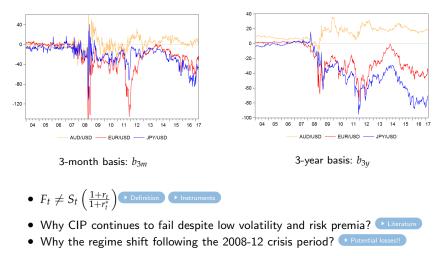
	CIP & swap market flows	Market-clearing forward rate		
				000000000000000000000000000000000000000

The failure of covered interest parity: FX hedging demand and costly balance sheets

Vladyslav Sushko¹ Claudio Borio¹ Robert McCauley¹ Patrick McGuire¹

¹Bank for International Settlements


BIS Symposium: CIP - RIP? Basel, 22-23 May 2017

Disclaimer: The views presented here are those of the authors and do not necessarily reflect those of the BIS.

	CIP & swap market flows	Market-clearing forward rate		
000				000000000000000000000000000000000000000

Motivation

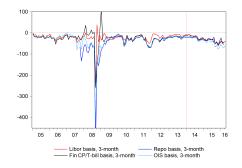
	CIP & swap market flows	Market-clearing forward rate		
000				000000000000000000000000000000000000000

This paper

Key observation: since 2008, CIP deviations reflect swap market positioning

Theoretically:

- Potential losses from OTC FX derivatives exposures factored into B/S costs (costs of managing counterparty & market risks)
- **2** Marginal B/S costs of arbitraging FX hedging imbalances priced into FX swaps & XCCY swaps: wider (F S)

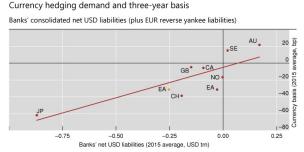

Empirically:

- FX hedging imbalances: exogenous proxy for B/S exposure to do CIP arb.
- **2** Long-run relationship between currency basis and FX hedging positions \rightarrow CIP no-arbitrage bounds endogenous to the size of B/S risk exposure
- Support for risk exposure premia; controlling for funding & market liquidity
- () Time-series and panel evidence, some nuance for short vs long maturities

	CIP & swap market flows	Market-clearing forward rate		
000				000000000000000000000000000000000000000

Swap points out of line with money market rates

- Libor-basis narrower than OIS basis because accounts for bank liquidity credit risk
- Post-2014, Libor, Repo, and CP/T-bill basis line-up
- Swap points out of line with money market rates, regardless of which rates are used
- So, focus on (F-S)



Note: To be exact, T-day CIP deviations in basis points calculated as: $CIP_T^{Dev} = 10^4 \times \left(1 + \frac{r_T}{100} - (1 + \frac{r_T^*}{100}) \times \frac{F_T}{S}^{360/T}\right)$

		Market-clearing forward rate		
	000			000000000000000000000000000000000000000
CIP & swap r				

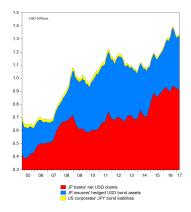
Key: whether the banking system is positioned to provide FX hedges

AU = Australia; CA = Canada; CH = Switzerland; EA = euro area; GB = United Kingdom; JP = Japan; NO = Norway; SE = Sweden.

For Sweden, net euro liabilities (horizontal axis) and the SEK/EUR basis (vertical axis).

Sources: Bloomberg; BIS international banking statistics and debt securities statistics; authors' calculations.

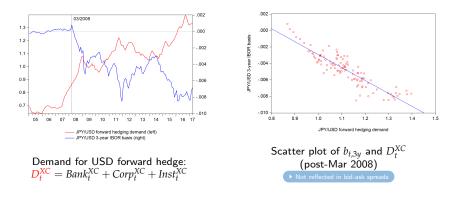
C Bank for International Settlements


Bank hedging of US dollar assets via FX swaps estimated as the difference between gross consolidated US dollar assets and liabilities of BIS reporting banks in each currency jurisdiction; corporate hedging demand proxied by outstanding debt securities liabilities denominated in the respective currencies issued by non-financial corporates headquartered in the US (reverse yankee bonds).

Source: Borio et al (2016): "Covered interest parity lost: understanding the cross-currency basis," BIS Quarterly Review , September

	Market-clearing forward rate		
000			000000000000000000000000000000000000000

Yen-dollar: USD forward hedging demand out of JPY (D^{XC})



Sector & activity: Source:	Proxy
Banks' use of FX swaps to fund USD lending	BIS banks' USD funding gap (<mark>Bank^{XC})</mark>
Sources:	BIS IBS (consolidated) Details
Insurers' use of FX swaps to hedge USD bonds portfolio	USD bond holdings \times hedge ratio (Inst ^{XC})
Sources:	MoF, SEIHO, Barclays 💌
US firms' use of FX swaps to convert JPY funding	US corporates' FX bonds outstanding (Corp ^{XC})
Sources:	BIS IDS

		Market-clearing forward rate		
	000			000000000000000000000000000000000000000
CIP & swap r				

FX hedging demand and the yen-dollar basis

Test	Null Hypothesis:	Obs.	F-Stat.	Prob.
Granger-causality	$\Delta D_t^{XC} \nrightarrow \Delta b_{t,3y}^{JPY}$	109	3.233	0.043
	$\Delta b_{t,3y}^{IPY} \rightarrow \Delta D_t^{XC}$		1.716	0.185
Cointegration	$\epsilon_t = b_{t,3y} - a - c D_t^{\text{XC}} \text{ is } I(1)$	109	8.730	0.000

	on CIP & swap market flows			
		•0		000000000000000000000000000000000000000
Market-cle				

