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The Ferro-Electric Phase Transition and Critical Phenomena 
 
[Note:  Suitable triglycine sulfate crystals may be available.   If not, you will have to "grow" them 
yourself.  This takes a few days.] 
 
1. Introduction 

 
A ferromagnetic substance, such as iron, can carry a permanent magnetization. Above a certain tem-
perature, known as the “Curie point”, the magnetization vanishes. This change in magnetic proper-
ties is associated with a change in the internal order of the crystal, otherwise known as a phase tran-
sition. Many condensed matter systems undergo transitions from one phase to another as a function 
of temperature, pressure, composition and other thermodynamic variables.  A familiar example is 
the solid-liquid melting transition (e.g., ice-water). At the melting point there is a large increase in the 
entropy, implying a latent heat, and an anomalous behavior in the specific heat. 
 

 
Figure 1 The famous "lambda-point" in the specific heat 

of  4He at the superfluid phase transition. (Stanley) 

 
“Ferroelectric” materials are the electrical analogy of ferromagnets: they can carry a permanent elec-
tric dipole moment.  In this experiment, you will measure the polarization and capacitance of a fer-
roelectric crystal as a function of temperature, compare them to ferromagnetic behavior, and infer 
some of the universal characteristics of second-order phase transitions.  
 
 
2. Phase Transitions and Critical Phenomena 
 
Lev Landau first suggested that the nature of phase transitions is determined by symmetry principles. 
Consider the process known as “melting”.  The solid phase is a lattice with definite crystal symme-
try, while the liquid phase is spherically symmetric.  Thus the liquid has no particular symmetry rela-
tionship with the solid. The lack of a symmetry relationship between the two phases forbids a con-
tinuous transition: we have either a solid or a liquid, or a mixture of the two phases in equilibrium, 



2/22/2006 2 Phase Transitions 
 
but there is no point at which the two phases are indistinguishable. These are called first-order phase 
transitions.  
 
On the other hand, if there is some identifiable relationship between the two phases in terms of the 
symmetry elements each possesses, then a continuous transition from one to the other is allowed.  A 
simple example of such a transition is the liquid-vapor transition at the critical point. On the critical 
isotherm, the liquid transforms continuously into a vapor, without a discontinuous change in the 
volume. At the critical point the two phases are indistinguishable.  These are called second-order transi-
tions, and are marked, most notably, by the absence of latent heat. For all temperatures below the 
critical isotherm the transition is discontinuous with a latent heat arising from the discontinuous 
change in volume.  The meaning of the nomenclature about first and second order is discussed in 
Myers, Appendix 11.4. 
 
The critical point, at which a continuous phase transition occurs, is thus a point of special interest. It 
has been suggested (Wilson, Fisher, Kadanoff ~1967) that the behavior of a system at its critical 
point is universal : physical properties of the system, such as specific heat or susceptibility, at the criti-
cal point will not depend on the detailed form of the interactions between individual atoms or mole-
cules. The reason for this is that the transition involves the co-operative effect of all the interactions in 
the system, for instance the alignment of dipoles in a ferromagnet. The important quantities are long-
range in nature and transcend the details of the short-range interactions as far as the transition is con-
cerned.  In this case, the thermodynamic behavior of a superconductor at its critical point (the sc-
normal transition) should be identical to that of a ferromagnet or even steam at its critical point! 
 
Because of the symmetry restrictions mentioned above, critical points are not very common in solid- 
state physics. The best-known example is probably the transformation of a ferromagnet to a par-
amagnetic at higher temperatures. We will briefly review this below. In this experiment, we will look 
at an electrical analog of this transition, one in which a permanent electric dipole moment sets in at the 
phase transition.  In this case, the ferroelectric ordering of the low temperature state arises from the co-
operative alignment of electric dipoles. The ferroelectric transition is relatively easy to measure, and 
thanks to the universality hypothesis, a convenient laboratory in which to study critical phenomena.  
 
3. Paramagnetism, Ferromagnetism, and the Curie Point 
 
Required reading: Myers, 11.1-11.5, Appendix 11.4. 
 
