[X1,X2] = [X1,X2]
_ D) I([1,]a] DE) [alappend[[]]])

[X1,X2] = [X1,Xo] " [AX,Y] = [A[X],Y]

= D) J(([1:[a]] D)

[X1,X2] = [X1,Xz] " [AX,Y] = [AlX],Y]

= D) J(([1:[a]] D)

D9 [X1,X,] = [X1,Xs] " [AX,Y] = [AlX],Y]

[alJ([[],[1],Fail)])
J([a,[],[1],[alFail]))

y Pn(3n;tn).
5 o, 20 RGN, DY Talil)
5 oo e ey PO, ([0 Fail)
5@ DO (ELFaD)
5, J0ED @, o DO Fail)
=, I, I([la]. 1] Fail))]

From Theorem 6.5 it easily follows:

Corollary 6.7 The transformation 7 is complete.

6.1 Modular Programming

An important feature of the transformation 7 is that it in-
tegrates well with modular programming. Indeed, let us
denote with < the module relation (that is, P <1 Q if P
does not define predicates/functions that are defined in Q).
The transformation is module-preserving in the sense that:

Lemma 6.8 P<1Q=1(P)<d7(Q)

(to be fussy, note that actually if P < @@ some Data-handler
equation defined in 7(P) could be repeated in 7(Q): besides
this is not a problem in practice, it can be fixed via a suitable
renaming of the Data-handler equations).

Also, the compositional behaviour of T gets simpler:

Lemma 6.9 P1Q= 7(P -Q)=r1(P) 7(Q)

Hence when dealing with modules ® becomes program com-
position.

Thanks to Lemmata 6.8 and 6.9, all the benefits of mod-
ular programming can be retained when passing from logic
to functional programming: modules/libraries in logic pro-
gramming can be translated into corresponding modules of
the target functional language. Also, in project development
this avoids global re-transformation in case a single module

is modified.

7 Complexity

As said in the Introduction, we are going to use complexity
arguments to provide a suitable notion of functionality.

We take as (time) complexity of a logic program (resp.
of a functional program) P which is run with a goal (resp.
an expression) G, the number of resolution steps (resp. of

rewrite steps) it performs, and denote this measure by e(P, G).

Having defined a suitable measure of the execution time of
a program, it makes sense to talk about the corresponding
complexity classes with respect to this measure. Now we
have at our disposal a mean to say when a class A of logic
programs is inherently functional in nature: it must have a
transformation that translates every logic program in A into
a functional program having the same (or lower) complexity.
This is expressed by the following definition:

Definition 7.1 A transformation v for a class A of logic
programs is said to be complexity preserving if there is a
k € IN such that for every program P € A and goal G € A

C(v(P),7(@)) <k-€(P,G) O

Observe that the linear factor k& is necessary to ensure the
independence of the particular unity measure employed.

With the aid of this new requirement, we can formalize
the vague concept of ‘being functional’:

Definition 7.2 A class of logic programs A is functional
if it has a transformation which is complete and complexity
preserving. (I

Functionally Moded programs, as expected, satisfies the
above condition:

Theorem 7.3 The class of Functionally Moded programs
18 functional.

7.1 Optimality

We will now show that the class of Functionally Moded pro-
grams can be by right considered the functional core of logic
programs, since it cannot be enlarged without losing func-
tionality. In fact, we will prove even more. Let us weaken
the notion of functional class this way:

Definition 7.4 A class of logic programs A is hardly func-
tional if it has a transformation ~ which is complete and
there is a computable function F such that for every pro-
gram P € A and goal G € A

C(v(P),v(G)) < F(C(P,G)) O

Hence, we allow the transformation to arbitrarily worsen
the run-time behaviour of the logic program, only provided
the worsening can be expressed by a computable function F
(for instance, with F(z) = 2(") a class of logic programs in

P could be translated into one in 2-EXPTIME).

We can now state the following surprising result:

Theorem 7.5 (Optimality) FEvery class of logic programs
that properly contains the Functionally Moded programs is
not hardly functional.

