

The FAIR MUSIC

Chiara Nociforo

GSI Helmholtzzentrum für Schwerionenforschung

Darmstadt - Germany

Workshop on Techniques and Detectors for Heavy-ion Charge-State Identification in High-acceptance Spectrometers – 16-17 December 2020

Contents

Introduction

intro of Super-FRS ID of relativistic ions via $B\rho$ –ToF – ΔE method

• ΔE requirements

∆E detectors at GSI limitations and advantages

Super-FRS MUSIC

energy deposition and resolution simulations

Electronics

MUSIC FAIR board

Summary & outlook

The FAIR in-flight facility

Primary Beams

- 5x10^{11 238}U²⁸⁺ (pulsed)
 3.5x10^{11 238}U²⁸⁺ (DC)
 @1.5 GeV/u
- factor **100** in intensity over present

Secondary Beams

- broad range of RIBs up to 1-2 GeV/u
- up to factor **10000** in intensity over present

Super-FRS ID

Slow-extraction mode (spill: 0.5 - 10 s)

- FPF4 FMF2 behind 1st degrader stage
- FMF2 FHF1/FLF2/FRF3 behind 2nd degrader stage

The ion separation and identification by a combined event-by-event analysis of magnetic rigidity (**B** ρ), time-of-flight (**ToF**) and energy deposition (Δ **E**) in order to get unambiguous identification in charge **Z** and mass numbers **A** of the ion beams.

Super-FRS ID

Slow-extraction mode (spill: 0.5 – 10 s)

- FPF4 FMF2 behind 1st degrader stage
- FMF2 FHF1/FLF2/FRF3 behind 2nd degrader stage

- 1. Δx , $\Delta \theta$, Δy , $\Delta \phi$ obtained in ion trajectory reconstruction
- 2. Δ **ToF** required in mass region A > 200
- 3. ΔE resolution needed to separate Z and disentangle charge states

NUSTAR prototypes

 ΔE

Βρ

SFRS GEM-TPC

F. García et al., NIM A 884 (2018) 18

R3B SciFib det.

ToF

LYCCA

SFRS

DIA strip det.

start det.

R. Hoischen et al., NIM A 654 (2011) 354

SFRS Si strip det.

V. Eremin et al., NIM A 796 (2015) 158

F. Schirru et al., J. Phys. D: Appl. Phys. 49 (2016) 215105

HISPEC/ DESPEC Finger det.

C. Nociforo, December 17th, 2020

A suitable ΔE detector needs to have

- good energy resolution ($\Delta Z < 0.3$)
- high counting rate capability (pile-up correction)
- robustness against beam bombardment

Gas ionization chambers are

- extremely stable if equipped with gas flow system
- can provide energy resolution as good as that of semiconductor detectors
- charge-state selective
- large-scale detector easy to fabricate

Multiple Sampling Ionization Chamber (MUSIC)

MUSIC80

8 anode strips with 400 mm active length

- very good homogeneity of the field (D263 float glass)
- stable for particle rates up to 200 kHz, overall DCcoupling is used, which avoids rate dependent baseline drift
- 3 preamp types to cover the full range

TU Munich

http://www-w2k.gsi.de/frs/technical/FRSsetup/detectors/music.asp

Count rate limit

... but it is not fast enough to resolve the signals of individual beam particles at intensity > 30-40 kHz.

Dominant effects

- charge-changing (CC) probability (energy, Z, gas)
- δ-electrons escape in the IC volume

M. Pfützner et al., *NIM B* 86 (1994) 213

$$E_D = C_A \cdot E_{loss}$$
$$\sigma_Z \quad \sigma_{E_D}$$

$$\frac{\sigma_Z}{Z} \simeq \frac{\sigma_{E_D}}{2E_D}$$

Large correction factors needed to predict the "escaped" energy width for Z > 79 and E > 400 MeV/u

- correction factors for E_{D} and σ_{ED} calculated using GEANT4
- E_{loss} and its RMS obtained by ATIMA

Relative deposited energy width

Straggling caused by energy loss straggling and other statistical processes (delta electron escape) inside the IC gas volume

Simulations performed by A. Prochazka shows that a GEANT4 ionization model better in agreement with the data is achievable. Additional contributions to the Z resolution:

- straggling σ_{T0} caused by incoming energy spread (T0) due to energy loss in front the IC
- straggling due to incoming angular scattering in the matter in front of the IC

- vertical design of the electric drift fields
- 2-stage design (Nb stripper) for charge state selection

f-ds-bd-87e_sfrs_de_detector_v5.0

Electron exchange probability

GLOBAL + MOCADI

U @ 500 MeV/u

Charge state equilibrium

• equilibrium thicknesses of a Nb foil are 0.14-0.16 mm

Charge state distribution q

The stripper resets the charge state equilibrium of the incoming ion, permitting a second charge measurement. The Z of the ion is assigned as being the maximum of the q between each volume.