The study of magnetism in matter is a classic element of solid state physics, and the starting point 
for any discussion of second-order phase transitions.  
 
A linear paramagnetic substance acquires a magnetization proportional to the applied magnetic 
field: 
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The susceptibility, χ, determines the strength of the paramagnetic response. For non-metals, Curie 
found the magnetization, and thus the susceptibility, to vary inversely with temperature: 
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where C is called the Curie constant. Langevin derived this form by assuming (way before the dis-
covery of spin!) the existence of intrinsic molecular or atomic magnetic moments.  Consider a gas of 
N free magnetic dipoles of strength µ interacting with magnetic field B.  If the number of dipoles in 
each orientation (

  

r
µ !

r
B ) is weighted by the Boltzmann factor, then, in the limit of small B, the total 

dipole moment is given by  
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  for µB > kT  [3] 

 
in agreement with the Curie form.  Measurement of the Curie constant yields the intrinsic atomic or 
molecular moments. 
  
Ferromagnetic substances, like iron, behave like paramagnets at high temperature, but below a 
certain temperature TC, acquire a “spontaneous magnetization”. That is, they have a finite value of M, 
even when B = 0.  In these materials, long-range interactions between the dipoles create a “mean” in-
ternal field that can “bootstrap” an overall dipole alignment.  When the temperature is high, the 
thermal motion of the dipoles prevents this ordering.  As the temperature cools, small regions of 
dipoles become susceptible to fluctuations, which can create small, aligned domains.  As cooling 
continues, these domains are subject to larger aligning fluctuations, the susceptibility grows very 
large, and at the critical temperature, TC , a global alignment locks in.  In a heuristic interpretation of 
Eqn. 2, we may say that at the critical temperature, an infinite χ multiplies a zero B to yield finite M. 
 
 

  
Figure 2 Left:  Reduced magnetization vs. reduced temperature for three ferromagnetics with different in-
trinsic moments, showing universal behavior (Stanley). Right: The inverse magnetic susceptibility vs. tem-
perature in Fe, showing the Curie-Weiss behavior and several Curie points (Myers). 

The idea of the “mean field” is actually a simplification of the complex mathematical problem of 
describing the interacting dipoles.  Instead of interacting with each other, the dipoles are assumed to 
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create a “mean” background field, and interact with that. (See Myers or Stanley.)  In  the high tem-
perature region, the paramagnetic Curie behavior is modified to the  “Curie-Weiss” law 
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The susceptibility still diverges as 1/T, but the singularity moves up to TC, the “Curie temperature”. 
A permanent magnetization begins to grow at TC, and increases with cooling according to the form 
shown in Fig. 2-left.  Below TC , the susceptibility continues to follow the Curie-Weiss law.  In Fig. 
2-right, the inverse of χ  is seen to be linear in temperature, but with jumps and slope changes at the 
transitions. 

 
Figure 3 Specific heat of Fe near the Curie point (Myers) 

 
But why is this a phase transition?  Because, as seen in Fig 3, above, there is a rapid change in the 
specific heat at TC,, which we usually associate with a “change in state”. However, there is no discon-
tinuous change in the configuration of the system, as in the case of melting or boiling. Instead, there 
is a change in the amount of order: in the magnetic phase, the dipoles are lined up. The change in 
order is accompanied by a change in a symmetry, rotational symmetry that exists in both phases. 
Above TC there is complete rotational symmetry.  Below TC, the magnetization axis defines a pre-
ferred direction in space: there is still rotational symmetry, but there is less of it. Landau called this a 
“phase transition of the second kind”, and invented a powerful technique for studying its critical 
point behavior. But first, the experiment… 
 