Since by Theorem 7.3 FM is also functional, and func-
tional implies hardly functional, we obtain straight away the
following corollary:

Corollary 7.6 The class of Functionally Moded programs
18 mazimal among the functional ones.

That is to say, we cannot improve on the FM class without
loosing functionality (even hardly functionality!).

8 Beyond Completeness

As we have seen, completeness suffices to prove the Opti-
mality Theorem. However, from a practical point of view,
we could be interested in a stronger correspondence. This
happens when we are not interested in all the answers of a
logic program, but only in part of them. For instance, if
ap(G) = ¢1, L the logic program yields one answer, and
a complete transformation could not grasp this information
because the program is nonterminating. A natural way to
fix this problem is to employ a lazy reduction strategy for
the functional program, and defining a corresponding notion
of completeness. However, we stick to the generality require-
ments expressed in Subsection 2.2, and define an extension
of completeness that also preserves the answers contained
in a nonterminating logic program disregarding the specific
reduction strategy:

Definition 8.1 A transformation v is said to be hyper-
complete for a class A of logic programs if there are two
families (A")nef\r and (B")nef\r of computable functions
such that for every program P € A and goal G € A, if
ap(G) = ¢1,...,¢r then

Vi € N. A, (Var(G), (v(P)) (Bi (4(G)))) = &1, - -, brain(ie)

d

If for a transformation hypercompleteness holds when
the reduction strategy is fixed to be lazy, then we call such
a transformation lazy-complete.

Thus, an hypercomplete transformation allows to cal-
culate also finite approximations of the answer semantics,
allowing to fully reconstruct the answer semantics not only
of terminating, but also of nonterminating logic programs.

The transformation 7 here presented is not hypercom-
plete. It can however be modified to be such, essentially
making all the functions parametric to store how many an-
swers have been so far calculated, and modifying the equa-
tions using continuations techniques (cf. [2]).

Being completeness implied by hypercompleteness, the
existence of such a transformation for the class of Function-
ally Moded programs makes possible to restate the analo-
gous of the Optimality Theorem, where functionality is re-
placed by the stronger notion of ‘hyperfunctionality’ (replac-
ing completeness by hypercompleteness in Definition 7.2):
FM is maximal among the ‘hyperfunctional’ classes of logic
programs®

Using lazy reduction, however, makes things simpler. In-
deed, Theorem 6.5 holds for nonterminating logic programs
as well. Hence if a logic program P is run with a goal G (both

in FM of course) yielding ap(G) = ¢1,..., ¢x with ¢ = L,
then (7(P)) (7(G)) = J([f¢1], J([Ebs], . .. J ([Fpr—1], L)...)).
Thus via lazy reduction one can extract one by one the an-
swers ¢; (z < k) avoiding to calculate the inner nontermi-
nating part corresponding to ¢x.

This can be formally expressed by saying that 7 is lazy-
complete: it suffices to take B, (z) = =, and for i < w

Bi(z) = &(s(...s(0)...),z)
N—_——
¢ times
where £ is so defined:

E(s(5(2), I (u, I (v, w))) = J(u, E(s(z), I (v, w))
E(s(z),Fail) = Fail
E(s(0), J(u, J(v,w))) = u

40f course this follows from a stronger result (cf. Theorem 7.5) of
maximality among the ‘hardly hyperfunctional’ classes. ..

8.1 Infinite Lists

As said, usage of logic programming directly in functional
programming can be extremely useful when lazy reduction
is used. In this case, besides the usual advantages of using
logic programming when expressing relations, it is added the
further power of expressing infinite lists via logic programs
with infinite answers.

As a simple example, the infinite list of naturals [0,s(0),
5(s(0)),...] can be expressed in a functional program just
using the definition of natural number ([26]):

natural (0) <
natural (s (X)) < natural (X)

where the moding is natural(out).