Triple MUSIC

horizontal drift, segmented anodes

energy loss (arb, unit)

Super-FRS layout

C. Nociforo, December 17th, 2020

FoS Super-FRS MUSIC

- Finnish in-kind contribution to FAIR
- Contract signed at the end of 2017, GSI-DTL will contribute with the field cage design Detector down
- CDR approved in Oct 2019

- Preamp by CEA DAM (J. Taieb) tested at the FRS since 2015, delivered in 2019 and already in use.
- Mesytec agreed in designing the signal chain from motherboard and preamplifiers up to digitalization
 - 17-ch charge sensitive amplifier board: differential, fast, low noise, full dynamic range, low power consumption and low failure rate
 - controller 1 GBit ethernet / USB 3 MVLC
 - time and amplitude digitizer MDPP16-D
 - power supply MVNV-4

Delivered to GSI Oct 2019

Adaptation started in Jan 2020

Tested in May 2020 with B. Voss and J. Galvis Tarquino

Preamp board prototype

Anodes

Channels

Detector side	Panel	Connector side
	Screen J	Imon1
Anode 1 (last in the beam)	Ι	Ch 0
Anode 2	Н	Ch 2
Anode 3	G	Ch 4
Anode 4	F	Ch 6
Anode 5	Е	Ch 8
Anode 6	D	Ch 10
Anode 7	С	Ch 12
Anode 8 (1 st in the beam)	В	Ch 14
	Screen A (alpha source)	Imon2

 Adaptation to an existing MUSIC at GSI-DTL

8-anode pad-plane

Beam test

Prototype at F2-FRS

HV settings: $U_{cath} = -4200 \text{ V}$, $U_{an} = 200 \text{ V}$

- Active area: 220x100 mm²
- Active length: 300 mm
- Anode: 8 segmented
- Drift: horizontal
- Distance cathode-grid: 220 mm
- Distance grid-anode: 2.2 mm

- Cu stripper at TA: 90 mg/cm²
- TA-F2: Bi⁸³⁺ selected by slit cut

²⁰⁹Bi @900MeV/u

Gas: P10, ΔE_{gas} = 555 MeV

sens. 1.5 pC

Run #8

sens. 1.5 pC sh. time = 10 x 12,5 ns; gain = 700

Low mean rate (4-5 kHz)

1 + 0

2 3

1

4

5

Anode

6

7 8 9

Pile-up

²⁰⁹Bi @900MeV/u

Run #10

sens. 1.5 pCsh. time = 10 x 12,5 ns; gain = 800

At high mean rate (> 2-3 MHz) time jump is visible

Summary

Charge identification of heavy relativistic ions flying through a magnetic separator like the Super-FRS:

- AE gas detectors represent the most suitable choice because of the good energy resolution and robustness
- AE gas detectors must work with fast amplifiers and digitizers (pile-up treatment) for higher rate capability
- Stripper between MUSIC sections helps
- FoS Super-FRS MUSIC

detector will be build at the GSI-DTL integration and optimization of the Mesytec pream board beam time 2021/22 approved FDR foreseen by the end of 2021

Outlooks

About the coming design:

- removable stripper between two volumes, inserted or not, depending on the fragment setting, i.e. limiting angular spreading or cleaning up Z misidentification in case of high Z and low energy ion beams
- the anode segmentation to permit higher rate and lower pile-up event
- use of lower Z window (for instance Ti) of the vacuum pocket to reduce the angular straggling in all Super-FRS gas detectors.

FAIR MUSIC collaborators

- T. Blatz, C. Karagiannis, C. Nociforo, J. Galvis Tarquino, B. Voss
- T. Grahn, J. Tuunanen
- R. Schneider

JYVÄSKYLÄN YLIOPISTO nesytec

UNIVERSITY OF JYVÄSKYLÄ