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Preface

This is a set of lecture notes on finite elements for the solution of partial differential
equations. The approach taken is mathematical in nature with a strong focus on the
underlying mathematical principles, such as approximation properties of piecewise
polynomial spaces, and variational formulations of partial differential equations,
but with a minimum level of advanced mathematical machinery from functional
analysis and partial differential equations.

In principle, these lecture notes should be accessible to students with only a ba-
sic knowledge of calculus of several variables and linear algebra as the necessary
concepts from more advanced analysis are introduced when needed.

Throughout this text we emphasize implementation of the involved algorithms,
and have thus mixed mathematical theory with concrete computer code using the
numerical software MATLAB and its PDE-Toolbox.

Umeå, Mats G. Larson
December 2009 Fredrik Bengzon
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Umeå University during the last six years and the authors gratefully acknowledge
the contributions of the teachers and students involved.

vii





Contents

1 Piecewise Polynomial Approximation in 1D . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Piecewise Polynomial Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Space of Linear Polynomials . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 The Space of Continuous Piecewise Linear Polynomials . . . 2

1.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Continuous Piecewise Linear Interpolation . . . . . . . . . . . . . . . 7

1.3 L2-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Derivation of a Linear System of Equations . . . . . . . . . . . . . . 9
1.3.3 Basic Algorithm to Compute the L2-projection . . . . . . . . . . . 11

1.4 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 The Mid-point Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 The Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 Simpson’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Assembly of the Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Assembly of the Load Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 The Finite Element Method in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 The Finite Element Method for a Model Problem . . . . . . . . . . . . . . . . 23

2.1.1 A Two-point Boundary Value Problem . . . . . . . . . . . . . . . . . . 23
2.1.2 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Derivation of a Linear System of Equations . . . . . . . . . . . . . . 25
2.1.5 Basic Algorithm to Compute the Finite Element Solution . . . 26

2.2 Basic A Priori Error Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Derivation of the Stationary Heat Equation . . . . . . . . . . . . . . . 28
2.3.2 Boundary Conditions for the Heat Equation . . . . . . . . . . . . . . 29

ix



x Contents

2.3.3 Derivation of a Differential Equation for the Deformation
of a Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Boundary Conditions for the Bar . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 A Model Problem with Variable Coefficients and Robin Boundary

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Assembly of the Stiffness Matrix and Load Vector . . . . . . . . 33
2.5.2 A Finite Element Solver for a General Two-point

Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Adaptive Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 A Posteriori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Piecewise Polynomial Approximation in 2D . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Data Storage Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Piecewise Polynomial Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 The Space of Linear Polynomials . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 The Space of Continuous Piecewise Linear Polynomials . . . 49

3.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Continuous Piecewise Linear Interpolation . . . . . . . . . . . . . . . 53

3.4 L2-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Derivation of a Linear System of Equations . . . . . . . . . . . . . . 54
3.4.3 Basic Algorithm to Compute the L2-projection . . . . . . . . . . . 55
3.4.4 Existence and Uniqueness of the L2-projection . . . . . . . . . . . . 55
3.4.5 A Priori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.6 Properties of the Mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Quadrature and Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Assembly of the Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.2 Assembly of the Load Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 The Finite Element Method in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Green’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 The Finite Element Method for Poisson’s Equation . . . . . . . . . . . . . . 68

4.2.1 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Contents xi

4.2.3 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Derivation of a Linear System of Equations . . . . . . . . . . . . . . 69
4.2.5 Basic Algorithm to Compute the Finite Element Solution . . . 70

4.3 Basic Analysis of the Finite Element Method . . . . . . . . . . . . . . . . . . . 71
4.3.1 Existence and Uniqueness of the Finite Element Solution . . . 71
4.3.2 A Priori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Properties of the Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 A Problem with Variable Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Assembly of the Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Assembling the Boundary Conditions . . . . . . . . . . . . . . . . . . . 79
4.5.3 A Finite Element Solver for Poisson’s Equation . . . . . . . . . . . 80

4.6 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 The Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 The Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Adaptive Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9.1 A Posteriori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9.2 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.9.3 Adaptive Finite Elements using MATLAB . . . . . . . . . . . . . . . 90

4.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Time-dependent Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.0.1 Finite Difference Methods for Systems of ODE . . . . . . . . . . . 95

5.1 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.1 Derivation of the Time-dependent Heat Equation . . . . . . . . . . 97
5.1.2 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1.3 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1.4 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.5 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Stability Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.1 A Space Discrete Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 A Fully Discrete Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 A Priori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.1 Ritz projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 A Space Discrete Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.3 A Fully Discrete Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Derivation of the Acoustic Wave Equation . . . . . . . . . . . . . . . 109
5.5.2 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.3 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.4 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.5 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Stability Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6.1 Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



xii Contents

5.7 A Priori Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.8 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Iterative Methods for Large Sparse Linear Systems . . . . . . . . . . . . . . . . 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.3 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Basic Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.1 Jacobi’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.2 The Gauss-Seidel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Projection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 One-dimensional Projection Methods . . . . . . . . . . . . . . . . . . . 123
6.3.2 Krylov Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.3 CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.4 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.5 Other Krylov Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.1 Jacobi Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.2 Incomplete Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 A Note on Iterative Methods for Eigenvalue Problems . . . . . . . . . . . . 132
6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Abstract Finite Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1 Elliptic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Abstract Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Three Common Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Equivalent Minimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4 The Lax-Milgram Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5 Abstract Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5.1 Abstract Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . 144
7.5.2 Galerkin Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5.3 A Priori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5.4 A Posteriori Error Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 The Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.1 Different Types of Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.1.1 Formal Definition of a Finite Element . . . . . . . . . . . . . . . . . . . 149
8.1.2 Shape Functions for the Linear Lagrange Triangle . . . . . . . . . 151
8.1.3 Shape Functions for the Quadratic Lagrange Triangle . . . . . . 152
8.1.4 Higher Order Triangular Lagrange Elements . . . . . . . . . . . . . 154
8.1.5 Shape Functions for the Bilinear Elements . . . . . . . . . . . . . . . 154



Contents xiii

8.2 The Isoparametric Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2.1 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2.2 Renumbering the Mesh for Quadratic Nodes . . . . . . . . . . . . . 159
8.2.3 Assembly of the Isoparametric Quadratic Stiffness Matrix . . 161

8.3 Some More Exotic Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3.1 The Crouzeix-Raviart Element . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3.2 The Lowest Order Raviart-Thomas Element . . . . . . . . . . . . . . 163
8.3.3 The Lowest Order Nedelec Element . . . . . . . . . . . . . . . . . . . . . 164

8.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9 Non-linear Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.1 Piccard Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.3 The Non-linear Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.1 The Newton-Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3.2 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3.3 Piccard Iteration as a Simplified Newton Method . . . . . . . . . . 173
9.3.4 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.4 The Bistable Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.4.1 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.4.2 Space Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.4.3 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.4 Piccard Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.5 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10 Transport Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.1 The Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.1.1 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.1.2 Existence and Uniqueness of the Solution . . . . . . . . . . . . . . . . 184
10.1.3 Standard Finite Element Approximation . . . . . . . . . . . . . . . . . 185
10.1.4 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.1.5 The Need for Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.1.6 Least-Squares Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.1.7 GLS for the Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . 191
10.1.8 Heat Transfer in a Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

11 Solid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

11.1.1 Cauchy’s Equilibrium Equation . . . . . . . . . . . . . . . . . . . . . . . . 201
11.1.2 Constitutive Equations and Hooke’s Law . . . . . . . . . . . . . . . . 203
11.1.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

11.2 The Equations of Linear Elastostatics . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.2.1 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



xiv Contents

11.2.2 Existence and Uniqueness of Solutions . . . . . . . . . . . . . . . . . . 206
11.2.3 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 208

11.3 A Priori Error Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.4 Engineering Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

11.4.1 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
11.4.2 Verifying the Energy Norm Convergence . . . . . . . . . . . . . . . . 217

11.5 A Posteriori Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.5.1 Adaptive Mesh Refinement on a Rotated L-shaped Domain . 221

11.6 The Equations of Linear Thermoelasticity . . . . . . . . . . . . . . . . . . . . . . 223
11.7 The Equations of Linear Elastodynamics . . . . . . . . . . . . . . . . . . . . . . . 223

11.7.1 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

12 Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

12.1.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.1.2 Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.1.3 Incompressible Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . 230
12.1.4 Boundary- and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . 231

12.2 The Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.2.1 The Stationary Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.2.2 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.2.3 The Inf-Sup Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.2.4 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.2.5 The Discrete Inf-sup Condition . . . . . . . . . . . . . . . . . . . . . . . . . 236
12.2.6 Three Inf-Sup Stable Finite Elements . . . . . . . . . . . . . . . . . . . 237
12.2.7 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

12.3 The Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
12.3.1 Chorin’s Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.3.2 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

12.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A Some Additional Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
A.1 Tri2Edge.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
A.2 Tri2Tri.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
A.3 Dslit.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
A.4 Airfoil.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
A.5 RectCirc.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
A.6 DFGg.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258



Chapter 1
Piecewise Polynomial Approximation in 1D

Abstract In this chapter we introduce a type of functions called piecewise polyno-
mials that can be used to approximate other more general functions, and which are
easy to implement in computer software. For computing piecewise polynomial ap-
proximations we present two techniques, interpolation and L2-projection. We also
proving estimates for the error in these approximations.

1.1 Piecewise Polynomial Spaces

1.1.1 The Space of Linear Polynomials

Let I = [x0,x1] be an interval on the real axis and let P1(I) denote the vector space
of linear functions on I, defined by

P1(I) = {v : v(x) = c0 + c1x, x ∈ I, c0, c1 ∈ R} (1.1)

In other words P1(I) contains all functions of the form v(x) = c0 + c1x on I.
Perhaps the most natural basis for P1(I) is the monomial basis {1,x}, since

any function v in P1(I) can be written as a linear combination of 1 and x. That
is, a constant c0 times 1 plus another constant c1 times x. Obviously, v is uniquely
determined by specifying c0 and c1 called the coefficients of this linear combination.
We say that v have two degrees of freedom. However, c0 and c1 are not the only
degrees of freedom possible for v. To see this recall that a line, or linear function,
is uniquely determined by requiring it to pass through two given points, and that
there are many pairs of points that can specify the same line. For example, (0,1)
and (2,3) can be used to specify v = x+ 1, but so can (−1,0) and (4,5). In fact,
any pair of points within I will do as degrees of freedom for v. In particular, v can
be uniquely determined by its values α0 = v(x0) and α1 = v(x1) at the end-points x0
and x1 of I.

1



2 1 Piecewise Polynomial Approximation in 1D

To prove this claim rigorously let us assume that the values α0 = v(x0) and α1 =
v(x1) are given. Inserting x = x0 and x = x1 into v(x) = c0+c1x we get the following
linear system [

1 x0
1 x1

][
c0
c1

]
=

[
α0
α1

]
(1.2)

Computing the determinant of the system matrix we find that it equals x1−x0, which
also happends to be the length of the interval I. Hence, the determinant is positive,
and therefore there exist a unique solution to the linear system for any right hand
side vector. Further, as a consequence there is exactly one function v in P1(I) with
has the values α0 and α1 at x0 and x1, respectively. We remark that the system matrix
above is called a Vandermonde matrix.

In the following we shall refer to the points x0 and x1 as the nodes.
Knowing that we can specify any function in P1(I) by its node values α0 and α1

we now introduce a new basis {λ0,λ1} for P1(I). This new basis is called a nodal
basis, and is defined by

λ j(xi) =

{
1, if i = j
0, if i ̸= j

, i, j = 0,1 (1.3)

Thus, each basis function λ j, j = 0,1, is a linear function, which takes on the value
1 at node x j, and 0 at the other node.

The reason for introducing the nodal basis is because it allows us to express any
linear function v in P1(I) as a linear combination of λ0 and λ1 with α0 and α1 as
coefficients. Indeed, we have

v(x) = α0λ0(x)+α1λ1(x) (1.4)

This is in constrast to the monomial basis, which given the node values requires
inversion of the Vandermonde matrix to determine the corresponding coefficients c0
and c1.

The nodal basis functions take the following explicit form

λ0(x) =
x1 − x
x1 − x0

, λ1(x) =
x− x0

x1 − x0
(1.5)

which follow directly from the definition (1.3), or by solving the linear system (1.2)
with [1, 0]T and [0, 1]T as right hand sides.

1.1.2 The Space of Continuous Piecewise Linear Polynomials

A natural extension of linear functions is piecewise linear functions. Loosely speak-
ing the basic idea in contructing a piecewise linear function v is to first subdivide the
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domain of v into smaller subintervals. On each subinterval v is then simply given by
a linear function. Continuity of v between adjacent subintervals may be enforced by
placing the degrees of freedom at the common points shared by these subintervals.
We shall now formalize this more mathematically stringent.

Let I = [a,b] be an interval and let the n+1 node points {xi}n
i=0 define a partition

a = x0 < x1 < x2 < .. . < xn−1 < xn = b (1.6)

of this interval into n subintervals Ii = [xi−1,xi], i= 1,2 . . . ,n, of length hi = xi−xi−1.
We refer to the partition as to a mesh.