CIP arbitrageur's problem Diagram

Chose \$\$ to supply via FX swaps, $x_{t,f}$:

$$\max_{x_{t,f}} - E_t \left[exp \left(-\rho W_{t+1} \right) \right]$$

s.t. $E_t[W_{t+1}] = W_t + (W_t - x_{tf})r_t + [1 - \theta_t]x_{tf}(f_t^B + r_t^* - s_t^A) + \theta_t x_{tf}(E_t[s_{t+1}^B] + r_t^* - s_t^A)$

Provisioning for Potential losses!: counterparties not 100% riskless ($\theta_t > 0$), so market risk (s_{t+1} vs f_t) relevant: PFE

 $heta_t \in [0,1]$ and $E_t[s_{t+1}] \sim N(f_t,\sigma_{s,t}^2)$. Proxies

$$\Rightarrow \max_{x_{t,f}} W_t(1+r_t) + x_{t,f} (\underbrace{f_t^B - s_t^A}_{\mathsf{FX points}} + r_t^* - r_t) - \underbrace{\frac{\rho}{2} \theta_t \sigma_{s,t}^2 x_{t,f}^2}_{\mathsf{B/S cost}}$$

 $\frac{\rho}{2}\theta_t \sigma_{s,t}^2 x_{t_f}^2$: MtM risks, counterparty risks, CVA charges, initial margins for XCCY basis swaps, B/S management under VaR constraint (see, eg Shin (2010))

	CIP & swap market flows			
		00		000000000000000000000000000000000000000
Market				

Market-clearing FX forward rate & the endogenous no-arbitrage bounds:

 $\Rightarrow f_t^B = s_t^A + r_t - r_t^* + \underbrace{\rho \theta_t \sigma_{s,t}^2 D_t^{XC}}_{B/S \text{ cost of risk}} , \text{ where } x_{t,f} = D_t^{XC} \text{ by market clearing}$

 D_t^{XC} : FX hedging demand imbalances $\rho \theta_t \sigma_{s,t}^2$: marginal cost of B/S exposure to FX hedges

Fraction c of CIP arbitrageurs liquidity constrained/operates via repo markets, r_t^{REPO} :

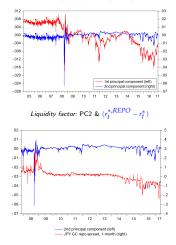
$$f_t^B = s_t^A + r_t - r_t^* + \theta_t \rho \sigma_{s,t}^2 D_t^{XC} + \underbrace{c[(r_t^{REPO} - r_t) - (r_t^{*,REPO} - r_t^*)]}_{\text{Funding liquidity}} \overset{\text{Derivation}}{=}$$

Expressing in terms of mid-rates (($f_t - s_t$) $\equiv 1/2 \times [(f_t^B - s_t^A) + (f_t^A - s_t^B)]$):

$$f_{t} = s_{t} + r_{t} - r_{t}^{*} + \theta_{t}\rho\sigma_{s,t}^{2}D_{t}^{XC} + c[(r_{t}^{REPO} - r_{t}) - (r_{t}^{*,REPO} - r_{t}^{*})] + \underbrace{[(f_{t}^{B} - s_{t}^{A}) - (f_{t}^{A} - s_{t}^{B})]/2}_{\text{FX market liquidity}}$$

Currency basis/no-arbitrage bounds

CIP & swap market flows			
	0000000		000000000000000000000000000000000000000


JPY/USD time series

Yen-dollar IBOR basis PCA: risk exposure factor & liquidity factor • Q-end_LR_LCR

PC1 (68.2%) & PC2 (24.7%)

CIP & swap market flows			
	0000000		000000000000000000000000000000000000000

3-year JPY/USD basis: long-run vs short-run drivers

Unit root tests, Cointegration tests

$$\begin{aligned} \Delta b_{t,3y} &= \beta_0 + \sum \beta_i \Delta b_{t-i,3y} + \beta_D \Delta D_{t-1}^{XC} + \phi \mathbf{\hat{z}}_{t-1} \\ &+ \beta_{Repo} \Delta \left[(r_{t-1}^{REPO} - r_{t-1}) - (r_{t-1}^{*,REPO} - r_{t-1}^*) \right] + \sum \beta_j \Delta X_{j,t} + \epsilon_t \\ b_{t,3y} &= \alpha_0 + \alpha_D D_t^{XC} + z_t \end{aligned}$$

• $\hat{z}_{t-1} = b_{t-1,3y} - \hat{\alpha}_D D_{t-1}^{XC} - \hat{\alpha}_0$ denotes lagged residuals from the long-run cointegration regression

- Prediction:
 - B/S risk exposure a long-run driver: $\beta_D = 0$, $\phi < 0$, and $\alpha_D < 0$
 - Liquidity a short-run driver: $\beta_{Repo} < 0$