9 Normal Logic Programs

After having analyzed definite logic programming, we ex-
tend the results previously obtained to normal logic pro-
gramming, that is allowing usage of negation. As usual in
Prolog, negated atoms are solved using the negation as fi-
nite failure procedure, i.e. they succeed if and only if they
finitely fail (see e.g. [3]).

Since we have already given the definition of functionally
moded for a definite goal/clause, we can give the definition of
Functionally Moded for a normal logic program only giving
it for goal or clauses with at least one occurrence of the not
operator:

Definition 9.1 A goal not (p(s;t)) is functionally moded if
p(5;t) is such. A clause po(to;Snt1) < pi(si;h),. ..,
not (pr(Sk;tx)), ..., Pn(8n;tn) of a normal logic program is
functionally moded if both po(to;Snt1) < pi(si;61),...,
pr(8k; k) and po(fo; Snq1) < p1(S1581), .-, Pr—1(Sk—1; Er—1),
Prt+1(Sk41;8k41)s - - -, Pn(Sn; tn) are such. A program is Func-
tionally Moded if each its clause is such. O

Example 9.2 Suppose p and g are both moded (in, out).
Then p(X, f(Z)) « q(X,Y), not (p(Y, Z)),q(Y, Z) is Func-
tionally Moded since both p(X, f(Z)) + q(X,Y),p(Y, Z) and
P(X, f(2)) « a(X,Y),q(Y, Z) are. 0

The transformation 7 can be extended to cope with Func-
tionally Moded (normal) logic programs with little modifi-
cations.

First, new equations defining the not are added (see Ta-
ble 2).

Second, every literal of the form not p(5;t) that appears
in a goal or a clause is viewed by the transformation like
(not p)(s;) (that is, the compound function not p has as in-
puts the old inputs of p but produces no output, correspond-
ingly to the fact that a successful negative literal produce
no bindings).

For instance, p(z;y) ¢+ notq(z;z),r(y;z) is seen as
p(z;y) « (not q)(z;),r(y; 2).

With these simple extensions, all the results previously
proved only for definite programs generalize verbatim to nor-
mal logic programs.

Example 9.3 In order to briefly illustrate the behaviour
of the not, suppose the usual split-append program is called
with the goal <« not (append(X,Y,[a])): 7 translates this

[]D(?]) not (append[[a]]). Analo-

goal into the expression
gously to the reduction seen in Example 6.6, this expression

reduces to []:2(?]) not J([[1,[a]], /([[a], []], Fail)) that via the

not equation N5 reduces to DO Fail, and via the Data-

handler equation D2 finally gives Fail. O

N1 not[] = Fail

N2 not[u|lv] = Fail

N3 notFail = []

N4 not J([],v) = Fail

N5 not J([u|v],w) = Fail

N6 not J(Fail,v) = notwv

N7 not J(J(u,v),w) = not J(u, J(v,w))

Table 2: The not equations.

10 Integration of Languages

The transformation 7 presented here is of obvious impor-
tance also in the integration of logic and functional pro-
gramming (cf. [12] for a survey), since it allows to combine
in a direct and clean way logic programming with functional
programming.

The first and simpler form of integration offered by the
transformation is to mix every functional language with the
functionally moded logic programs: functional code can be
interleaved directly with such logic programming code, and
hence the programmer can decide to write a certain part
of the program in functional or logic programming style ac-
cording to what paradigm suites better.

Another kind of integration is to allow external functions
directly in the logic program (this is also known as amal-
gamation). Much work has been done on this topic, like
usage of residuation principles together with sophisticated
forms of incomplete equational unification (e.g. S-unification
in [4], and P-unification in [15]); along with these studies
also a concrete language, GAPlog, has been implemented
(cf. [14, 17)).

All these approaches have to face many difficulties both
of theoretical and of practical (implementative) nature, es-
sentially due to the fact that logic programming as a whole
is not functional, as shown in this paper.

Instead, focusing only on the functional core of logic
programming here found, we can give a much simpler and
cleaner solution to the amalgamation problem.