On the mesh we define the space Vh of continuous piecewise linear functions by

Vh = {v : v ∈ C 0(I), v|Ii ∈ P1(Ii)} (1.7)

where C 0(I) denotes the space of continuous functions on I, and P1(Ii) denotes the
space of linear functions on Ii. Thus, by construction the functions in Vh are linear
on each subinterval Ii and continuous on the whole interval I. An example of such a
function is shown in Figure 1.1

x0 x1 x2 x3 x4 x5

x

y

v(x)

Fig. 1.1 A continuous piecewise linear function v ∈Vh.

It should be intuitively clear that any function v in Vh is uniquely determined by
its nodal values

{v(xi)}n
i=0 (1.8)

and, conversely, that for any set of given nodal values {αi}n
i=0 there exist a function

v in Vh with these nodal values. Motivated by this observation we let the nodal values
define our degrees of freedom and introduce a basis {φ j}n

j=0 for Vh associated with
the nodes and such that

φ j(xi) =

{
1, if i = j
0, if i ̸= j

, i, j = 0,1, . . . ,n (1.9)
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The resulting basis functions are depicted in Figure 1.2.

1
ϕ0 ϕi

x0 x1 xi−1 xi xi+1 xn

y

x

Fig. 1.2 A typical hat function φi on a mesh. Also shown is the ”half hat” φ0.

Because of their shape the basis functions φi are often called hat functions. Each
hat function is continuous, piecewise linear, and takes a unit value at its own node xi,
while being zero at all other nodes. Thus, φi is only non-zero on the two intervals Ii
and Ii+1 containing node xi. We say that the support of φi is Ii ∪ Ii+1. The exception
is the two ”half hats” φ0 and φn at the leftmost and rightmost nodes a = x0 and
xn = b with support only on one interval.

Due to the construction of the hat function basis, any function v in Vh can be writ-
ten as a linear combination of hat functions {φi}n

i=0 and corresponding coefficients
{αi}n

i=0 with αi = v(xi), i = 0,1, . . . ,n, the nodal values of v. That is,

v(x) =
n

∑
i=0

αiφi(x) (1.10)

The explicit expressions for the hat functions are given by

φi =


(x− xi−1)/hi, if x ∈ Ii

(xi+1 − x)/hi+1, if x ∈ Ii+1

0, otherwise
(1.11)

1.2 Interpolation

We shall now use the function spaces P1(I) and Vh to construct approximations, one
from each space, to a given function f . The approximation method is very simple
and only requires the evaluation of f at the node points. It is called interpolation.
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1.2.1 Linear Interpolation

As before, we start on a single interval I = [x0,x1]. Given a continuous function f
on I we define the linear interpolant π f ∈ P1(I) to f by

π f (x) = f (x0)φ0 + f (x1)φ1 (1.12)

We observe that interpolant approximates f in the sense that the values of π f and f
are the same at the nodes x0 and x1 (i.e., π f (x0) = f (x0) and π f (x1) = f (x1)).

In Figure 1.3 we show a function f and its linear interpolant π f .

x0 x1

x

y

f(x)

πf(x)

Fig. 1.3 A function f and its linear interpolant π f on the interval I = [x0,x1].

Since generally π f only approximates f it is of interest to measure the difference
f −π f called the interpolation error. To this end we need a norm. Now, there are
many norms and it is not obvious which norm to choose. For instance, should we
measure the error in the infinity norm, defined by

∥v∥∞ = max
x∈I

|v(x)| (1.13)

or the L2(I)-norm defined, for any square integrable function v on I, by

∥v∥L2(I) =

(∫
I
v2 dx

)1/2

(1.14)

For various reasons it turns out that the latter norm is a suitable norm, since it cap-
tures the average size of v, whereas the former only captures the pointwise maximum
of v.

For later use we recall the Triangle inequality

∥v+w∥L2(I) ≤ ∥v∥L2(I)+∥w∥L2(I) (1.15)
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and the Cauchy-Schwartz inequality∫
I
vwdx ≤ ∥v∥L2(I)∥w∥L2(I) (1.16)

We then have the following result.

Proposition 1.1. The following interpolation error estimates hold.

∥ f −π f∥L2(I) ≤Ch2∥ f ′′∥L2(I) (1.17)

∥( f −π f )′∥L2(I) ≤Ch∥ f ′′∥L2(I) (1.18)

with C a constant and h = x1 − x0.

Proof. Let e = f −π f denote the interpolation error.
From the fundamental theorem of calculus we have

e(y) = e(x0)+
∫ y

x0

e′ dx (1.19)

for any point y in I. We note that e(x0) = f (x0)−π f (x0) = 0 by definition of π f .
Now, using the Cauchy-Schwartz inequality we obtain

e(y) =
∫ y

x0

e′ dx (1.20)

≤
∫ y

x0

|e′|dx (1.21)

≤
∫

I
1 · |e′|dx (1.22)

≤
(∫

I
12 dx

)1/2(∫
I
e′2 dx

)1/2

(1.23)

= h1/2
(∫

I
e′2 dx

)1/2

(1.24)

Hence, we have

e(y)2 ≤ h
∫

I
e′2 dx = h∥e′∥2

L2(I) (1.25)

Further, integrating this inequality over I we get

∥e∥2
L2(I) =

∫
I
e(y)2 dy ≤

∫
I
h∥e′∥2

L2(I) dy = h2∥e′∥2
L2(I) (1.26)

since the integrand to the right of the inequality is independent of y. This gives us

∥e∥L2(I) ≤ h∥e′∥L2(I) (1.27)

With a similar, but slightly different argument, we also have
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∥e′∥L2(I) ≤ h∥e′′∥L2(I) (1.28)

Thus, we conclude that

∥e∥L2(I) ≤ h∥e′∥L2(I) ≤ h2∥e′′∥L2(I) (1.29)

from which the first inequality of the proposition follows by noting that since π f
is linear e′′ = f ′′. The second inequality of the proposition follows similarly from
(1.28)

The difference in argument between deriving (1.27) and (1.28) stems from the
fact that e′(x0) ̸= 0. Thus, we cannot simply replace e with e′ in (1.19) and proceed
as shown above to deduce (1.28). However, noting that, since e(x0) = e(x1) = 0,
there exist by Rolle’s theorem a point x̄ in I such that e′(x̄) = 0, we can instead of
(1.19) start from

e′(y) = e′(x̄)+
∫ y

x̄
e′′ dx =

∫ y

x̄
e′′ dx (1.30)

to show (1.28).

Examining the proof of Proposition 1.1 we note that the constant C equals unity
and could equally well be left out. We have, however, chosen to retain this constant,
since the estimates generalize to higher spatial dimensions, where C is not unity.
The important thing to understand is how the interpolation error depends on the size
of the interval h.

1.2.2 Continuous Piecewise Linear Interpolation

It is straight forward to extend the concept of interpolation to continuous piecewise
linear functions. Given a continuous function f we define the continuous piecewise
linear interpolant π f ∈Vh to f by

π f (x) =
n

∑
i=1

f (xi)φi (1.31)

Figure 1.4 shows the continuous piecewise linear interpolant π f (x) to f (x) =
xsin(πx) on a uniform mesh with 6 nodes.

We have the following estimates for continuous piecewise linear interpolation.

Proposition 1.2. The following interpolation estimates hold.

∥ f −π f∥2
L2(I) ≤C

n

∑
i=1

h4
i ∥ f ′′∥2

L2(Ii)
(1.32)

∥( f −π f )′∥2
L2(I) ≤C

n

∑
i=1

h2
i ∥ f ′′∥2

L2(Ii)
(1.33)
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f(x)

x

y

x0 x1 x2 x3 x4 5x = 10 =

πf(x)

Fig. 1.4 A function f and its continuous piecewise linear interpolant π f on a mesh of I = [0,1]
with 6 nodes xi, i = 0,1, . . . ,5.

Proof. Using the triangle inequality and Proposition 1.1 we have

∥ f −π f∥2
L2(I) =

n

∑
i=1

∥ f −π f∥2
L2(Ii)

(1.34)

≤
n

∑
i=1

Ch4
i ∥ f ′′∥2

L2(Ii)
(1.35)

which proves the first estimate. The second follows similarly.

Proposition 1.2 says that the interpolation error vanish as the mesh size h goes to
zero. This is natural since we expect the interpolant π f to be a better approximation
to f if the mesh is fine. The proposition also says that if the second derivative f ′′

of f is big then the interpolation error might be large. This is also natural since if
the graph of f bends a lot (i.e., if f ′′ is big) then f is hard to approximate with a
piecewise linear.

1.3 L2-projection

Interpolation is a simple way of approximating a continuous function, but there are,
of course, other ways. In this section we shall study orthogonal-, or L2-projection
as a technique for approximating functions. L2-projection gives a good on average
approximation, as opposed to interpolation which is exact at the nodes. Moreover,
in contrast to interpolation L2-projection does not require the function we seek to
approximate to be continuous or have well-defined node values.
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1.3.1 Definition

Given a function f ∈ L2(I) the L2-projection Ph f ∈Vh of f is defined by∫
I
( f −Ph f )vdx = 0, ∀v ∈Vh (1.36)

In analogy with projection onto subspaces of Rn, (1.36) defines a projection of f
onto Vh, since the difference f −Ph f is required to be orthogonal to all functions v
in Vh. See Figure 1.5.

Vh

Phf

f

Fig. 1.5 Illustration of the orthogonal projection Ph f of f onto the space Vh.

As we shall see later on, Ph f is the minimizer of minv∈Vh ∥ f − v∥L2(I), and there-
fore we say that it approximates f in a least squares sense.

In Figure 1.6 we show the L2-projection of f (x) = xsin(πx) computed on the
same mesh as was used for the interpolant π f shown in Figure 1.4. It is instructive to
compare these two approximations because it highlights their different characteris-
tics. The interpolant π f approximates f exactly at the nodes, while the L2-projection
Ph f approximates f on average.

1.3.2 Derivation of a Linear System of Equations

To compute the L2-projection Ph f we first note that the definition (1.36) is equivalent
to ∫

I
( f −Ph f )φi dx = 0, i = 0,1, . . . ,n (1.37)

where φi, i = 0,1, . . . ,n, are the hat basis functions. This is a consequence of the fact
that if (1.36) is satisfied for any choice of v as a hat function, then it is also satisfied
for a linear combination of hat functions, and, conversely, since any function v in Vh
is a linear combination of hat functions (1.36) implies (1.37).
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x

y

f(x)

Pf(x)

x0 x1 x2 x3 x4 5x = 10 =

Fig. 1.6 The function f = xsin(πx) and its L2-projection Ph f on a mesh of I = [0,1] with 6 nodes,
xi, i = 1,2, . . . ,6.

Now, since Ph f belongs to Vh it can be written as the linear combination

Ph f =
n

∑
j=0

ξ jφ j (1.38)

with n+1 unknown coefficients ξ j, j = 0,1, . . . ,n, to be determined.
Inserting the ansatz (1.38) into the definition (1.36) we get

∫
I

f φi dx =
∫

I

(
n

∑
j=0

ξ jφ j

)
φi dx (1.39)

=
n

∑
j=0

ξ j

∫
I
φ jφi dx, i = 0,1, . . . ,n (1.40)

Further, introducing the notation

Mi j =
∫

I
φ jφi dx, i, j = 0,1, . . . ,n (1.41)

bi =
∫

I
f φi dx, i = 0,1, . . . ,n (1.42)

we have

bi =
n

∑
j=0

Mi jξ j, i = 0,1, . . . ,n (1.43)

which is an (n+ 1)× (n+ 1) linear system for the n+ 1 unknown coefficients ξ j,
j = 0,1, . . . ,n. In matrix form we write this
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Mξ = b (1.44)

where the entries of the (n+1)× (n+1) matrix M and the (n+1)×1 vector b are
defined by (1.41) and (1.42), respectively.

We thus conclude that the coefficients ξ j, j = 0,1, . . . ,n in the ansatz (1.38) sat-
isfy a linear system, which must be solved in order to obtain the L2-projection Ph f .

For historical reasons we refer to M as the mass matrix and to b as the load vector.

1.3.3 Basic Algorithm to Compute the L2-projection

The following algorithm summarizes the basic steps for computing the L2-projection
Ph f .

Algorithm 1 Basic Algorithm to Compute the L2-projection
1: Create a mesh with n elements on the interval I and define the corresponding space of contin-

uous piecewise linear functions Vh.
2: Compute the (n+1)× (n+1) matrix M and the (n+1)×1 vector b, with entries

Mi j =
∫

I
φ jφi dx, bi =

∫
I

f φi dx (1.45)

3: Solve the linear system
Mξ = b (1.46)

4: Set

Ph f =
n

∑
j=0

ξ jφ j (1.47)

1.4 Quadrature

To compute the L2-projection we need to compute the mass matrix M whose entries
are integrals involving products of hat functions. One way of doing this is to use
quadrature, or, numerical integration. To this end let f be a continuous function on
the interval I = [a,b], and consider the problem of evaluating approximately the
integral

J =
∫

I
f (x)dx (1.48)

A quadrature rule is a formula that is used to compute integrals approximately. It
it usually derived by first interpolating the integrand f by a polynomial and then in-
tegrating the interpolant. Depending on the degree of the interpolating polynomial
one obtains quadrature rules of different computational complexity and accuracy.
We shall describe three classical quadrature rules called the Mid-point rule, the
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Trapezoidal rule, and Simpson’s formula, which corresponds to using polynomial
interpolation of degree 0, 1, and 2 of the integrand, respectively.