   
3.  Study of the Ferro-Electric Transition in Triglycine Sulfate 
 
Triglycine sulfate (TGS, for short) is a ferroelectric at room temperature and transforms to a ‘para-
electric’ state at the critical point, Tc ≈ 49°C.  A brief summary of the properties and structure of 
TGS is given in Appendix I.  The important point is that TGS is one of the rare solid-state systems 
that exhibits a continuous phase transition.  In Part I, we will measure the spontaneous polarization (di-
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pole moment/unit volume) that appears at the critical point in TGS and study its temperature de-
pendence in the ferroelectric phase.  In Part II, we measure the electric susceptibility (via the dielectric 
constant) of TGS as it changes phase. As you work, keep in mind the analogy to magnetism and the 
discussion above: 
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Part I:  Polarization vs .  Temperature 
 
Use a crystal of TGS (see Appendix I) that has silver paint electrodes on two opposite faces normal 
to the polar axis.  The TGS sample acts as the dielectric in a parallel-plate condenser.  The crystal 
can be heated or cooled slowly through Tc by enclosing it in a heating tape whose temperature can 
be varied with a variac.  The temperature of the sample can be measured with a thermocouple that is 
placed in thermal (but not electrical) contact with the crystal.  The Omega 871A digital thermometer 
is a hand-held DVM-like meter that reads out the thermocouple voltages and converts to tempera-
tures in degrees.  
 
Note that for this to work the sample and leads must have a very high electrical resistance, so that 
the charge does not leak off.   The leads and crystal should be insulated carefully. (Black electrical 
tape is good.)  Check with an ohmmeter to see that the resistance is >10 Meg.   
 
When the electric dipole moment sets in at Tc charge will begin to accumulate on the crystal surfaces 
normal to the polar axis, positive charge on one electrode and negative on the other.  Since the crys-
tal is an insulator we can assume the charge will not leak away or be shorted out by the crystal.  The 
charge that accumulates (which is just equal and opposite to the spontaneous polarization, P0, multi-
plied by the surface area of one electrode) is measured using a Keithley 610BR electrometer.   A rea-
sonable scale to start with is 3 x 10–8 C. 
 
Starting with the crystal at room temperature, measure the charge that accumulates on the sample 
electrodes as the sample is heated.  At room temperature, TGS is in the ferroelectric phase and thus 
has a fully developed dipole moment.  Of course, the sample will be electrically neutral and no 
charge will be present on the electrodes unless the equilibrium is disturbed, e.g., by heating or 
squeezing the sample.  The former is known as the ‘pyroelectric effect’ and is widely used in heat 
sensing and infra-red imaging applications.  The latter is known as the ‘piezoelectric effect’ and is 
used to sense acoustic waves and as an ultrasonic transducer. 
 
Use the variac to warm the sample slowly.  Start with the variac turned up to about 20 or so and 
watch the temperature rise.  If you raise it too quickly, you will destroy the sample.  Measure the 
charge on the electrodes as the temperature is raised.  You should see a dramatic buildup of charge 
as you pass over the phase transition.  Once you are well past the peak, try gradually lowering the 
temperature.  The behavior may not be reproducible due to charge leaking off.  Try this several 
times to find a procedure that gives the best data.  When you are finished, make an estimate of the 
area of the sample electrodes.  Try to obtain as many data points as you can in the region of the 
phase transition, Tc ± 15°C.  Plot a graph of spontaneous polarization, P0, as a function of tempera-
ture.  The units of P0 are µC-m-2.  Plot the same data as a log-log plot:  ln P0  vs.  ln(Tc-T), and meas-
ure the slope.  How does this compare with the theoretical prediction given in Section 4?  What 
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value do you obtain for the saturation spontaneous polarization?  If this differs from the value given 
in Appendix I, why do you think this is so? 
 
Incidentally, the spontaneous polarization of the ferroelectric phase is produced by the displacement 
of the nitrogen ions from the planes of mirror symmetry m and m’ in Figure 3, Appendix I.  Given 
the unit cell dimensions (marked with an arrow in Table I) calculate the displacement of the nitrogen 
ions needed to give the measured polarization. 
  