Call P the Functionally Moded logic program, and F
the functional program to be amalgamated. We divide the
function symbols that can be used in a logic program into
external and iInternal ones: external symbols can appear
outside the logic program (i.e. in F'), while internal symbols
cannot.

The amalgamation condition for P and F' is simply: in
every clause po(fo; Snt1) < p1(S1581), ..., Pr(8n;tn) of P,fex—
ternal symbols that are operators in F' cannot occur in #o.

Example 10.1 As a simple example, consider the follow-
ing GAPlog program to compute the factorial, using the
external symbols 0, 1, * and — (interpreted as usual in the
functional program to amalgamate):

factorial(0,1) «

factorial (X,X*Y) < factorial (X-1,Y)
This program is Functionally Moded taking factorial moded
(in, out), and satisfies the amalgamation condition. O

The amalgamation condition is completely natural in
view of the functional nature of the FM class: indeed, a
clause po(fo; Sny1) < ... is seen as a function definition for
po (i.e. po[to] = ...), and so the unique restriction it should
satisfy is that no operator (i.e. no other defined function)
can appear in the pattern [to]. Hence, the amalgamation
condition for a logic program P and a functional program
F becomes simply the module relation 7(P)<1 F' (cf. Sub-
section 6.1).

It should be noted that amalgamated programs as de-
fined in [4] can also cope with external predicate symbols
that can be used as boolean tests. However, we can con-
sider such apparent extra power just as syntactic sugar: ev-
ery occurrence of ‘external predicates’ p(s) can be seen more
properly as an occurrence of test(p(s)), where test is defined
in the logic program by test(true) « , and both p and true
are external symbols (true is intended to be interpreted, as
usual in every reasonable functional language, as the boolean
truth function).

Example 10.2 Consider the following program after [4]:

leq(0,x) «

leq(y+1l,x) « 1<x, leq(y,x-1)
The leq predicate is designed to be the ‘less than or equal
to’ relation on naturals, to be called with its first argument
uninstantiated (e.g. < leq(x,2) would give as answers for
x the naturals 0, 1 and 2).

In [4] < is an external predicate symbol. But, as said,
the above program can be seen as syntactic sugar for the
following one:

leq(0,x) «
leq(y+1,x) < test (1<x), leq(y,x-1)
test (true) «

where now 0, 1, +, -, < and true are all external symbols
(interpreted as usual in the functional program to amalga-
mate).

And, in fact, with moding leq(out,in) and test(in) the
above program is Functionally Moded and satisfies the amal-
gamation condition. (I

Let us summarize what are the differences of our ap-
proach to the integration of logic and functional programs
with the others present in the literature.

Being logic and functional programming different para-
digms, all their integrations have been so far obtained by
defining a new language that extends logic (or functional)
programming to cope with these differences.

Here, we follow just the opposite way: we define a new
(sub-)language that diminishes logic programming to drop
these differences.

On the one hand, all the other approaches try to seize the
whole expressive power of logic programming. On the other
hand, they need to define every time a new language, not
only with theoretical problems (semantics, completeness, ef-
ficiency etc.) but also with the practical problem of build-
ing a correct (and possibly fast!) specific implementation
for the language. Instead, our approach does not try to re-
tain the full power of logic programming, but does not have
the aforementioned problems since via the transformation
we can rely on the existing implementation of the chosen
target functional language.

Also, the amalgamation proposed in all the papers cited
in this section is only ‘one-way’, that is the logic program
is extended via external functions but not vice versa. Our

proposal, instead, is completely symmetrical, since also the
functional program can be extended using (possibly negated)
atoms (since, via 7, they are just syntactic sugaring for func-
tion calls).

11 Further Applications

11.1 Using 7 Beyond Functionally Moded

In this subsection we show how in some cases 7 can be useful
also outside the scope of Functionally Moded programs.