1.4.1 The Mid-point Rule

Interpolating f with the constant f (m), where m = (a+b)/2 is the mid-point of I,
we get

J ≈ f (m)(b−a) (1.49)

which is the Mid-point rule. Geometrically this means that we approximate the area
under the integrand f with the area of the square f (m)(b−a), see Figure 1.7.

x

y

a bm

f(x)

Fig. 1.7 The area of the shaded square approximates
∫ b

a f (x)dx.

The Mid-point rule integrates linear polynomials exactly.

1.4.2 The Trapezoidal Rule

Continuing, interpolating f with the line passing through the points (a, f (a)) and
(b, f (b)) we get

J ≈ f (a)+ f (b)
2

(b−a) (1.50)

which is the Trapezoidal rule. Geometrically this means that we approximate the
area under f with the area under the trapezoidal domain formed by the points (a,0),
(a, f (a)), (b,0), and (b, f (b)), see Figure 1.8. The Trapezoidal rule is also exact for
linear polynomials.
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x

y

a b

f(x)

Fig. 1.8 The area of the shaded trapezoidal approximates
∫ b

a f (x)dx.

1.4.3 Simpson’s Formula

This rule corresponds to a quadratic interpolant using the end-points and the mid-
point of the interval I as nodes. To simplify things a bit let I = (0,2h) be the interval
of integration and let g(x) = c0 + c1x+ c2x2 be the interpolant. Since g interpolates
f at the points (0, f (0)), ( h

2 , f ( h
2 )), and (h, f (h)) (i.e., its graph passes trough these

points) their coordinates must satisfy the equation for g. This gives the following
linear system for c0, c1, and c2. 0 0 1

1
4 h2 1

2 h 1
h2 h 1

c0
c1
c2

=

 f (0)
f ( h

2 )
f (h)

 (1.51)

Solving this one readily finds

c0 = 2( f (0)−2 f ( h
2 )+ f (h))/h2, c1 =−(3 f (0)−4 f ( h

2 )+ f (h))/h, c2 = f (0)
(1.52)

Finally, integrating g from 0 to h one eventually ends up with

∫ h

0
f dx ≈

∫ h

0
g(x)dx =

f (0)+4 f ( 1
2 h)+ f (h)

6
h (1.53)

which is Simpson’s formula.
On the interval I = (a,b) Simpson’s formula takes the form

J ≈
f (a)+4 f ( 1

2 (a+b))+ f (b)
6

(b−a) (1.54)

Simpson’s formula is exact for third order polynomials.
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1.5 Computer Implementation

1.5.1 Assembly of the Mass Matrix

Having studied various quadrature techniques let us now go through the somewhat
intricate details of how to assemble the mass matrix M and load vector b. We begin
by calculating the entries Mi j of the mass matrix. Recall that these involve products
of hat functions. Since each hat is a linear polynomial the product of two hats is
a quadratic polynomials. Thus, Simpson’s formula can be used to integrate Mi j =∫

I φiφ j dx exactly. Moreover, since the hats φi and φ j lack common support for
|i− j|> 1 only Mii, Mii+1, and Mi+1i need to be calculated. All other matrix entries
are zero by default. This is clearly seen from Figure 1.9 showing two neighbouring
hat functions and their support. As a consequence, the mass matrix M is tridiagonal.

1
ϕi−1 ϕi

xi−2 xi−1 xi xi+1

y

x

Fig. 1.9 Illustration of the hat functions φi−1 and φi and their support.

Starting with the diagonal entries Mii and using Simpson’s formula we have

Mii =
∫

I
φ2

i dx (1.55)

=
∫ xi

xi−1

φ2
i dx+

∫ xi+1

xi

φ2
i dx (1.56)

=
0+4 · ( 1

2 )
2 +1

6
hi +

1+4 · ( 1
2 )

2 +0
6

hi+1 (1.57)

=
hi

3
+

hi+1

3
, i = 1,2, . . . ,n−1 (1.58)

where xi−xi−1 = hi and xi+1−xi = hi+1. The first and last diagonal entry are M00 =
h1/3 and Mnn = hn/3, respectively, since the hat functions φ0 and φn are only half.

Continuing with the subdiagonal entries Mi+1 i still using Simpson’s formula we
have
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Mi+1 i =
∫

I
φiφi+1 dx (1.59)

=
∫ xi+1

xi

φiφi+1 dx (1.60)

=
1 ·0+4( 1

2 )
2 +0 ·1

6
hi+1 (1.61)

=
hi+1

6
, i = 0,1, . . . ,n (1.62)

A similar calculation shows that the superdiagonal entries are Mi i+1 = hi+1/6.
Hence, the mass matrix takes the form

M =



h1
3

h1
6

h1
6

h1
3 + h2

3
h2
6

h2
6

h2
3 + h3

3
h3
6

. . . . . . . . .
hn−1

6
hn−1

3 + hn
3

hn
6

hn
6

hn
3


(1.63)

The global mass matrix M can be written as a sum of n simpler matrices

M =



h1
3

h1
6

h1
6

h1
3

+


h2
3

h2
6

h2
6

h2
3

+ . . .+

 hn
3

hn
6

hn
6

hn
3

 (1.64)

= MI1 +MI2 + . . .+MIn (1.65)

Each matrix MIi , i = 1,2 . . . ,n, is obtained by restricting the integration (1.41) to
one subinterval or element Ii and is therefore called a global element mass matrix.
In practice, however, these matrices are never formed since they are sparse and it
suffice to compute the 2×2 blocks of non-zero entries. From the sum (1.65) we see
that on each element I this small block takes the form

MI =
1
6

[
2 1
1 2

]
h (1.66)

where h is the length of I. We refer to MI as the local element mass matrix.
The summation of the element mass matrices into the global mass matrix is called

assembling. The assembly process lies at the very heart of finite element program-
ming because it allows the forming of the mass matrix through the use of a single
loop over the elements. It also generalizes to higher dimensions.

The following algorithm summarizes how to assemble the mass matrix M.
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Algorithm 2 Assembly of the Mass Matrix
1: Allocate memory for the (n+1)× (n+1) matrix M and initialize all matrix entries to zero.
2: for i = 1,2, . . . ,n do
3: Compute the 2×2 local element mass matrix MI given by

MI =
1
6

[
2 1
1 2

]
h (1.67)

where h is the length of element Ii.
4: Add MI

11 to Mii
5: Add MI

12 to Mii+1
6: Add MI

21 to Mi+1i
7: Add MI

22 to Mi+1i+1
8: end for

The following MATLAB routine assembles the mass matrix.

function M = MassMat1D(x)
n = length(x)-1; % number of subintervals
M = zeros(n+1,n+1); % allocate mass matrix
for i = 1:n % loop over subintervals

h = x(i+1) - x(i); % interval length
M(i,i) = M(i,i) + h/3; % add h/3 to M(i,i)
M(i,i+1) = M(i,i+1) + h/6;
M(i+1,i) = M(i+1,i) + h/6;
M(i+1,i+1) = M(i+1,i+1) + h/3;

end

Input to this routine is a vector x holding the node coordinates. Output is the global
mass matrix.

1.5.2 Assembly of the Load Vector

We next consider the problem of calculating the load vector b. Because the entries
bi =

∫
i f φi dx depend on the function f we generally can not expect to calculate

them exactly. However, we can approximate bi using a quadrature rule. Using the
Trapezoidal rule, for instance, we have
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bi =
∫

I
f φi dx (1.68)

=
∫ xi+1

xi−1

f φi dx (1.69)

=
∫ xi

xi−1

f φi dx+
∫ xi+1

xi

f φi dx (1.70)

≈ ( f (xi−1)φi(xi−1)+ f (xi)φi(xi))hi/2 (1.71)
+( f (xi)φi(xi)+ f (xi+1)φi(xi+1))hi+1/2 (1.72)

= (0+ f (xi))hi/2+( f (xi)+0)hi+1/2 (1.73)
= f (xi)(hi +hi+1)/2 (1.74)

The approximate load vector then takes the form

b =



f (x0)h1/2
f (x1)(h1 +h2)/2
f (x2)(h2 +h3)/2

...
f (xn−1)(hn−1 +hn)/2

f (xn)hn/2


(1.75)

Splitting b into a sum over the elements yields the n global element load vectors
bIi

b =


f (x0)
f (x1)

h1/2+


f (x1)
f (x2)

h2/2+ . . .+

 f (xn−1)
f (xn)

hn/2 (1.76)

= bI1 +bI2 + . . .+bIn . (1.77)

Each vector bIi , i = 1,2, . . . ,n, is formally derived by restricting the integration
(1.42) to element Ii. The assembly of the load vector is very similar to that of the
mass matrix as the next algorithm shows.
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Algorithm 3 Assembly of the Load Vector
1: Allocate memory for the (n+1)×1 vector b and initialize it to zero.
2: for i = 1,2, . . . ,n do
3: Compute the 2×1 local element load vector bI given by

bI =
1
2

[
f (xi−1)
f (xi)

]
h (1.78)

where h is the length of element Ii.
4: Add bI

1 to bi−1
5: Add bI

2 to bi
6: end for

A MATLAB routine for assembling the load vector is listed below.

function b = LoadVec1D(x,f)
n = length(x)-1;
b = zeros(n+1,1);
for i = 1:n
h = x(i+1) - x(i);
b(i) = b(i) + f(x(i))*h/2;
b(i+1) = b(i+1) + f(x(i+1))*h/2;

end

Here, f is assumed to be a separate routine specifying the function f . This needs
perhaps a little bit of explanation. MATLAB has a something called function han-
dles, which provides a way of passing a routine as argument to another routine.
For example, suppose we have written a routine called Foo to specify the function
f (x) = xsin(x)

function y = Foo(x)
y=x.*sin(x)

To assemble the corresponding load vector, we type

b = LoadVec1D(x,@Foo)

This passes the routine Foo as argument to LoadVec1D and allows it to be evalu-
ated inside the assembler. The at sign @ creates the function handle. Thus, function
handles provide means for writing flexible and reusable code.

Putting it all together we get the following main routine for computing L2-
projections.

function L2Projector1D()
n = 5 % number of subintervals
h = 1/n % mesh size
x = 0:h:1 % mesh
M = MassMat1D(x) % assemble mass
b = LoadVec1D(x,@Foo) % assemble load
Pf = M\b % solve linear system
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plot(x,Pf) % plot Lˆ2 projection

1.6 Problems

Exercise 1.1. Let I = [x0,x1]. Verify by direct calculation that the basis functions

λ0(x) =
x1 − x
x1 − x0

, λ1(x) =
x− x0

x1 − x0

for P1(I) satisfies λ0(x)+ λ1(x) = 1 and x0λ0(x)+ x1λ1(x) = x. Give a geomet-
rical interpretation by drawing λ0(x), λ1(x), λ0(x) + λ1(x), x0λ0(x), x1λ1(x) and
x0λ0(x)+ x1λ1(x).

Exercise 1.2. Let 0 = x0 < x1 < x2 < x3 = 1, where x1 = 1/6 and x2 = 1/2, be
a partition of the interval [0,1] into three subintervals, and let Vh be the space of
continuous piecewise linear functions on this partition.

(a) Determine analytical expressions for the hat function φ1(x) and draw it.
(b) Draw the function v(x) =−φ0(x)+φ2(x)+2φ3(x) and its derivative v′(x).
(c) Draw the piecewise constant mesh function h(x) = hi on subinterval Ii.
(d) What is the dimension of Vh?

Exercise 1.3. Determine the linear interpolant π f ∈ P1(I) defined on the single
interval I = [0,1] to the following functions f . Then make a plot of f and π f in the
same figure.

(a) f (x) = x2.
(b) f (x) = 3sin(2πx).

Exercise 1.4. Let Vh be the space of all continuous piecewise linears on a uniform
mesh with four nodes of I = [0,1]. Draw the interpolant π f ∈ Vh for the following
functions f .

(a) f (x) = x2 +1.
(b) f (x) = cos(πx).

Can you think of a better partition of I if we are restricted to three subintervals?

Exercise 1.5. Let I = [0,1]. Compute ∥ f∥∞ for f = x(x−1/2)(x−1/3).

Exercise 1.6. Let I = [0,1] and f (x) = x2 for x ∈ I.

(a) Calculate
∫

I f dx.
(b) Compute an approximation to

∫
I f dx using the Trapezoidal rule.

(c) Compute an approximation to
∫

I f dx using the Mid-point rule.
(d) Compute the errors in (b) and (c) and compare with theory.

Exercise 1.7. Let I = [0,1] and f (x) = x4 for x ∈ I.
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(a) Calculate
∫

I f dx.
(b) Compute

∫
I f dx using Simpson’s formula on the single interval I.