Part II: Capacitance vs . Temperature 
 
In this part, we study the variation of the electric susceptibility at the critical point. Use the same ap-
paratus as for part I, with a capacitance meter (the Keithley 332 LCZ Meter) instead of the elec-
trometer. The capacitance vs. temperature can be converted into the dielectric constant via 
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where ε0 is the permittivity of free space (8.85 × 10-12 farad/meter), A is the area of one electrode, 
and d is the separation of the electrodes. The dielectric constant κ  gets you back to the susceptibil-
ity. 
 
We do not have the official “4-point” input fixture for the LCZ meter, but the home-made substi-
tute using coaxial cables works remarkably well. The setup and calibration procedure is on page 1-12 
of the Keithley manual. Be sure you can use the meter to get an accurate value for a known capaci-
tor before proceeding. 
   
Connect your sample to the LCZ meter. Take data up to T ≈ 80°C on heating then take more data 
on cooling back to room temperature.  Take care not to overheat the sample beyond 85°C.  You 
may not be familiar with the operation of the capacitance bridge, so practice on a few of the stan-
dard capacitors provided. 
 
You will find the capacitance varies rapidly in the region of Tc so try to have the temperature chang-
ing as slowly as possible in the phase transition region.  Try to collect as many data points as possi-
ble near Tc. 
 
Plot a graph of K versus (T-Tc) from room temperature to ~120°C.  Plot the same data in the form 
1/K vs. (T-Tc).  How does the temperature dependence compare with Landau’s prediction (see Sec-
tion 4)?  What ratio of the Curie constants do you obtain? 
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4:  Landau theory of a continuous phase transitions 
 
Required reading: Landau, Chapter 14, Sections 142 and 143. 
 
Landau’s theory provides a very elegant technique for predicting the shape of the order parameter 
and the susceptibilities near the critical point. 
  
a. Assumptions 
 
The basic assumptions of the Landau theory are  
 

1. Continuous phase transitions are driven by the  internal “order” 
2. The amount of this order is measured by an “order parameter”, P, chosen so that 
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For a ferromagnet, η = M; for a ferroelectric, we might expect η = P; for a superconductor, 
η will be related to the Cooper pair density. In particle physics, the masses of the elementary 
particles are due to a broken symmetry of the weak interaction, and η is the “vacuum expec-
tation value” of the Higgs boson! 

 
3. In the neighborhood of the transition, the thermodynamic potential can be expanded as a 

Taylor series in the order parameter 
 
b. Setup 
 
The specific thermodynamic potential we are considering is the Gibbs Free Energy 
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where U is the internal energy, S is the entropy, P is the polarization, and E is the electric field. 
The order parameter is the spontaneous polarization, η = P.  
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For simplicity we neglect higher powers than the fourth – in special cases, e.g. when φ2=0, higher 
order terms may be important be we will not consider the possibility here.  Note also that only even 
powers of P appear in the expansion e.g. φ is invariant under reversal of the direction of the polari-
zation.  This symmetry is required for ferromagnets and ferroelectrics.  However, in general both 
even and odd powers will be present.  If one looks further into this, it is seen that odd terms usually 
lead to discontinuous phase transitions. 
 
b. Treatment of the Critical Point 
 

The condition for stable thermodynamic equilibrium is that φ must be a minimum. Thus  
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where P0 is the equilibrium value of the order parameter. 
 
According to our definition of φ,  
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This last quantity is just the inverse dielectric permittivity, 1/Kε0 where K is the dielectric constant 
and ε0 is permittivity of free space (physically, the permittivity is just a response function describing 
the change in the polarization due to an external electric field). 
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c. Treatment of the Critical Point (cont'd) 
 
Now we can use equilibrium condition (10) to find the order parameter. The derivative of the poten-
tial  
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has two solutions:  Po=0 which corresponds to a stable paraelectric phase (T≥Tc) and more interest-
ingly 
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corresponding to a stable ferroelectric phase (T<Tc). 
 
In this case, the non-zero polarization appears even in the absence of an external field (ac-
cording to equation (11),  E=0 at equilibrium).  This is a somewhat surprising result and it implies 
that the symmetry of the high temperature phase has been “broken” by the appearance of a polariza-
tion.  This spontaneous symmetry breaking is a general feature of all phase transitions. 
 