First, when in the definition of Functionally Moded pro-
grams we drop the requirement that fp must be linear in
a clause po(fo;Snt1) ¢ p1(S1;81), ..., pn(8n; tn), the trans-
formation 7T produces a functional program with possibly
non-linear patterns. This program is directly utilizable if
the target language supports them (like, for instance, Mi-
randa). Even if the language does not support non-linear
patterns but support guards and the equality test (as it is
the case for a great deal of functional languages), then it
can be proved that the usual implementation of non-linear
patterns via guards (see e.g. [21, Ch. 4]) is safe. In most
of cases, both of these two alternatives do not significantly
affect the execution time.

Second, F'M could be extended by making use of program
transformation: Suppose to have a transformation T from
a class A of logic programs into F'M. This transformation
cannot both be complexity preserving and retain the answer
semantics by the Optimality Theorem 7.5. Anyway, one of
these two properties could be relaxed, and tested singularly
on each program of A using a sufficient criterion. If the test
is passed, the program is functional (and can be transformed
into an equivalent functional program using the compound
transformation 7o T).

An example of this method has been given in [19], where
it is defined a transformation C (called conormal) that trans-
lates into FM a big class of normal logic programs (e.g.
all Well Moded programs (Def. 3.3) belong to this class).
This program transformation is complexity preserving, and
preservation of the answer semantics is relaxed into preser-
vation of the least Herbrand Model (cf. [16]). Also, C is
compositional (more precisely, C(P - Q) = C(P) - C(Q)) and
module-preserving. To check when C preserves the answer
semantics, some global criteria are employed.

Finally, we remark that the program transformation tech-
nique may be also useful to study termination properties of
logic programs (see the next subsection).

11.2 Termination

An interesting application of hypercomplete transformations
is the study of termination properties of logic programs. In
logic programming, indeed, the study of termination is a
very hard problem already for universal termination, and
existential termination is still an open problem (cf. [8]).

A hypercomplete transformation 4 can provide a mean
for studying a whole spectrum of termination properties: the
only requirement is that the functions IB; can be defined in
the functional language used with v (indeed, this is the case
for the modified 7 we hinted at in Section 8). Let’s call
def(IB;) this definition. Then:

e P (universally) terminates w.r.t. G iff

(def (B) U~ (P)) (B (v(G))) terminates

e P existentially terminates w.r.t. G iff

(def(B1)U~(P))(B1(v(G))) terminates

o P k-terminates w.r.t. G iff (def (B)Uv(P))(Bx (v(G)))
terminates (a program k-terminates iff its first k& an-
swers are different from L)

Although we did not explicitly include in this paper the
modifications to make 7 hypercomplete, 7 itself can be very
useful in view of the following result:

Theorem 11.1 Let P and G be respectively a Functionally
Moded program and goal: then P terminates w.r.t. G if and
only if 7(P) terminates w.r.t. 7(G).

Hence the techniques to prove termination of functional
programs (e.g. [5, 10, 11]) can be used, via 7, also for Func-
tionally Moded logic programs.

The above theorem can also be combined with program
transformation: if we have a transformation T from a class
A of logic programs into FM that preserves nontermination
(i.e. if P U{G} does not terminate then T(P)U {T(G)}
does not terminate as well), then we can look for sufficient
termination criteria of the programs in the whole class A
simply analyzing their corresponding functional programs
(obtained via the composition of 7 with T). For instance,
the conormal transformation mentioned in Subsection 11.1
preserves nontermination, and hence it can be used to study
a much bigger class than F'M.

It should be noted that there are also other transforma-
tional approaches to study termination of logic programs
(e.g. the works of [23] and [18]), where a logic program is
translated into a term rewriting system. Anyway, those ap-
proaches are in principle less general than ours, since they
can cope only with universal termination, and cannot treat
negation.

12 Efficiency

We have seen that 7, besides its use in the proof of the
Optimality Theorem, can have a variety of applications. In
particular, it can be used to integrate (Functionally Moded)
logic programming directly in functional programming (or
to amalgamate them as seen in Section 10). In this section
we try to give some indications on how this approach is good
not only in theory, but also in practice.

We will test the possible use of the transformation 7 in
conjunction with an existing implementation of a functional
language like program compiler of Functionally Moded pro-
grams, comparing the efficiency of the obtained code with
the original Prolog one.