(c) Divide I into two equal subintervals and compute
∫

I f dx using Simpson’s fom-
rula on each subinterval.

(d) Compute the errors in (b) and (d). By what factor has the error decreased?

Exercise 1.8. Let I = [0,1] and let f (x) = x2 for x ∈ I.

(a) Let Vh be the space P(I) of linear functions on I. Calculate the L2-projection
Ph f ∈Vh of f .

(b) Divide I into two subintervals of equal length and let Vh be the corresponding
space Vh of continuous piecewise linear functions. Calculate the L2-projection
Ph f ∈Vh of f .

(c) Plot your results and compare with the nodal interpolant πh f .

Exercise 1.9. Show that
∫

Ω ( f −Ph f )vdx = 0 for all v ∈ Vh, if and only if
∫

Ω ( f −
Ph f )φi dx = 0, for i = 0,1, . . . ,n, where {φi}n

i=0 ⊂Vh is the usual basis of hat func-
tions.

Exercise 1.10. Recall that ( f ,g) =
∫

I f gdx and ∥ f∥2
L2(I) = ( f , f ) are the L2-scalar

product and norm, respectively. Let I = (0,π), f = x, g = cos(x), and h = 2cos(3x)
for x ∈ I.

(a) Calculate ( f ,g).
(b) Calculate (g,h). Are g and h orthogonal?
(c) Calculate ∥ f∥L2(I) and ∥g∥L2(I).

Exercise 1.11. Let V be a linear subspace of Rn with basis {v1, . . . ,vm} with m < n.
Let Px ∈ V be the orthogonal projection of x ∈ Rn onto the subspace V . Derive
a linear system of equations that determines Px. Note that your results are analo-
gous to the L2-projection when the usual scalar product in Rn is replaced by the
scalar product in L2(I). Compare this method of computing the projection Px to the
method used for computing the projection of a three dimensional vector onto a two
dimensional subspace. What happens if the basis {v1, . . . ,vm} is orthogonal?

Exercise 1.12. Show that {1,x,(3x2 −1)/2} form a basis for the space of quadratic
polynomials P2(I), on I = [−1,1]. Then compute and draw the L2-projections
Ph f ∈ P2(I) on I for the following two functions f .

(a) f (x) = 1+2x.
(b) f (x) = x3.

Exercise 1.13. Show that the hat function basis {φ j}n
j=0 of Vh is almost orthogonal.

How can we see that it is almost orthogonal by looking at the non-zero elements of
the mass matrix? What can we say about the mass matrix if we had a fully orthogo-
nal basis?

Exercise 1.14. Use the MATLAB code above to compute the L2-projection Ph f of
the following functions f .
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(a) f (x) = 1.
(b) f (x) = x3(x−1)(1−2x).
(c) f (x) = arctan((x−0.5)/ε), with ε = 0.1 and 0.01.

Test on a uniform mesh with n = 5, 25, and 100 subintervals.





Chapter 2
The Finite Element Method in 1D

Abstract In this chapter we shall introduce the finite element method as a general
tool for the numerical solution of two-point boundary value problems. In doing so,
the basic idea is to first rewrite the boundary value problem as a variational equa-
tion, and then seek a solution approximation from the space of continuous piecewise
linears. This discretization procedure results in a linear system that can be solved
on a computer. We then prove basic error estimates and show how to use them to
formulate adaptive algorithms that can be used to automatically improve the accu-
racy of the computed solution. The derivation and areas of application of the studied
boundary value problems are also discussed.

2.1 The Finite Element Method for a Model Problem

2.1.1 A Two-point Boundary Value Problem

Let us consider the following two-point boundary value problem: find u such that

−u′′ = f , x ∈ I = (0,1) (2.1a)
u(0) = u(1) = 0 (2.1b)

where f is a given function. Sometimes this problem is easy to solve analytically.
For instance, if f = 1 then we readily find u = x(1− x)/2 by integrating f twice
and using the boundary conditions u(0) = u(1) = 0. However, for a general f it
may be difficult or even impossible to find u with analytical techniques. Thus, we
see that even a very simple differential equation like this may be difficult to solve
analytically. We take this as a good motivation for studying numerical techniques
and, in particular, for introducing the finite element method.

23
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2.1.2 Variational Formulation

The derivation of a finite element method always starts by rewriting the differential
equation under consideration as variational equation. In our case this so-called vari-
ational formulation is obtained by multiplying −u′′ = f by a test function v, which
is assumed to vanish at the end-points of the interval I, and integrate by parts. Doing
so we have ∫ 1

0
f vdx =−

∫ 1

0
u′′vdx (2.2)

=
∫ 1

0
u′v′ dx−u′(1)v(1)+u′(0)v(0) (2.3)

=
∫ 1

0
u′v′ dx (2.4)

where we have used the assumption v(0) = v(1) = 0. For this calculation to make
sense we must assert that the test function v is not too badly behaved so that the
involved integrals exist. To do so, we require that both v and v′ be bounded on I. To
this end we introduce the space

V0 = {v : ∥v′∥< ∞, ∥v∥< ∞, v(0) = v(1) = 0} (2.5)

which is the largest space imaginable for v. Obviously, this space contans many
functions, which all can be used as test function. In fact there are infinitely many
functions in V0 and we therefore say that V0 has infinite dimension. Further, since u is
twice differentiable and satisfies the boundary conditions u(0) = u(1) = 0 it is easy
to see that it too belongs to V0. This leads to the following variational formulation
of (2.2): find u ∈V0 such that∫ 1

0
u′v′ dx =

∫ 1

0
f vdx, ∀v ∈V0 (2.6)

By analogy with the name test function for v, the solution u is sometimes called
trial function.

2.1.3 Finite Element Approximation

We next try to approximate u by a continuous piecewise linear function. To this
end we introduce a mesh on the interval I consisting of n subintervals, and the
corresponding space Vh of all continuous piecewise linears. Since we are dealing
with functions vanishing at the end-points of I, we also introduce the following
subspace Vh,0 of Vh that satisfies the boundary conditions

Vh,0 = {v ∈Vh : v(0) = v(1) = 0} (2.7)
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In other words Vh,0 contains all piecewise linears which are zero at x = 0 and x = 1.
In terms of hat basis functions this means that a basis for Vh,0 is obtained by deleting
the half hats φ0 and φn from the usual set {φ j}n

j=0 of hat functions spanning Vh.
Replacing the large space V0 with the much smaller subspace Vh,0 ⊂V0 of piece-

wise linears in the variational formulation (2.6) we obtain the following finite ele-
ment method: find uh ∈Vh,0 such that∫ 1

0
u′hv′ dx =

∫ 1

0
f vdx, ∀v ∈Vh,0 (2.8)

We mention that this type of finite element method with similar trial and test
space is sometimes called a Galerkin method, named after a famous russian mathe-
matican.

2.1.4 Derivation of a Linear System of Equations

To compute the finite element approximation uh we first note that (2.8) is equivalent
to ∫ 1

0
u′hφ ′

i dx =
∫ 1

0
f φi dx, i = 1,2, . . . ,n−1 (2.9)

where, as said before, φi, i = 1,2, . . . ,n−1 are the hat functions spanning Vh,0. This
is a consequence of the fact that if (2.9) is satisfied for all hat functions {φ j}n−1

j=1 ,
then it is also satisfied for a linear combination of hats.

Now, since uh belongs to Vh,0 we can write it as the linear combination

uh =
n−1

∑
j=1

ξ jφ j (2.10)

with n−1 unknown coefficients ξ j, j = 1,2 . . . ,n−1, to be determined.
Inserting the ansatz (2.10) into the finite element method (2.9) we get

∫ 1

0
f φi dx =

∫ 1

0

(
n−1

∑
j=1

ξ jφ ′
j

)
φ ′

i dx

=
n−1

∑
j=1

ξ j

∫ 1

0
φ ′

jφ ′
i dx, i = 1,2, . . . ,n−1 (2.11)

Further, introducing the notation

Ai j =
∫ 1

0
φ ′

jφ ′
i dx, i, j = 1,2, . . . ,n−1 (2.12)

bi =
∫ 1

0
f φi dx, i = 1,2, . . . ,n−1 (2.13)
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we have

bi =
n−1

∑
j=1

Ai jξ j, i = 1,2, . . . ,n−1 (2.14)

which is an (n− 1)× (n− 1) linear system for the n− 1 unknown coefficients ξ j,
j = 1,2, . . . ,n−1. In matrix form we write this

b = Aξ (2.15)

where the entries of the (n−1)× (n−1) matrix A and the (n−1)×1 vector b are
defined by (2.12) and (2.13), respectively.

We thus conclude that the coefficients ξ j, j = 1,2, . . . ,n−1 in the ansatz (2.10)
satisfy a linear system, which must be solved to obtain the finite element solution
uh.

We refer to A as the stiffness matrix and to b as the load vector.

2.1.5 Basic Algorithm to Compute the Finite Element Solution

The following algorithm summarizes the basic steps for computing the finite ele-
ment solution uh.

Algorithm 4 Basic Finite Element Algorithm
1: Create a mesh with n elements on the interval I and define the corresponding space of contin-

uous piecewise linear functions Vh,0.
2: Compute the (n−1)× (n−1) matrix A and the (n−1)×1 vector b, with entries

Ai j =
∫

I
φ ′

jφ ′
i dx, bi =

∫
I

f φi dx (2.16)

3: Solve the linear system
Aξ = b (2.17)

4: Set

uh =
n−1

∑
j=1

ξ jφ j (2.18)

2.2 Basic A Priori Error Estimate

Since uh only approximates u, estimates of the error e= u−uh are necessary to judge
the quality and, consequently, the usability of uh. The following theorem gives a key
result for deriving such error estimates.
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Theorem 2.1 (Galerkin orthogonality). The finite element approximation uh, de-
fined by (2.8), satisfies the orthogonality∫ 1

0
(u−uh)

′v′ dx = 0, ∀v ∈Vh,0 (2.19)

Proof. From the variational formulation we have∫ 1

0
u′v′ dx =

∫ 1

0
f vdx ∀v ∈V0 (2.20)

and from the definition of the finite element method∫ 1

0
u′hv′ dx =

∫ 1

0
f vdx ∀v ∈Vh,0 (2.21)

Subtracting these and using the fact that Vh,0 ⊂V0 immediately proves the claim.

The next theorem is a best approximation result.

Theorem 2.2. The finite element solution uh, defined by (2.8) satisfies

∥(u−uh)
′∥ ≤ ∥(u− v)′∥, ∀v ∈Vh,0 (2.22)

Proof. Writing u−uh = u− v+ v−uh for any v ∈Vh,0 we have

∥(u−uh)
′∥2 =

∫
I
(u−uh)

′(u− v+ v−uh)
′ dx (2.23)

=
∫

I
(u−uh)

′(u− v)′ dx+
∫

I
(u−uh)

′(v−uh)
′ dx (2.24)

=
∫

I
(u−uh)

′(u− v)′ dx (2.25)

≤ ∥(u−uh)
′∥∥(u− v)′∥ (2.26)

where we used the Galerkin orthogonality to conclude that∫
I
(u−uh)

′(v−uh)
′ dx = 0 (2.27)

since v−uh ∈Vh. Dividing by (v−uh)
′ concludes the proof.

There are two types of error estimates, namely, a priori error estimates and a
posteriori error estimates. The difference between the two types is that a priori error
estimates express the error in terms of the exact solution u, while a posteriori error
estimates express the error in terms of the finite element approximation uh. We shall
now state and prove a basic a priori error estimate.

Theorem 2.3. The finite element solution uh, defined by (2.8) satisfies

∥(u−uh)
′∥2 ≤C

n

∑
i=1

h2
i ∥u′′∥2

L2(Ii)
(2.28)
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where C is a constant.

Proof. Starting from the best approximation result (2.22) and choosing v = πu, and
using the interpolation estimate (1.16) the a priori error estimate immediately fol-
lows.

Defining h = max1≤i≤n hi we conclude that

∥(u−uh)
′∥ ≤Ch∥u′′∥ (2.29)

and thus the derivative of the error tends to zero as the maximum mesh size h tend
to zero.

2.3 Mathematical Modeling

A fundamental tool for deriving the equations of applied mathematics and physics
is the idea that some quantities can be tracked within a physical system. This idea
is used to create some balance laws for the system and then to express these with
equations. Common examples include conservation of mass, energy, and balance of
momentum or force. To familiar ourselves with this way of thinking we shall now
derive two differential equations governing heat transfer and the elastic deformation
of a bar. As we shall see the modeling of both these physical phenomenons leads
to the two-point boundary value problem (2.1). From this we make the observa-
tion that even though the underlying physics are very different, it is often so that
the mathematical derivation and resulting partial differential equations are similar.
Thus, many physical phenomena are described by the same partial differential equa-
tions, and therefore the methods and mathematical theory can often be developed for
certain model problems and still be applied to a wide range of different applications.