CIP & swap market flows			
	0000000		000000000000000000000000000000000000000

3-year JPY/USD basis: long-run vs short-run drivers

Error-correction equation			Cointegratin	g equation
	(1)	(2)		(3)
$\Delta b_{t-1.3v}$	0.163**	0.189***		
$\Delta b_{t-1,3y}$ $\Delta b_{t-2,3y}$ ΔD_{t-1}^{XC}	(0.088) -0.004	(0.085) -0.061		
1 2,59	(0.091)	(0.095)		
$\Delta D_{t=1}^{XC}$	0.000	0.002	D_t^{XC}	-0.018***
² t-1	(0.003) -0.232***	(0.003) -0.236***	·	(0.001)
Δ Repo spread diff. _{t-1}	(0.063) -0.003***	(0.060) -0.003***		
	(0.001)	(0.001)		
$\Delta \theta_t$		0.000 (0.000)		
$\Delta \rho \sigma_{s,t}^2$		-0.002***		
FX bid-ask		(0.001) 0.227		
TX DIG-BSK		(0.265)		
Constant	0.000	0.000		0.120***
	(0.000)	(0.000)		(0.006)
R-squared	0.282	0.380	R-squared	0.816
Observations	108	108	Observations	109

Monthly frequency, 03/2008 to 03/2017. Number of lags of the endogenous variable chosen based on the Schwarz (Bayes) criterion (SC). Robust standard errors in parentheses: *** p <0.01, ** p <0.05, * p <0.1

CIP & swap market flows			
	0000000		000000000000000000000000000000000000000

JPY/USD time-series regressions, short- and long-maturities

$$\begin{split} \Delta b_t &= \beta_{\theta} \Delta \theta_t + \beta_{\sigma} \Delta \rho \sigma_{s,t}^2 + \beta_D \Delta D_t^{XC} + \beta_{\theta \times \sigma \times D} [\Delta \theta_t \times \Delta \rho \sigma_{s,t}^2 \times \Delta D_t^{XC}] \\ &+ \beta_{Repo} \Delta \left[(r_{t-1}^{REPO} - r_{t-1}) - (r_{t-1}^{*,REPO} - r_{t-1}^*) \right] \\ &+ \beta_{bid-ask} \Delta [(f_t^B - s_t^A) - (f_t^A - s_t^B)]/2 + \alpha + \epsilon_t \end{split}$$

Proximate source:	Notation	Proxy
FX hedging demand:	D_t^{XC} (prices)	(OAS ^{US} -OAS ^{JP});
	D_t^{XC} (quantities)	Bank ^{XC} +Inst ^{XC} +Corp ^{XC}
	ΔD_t^{XC} (quantities)	$100 \times (D_t^{XC}/D_{t-1}^{XC}-1)$
	ΔCAB_t^{XC} (quantities, supply side)	$100 \times (CAB_t^{XC}/CAB_{t-1}^{XC}-1)$
Bank credit risk:	θ	Libor-OIS spreads
Implied FX volatility:	$\rho \sigma_s^2$	FX option-implied volatility
Short-selling costs:	$(r_t^{REPO} - r_t) - (r_t^{*,REPO} - r_t^{*})$	GC repo spreads, US minus JP
Transaction costs:	$[(f_t^B - s_t^A) - (f_t^A - s_t^B)]/2$	Spot and forward bid-ask spreads

CIP & swap market flows			
	00000000		000000000000000000000000000000000000000

3-month JPY/USD IBOR-based CIP deviations

3-month JPY/USD basis	(1)	(2)	(3)	(4)
θ	-0.909***	-0.905***	0.001	-0.128
	(0.216)	(0.206)	(0.271)	(0.270)
DXC		-0.150	-0.132	-0.123
		(0.107)	(0.101)	(0.114)
$\theta \times D^{XC}$			-1.138***	
			(0.340)	
$o\sigma_s^2 \times \theta \times D^{XC}$				-0.941***
				(0.345)
$o\sigma_s^2$				-0.053
-				(0.108)
Repo spread diff.	-0.255*	-0.270*	-0.388***	-0.429***
	(0.149)	(0.154)	(0.118)	(0.151)
FX bid-ask	0.397***	0.430***	0.380***	0.408***
	(0.136)	(0.128)	(0.096)	(0.112)
Constant	-0.315***	-0.249**	-0.227***	-0.214***
	(0.100)	(0.100)	(0.083)	(0.079)
Observations	72	67	67	67
R-squared	0.679	0.725	0.794	0.776

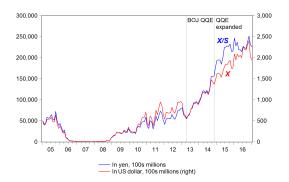
The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Monthly frequency, 12/2007 to 04/2016. AR(1) not significant in first differences. Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

CIP & swap market flows	Market-clearing forward rate			
		00000000		000000000000000000000000000000000000000

2-year JPY/USD cross-currency swap basis

2-year JPY/USD basis	(1)	(2)	(3)	(4)
θ	-0.463***	-0.480***	-0.296	-0.382***
	(0.172)	(0.127)	(0.386)	(0.109)
_D XC		-0.292**	-0.281**	-0.221*
		(0.125)	(0.123)	(0.120)
$\theta \times D^{XC}$			-0.228	
			(0.454)	
$\rho \sigma_s^2 \times \theta \times D^{XC}$			(0	-0.228*
pos ~ v ~ D				(0.132)
$\rho \sigma_s^2$				0.104
pos				(0.164)
Repo spread diff.	-0.759***	-0.839***	-0.857***	-0.709***
nepo spicad din.	(0.201)	(0.194)	(0.192)	(0.254)
FX bid-ask	-0.381	-0.714	-0.588	-0.372
	(0.970)	(0.936)	(0.920)	(0.925)
Constant	-0.004	-0.066	-0.059	-0.047
	(0.134)	(0.131)	(0.132)	(0.126)
Observations	72	67	67	67
R-squared	0.425	0.506	0.509	0.531

The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Monthly frequency, 12/2007 to 04/2016. AR(1) not significant in first differences. Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.