It should be remarked that the transformation we pre-
sented in this paper has not been specifically designed for an
implementation but only for presentation purposes. Among
the practicable improvements we mention:

e Simple and time-gaining optimizations of T are possi-
ble (e.g. via a simple analysis many Data-handlers can
be removed).

e When it 1s known what reduction strategy is utilized,
further optimizations are possible (for instance, the
Data-handler equations schema can be written in a
more efficient way).

e The runtime behaviour can be greatly improved mak-
ing use of features typical of the target language, when
this is known in advance (e.g. guards).

Program Sicstus Prolog | 7 + Clean | Saving
Ackermann 0.56 0.17 | 69.6%
Engineering 3.09 0.05 | 98.4%
Fourcolors 2.27 0.56 | 75.3%
Quicksort 0.68 0.57 | 16.2%
Reverse 3.18 1.02 | 67.9%
Split-append 13.30 0.55 | 95.9%

Table 3: Benchmark Comparison with Sicstus Prolog.

Despite of this, in the benchmarks we have used the pure
code described by the transformation 7 as presented in this
version of the paper.

The languages employed are the commercial compiler
Sicstus Prolog v2.1 (cf. [1]), and Concurrent Clean v0.8.4
(cf. [20, 22]), a public domain non-strict functional language
(that can also be used as a strict language on request).

We chose six different programs: Ackermann (from [26,
pag. 41]) is the usual Ackermann function, Reverse is the
list reversal ([26, pp. 48-49]), Quicksort is the classical sort
program (after [26, pag. 56]), Split-append is the example
program seen in this paper (Example 6.2), Fourcolors is a
program by L. Pereira and A. Porto to solve the four colors
map problem ([6, pp. 200-201]), and Engineering is a plan-
ning problem for civil engineering after [6, pp. 189-190].

All the tests were executed using a Sparc Classic running
SunOS 4.1.3C with 48Mbytes of RAM and a cache memory
of 128Kbytes. Like in [13], timings are calculated taking the
best value obtained out of ten runs.

Also, the Sicstus Prolog compiler was not used with its
default byte code, but with the fastcode option specific for
Sun architectures (roughly three times faster than the de-
fault), and on the other hand no ‘heap tuning’ (cf. [13]) was
made to improve Clean execution.

The results are presented in Table 3 (run times are ex-
pressed in seconds). Although, of course, the transforma-
tion should be tested with heavier applications, we think
the results give the flavor that employing transformational
techniques like that used here can be productive not only
from a theoretical but also from a practical point of view.

Acknowledgements

I wish to thank Krzysztof R. Apt and Jan Willem Klop.

Thanks also to the referees for some useful style hints.

References

[1] J. Andersson, S. Andersson, K. Boortz, M. Carlsson,
H. Nilsson, J. Widén, and T. Sjoland. Sicstus prolog
user’s manual. SICS Technical Report T93:01, Swedish
Institute of Computer Science, 1993.

[2] A.W. Appel. Compiling with continuations. Cambridge
University Press, 1992.

[3] K.R. Apt and R. Bol. Logic programming and negation:
A survey. Journal of Logic Programming, 19,20:9-72,
1994.

[4] S. Bonnier and J. Maluszyriski. Towards a clean amal-
gamation of logic programs with external procedures. In
International Conference on Logic Programming, pages
311-326. MIT Press, 1988. Also in Proc. Int’l Conf. on
Algebraic and Logic Programming, pages 20-34, LNCS,
Springer, 1988.

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

R. Cartwright. Recursive programs as definitions in first
order logic. SIAM Journal on Computing, 12(2):374-
408, 1984.

H. Coelho and J.C. Cotta. Prolog by Example. Symbolic
Computation Series. Springer—Verlag, 1988.

J. Darlington, A.J. Field, and H. Pull. The unifica-
tion of functional and logic languages. In D. DeG-
root and G. Lindstrom, editors, Logic Programming:
Functions, Relations and Fquations, pages 37-70, En-
glewood Cliffs, New Jersey, 1986. Prentice—Hall.