2.3.1 Derivation of the Stationary Heat Equation

Consider a thin metal rod of length L and cross section area A [m2] occupying the
interval [0,L]. The rod is heated by a heat source (e.g., a small electrical current) of
intensity f [J/(sm)], which has been acting for a long time so that the heat transfer
process is at a steady state, and all physical quantities are independent of time. We
want to find the distribution of temperature T [K] within the rod.

Let q [J/(sm2)] be the heat flux along the direction of increasing x. The first law
of thermodynamics, which expresses conservation of energy, states that the amount
of heat produced by the heat source equals the flow of heat out of the rod. That is,

A(L)q(L)−A(0)q(0) =
∫ L

0
f dx (2.30)
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From the fundamental theorem of calculus we have

A(L)q(L)−A(0)q(0) =
∫ L

0
(Aq)′ dx (2.31)

which gives ∫ L

0
(Aq)′ dx =

∫ L

0
f dx (2.32)

Energy conservation is a fundamental principle of nature, but it is not enough
to yield a closed form differential equation for T . To this end we need some sort
of empirical law deduced from experiments relating temperature T and heat flux q.
Now, since heat flows from hot to cold regions, it is reasonable to assume that heat
flux is proportional to the negative temperature gradient. This is neatly expressed by
Fourier’s law,

q =−kT ′ (2.33)

where k [J/(Kms)] the thermal conductivity of the rod.
Combining (2.32) and (2.33) we have∫ L

0
((AkT ′)′+ f )dx = 0 (2.34)

Letting L → 0 we conclude that

−(AkT ′)′ = f (2.35)

which is the stationary Heat equation.
We note that this is a problem with variable coefficients since A, k, and f might

vary.

2.3.2 Boundary Conditions for the Heat Equation

Generally there are many functions T which satisfies the Heat equation (2.35) for
a given right hand side f . For example, if A = k = 1 and f = 0, then any linear
function T will do as a solution. Thus, to obtain a unique solution it is necessary
to impose some auxiliary constraints on the equation. These are called boundary
conditions and specifies T at the end-points x = 0 and x = L of the rod. There are
essentially three types of boundary conditions, namely, Dirichlet, Neumann, and
Robin boundary conditions, named after famous mathematicians.
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2.3.2.1 Dirichlet Boundary Conditions

Dirichlet, or strong, boundary conditions prescribe the value of the solution at the
boundary. For example T (0) = 0. From a physical point of view this corresponds
to cooling the left end-point of the rod so that it is always kept at constant zero
temperature.

2.3.2.2 Neumann Boundary Conditions

Neumann, or natural, boundary conditions prescribe the value of the solution deriva-
tive at the boundary. Since T ′ = −q/k we see that this corresponds to prescribing
the heat flux q at the boundary. In particular, T ′(0) = 0 means that the left end-point
of the rod is thermally isolated.

2.3.2.3 Robin Conditions

Robin boundary conditions is a mixture of Dirichlet and Neumann boundary condi-
tions, typically AkT ′(0) = T (0)−T∞. In real-world applications this is perhaps the
most realistic boundary condition, since it means that the heat flux is proportional
to the difference between the temperature of the rod and the ambient media T∞.

Robin boundary conditions can be used to approximate boundary conditions of
either Dirichlet or Neumann type. To see this consider the general Robin boundary
condition

AkT ′(0) = κ(T (0)−T∞)+q∞ (2.36)

where κ ≥ 0, T∞, and q∞ are parameters to be chosen. Choosing κ = 0 we immedi-
ately obtain the Neumann boundary condition AkT ′(0) = q∞. Choosing on the other
hand κ large means that whenever T (0) ̸= T∞ there will be a heat flux between the
rod and the ambient media, which will counteract this difference. As a consequence,
the Robin condition will approximate the Dirichlet condition T (0) = T∞ as κ tends
to infinity.

2.3.3 Derivation of a Differential Equation for the Deformation of
a Bar

A bar is a structure that is only subjected to axial loads. Consider a bar occupying
the interval [x0,x1] subjected to a line load f [N/m] and assume we wish to compute
the resulting displacement u [m]. The equilibrium equation for the interval [x0,x1]
is

A(x1)σ(x1)−A(x0)σ(x0)+
∫ x1

x0

f dx = 0 (2.37)
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where A [m2] is the area of the cross section of the bar and σ [N/m2] is the stress
and thus Aσ = F [N] is the force at any given point. Dividing (2.37) by x1 − x0 and
letting x1 → x0 we get the differential equation

−(Aσ)′ = f (2.38)

Next, assuming we have a linear elastic material the relation between the stress
and the deformation is given by Hooke’s law

σ = Eε (2.39)

where E is the elastic modulus and ε = u′ is the strain, with u the vertical displace-
ment of the bar.

Combining (2.37) and (2.39) we arrive at the following second order differential
equation

−(AEu′)′ = f (2.40)

We note that this is also a problem with variable coefficients since A, E, and f might
vary.

2.3.4 Boundary Conditions for the Bar

Similarly to Heat equation we now need to equip the bar equation with boundary
conditions, which describe the bar at the boundary.

2.3.4.1 Dirichlet Boundary Conditions

These conditions take the form u(0) = g0 and are used to model a given displace-
ment g0 at the endpoint. For example, if g0 = 0 then the bar is clamped at x = 0.

2.3.4.2 Neumann Boundary Conditions

These conditions take the form AEu′(0) = g0 and models the situation when a given
force acts at the endpoint x = 0.

2.3.4.3 Robin Boundary Conditions

Finally, we recall that Robin boundary conditions is a mixture of Dirichlet and Neu-
mann boundary conditions of the form, AEu′(0) = k0(u(0)− g0), which models a
situation where the force at x= 0 is proportional to the displacement at the end-point
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adjusted by g0. We may think of a bar which at its end-point is connected to a spring
with spring constant k such that k(u(0)−g0) is the force from the spring acting on
the bar.

2.4 A Model Problem with Variable Coefficients and Robin
Boundary Conditions

Considering the two real-world applications just presented we realize that it is de-
sirable to be able to treat equations with variable coefficients and different types
of boundary conditions. To this end let us consider a more general two-point value
problem. More specific, we wish to find the solution u to

−(au′)′ = f , x ∈ I = (0,1) (2.41a)
au′(0) = κ0(u(0)−g0) (2.41b)

−au′(1) = κ1(u(1)−g1) (2.41c)

where a > 0 and f are given functions, and κ0 ≥ 0, κ1 ≥ 0, g0, and g1 are given
parameters. The positiveness assumption on a, κ0, and κ1 is necessary to assert
existence and uniqueness of the solution u. We do not dwell on this right now, but
shall return to discuss the well-posedness of (2.41) later on.

2.4.1 Variational Formulation

Multiplying (2.41a) by a test function v and integrating by parts we have∫ 1

0
f vdx =

∫ 1

0
−(au′)′vdx (2.42)

=
∫ 1

0
au′v′ dx+a(1)u′(1)v(1)+a(0)u′(0)v(0) (2.43)

=
∫ 1

0
au′v′ dx+κ1(u(1)−g1)v(1)+κ0(u(0)−g0)v(0) (2.44)

where we used the boundary conditions to rewrite the boundary terms. Note that
we do require v to satisfy any boundary conditions as this is only necessary for
problems with Dirichlet boundary conditions. Consequently, the appropriate test
and trial space is given by

V = {v : ∥v′∥< ∞, ∥v∥< ∞} (2.45)

Collecting terms involving u on the left hand side, and terms involving given
functions on the right hand side we obtain the following variational formulation of
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(2.41): find u ∈V such that∫ 1

0
au′v′ dx+κ1u(1)v(1)+κ0u(0)v(0)

=
∫ 1

0
f vdx+κ1g1v(1)+κ0g0v(0), ∀v ∈V (2.46)

2.4.2 Finite Element Approximation

Replacing the space V by the space of all continuous piecewise polynomials Vh in
the variational formulation (2.46) we obtain the following finite element method:
find uh ∈Vh such that∫ 1

0
au′hv′ dx+κ1uh(1)v(1)+κ0uh(0)v(0)

=
∫ 1

0
f vdx+κ1g1v(1)+κ0g0v(0), ∀v ∈Vh (2.47)

We next show how to implement this finite element method in a computer.

2.5 Computer Implementation

In this section we describe the main components of a finite element solver. We do
this by writing a computer code implementing the finite element method (2.47).

2.5.1 Assembly of the Stiffness Matrix and Load Vector

Inserting the ansatz

uh =
n

∑
j=0

ξ jφ j (2.48)

into the finite element method (2.47) we eventually end up with the linear system

(A+R)ξ = b+ r (2.49)

where the entries of the (n+1)× (n+1) matrices A and R, and the n+1 vectors b
and r are given by
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Ai j =
∫ 1

0
aφ ′

jφ ′
i dx (2.50)

Ri j = κ1φ j(1)φi(1)+κ0φ j(0)φi(0) (2.51)

bi =
∫ 1

0
f φi dx (2.52)

ri = κ1g1φi(1)+κ0g0φi(0) (2.53)

To assemble A and b we recall that the explicit expression for a hat function φi is
given by

φi =


(x− xi−1)/hi, if x ∈ Ii

(xi+1 − x)/hi+1, if x ∈ Ii+1

0, otherwise
(2.54)

Hence, the derivative φ ′
i is either 1/hi, −1/hi+1, or 0 depending on the subinterval.

Using (2.54) it is straight forward to calculate the entries of A. For |i− j| > 1,
we have Ai j = 0, since φi and φ j lack common support. However, when i = j, the
support of φi and φ j overlap and Ai j is potentially non-zero. Let us use mid-point
quadrature to approximate Ai j. To this end let ai be the value of a at the mid-point
of Ii. When i = j we have the diagonal entries

Aii =
∫ 1

0
aφ ′2

i dx (2.55)

=
∫ xi

xi−1

aφ ′2
i dx+

∫ xi+1

xi

aφ ′2
i dx (2.56)

≈ ai
1
h2

i
hi +ai+1

(−1)2

h2
i+1

hi+1 (2.57)

=
ai

hi
+

ai+1

hi+1
, i = 1,2, . . . ,n−1 (2.58)

The integrals of the first and last diagonal entries are a1/h1 and an/hn since φ0 and
φn are only half.

Further, when j = i+1 we have the subdiagonal entries

Ai i+1 =
∫ 1

0
aφ ′

i+1φ ′
i dx (2.59)

=
∫ xi+1

xi

aφ ′
i+1φ ′

i dx (2.60)

≈ ai+1
(−1)
hi+1

· 1
hi+1

hi+1 (2.61)

=−ai+1

hi+1
, i = 0,1, . . . ,n (2.62)

The superdiagonal entries are obviously the same as the subdiagonal entries.
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The entries Ri j = κ0φ j(0)φi(0)+κ1φ j(1)φi(1) are all zero, except when i = j =
0 or i = j = n, in which case we have R00 = κ0 and Rnn = κ1.

Hence, the stiffness matrix A+R takes the form

A+R =



a1
h1

− a1
h1

− a1
h1

a1
h1
+ a2

h2
− a2

h2
− a2

h2

a2
h2
+ a3

h3
− a3

h3
. . . . . . . . .

− an−1
hn−1

an−1
hn−1

+ an
hn

− an
hn

− an
hn

an
hn


+


κ0

κ1

 (2.63)

The computation of the load vector b+ r is done exactly as shown for the L2-
projection, apart from the addition of the terms r1 = κ0g0φi(0) and rn = κ1g1φi(1)
to the first and last vector entry. Hence, we have

b+ r =



f (x0)h1/2
f (x1)(h1 +h2)/2
f (x2)(h2 +h3)/2

...
f (xn−1)(hn−1 +hn)/2

f (xn)hn/2


+



κ0g0

...

κ1g1


(2.64)

The global stiffness matrix A+R can be split into a sum of global element stiff-
ness matrices

A+R =
a1

h1


1 −1
−1 1

+
a2

h2


1 −1
−1 1

+ . . .+
an

hn

 1 −1
−1 1

 (2.65)

+


κ0

κ1


= AI1 +AI1 + . . .+AIn +R (2.66)

Each global element stiffness matrix AIi , i = 1,2, . . . ,n is found by performing
the integration (2.50) over a single element Ii. The following algorithm summarizes
the assembly process of A.
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Algorithm 5 Assembly of the Stiffness Matrix
1: Allocate memory for the (n+1)× (n+1) matrix A and initialize all matrix entries to zero.
2: for i = 1,2, . . . ,n do
3: Compute the 2×2 local element stiffness matrix AI given by

AI =
ai

h

[
1 −1
−1 1

]
(2.67)

where h is the length of element Ii = [xi−1,x− i], and ai = a((xi−1 + xi)/2).
4: Add AI

11 to Aii.
5: Add AI

12 to Aii+1.
6: Add AI

21 to Ai+1i.
7: Add AI

22 to Ai+1i+1.
8: end for
9: Add κ0 to a00.

10: Add κ1 to an+1n+1.