CIP & swap market flows			
	00000000		000000000000000000000000000000000000000

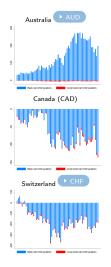
Using changes in arbitrageur positioning $x_{t,f}$

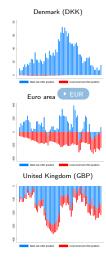
Global banks utilize their access to CB deposit facilities to park JPY when providing USD via FX swaps. $x_{t,f}$ is an endogenous proxy for D_t^{XC} .

Excess current account balances of foreign banks at the Bank of Japan

CIP & swap market flows			
	0000000		000000000000000000000000000000000000000

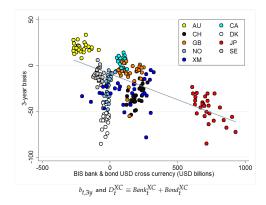
JPY/USD CIP deviations, using foreign bank excess reserves as a proxy for x_f


3-month JPY/USD basis	(1)	(2)	(3)
θ x _f	-0.909*** (0.216)	-0.759*** (0.133) -0.473***	-0.037 (0.096) 0.042
$\rho\sigma_s^2 \times \theta \times x_f$		(0.116)	(0.088) -1.035***
$\rho \sigma_s^2$			(0.116) 0.105* (0.060)
Repo spread diff.	-0.255*	-0.433***	-0.183***
FX bid-ask	(0.149) 0.397*** (0.136)	(0.141) 0.145 (0.092)	(0.061) 0.157** (0.063)
Constant	-0.315*** (0.100)	-0.210** (0.088)	-0.230*** (0.075)
Observations R-squared	72 0.679	72 0.733	72 0.844


The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Monthly frequency, 12/2007 to 04/2016. AR(1) not significant in first differences. Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

	CIP & swap market flows				
			•0000	0	000000000000000000000000000000000000000

Panel of currencies: AUD, CAD, CHF, DKK, EUR, GBP, JPY, NOK, and SEK



CIP & swap market flows	Market-clearing forward rate			
		00000	0	000000000000000000000000000000000000000

Panel of currencies: AUD, CAD, CHF, DKK, EUR, GBP, JPY, NOK, and SEK

AU = Australia, CA = Canada, CH = Switzerland, DK = Denmark, GB = United Kingdom, JP = Japan, NO = Norway, SE = Sweden, XM = Euro area. Price-based proxy

	CIP & swap market flows				
			00000	0	000000000000000000000000000000000000000

Fixed effects panel regressions:

$$\begin{split} \Delta \hat{b}_{t,i} &= \beta_{\theta} \times \Delta \theta_{t,i} + \beta_{\sigma} \times \Delta \rho \sigma_{s,t,i}^{2} + \beta_{D} \times \Delta D_{t,i}^{XC} \\ &+ \beta_{\theta \times \sigma \times D} \times [\Delta \theta_{t,i} \times \Delta \rho \sigma_{s,t,i}^{2} \times \Delta D_{t,i}^{XC}] \\ &+ \beta_{Repo} \times \Delta \left[(r_{t,i}^{REPO} - r_{t}) - (r_{t-1,i}^{*,REPO} - r_{t-1,i}^{*}) \right] \\ &+ \beta_{bid-ask} \times \Delta [(f_{t,i}^{B} - s_{t,i}^{A}) - (f_{t,i}^{A} - s_{t,i}^{B})]/2 + \alpha_{i} + \epsilon_{t,i} \end{split}$$

CIP & swap market flows				
		00000	0	000000000000000000000000000000000000000

Panel regressions: AUD, CAD, CHF, DKK, EUR, GBP, JPY, and SEK

3-month currency basis	(1)	(2)
θ	-0.406***	-0.408***
- XC	(0.058)	(0.073)
DXC		0.038 (0.036)
$\rho \sigma_s^2 \times \theta \times D^{XC}$		-0.091***
$\mu v_s \times v \times D$		(0.024)
$\rho \sigma_s^2$		-0.240**
		(0.084)
Repo spread diff.	-0.215**	-0.230**
	(0.073)	(0.077)
FX bid-ask	0.322***	0.314***
	(0.068)	(0.057)
Constant	-0.014**	-0.018**
	(0.006)	(0.007)
Observations	312	303
R-squared	0.293	0.358
Currency pairs	8	8
Fixed effects	yes	yes
Clustered standard errors	yes	yes

The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Quarterly frequency, Q1/2000 to Q4/2015. AR(1) not significant. Clustered robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