D. de Schreye and S. Decorte. Termination of logic
programs: The never-ending story. Journal of Logic
Programming, 19,20:199-260, 1994.

P. Dembinski and J. Mahluszynski. AND-parallelism
with intelligent backtracking for annotated logic pro-
grams. In Proceedings of the International Symposium
on Logic Programming, pages 29-38, Boston, 1985.

N. Dershowitz. Termination of rewriting. Journal of
Symbolic Computation, 3:69-116, 1987.

S. Feferman. Logics for termination and correctness of
functional programs. In Y.N. Moschovakis, editor, Logic
from Computer Science: Proceedings of a Workshop
held November 13-17, 1989, pages 95-127. Springer-
Verlag, 1992.

M. Hanus. The integration of functions into logic pro-
gramming: From theory to practice. Journal of Logic
Programming, 19&20:583-628, 1994.

P.H. Hartel and K.G. Langedoen. Benchmarking imple-
mentations of lazy functional languages. In Proceedings
FPCA, pages 341-349, 1993.

A. Kégedal and F. Kluzniak. Enriching Prolog with S-
unification. In J. Darlington and R. Dietrich, editors,
Workshop on Declarative Programming, Workshops in
Computing, pages 51-65. Springer, 1991.

G. Lindstrom, J. Maluszyniski, and T. Ogi. Our LIPS
are sealed: Interfacing functional and logic program-
ming systems. In Proceedings of the 4th International
Symposium on Programming Language Implementation
and Logic Programming, volume 631 of LNCS, pages
428-442. Springer, 1992.

J.W. Lloyd. Foundations of Logic Programming.
Springer—Verlag, second edition, 1987.

J. Maluszynski, S. Bonnier, J. Boye, F. KluZniak,
A. Kagedal, and U. Nilsson. Logic programs with exter-
nal procedures. In K. Apt, J. de Bakker, and J. Rutten,
editors, Logic Programming Languages: Constraints,
Functions, and Objects, pages 21-48. MIT Press, 1993.

M. Marchiori. Logic programs as term rewriting sys-
tems. In G. Levi and M. Rodriguez-Artalejo, edi-
tors, Proceedings of the Third International Conference
on Algebraic and Logic Programming, volume 850 of
LNCS, pages 223-241. Springer—Verlag, 1994.

M. Marchiori. On safe transformation of logic programs.
Draft. Forthcoming as technical report, 1995.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van
Eekelen, and M.J. Plasmeijer. Concurrent Clean. In
E.H.L. Aarts, J. van Leeuwen, and M. Rem, editors, 3rd
Parallel architectures and languages Europe (PARLE),
volume 505/506 of LNCS, pages 202-220. Springer—
Verlag, 1991.

S.L. Peyton Jones. The Implementation of Functional
Programming Languages. International Series in Com-
puter Science. Prentice-Hall, 1987.

R. Plasmeijer and M. van Eekelen. Functional Pro-
gramming and Parallel Graph Rewriting. International
Computer Science Series. Addison-Wesley, 1994.

K. Rao, D. Kapur, and R.K. Shyamasundar. A transfor-
mational methodology for proving termination of logic
programs. In Proceedings of the Fifth Conference on
Computer Science Logic, volume 626 of LNCS, pages
213-226, Berlin, 1992. Springer—Verlag.

U.S. Reddy. Transformation of logic programs into
functional programs. In Proceedings of the Interna-
tional Symposium of Logic Programming, pages 187—
197. IEEE, February 1984.

U.S. Reddy. On the relationships between logic and
functional programming. In D. DeGroot and G. Lind-
strom, editors, Logic Programming: Functions, Rela-
tions and Equations, pages 3-36. Prentice—Hall, Engle-
wood Cliffs, New Jersey, 1986.

L. Sterling and E. Shapiro. The Art of Prolog. MIT

Press, 1986.