A MATLAB routine for assembling the stiffness matrix is listed below.

function A = StiffMat1D(x,a,kappa)
n = length(x)-1;
A = zeros(n+1,n+1);
for i = 1:n
h = x(i+1) - x(i);
xmid = (x(i+1) + x(i))/2; % interval mid-point
amid = a(xmid); % value of a(x) at mid-point
A(i,i) = A(i,i) + amid/h; % add amid/h to A(i,i)
A(i,i+1) = A(i,i+1) - amid/h;
A(i+1,i) = A(i+1,i) - amid/h;
A(i+1,i+1) = A(i+1,i+1) + amid/h;

end
A(1,1) = A(1,1) + kappa(1);
A(n+1,n+1) = A(n+1,n+1) + kappa(2);

Input to this routine is a vector x holding node coordinates, a function handle a to
a routine specifying the function a, and a vector kappa for the boundary condition
parameters κ0 and κ1. Output is the assembled stiffness matrix A+R.

The load vector b+g is computed in a similar manner by modifying the routine
LoadVec1D as shown below.

function b = LoadVec1D(x,f,kappa,g)
n = length(x)-1;
b = zeros(n+1,1);
for i = 1:n
h = x(i+1) - x(i);
b(i) = b(i) + f(x(i))*h/2;
b(i+1) = b(i+1) + f(x(i+1))*h/2;

end
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b(1) = b(1) + kappa(1)*g(1);
b(n+1) = b(n+1) + kappa(2)*g(2);

The inputs x, f, and kappa are as before. The vector g, holds the boundary param-
eters g0 and g1. Output is the assembled load vector b+g.

2.5.2 A Finite Element Solver for a General Two-point Boundary
Value Problem

With the above pieces of code it is easy to write a finite element solver for (2.41).
For fun sake let us use it to compute the temperature T in a rod of length L = 6 m,
cross section A = 0.1 m2, thermal conductivity k = 5− 0.6x J/(Ksm), internal heat
source f = 0.03(x−6)4 J/sm, held at constant temperature T =−1 K at x = 2, and
thermally insulated at x = 8. Thus, we want to solve

−(0.5+0.7x)T ′′ = 0.3x2, 2 < x < 8, T (2) =−1, T ′(8) = 0 (2.68)

To approximate the Dirichlet condition T (2) = 7 we use the Robin condition (2.41b)
with parameters κ0 = 106 and g0 =−1. Similarly, to impose the Neumann condition
T ′(8) = 0 we let κ1 = 0 in (2.41c). The value of g1 does not matter.

The main solver routine takes the following form.

function PoissonSolver1D()
h = 0.1; % mesh size
x = 2:h:8; % mesh
kappa = [1.e+6 0];
g = [-1 0];
A = StiffMat1D(x, @Conductivity, kappa);
b = LoadVec1D(x, @Source, kappa, g);
U = A\b;
plot(x,U)

Here, the heat conductivity and source are specified by the following routines.

function y = Conductivity(x)
y = 0.1*(5 - 0.6*x); % heat conductivity times area

function y = Source(x)
y = 0.03*(x-6)ˆ4; % heat source

Running this code we get the temperature distribution shown in Figure 2.1.
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Fig. 2.1 Computed temperature on a uniform mesh with 25 elements.

2.6 Adaptive Finite Element Methods

Adaptive finite element methods uses information extracted from earlier computa-
tions to locally refine or modify the mesh in order to obtain a better solution approx-
imation uh. This information is obtained using a posteriori error estimates. The aim
is to get uh to be optimal in the sense that a desired level of accuracy is reached at a
minimal computational cost.

2.6.1 A Posteriori Error Estimates

Let us return to consider the simple model problem (2.1). We have the following a
posteriori error estimate for its finite element solution uh.

Proposition 2.1. The following estimate holds

∥(u−uh)
′∥2 ≤C

n

∑
i=1

ρ2
i (uh) (2.69)

where the element residual Ri(uh) is defined by

ρi(uh) = hi∥ f +u′′h∥L2(Ii) (2.70)

Note that for piecewise linear approximation u′′h = 0 so that the the residual sim-
plifies to
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ρi(uh) = hi∥ f∥L2(Ii) (2.71)

Proof. Let e = u−uh be the error. We then have

∥e′∥2 =
∫ 1

0
e′2 dx (2.72)

=
∫ 1

0
e′(e−πe)′ dx (2.73)

=
n

∑
i=1

∫ xi

xi−1

e′(e−πe)′ dx (2.74)

=
n

∑
i=1

∫ xi

xi−1

(−e′′)(e−πe)dx+
[
e′(e−πe)

]xi
xi−1

(2.75)

=
n

∑
i=1

∫ xi

xi−1

(−e′′)(e−πe)dx (2.76)

where we first have used the Galerkin orthogonality property (2.19) to subtract an
interpolant πe ∈ Vh to e, then integration by parts on each element, and finally that
e and πe coincide at the nodes to get rid of the boundary terms. Here, we note that
on element Ii

−e′′ =−(u−uh)
′′ =−u′′+u′′h = f +u′′h (2.77)

Using now the Cauchy-Schwartz inequality and a standard interpolation error
estimate we have

∥e′∥2 =
n

∑
i=1

∫ xi

xi−1

( f +u′′h)(e−πe) (2.78)

≤
n

∑
i=1

∥ f +u′′h∥L2(Ii)∥e−πe∥L2(Ii) (2.79)

≤
n

∑
i=1

∥ f +u′′h∥L2(Ii)Chi∥e′∥L2(Ii) (2.80)

=C
n

∑
i=1

hi∥ f +u′′h∥L2(Ii)∥e′∥L2(Ii) (2.81)

≤C

(
n

∑
i=1

h2
i ∥ f +u′′h∥2

L2(Ii)

)1/2( n

∑
i=1

∥e′∥2
L2(Ii)

)1/2

(2.82)

=C

(
n

∑
i=1

h2
i ∥ f +u′′h∥2

L2(Ii)

)1/2

∥e′∥L2(I) (2.83)

Dividing both sides by ∥e′∥L2(I) concludes the proof.
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2.6.2 Adaptive Mesh Refinement

From Proposition 2.1 we see that the error gradient e′ is bounded by the local mesh
size hi, and the element residual f + u′′h . This is natural, since we expect to get a
small error on a fine mesh and also if the equation is well satisfied by uh. Recall
that if uh was the exact solution u, then f + u′′h = 0. Thus, the element residual Ri
is proportional to the error on element Ii. To increase the accuracy of the finite el-
ement solution uh it is therefore tempting to selectively split the elements with the
largest element residuals into smaller ones, since this will decrease hi and (hope-
fully) also ρi(uh). In doing so, one strives to obtain a uniform distribution of the
error among the elements. This reasoning leads us to the following algorithm for
designing adaptive, or smart, finite element methods with automatic error control
based on a posteriori estimates in combination with local mesh refinement.

Algorithm 6 Algorithm for A Posteriori Based Adaptive Mesh Refinement
1: Given a (coarse) mesh with n nodes.
2: while n is not too large do
3: Compute the finite element approximation uh.
4: Evaluate the element residuals ρi, i = 1,2, . . . ,n.
5: Select and refine the the most error prone elements.
6: end while

The adaptive algorithm above consists of four main components:

1. Computation of the element residuals ρi.
2. Selection of elements to be refined.
3. A refinement procedure.
4. A stopping criterion.

Let us discuss the computer implementation of these four steps.
In practice, we calculate the element residuals ρi using quadrature. It is conve-

nient to store them in a vector, rho.

rho = zeros(n,1); % allocate element residuals
for i = 1:n % loop over elements
h = x(i+1) - x(i); % element length
a = f(x(i)); % temporary variables
b = f(x(i+1));
t = (aˆ2+bˆ2)*h/2; % integrate fˆ2. Trapezoidal rule
rho(i) = hˆ2*t; % element residual

end

As usual x is a vector of node coordinates and n is the number of elements.
There are different possibilities for selecting the elements to be refined given the

element residuals ρi. A popular method is to refine element i if
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ρi > α max
i=1,2,...,n

ρi, (2.84)

where 0 ≤ α ≤ 1 is a parameter to be chosen. Note that α = 0 gives a uniform
refinement, while α = 1 gives no refinement at all.

The refinement procedure consists of the insertion of a new node at the mid-point
of each element chosen for refinement. In other words, if we are refining element
Ii = [xi,xi+1], then we replace it by [xi,(xi + xi+1)/2]∪ [(xi + xi+1)/2,xi+1]. This
is easily implemented by looping over the elements and inserting the mid-point
coordinate of any element with a too large residual at the end of the vector x holding
all node coordinates, and then sort the vector.

alpha = 0.9 % refinement parameter
for i = 1:length(rho)
if rho(i) > alpha*max(rho) % if large residual

x = [x (x(i+1)+x(i))/2]; % insert new node point
end

end
x = sort(x); % sort node points accendingly

The stopping criterion determines when the adaptive algorithm should stop. It
can, for instance, take the form of a maximum bound on the number of nodes or ele-
ments, the memory usage, the time of the computation, the total size of the residual,
or a combination of these.

Adaptive mesh refinement is particularly useful for problems with solutions con-
taining high localized gradients, such as shocks or kinks, for instance. One such
problem is −u′′ = δ , 0 < x < 1, u(0) = u(1) = 0, where delta is the narrow pulse
δ = exp(−c|x−0.5|2), with c= 100. The solution to this problem looks like a single
triangle wave with its peak at x = 0.5. In Figure 2.2 we show the computed solution
uh to this problem after 25 mesh refinement loops starting from a coarse mesh with
5 nodes distributed more or less randomly over the computational domain. Clearly,
the adaptive algorithm has identified and resolved the difficult region with high gra-
dients near the peak of the triangle wave. This allows for high accuracy while at the
same time saving computational resources.
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Fig. 2.2 Adaptively computed solution uh. Each red ring symbolize a node.

2.7 Problems

Exercise 2.1. Solve the model problem (2.1) analytically with

(a) f (x) = 1.
(b) f (x) = x−u.

Exercise 2.2. Let 0 = x0 < x1 < x2 < x3 = 1, where x1 = 1/6 and x2 = 1/2 be a
partition of the interval [0,1] into three subintervals. Furthermore, let Vh,0 be the
space of continuous piecewise linear functions on this partition that vanish at the
end-points x = 0 and x = 1.

(a) Compute the stiffness matrix A defined by (2.12).
(b) Compute the load vector with f (x) = 1 defined by (2.13).
(c) Solve the linear system Aξ = b and compute the finite element solution uh. Plot

uh.

Exercise 2.3. Consider the problem

−u′′ = 7, x ∈ (0,1)
u(0) = 2, u(1) = 3

(a) What is a suitable finite element space Vh?
(b) Formulate a finite element method for this problem.
(c) Derive the discrete system of equations using a uniform mesh with 4 nodes.

Exercise 2.4. Consider the problem
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−((1+ x)u′)′ = 0, x ∈ (0,1)
u(0) = 0, u′(1) = 1

Divide the interval (0,1) into 3 subintervals of equal length h= 1/3 and let Vh be the
corresponding space of continuous piecewise linear functions vanishing at x = 0.

(a) Determine the analytical solution u.
(b) Use Vh to formulate a finite element method.
(c) Verify that the stiffness matrix A and load vector b are given by

A =
1
2

16 −9 0
−9 20 −11
0 −11 11

 , b =

0
0
2


(d) Verify that A is positive definite.

Exercise 2.5. Compute the stiffness matrix to the Neumann problem

−u′′ = f , x ∈ (0,1)
u′(0) = u′(1) = 0

on a uniform partition of (0,1) into 2 subintervals. Why is the corresponding stiff-
ness matrix singular?

Exercise 2.6. Consider the problem

−u′′+u = f , x ∈ (0,1)
u(0) = u(1) = 0

(a) Choose a suitable finite element space Vh.
(b) Formulate a finite element method.
(c) Derive the discrete system of equations.

Exercise 2.7. Let u be defined on I = (0,1) and such that u(0) = 0. Prove the
Poincaré inequality

∥u∥L2(I) ≤C∥u′∥L2(I)

Exercise 2.8. Derive an a posteriori error estimate for the problem

−u′′+u = f , x ∈ I

u(0) = u(1) = 0

Exercise 2.9. Consider the problem

−εu′′+ xu′+u = f , x ∈ I

u(0) = u′(1) = 0
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where ε > 0 is a constant. Prove that the solution satisfies

∥εu′′∥L2(I) ≤ ∥ f∥L2(I)

Exercise 2.10. Consider the model problem

−u′′ = f , x ∈ I

u(0) = u(1) = 0

Its variational formulation reads: find u ∈V0 such that∫
I
u′v′ dx =

∫
I

f vdx ∀v ∈V0

Show that the solution u∈V0 to the variational formulation minimizes the functional

F(w) =
1
2

∫
I
w′2 dx−

∫
I

f wdx

over the space V0. Hint: Write w = u+ v and show that F(w) = F(u)+ . . .≥ F(u).