CIP & swap market flows				
		00000	0	000000000000000000000000000000000000000

Panel regressions: AUD, CAD, CHF, DKK, EUR, GBP, JPY, and SEK

2-year currency basis	(1)	(2)
θ	-0.373**	-0.229*
DXC	(0.135)	(0.104) 0.029
$\rho \sigma_s^2 \times \theta \times D^{\mathbf{XC}}$		(0.046) -0.160**
$\rho \sigma_s^2$		(0.054) -0.337**
Repo spread diff.	0.006 (0.128)	(0.110) -0.111 (0.122)
FX bid-ask	(0.120) 0.229* (0.110)	(0.122) 0.497** (0.179)
Constant	-0.019*** (0.002)	-0.014** (0.005)
Observations	294	222
R-squared Currency pairs	0.177 8	0.291
Fixed effects Clustered standard errors	yes yes	yes yes

The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Quarterly frequency, Q1/2000 to Q4/2015. AR(1) not significant. Clustered robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

Conclusion

Supply/demand imbalances in markets for FX forwards & swaps:

- Post-2008 CIP violations closely track fluctuations in net FX hedging demand
- The sign of CIP deviations vs USD reflects direction of net FX hedging demand
- Genuine economic risks in writing FX hedges/arbitraging the basis
- The bigger the book, the bigger the need to raise capital/fund collateral

Can explain stylized facts:

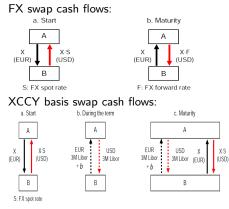
- Co-movement of currency basis with FX hedging imbalances
 → Marginal B/S costs of writing FX hedges/CIP arbitrage
- Why is AUD/USD basis positive and JPY/USD basis negative?
 → Positioning of the banking system/ability to write FX hedges
- Why is JPY/USD basis wider than EUR/USD or CHF/USD basis? \rightarrow JP banks' USD funding gap far exceeds that of EA or CH banks
- Why JPY/USD closed so much in Q1 2017 (even relative to EUR/USD basis)? \rightarrow JP banks shed FX bonds, mostly USD (\approx -\$95bn Jan-Apr 2017)

CIP & swap market flows	Market-clearing forward rate		
			•00000000000000000000000000000000000000

Recall: Covered interest parity

- Law of one price:
 - Interest rates on two otherwise identical assets in two different currencies must be equal once currency hedging cost is taken into account

 $(1+r) = \frac{F}{S}(1+r^*)$; S and F are in dollars per foreign currency (*)


- No arbitrage condition:
 - Not possible to earn a profit by borrowing in one currency and lending in another currency while covering FX risk through a forward contract of equal maturity

$$(1+r^A) = \frac{F^A}{S^B}(1+r^{*,B})$$

 Whether CIP holds depends crucially on *F/S*, which is determined in markets for currency forwards, FX swaps, and XCCY swaps

Pricing relationship between FX swaps and XCCY swaps

FX swap dealers: swap points, $(F_t - S_t)$ XCCY swap dealers: basis, b_t .

For a hypothetical 1-period term, the no-arbitrage relation between FX swap points and XCCY basis, b_t , can be expressed as:

$$F_{t,1} - S_t = S_t \times \frac{1 + r_{t,1} + b_{t,1}}{1 + r_{t,1}^*} - S_t$$

in logs:

$$b_t = f_t - s_t - (r_t - r_t^*)$$

$$-b_t = r_t - (f_t - s_t - r_t^*)$$

Source: Baba, Packer,Nagano (2008): "The spillover of money market turbulence to FX swap and cross-currency swap

CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

Swap market size and users across instruments & maturities

Back

- FX swaps are the modal instrument, \$2.4 trn/day: accounted for 47% of global FX turnover in April 2016 (+ forwards XCCY swaps, 63%)
- US dollar is on one side of 91% of FX swap transactions
- Trading in FX swaps with institutional investors rose 79% since 2013
- XCCY swaps notional about \$20 trn, forwards and FX swaps about \$30 trn

		suries/ALM	Corpo		Supras/Agencies		Pension funds	
	Market share	Product	Market share	Product	Market share	Product	Market share	Product
0-3 month	++	Fx Sw	+	Fx Sw+ Out	+	Fx Sw	+++	Fx Sw
3mo-1yr	+++	Fx Sw	+	FX Out			+	Fx Sw
1y1y	++	Fx Sw, XCCY	+	FX Out				
2y10y	+++	XCCY	+++	FX Out<5	++++	XCCY	+	XCCY
				XCCY>5				
>10y	+++	XCCY	+++	XCCY	++++	XCCY		
	Bank II	RS desks	с	В	Asset mar	agers	HF	
	Market share	Product	Market share	Product	Market share	Product	Market share	Produc
0-3 month			++	Fx Sw	+++	Fx Sw		
3mo-1yr			++	Fx Sw	++	Fx Sw	++	XCCY
1y1y							++	XCCY
0.10	+	XCCY					+	XCCY
2y10y		ACCI						

Related literature

CIP no-arbitrage

Frenkel / Levich (1975, 1977, 1981); Taylor (1987); Fletcher / Taylor (1996); Juhl, Miles, Weidenmier (2006) Akram, Rime, Sarno, (2008)

CIP failure due to bank credit risks & funding strains

Hanajiri (1999); Baba, McCauley, Ramaswamy (2009); Coffey, Hrung, Sarkar (2009); McGuire / von Peter (2012); Baba / Packer (2009); Cetorelli / Goldberg (2011,2012); Mancini Griffoli, Ranaldo (2012); Bottazzi, Luque, Pascoa, Sundaresan (2012); Ivashina, Scharfstein, Stein (2015)