Going back to the form of the potential, we now make one more assumption.  We let the coefficient 
φ1 be temperature dependent, and expand to lowest order:   
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The polarization in Equation 14 becomes 
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and therefore  
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This is a very important result: the polarization grows like the square root of T below the critical 
point.  If you followed the derivation in Myers, you know that the non-Landau solution is the com-
plicated transcendental expression known as the Brillioun function.  This simpler form for the same quan-
tity, and the elegance of its derivation, illustrates the power of the Landau approach. 
 

Finally, to find the behavior of the dielectric constant in the region of Tc, as per Eqn. 12,   we differ-
entiate the potential twice we get: 
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For T≥Tc  Po=0, and therefore 
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(remember the second derivative of φ has to be >0 at equilibrium, so this ensures that K is positive 
definite) 

For T<TC, substitute (16), 
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into (18) to get: 
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and therefore 
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Thus a plot of the inverse dielectric constant vs. T should reveal linear behavior above and below Tc.  
The slopes should be in the ratio 2:1.  Equations (19) and (21) are equivalent to the Curie-Weiss 
Law.  The Landau theory not only yields the expected form, but makes a prediction for the ratios of 
the prefactors, or Curie constants!   
 
d. Summary  
 

From simple phenomenological arguments, we have determined the equilibrium behavior of the or-
der parameter (spontaneous polarization) and dielectric constant in the region of the phase transi-
tion.  Just to complete this discussion of critical phenomena we could write equation (17) and equa-
tion (19/21) more generally as: 
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β and γ are known as “critical exponents” and describe the singular behavior in the region of Tc.  
More accurate theories than Landau’s that include the effects of fluctuations of the order parameter, 

predict 
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  for example.  Landau’s neglect of fluctuations puts his theory in the class 

of so-called “mean-field” theories of phase transitions in which an ordering entity (a spin, dipole 
moment, displacement, etc.) experiences the average resultant field of all the other similar entities in 
the system (i.e. the long-range interactions are presumed to inhibit fluctuations of individual enti-
ties). 
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Appendix I:  Some Properties of TGS 
 
Some of the physical properties of TGS are summarized on the following two pages. 
 
The crystals of TGS you are given have been grown from an aqueous solution by slow evaporation.  
The solubility curve that makes this possible is shown in Figure 1.  The morphology of the crystals is 
shown in Figure 2.  The crystal structure is complex and has fairly low symmetry (monoclinic).  The 
mechanism by which the spontaneous dipole moment is created is also complex and is not yet fully 
understood.  However, crudely speaking, the glycine molecule I in Figure 3 on average lies on a 
plane of mirror symmetry in the structure at T≥Tc and there is no net dipole moment.  We say the 
structure is “centrosymmetric” in its high-temperature phase.  For T<Tc on the other hand, the ni-
trogen atoms in the glycine molecules are found to be displaced to the left (or right) of the mirror 
plane, along the polar axis b.  Thus a dipole moment is set up in each unit cell.  The co-operative 
displacement of all such nitrogen ions in the sample thus produces a macroscopic dipole moment in 
much the same way that unpaired spins co-operatively align to create a magnetic moment in e.g. 
iron. 
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From: Landholt-Bornstein Tables of Physical Properties (Band III: Ferroelectrics) 
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TGS 
 

 

 

Figure 1.  Solubility of TDC in water at various tem-
peratures.  TGS crystals are grown by evaporating or 
cooling a saturated solution. 

Figure 2.  Usual growth habit of TGS 
crystals.  The polar axis is normal to the 
page. 

  
  

 

 
 
 

 

(a) (b) 
Figure 3.  View along the c-axis of the structure of TGS (after Hoshino, Okaya and Pepinsky, 
1959; Itoh and Mitsui 1973) showing the three glycine groups I, II, and III.  The sulphate ions are 
shown as tetrahedral.  m and m′ are mirror planes in the high temperature phase. 
 
 