Chapter 3
Piecewise Polynomial Approximation in 2D

Abstract In this chapter we extend the concept of piecewise polynomial approxi-
mation to two dimensions. As before the basic idea is to first construct spaces of
piecewise polynomial functions that are easy to manipulate (e.g., differentiate and
integrate), and then to show that one can approximate more complicated functions
by these simple polynomials. A difficulty with the construction of piecewise poly-
nomials in higher dimension is that the underlying domain must be partitioned into
simplex, such as triangles, or quadrilaterals, for instance, which is a non-trivial task
for a complex shaped domain. In this context a very important principle is that the
smaller the simplex, the better the representation of the domain as well as the ap-
proximation properties of the resulting function spaces. The price we have to pay is
higher computational costs and increasing memory requirements. However, we shall
present a technology for building representations of piecewise polynomials that is
efficient and suitable for computer implementation.

3.1 Meshes

3.1.1 Triangulations

Let Ω ⊂ R2 be a simply connected domain with polygonal boundary ∂Ω . A trian-
gulation, or mesh, K of Ω is a set {K} of triangles K such that Ω = ∪K∈K K, and
such that the intersection of two triangles is either an edge, a corner, or empty. No
triangle corner is allowed to lie on an edge of another triangle. The corners of the
triangles are called the nodes. Figure 3.1 shows a triangle mesh of the greek letter
π .

To measure the size of a triangle K we introduce the local mesh size hK , de-
fined as the length of the longest edge on K, see Figure 3.5. Moreover, to measure
the quality of K, let dK be the diameter of the inscribed circle and introduce the
chunkiness parameter αK , defined by

45
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Fig. 3.1 A mesh of π .

αK = hK/dK (3.1)

We say that a triangulation K is shape regular if there is a constant α0 > 0 such that

αK ≥ α0, ∀K ∈ K (3.2)

This condition means that the shape of the triangles can not be too bad in the sense
that the angles of any triangle can neither be very wide nor very narrow. As we
shall see this has implications for the approximation properties of the piecewise
polynomial spaces do be defined on these meshes.

3.1.2 Data Storage Structures

The standard way of representing a triangulation with np nodes and nt elements
in a computer is to store it as two matrices P and T called the point matrix, and
the connectivity matrix, respectively. The point matrix P is 2× np and column j
contains the coordinates x( j)

1 and x( j)
2 of node N j. The connectivity matrix T is 3×nt

and column j contains the numbers of the three nodes in triangle j. Here, we shall
adopt the common convention of ordering these three nodes in a counter clockwise
sense. It does not, however, matter on which of the nodes the ordering starts.

Figure 3.2 shows a small triangulation of an L-shape domain. The mesh has eight
nodes and six triangles. The point matrix and connectivity matrix for this mesh are
given by

P =

[
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0
0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0

]
, T =

1 2 5 3 4 5
2 5 2 6 5 8
4 4 8 5 7 7

 (3.3)
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x

y

Fig. 3.2 A triangle mesh of the L-shaped domain.

Thus, for example, the coordinates (x(3)1 ,x(3)2 ) = (2,0) of node N3 are given by the
matrix entries p13 and p23, respectively. In the connectivity matrix T column 2 con-
tains the numbers 2, 5, and 4 of the three nodes N2, N5, and N4 making up triangle
K2. Note that the nodes are ordered counter clockwise.

3.1.3 Mesh Generation

Over the past decades advanced computer algorithms for the automatic construc-
tion of meshes have been developed. However, depending on the complexity of the
domain it may still be more or less difficult to generate a mesh. In particular, dif-
ficulties may arise for three dimensional geometries, since they have often have a
difficult topology. However, in two dimensions there are efficient algorithms for
creating a mesh on quite general domains. One of these is the Delaunay algorithm,
which given a set of points can determine a triangulation with the given points as
triangle nodes. Delaunay triangulations are optimal in the sense that the angles of
all triangles are maximal.

MATLAB has a non-standard set of routines called the PDE toolbox which in-
cludes a Delaunay mesh generator for creating high quality triangulations of two
dimensional geometries. We illustrate its use by creating a mesh of the L-shaped
domain.

In MATLAB the geometry of the L-shaped domain is defined by the following
matrix g

g = [2 0 2 0 0 1 0;
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2 2 2 0 1 1 0;
2 2 1 1 1 1 0;
2 1 1 1 2 1 0;
2 1 0 2 2 1 0;
2 0 0 2 0 1 0]’;

Each column of g describes one of the six line segments making up the boundary of
the L-shaped domain. In each such column rows two and three contain the starting
x1-coordinate, and rows four and five the corresponding x2-coordinate. Rows six
and seven indicate if the geometry is on the left or right side of the line segment
when traversing it in the direction induced by the start and end-points. The fact that
we are defining a line segment is indicated by the number 2 in the first column.

To generate a mesh of the domain we type

[p,e,t] = initmesh(g,’hmax’,0.1)

The call to initmesh routine invokes the mesh generator which triangulates the
domain g. The final two arguments ’hmax’,0.1 specifies the maximum edge
length hK = 0.1 of the triangles to be generated. Output is the point matrix p, the
connectivity matrix t, and the so-called edge matrix e containing the node numbers
of the triangle edges making up the boundary of the mesh. We will return to discuss
the e matrix later on.

There are also a few built-in geometries, including:

• cicrcleg, the unit radius circle centered at origo.
• squareg, the square [−1,1]2.

For furture use we extend this list of geometries with a rectangle, defined by

function r = Rectg(xmin,ymin,xmax,ymax)
r=[2 xmin xmax ymin ymin 1 0;

2 xmax xmax ymin ymax 1 0;
2 xmax xmin ymax ymax 1 0;
2 xmin xmin ymax ymin 1 0]’;

To view the generated mesh one can type

pdemesh(p,e,t)

More general geometries can be drawn in the PDE toolbox GUI. It is opened by
typing

pdetool

3.2 Piecewise Polynomial Spaces

The reason for introducing a mesh of a domain is that it allows for a simple construc-
tion of piecewise polynomial function spaces on this domain, which is otherwise a
very difficult task. We shall now discuss how this is done in the special case of linear
polynomials on triangle meshes.
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3.2.1 The Space of Linear Polynomials

Let K be a triangle and let P1(K) be the space of linear functions on K, defined by

P1(K) = {v : v = c0 + c1x1 + c2x2, (x1,x2) ∈ K, c0,c1,c2 ∈ R} (3.4)

In other words P1(K) contains all functions of the form v = c0 + c1x1 + c2x2 on K.
We observe that any v in P1(K) is uniquely determined by its nodal values αi =

v(Ni), i = 1,2,3. This follows by assuming αi to be given and evaluating v at the
three nodes Ni = (x(i)1 ,x(i)2 ). In doing so, we end up with the following linear system1 x(1)1 x(1)2

1 x(2)1 x(2)2

1 x(3)1 x(3)2


c0

c1
c2

=

v1
v2
v3

 (3.5)

Computing the determinant of the matrix we find that its absolute value equals 2|K|,
where |K| is the area of K, so the linear system has a unique solution as long as K is
not degenerate.

The natural basis {1,x1,x2} for P1(K) is not suitable since we wish to use
the nodal values as degrees of freedom. Therefore we introduce a nodal basis
{λ1,λ2,λ3}, defined by

λ j(Ni) =

{
1, i = j
0, i ̸= j

, i, j = 1,2,3 (3.6)

Using the new basis we can express any function v in P1(K) as

v = α1λ1 +α2λ2 +α3λ3 (3.7)

where αi = v(Ni).
On the reference triangle K̄ with nodes at origo, (1,0), and (0,1), the nodal basis

functions for P1(K̄) are given by

λ1 = 1− x1 − x2, λ2 = x1, λ3 = x2 (3.8)

3.2.2 The Space of Continuous Piecewise Linear Polynomials

The contruction of piecewise linear functions on a mesh K = {K} of a domain Ω
is straight forward. On each triangle K any such function v is simply required to
belong to P1(K). Requiring also continuity of v between neighbouring triangels,
we obtain the space of all continuous piecewise linear polynomials Vh, defined by

Vh = {v : v ∈ C (Ω), v|K ∈ P1(K) ∀K ∈ K } (3.9)
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Here, C 0(Ω) denotes the space of all continuous functions on Ω .
An example of a continuous piecewise linear function is given in Figure 3.3.
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Fig. 3.3 A continuous piecewise linear function v ∈Vh.

To construct a basis for Vh we first show that a function v in Vh is uniquely deter-
mined by its nodal values

{v(N j)}
np
j=1 (3.10)

and, conversely, that for each set of nodal values there is a unique function v in
Vh with these nodal values. To prove this claim we first note that the nodal values
determines a function in P1(K) uniquely for each K ∈ K , and thus a function in
Vh is uniquely determined by its values in the nodes. Next we consider two triangles
K1 and K2 that share an edge E = K1 ∩K2. Let v1 and v2 be the two unique linear
polynomials in P1(K1) and P1(K2), respectively, determined by the nodal values
on K1 and K2. Since v1 and v2 are linear polynomials on K1 and K2 they are also
linear polynomials when restricted to the edge E, and since they coincide in the
endpoints of E we conclude that v1 = v2 on E. Therefore, for any set of nodal values
there is a continuous piecewise linear polynomial with these nodal values.

Motivated by this result we let the nodal values be our degrees of freedom and
define a corresponding basis {φ j}

np
j=1 ⊂Vh such that
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φ j(Ni) =

{
1, i = j
0, i ̸= j

, i, j = 1,2, . . . ,np (3.11)

Figure 3.4 illustrates a typical basis function φ j.

ϕj

Nj

Fig. 3.4 A two-dimensional hat function φ j on a general triangle mesh.

From the figure it is clear that each basis function φ j is continuous, piecewise
linear, and with support only on the small set of triangles sharing node N j. Similar
to the one-dimensional case, these basis functions are also called hat functions.

Now, using the hat function basis we note that any function v in Vh can be written

v =
np

∑
i=1

αiφi (3.12)

where αi = v(Ni), i = 1,2, . . . ,np, are the nodal values of v.

3.3 Interpolation

3.3.1 Linear Interpolation

We now return to the problem of approximating functions. Given a continuous func-
tion f on a triangle K with nodes Ni, i = 1,2,3, the linear interpolant π f ∈ P1(K)
to f is defined by

π f =
3

∑
i=1

f (Ni)φi (3.13)

The interpolant π f ∈ P1(K) is a plane, which coincides with f at the three node
points. Thus, by definion we have Ni π f (Ni) = f (Ni). See Figure 3.5.

To estimate the interpolation error f −π f we need to introduce some measure
of the size of the first and second order derivatives of f . More precisely, let D f and
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N1

N2

N3
hK

dK

K

f

πf

Fig. 3.5 Illustration of the linear interpolant π f to a function f on a triangle K with nodes N1, N2,
and N3. Also shown is the longest edge length hK , and the diameter dK of the inscribed circle.

D2 f be defined by

D f =

(∣∣∣∣∂ f
∂x

∣∣∣∣2 + ∣∣∣∣∂ f
∂y

∣∣∣∣2
)1/2

, D2 f =

(∣∣∣∣∂ 2 f
∂x2

∣∣∣∣2 +2
∣∣∣∣ ∂ 2 f
∂x∂y

∣∣∣∣2 + ∣∣∣∣∂ 2 f
∂y2

∣∣∣∣2
)1/2

(3.14)
Since the operators D and D2 include all first and second partial derivatives, we say
that D f and D2 f are the total first and second derivative operators of f , respectively.

In this context we also recall that the L2(Ω)-norm of a function f of two variables
x1 and x2 is given by.

∥ f∥= ∥ f∥L2(Ω) =

(∫
Ω

f 2 dx
)1/2

(3.15)

Using these notations we have the following estimate of the interpolation error.

Proposition 3.1. The following interpolation estimates hold.

∥ f −π f∥L2(K) ≤Ch2
K∥D2 f∥L2(K) (3.16)

∥D( f −π f )∥L2(K) ≤ChK∥D2 f∥L2(K) (3.17)

where C is a constant.

We omit the proof of this result. It is a consequence of Taylor’s formula.
In Proposition 3.1, it is possible to show that the interpolation costants C are

proportional to the inverse of sin(θK), where θK is the smallest angle in triangle
K. This, C blows up if θK is becomes small, which renders the interpolation error
estimate uselss. This explains why it is critical that K has neither too narrow nor too
wide angles. Recall that we measure this by the chunkiness parameter αK , which
should be bound away from zero.
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3.3.2 Continuous Piecewise Linear Interpolation

The concept of continuous piecewise linear interpolation easily extends from one
to two dimensions. Indeed, given a continuous function f ∈ C 0(Ω) we define its
continuous piecewise linear interpolant π f ∈Vh by

π f =
np

∑
i=1

f (Ni)φi (3.18)

Again, π f approximates f by taking on the same values in the nodes Ni.
In MATLAB it is easy to draw π f given f . For example, to plot the interpolant

to f = x1x2 on the square domain Ω = [−1,1]2 it takes only the following four lines
of code.