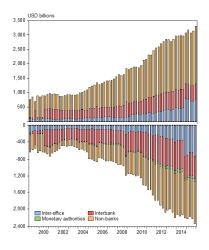
CIP in the post-crisis period

Du, Tepper, Verdelhan (2016); Pinnington / Shamloo (2016); Iida, Kimura, Sudo (2016); Liao (2016); Wong, Ng, Leung (2016); Borio, McCauley, McGuire, Sushko (2016); Arai, Makabe, Okawara, Nagano (2016); Avdjiev, Du, Koch, Shin (2016); Rime, Schrimpf, Syrstad (2016) Clack

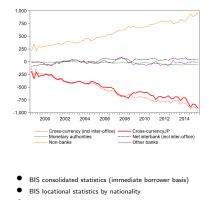
000 000 00 0000000 00000 0000000000000		CIP & swap market flows	Market-clearing forward rate		
					000000000000000000000000000000000000000

During the financial crisis, banks suffered significant counterparty credit risk (CCR) losses on their OTC derivatives portfolios. The majority of these losses came not from counterparty defaults but from fair value adjustments on derivatives. The value of outstanding derivative assets was written down as it became apparent that counterparties were less likely than expected to meet their obligations.

Basel Committee on Banking Supervision, Consultative Document, July 2015


Banks seem to have progressively converged in reflecting the cost of the credit risk of their counterparties in the fair value of derivatives [...]. This convergence is the result of industry practice, as well as a consequence of the implementation in the EU of IFRS 13 and the Basel CVA framework.

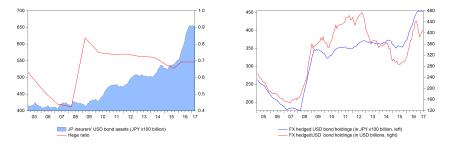
European Banking Authority Report on CVA, February 2015



CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

USD cross-currency position of JP banks: $Bank_t^{XC}$

Net USD foreign positions by counterparty


Implied cross-currency funding (ie FX swaps) equates gross
 US dollar assets and liabilities

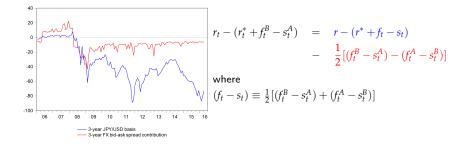
For details, see McGuire, P and G von Peter (2009) "The US dollar shortage in global banking", BIS Quarterly Review, March

CIP & swap market flows			
			000000000000000000000000000000000000000

USD forward hedges of JP life insurers: $Inst_t^{XC}$

Stock of FX bonds & hedge ratio

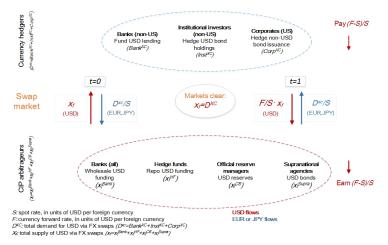
FX hedged bond holdings


- Stock benchmarked from The Life Insurance Association of Japan reports
- Monthly flows based on reports of insurance sector purchases and sales of foreign long-term debt securities by residence (MoF tables)
- Hedge ratios sourced from Barclays

 Back

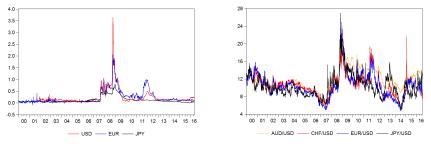
CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

Not a dealer intraday inventory risk problem...


- D_t^{XC} NOT reflected in the contribution of swap bid-ask spreads
- Premium on the stock of B/S exposure to D_t^{XC} priced into $(f_t s_t)$ · Back

Onus on supply/demand in swap markets • Back

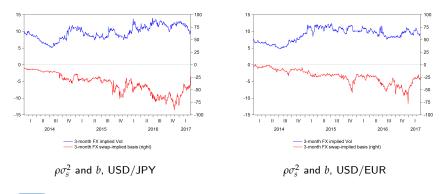
FX swap flows when net USD forward position of FX hedgers is negative


Players on both sides of FX swap market when $(F_{t,1}-S_t)/S_t > (1+r_{t,1})/(1+r_{t,1})$

CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

Proxies for θ and $\rho\sigma_s^2$

3-month FX option-implied volatility: $\rho \sigma_s^2$


3-month Libor-OIS spreads: θ

Back

CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

Currency option-implied volatility, as a proxy for MtM risk, and the basis

CIP & swap market flows			
			000000000000000000000000000000000000000

Adjusting for market risk in the presence of counterparty risk

$$E_{t}[W_{t+1}|\theta_{t} > 0] - E_{t}[W_{t+1}|\theta_{t} = 0] = [1 - \theta_{t}]x_{tf}(f_{t}^{B} - s_{t}^{A} + r_{t}^{*} - r_{t})$$

$$+ \theta_{t}x_{tf}(E_{t}[s_{t+1}^{B}] - s_{t}^{A} + r_{t}^{*} - r_{t})$$

$$- x_{tf}(f_{t}^{B} - s_{t}^{A} + r_{t}^{*} - r_{t})$$

$$= \theta_{t}x_{tf}(E_{t}[s_{t+1}^{B}] - f_{t}^{B})$$

- Credit Valuation Adjustment (CVA): adjustment to the fair value (or price) of derivative instruments to account for counterparty credit risk
- A unilateral CVA given by the product of the probability of counterparty default and the contract value at the time of default
- A bank must have a CVA desk (or a similar dedicated function). Capital requirement for CVA risk (counterparty credit risk + exposure risk) calculated for all covered transactions (BCBS, 2015)
- Risk charges managed by posting collateral (2-way CSA), subject to haricuts &

additional collateral required if MtM of the swap is negative Back

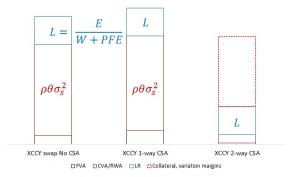
	CIP & swap market flows	Market-clearing forward rate		
				000000000000000000000000000000000000000

Bank have to add $PFE = \gamma x_{t,f}$ adjustment to total exposure calculation in the leverate ratio, L, reporting (Basel III, US SLR). So, equity, E_t , has to satisfy:

$$\frac{E_t}{W_t + PFE} = L,$$

$$\Rightarrow E_t = LW_t + L\gamma x_{t,f}$$

If L was binding when $x_{t,f} = 0$, then finance $L\gamma x_{t,f}$ by raising additional capital.


γ by category:	< 1-year	1-5 years	> 5-year
FX and gold:	0.01	0.05	0.075
Interest rate:	0.00	0.005	0.015
Credit (IG):	0.05	0.05	0.05
Credit (HÝ):	0.10	0.10	0.10
Equity:	0.06	0.08	0.10

Notes: table sourced from Supplementary leverage ratio, Davis Polk Wardwell LLP, September 12, 2014. Back

CIP & swap market flows			
			000000000000000000000000000000000000000

Relationship to factors driving the pricing of an OTC derivative

Notes: illustration borrowed from Motte F (2015): Impacts of regulations on derivatives markets, dealers perspective, HSBC.

on CIP & swap market flows			
			000000000000000000000000000000000000000

Asymmetric liquidity conditions/secured funding costs

Fraction c of CIP arbitrageurs liquidity constrained, so fund in repo markets at r_t^{REPO} (Mancini Griffoli and Ranaldo, 2012).

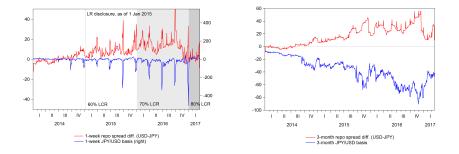
Then the objective function includes a short-selling costs (Gromb and Vayanos, 2010):

$$\max_{x_{t,f}} W_t + (W_t - x_{t,f}(1-c))r_t + x_{t,f}(f^B - s_t^A + r_t^*) - \frac{\rho}{2}\theta_t x_{t,f}^2 \sigma_s^2 - x_{t,f}r_t^{REPO}c$$

Market-clearing forward rate:

$$\Rightarrow f_t^B = s_t^A + r_t - r_t^* + \theta_t \rho \sigma_s^2 D_t^{XC} + c(r_t^{REPO} - r_t)$$

If repo used also in the investment leg, then:


$$f_t^B = s_t^A + r_t - r_t^* + \theta_t \rho \sigma_s^2 D_t^{XC} + c[(r_t^{REPO} - r_t) - (r_t^{*,REPO} - r_t^*)]$$

🕨 Back

	CIP & swap market flows			
				000000000000000000000000000000000000000

PC2 relates to asymmetric liquidity conditions,
$$(r_t^{REPO} - r_t) - (r_t^{*,REPO} - r_t^*)$$

- B/S management under the leverage ratio (Du et al, 2016; Arai et al, 2016)
- PFE add-on factors under Basel III and US SLR; LCR by currency
- Q-end window dressing, difficult to place JPY cash at Q-ends Plack

	CIP & swap market flows	Market-clearing forward rate		
				000000000000000000000000000000000000000

Long-run relationship between JPY/USD currency basis & D^{XC}

• Forward points, $(F_t - S_t)$, price in risk exposure premium

 \Rightarrow Breakdown of cointegration between F_t , S_t , r_t and r_t^*

• Cointegration recovered by accounting for D_t^{XC} .

Cointegration								
Johansen cointegration test (H_1) :	P-value	Trace stat	5% Critical value					
$\epsilon_t = F_{t,3y} - a - bS_t - cr_t^* + dr_t$ is $I(0)$	0.526	33.568	47.856					
$\epsilon_t = F_{t,3y} - a - bS_t - cr_t^* + dr_t - e\frac{D_t^{XC}}{t} \text{ is } I(0)$	0.037	71.435	69.819					
$\epsilon_t = b_{t,3y} - a - c D_t^{XC} \text{ is } I(0)$	0.023	17.679	15.495					
ARDL bounds test (H_1) :	P-value	F-stat	5% Critical value					
$\epsilon_t = b_{t,3y} - a - c D_t^{\mathrm{XC}}$ is $I(0)$	0.000	8.730	5.730					

Monthly frequency: 01/2005 to 03/2017. ADF test and Breakpoint unit root tests reject the null for $b_{l,3m}$, p-values 0.093 and 0.01, respectively. ADF test and Breakpoint unit root tests fail to reject the null for $b_{l,3y}$, p-values 0.730 and 0.785, respectively. ADF test and

Breakpoint unit root tests fail to reject the null for D_t^{XC} , p-values 0.615 and 0.358, respectively. Place

CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

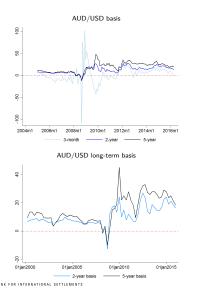
Robustness check using $D^{XC} = OAS^{US} - OAS^{JP}$, 3-month JPY/USD basis

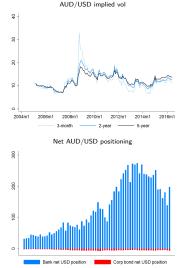
3-month JPY/USD basis	(1)	(2)	(3)	(4)	
θ	-113.620***	-112.440***	-42.195***	-34.265*	
	(26.952)	(28.476)	(13.518)	(17.186)	
DXC		-1.769	-3.752	-7.464	
		(12.643)	(7.542)	(7.568)	
$\theta \times D^{XC}$			-92.246***		
			(10.298)		
$\rho \sigma_s^2 \times \theta \times D^{XC}$. ,	-6.687***	
3				(0.912)	
$\rho \sigma_s^2$				1.112	
i i i i i i i i i i i i i i i i i i i				(0.716)	
Repo spread diff.	-29.301*	-29,955	-42.413***	-42.537***	
	(17.148)	(19.867)	(12.768)	(13.798)	
FX bid-ask	2.160***	2.177***	0.835	0.978**	
	(0.737)	(0.776)	(0.502)	(0.474)	
Constant	-19.420***	-19.379***	-20.239***	-31.549***	
	(2.535)	(2.583)	(2.376)	(7.433)	
Observations	72	72	72	72	
R-squared	0.679	0.679	0.815	0.818	

The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Monthly frequency, 12/2007 to 04/2016. AR(1) not significant in first differences. Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

Robustness check using $D^{XC} = OAS^{US} - OAS^{JP}$, 2-year JPY/USD basis

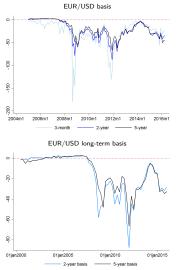

2-year JPY/USD basis	(1)	(2)	(3)	(4)	
θ	-15.675***	-12.316*	-0.845	-4.470	
	(5.825)	(6.280)	(5.633)	(4.301)	
DXC		-4.745	-5.611*	-3.778	
		(3.784)	(3.299)	(3.420)	
$\theta \times D^{XC}$. ,	-15.233***	. ,	
			(4.361)		
$\rho \sigma_s^2 \times \theta \times D^{XC}$				-9.940***	
F-S				(2.465)	
$\rho \sigma_s^2$				0.623	
F-S				(0.763)	
Repo spread diff.	-23.634***	-25.570***	-26.716***	-23.268***	
	(6.252)	(6.740)	(5.823)	(6.922)	
FX bid-ask	-0.093	-0.072	-0.047	-0.020	
	(0.237)	(0.243)	(0.235)	(0.230)	
Constant	-0.312	-0.364	0.272	0.265	
	(0.776)	(0.776)	(0.765)	(0.775)	
Observations	72	72	72	72	
R-squared	0.425	0.446	0.506	0.505	

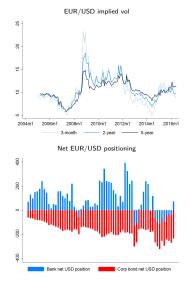

The table reports coefficients based on regressions using standardized variables (zero mean, unit variance). Monthly frequency, 12/2007 to 04/2016. AR(1) not significant in first differences. Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1.

AUD/USD currency basis and option-implied volatility, compared to net USD positioning of Australian banks and AUD debt of US corporates
Back
Back

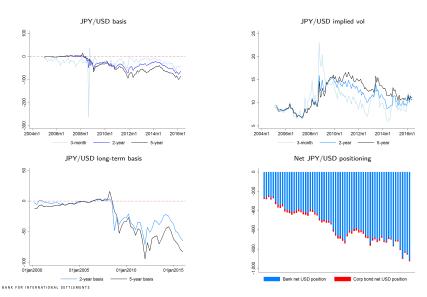
43

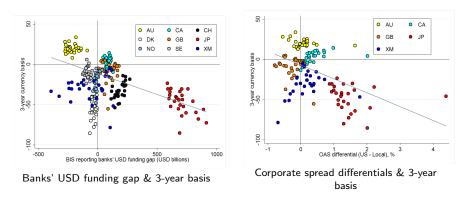
CHF/USD currency basis and option-implied volatility, compared to net USD positioning of Swiss banks and CHF debt of US corporates Pack




44

2016m1


EUR/USD currency basis and option-implied volatility, compared to net USD positioning of euro area banks and EUR debt of US corporates
Back



JPY/USD currency basis and option-implied volatility, compared to net USD positioning of Japanese banks and JPY debt of US corporates

CIP & swap market flows	Market-clearing forward rate		
			000000000000000000000000000000000000000

Quantity vs price proxies for the direction of USD forward positions and the currency basis

Sample: Q1/2009 - Q4/2015. AU = Australia, CA = Canada, CH = Switzerland, DK = Denmark, GB = United Kingdom, JP = Japan, NO = Norway, SE = Sweden, XM = Euro area.