[p,e,t] = initmesh(’squareg’,’hmax’,0.1); % mesh
x = p(1,:); y = p(2,:); % node coordinates
pif = x.*y; % nodal values of interpolant
pdesurf(p,t,pif) % plot interpolant

Looking at the above code let us make a remark about out programming style.
The conversion of methematical symbols to computer code is not always clear and
easy. In this book we have tried to keep a close correlation between the notation
introduced in the formulas and equations, and the names of the variables used in the
codes presented. However, attempting to write as efficient and short code as much as
possible has unavoidable lead to a few inconsistencies in this respect. For example,
to limit the number of indices used we have troughout used the variables x and y
to denote the space coordinates x1 and x2. We hope that the code comments and the
context shall make it clear what is meant.

The size of the interpolation error f −π f can be estimated with the help of the
following proposition.

Proposition 3.2. The following interpolation estimates hold.

∥ f −π f∥2
L2(Ω) ≤C ∑

K∈K

h4
K∥D2 f∥2

L2(K) (3.19)

∥D( f −π f )∥2
L2(Ω) ≤C ∑

K∈K

h2
K∥D2 f∥2

L2(K) (3.20)

Proof. Using the triangle inequality followed by Proposition 3.1 we have

∥ f −π f∥2
L2(Ω) = ∑

K∈K

∥ f −π f∥2
L2(K) (3.21)

≤ ∑
K∈K

Ch4
K∥D2 f∥2

L2(K) (3.22)

which proves the first estimate. The second follows similarly.
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3.4 L2-projection

3.4.1 Definition

The L2-projection Ph f ∈Vh of a function of two variables f ∈ L2(Ω) is defined by∫
Ω
( f −Ph f )vdx = 0, ∀v ∈Vh (3.23)

3.4.2 Derivation of a Linear System of Equations

To compute the L2-projection Ph f we first note that the definition (3.23) is equivalent
to ∫

Ω
( f −Ph f )φi dx = 0 i = 1,2 . . . ,np (3.24)

where φi are the hat basis functions spanning Vh.
Since Ph f belongs to Vh it can be written as the linear combination

Ph f =
np

∑
j=1

ξ jφ j (3.25)

where ξ j, j = 1,2, . . . ,np, are np unknown coefficients to be determined.
Inserting the ansatz (3.25) into (3.25) we get

∫
Ω

f φi dx =
∫

Ω

(
np

∑
j=1

ξ jφ j

)
φi dx (3.26)

=
np

∑
j=1

ξ j

∫
Ω

φ jφi dx (3.27)

Using the notation

Mi j =
∫

Ω
φ jφi dx, i, j = 1,2, . . . ,np (3.28)

bi =
∫

Ω
f φi dx, i = 1,2 . . . ,np (3.29)

we have

bi =
np

∑
j=1

Mi jξ j, i = 1,2 . . . ,np (3.30)

which is a linear system for the unknowns ξ j. In matrix form we write this
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b = Mξ (3.31)

where the entries of the np × np mass matrix M and the np × 1 load vector b are
defined by (3.28) and (3.29), respectively. Solving the linear system (3.30) we obtain
the unknowns ξ j, and thus Ph f .

3.4.3 Basic Algorithm to Compute the L2-projection

The following algorithm summarizes the basic steps for computing the L2-projection
Ph f .

Algorithm 7 Basic Algorithm to Compute the L2-projection
1: Create a mesh K of Ω and define the corresponding space of continuous piecewise linear

functions Vh with hat function basis {φi}
np
i=1.

2: Assemble the np ×np mass matrix M, and the np ×1 load vector b, with entries

Mi j =
∫

Ω
φ jφi dx, bi =

∫
Ω

f φi dx (3.32)

3: Solve the linear system
Mξ = b (3.33)

4: Set

Ph f =
np

∑
j=1

ξ jφ j (3.34)

3.4.4 Existence and Uniqueness of the L2-projection

Theorem 3.1. The L2-projection Ph f of f ∈ L2(Ω) defined by (3.23) exists and is
unique.

Proof. We first show that the L2-projection is uniquely determined by (3.23). The
argument is by contradiction. Assume that there are two L2-projections Ph f and P̃h f
satifying (3.23). Then we have∫

Ω
Ph f vdx =

∫
Ω

f vdx, ∀v ∈Vh (3.35)∫
Ω

P̃h f vdx =
∫

Ω
f vdx, ∀v ∈Vh (3.36)

Subtracting these equations we get∫
Ω
(Ph f − P̃h f )vdx = 0, ∀v ∈Vh (3.37)
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Now, choosing v = Ph f − P̃h f ∈Vh we get∫
Ω
|Ph f − P̃h f |2 dx = 0 (3.38)

From this identity we conclude that Ph f − P̃h f must be zero.
To prove the existence of Ph f we recall that is is determined by a np × np lin-

ear system of equations. The existence of a solution to a square system of linear
equations follows from the uniqueness of the solution.

3.4.5 A Priori Error Estimates

Theorem 3.2. The L2-projection Ph f , defined by (3.23) satisfies the following best
approximation estimate.

∥ f −Ph f∥ ≤ ∥ f − v∥, ∀v ∈Vh (3.39)

Proof. Using the definition of the L2-norm and writing f −Ph f = f − v+ v−Ph f
with v ∈Vh we have

∥ f −Ph f∥2 =
∫

Ω
( f −Ph f )( f − v+ v−Ph f )dx (3.40)

=
∫

Ω
( f −Ph f )( f − v)dx+

∫
Ω
( f −Ph f )(v−Ph f )dx (3.41)

=
∫

Ω
( f −Ph f )( f − v)dx (3.42)

≤ ∥ f −Ph f∥∥ f − v∥ (3.43)

where we used the definition of the L2-projection to conclude that∫
Ω
( f −Ph f )(v−Ph f )dx = 0 (3.44)

since v−Ph f ∈Vh. Dividing by ∥ f −Ph f∥ concludes the proof.

Theorem 3.3. If f has square integrable second derivatives then its L2-projection
Ph f satisfies

∥ f −Ph f∥2 ≤C ∑
K∈K

Ch4
K∥D2 f∥2

L2(K) (3.45)

Proof. Starting from the best approximation result and choosing v = π f the inter-
polant of f , and using the interpolation error estimate of Proposition 3.1 we obtain
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∥ f −Ph f∥2 ≤ ∥ f −π f∥2 (3.46)

≤ ∑
K∈K

∥ f −π f∥2
L2(K) (3.47)

≤ ∑
K∈K

Ch4
K∥D2 f∥2

L2(K) (3.48)

which proves the estimate.

Defining h = maxK∈K hK we conclude that

∥ f −Ph f∥ ≤Ch2∥D2 f∥ (3.49)

that is, the L2-error ∥ f −Ph f∥ tends to zero when the mesh size h tends to zero.

3.4.6 Properties of the Mass matrix

Theorem 3.4. The mass matrix is symmetric and positive definite.

Proof. M is obviously symmetric since Mi j = M ji by definition.
To prove that M is positive definite we must show that

0 ≤ ξ T Mξ (3.50)

for all np ×1 vectors ξ and with equality only if ξ = 0.
Now, a straight forward calculation reveals that

ξ T Mξ =
np

∑
i, j=1

ξiMi jξ j (3.51)

=
np

∑
i, j=1

ξi

(∫
Ω

φ jφi dx
)

ξ j (3.52)

=
∫

Ω

(
np

∑
i=1

ξiφi

)(
np

∑
j=1

ξ jφ j

)
dx (3.53)

=

∥∥∥∥∥ np

∑
i=1

ξiφi

∥∥∥∥∥
2

L2(Ω)

(3.54)

The last norm is equal to zero if and only if the sum s = ∑np
i=1 ξiφi = 0. However, the

sum s can be viewed as a function in Vh and if s = 0 then all coefficients ξi mush
vanish.
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3.5 Quadrature and Numerical Integration

Quadrature in two dimensions works in principle the same as in one dimension. One
approximates the integral with a sum of weights times integrand values. A general
quadrature rule on a triangle K takes the form∫

K
f dx ≈ ∑

j
ω j f (q j) (3.55)

where {q j} is the set of quadrature points in K, and {ω j} the corresponding quadra-
ture weights. Below we list a few useful quadrature formulas for integrating a con-
tinuous function f over a general triangle K with nodes N1, N2 and N3.

The simplest quadrature formula is the center of gravity rule∫
K

f dx ≈ f (x̄)|K| (3.56)

where x̄ = (N1 +N2 +N3)/3 is the center of gravity and |K| is the area of K. The
center of gravity formula is a two dimensional variant of the mid-point rule. There is
also a two dimensional analog to the trapezoidal rule, namely, the so-called corner
quadrature formula

∫
K

f dx ≈
3

∑
i=1

f (Ni)
|K|
3

(3.57)

A better quadrature formula is the two-dimensional mid-point rule

∫
K

f dx ≈
3

∑
1≤i< j≤3

f (xi j)
|K|
3

(3.58)

where xi j = (Ni +N j)/2 is the mid-point of the edge between node number i and j.
As you can imagine there are numerous other quadrature rules. We refer the

interested reader to any standard text book on numerical analysis for a thorough
description of this subject.

3.6 Computer Implementation

3.6.1 Assembly of the Mass Matrix

We next show how to compute the mass matrix M in two dimensions. This is a quite
bit more complicated than in one dimension and we therfore do this by example. To
this end, consider the mesh of the rectangle Ω in Figure 3.6.
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K1

K2 K3

x

y

N1 = (0,0) N3 = (2,0)

N4 = (2,1)

N2 = (1,0)

N5 = (0,1)

Fig. 3.6 A mesh of the rectangle Ω = [0,2]× [0,1].

On this mesh we wish to compute the mass matrix M, given by

M =
∫

Ω


φ1φ1 φ2φ1 φ3φ1 φ4φ1 φ5φ1
φ1φ2 φ2φ2 φ3φ2 φ4φ2 φ5φ2
φ1φ3 φ2φ3 φ3φ3 φ4φ3 φ5φ3
φ1φ4 φ2φ4 φ3φ4 φ4φ4 φ5φ4
φ1φ5 φ2φ5 φ3φ5 φ4φ5 φ5φ5

 dx (3.59)

To do so, we first break the integral over the whole domain Ω into a sum of integrals
over the triangles Ki, i = 1,2,3. We then have

M =
3

∑
i=1

∫
Ki


φ1φ1 φ2φ1 φ3φ1 φ4φ1 φ5φ1
φ1φ2 φ2φ2 φ3φ2 φ4φ2 φ5φ2
φ1φ3 φ2φ3 φ3φ3 φ4φ3 φ5φ3
φ1φ4 φ2φ4 φ3φ4 φ4φ4 φ5φ4
φ1φ5 φ2φ5 φ3φ5 φ4φ5 φ5φ5

 dx =
3

∑
i=1

MKi (3.60)

As we know there are only three non-zero hat functions on each triangle. For
example, the only non-zero hats on K1 are φ1, φ4, and φ5. Integrating the product of
these we see that K1, or any triangle for that matter, gives a total of 3 ·3 = 9 integral
contributions to M. Moreover, for a given triangle, the index on the non-zero hat
functions are the same as the node numbers for that triangle. Thus, inspecting which
hats are non-zero on which triangle, we can therefore beforehand say which rows
and columns vanich in each matrix MKi . For example, the only non-zero entries of
MK1 are MK1

11 , MK1
14 , MK1

15 , MK1
41 , MK1

44 , MK1
45 , MK1

51 , MK1
54 , and MK1

55 . Proceeding similarly,
we are left with
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M =
∫

K1


φ1φ1 0 0 φ4φ1 φ5φ1

0 0 0 0 0
0 0 0 0 0

φ1φ4 0 0 φ4φ4 φ5φ4
φ1φ5 0 0 φ4φ5 φ5φ5

 dx (3.61)

+
∫

K1


φ1φ1 φ2φ1 0 φ4φ1 0
φ1φ2 φ2φ2 0 φ4φ2 0

0 0 0 0 0
φ1φ4 φ2φ4 0 φ4φ4 0

0 0 0 0 0

 dx (3.62)

+
∫

K1


0 0 0 0 0
0 φ2φ2 φ3φ2 φ4φ2 0
0 φ2φ3 φ3φ3 φ4φ3 0
0 φ2φ4 φ3φ4 φ4φ4 0
0 0 0 0 0

 dx (3.63)

= MK1 +MK2 +MK3 (3.64)

In practice the global element matrices MKi are never formed, but only the small
3×3 element matrix necessary for storing their non-zero entries.

Having reduced the computation of the mass matrix M to a series of operations
on the triangles, we consider a single triangle K with its three nodes N1, N2, and N3,
and corresponding hat functions φ1, φ2, and φ3. These nodes will almost certainly
have a different node numbering, say Nr, Ns, and Nt , in the mesh as a whole, but let
us label them 1, 2, and 3 for now.

The computation of the element masses could of course be done using quadra-
ture. However, there is a much easier way. Using induction it is possible to show the
following integration formula for hat functions.∫

K
φm

1 φn
2 φ p

3 dx =
2m!n!p!

(m+n+ p+2)!
|K| (3.65)

where |K| is the area of K and m, n, and p are positive integers. From this we
immidiately have ∫

K
φiφ j dx =

1
12

(1+δi, j)|K| i, j = 1,2,3 (3.66)

where δi, j is 1 if i = j and 0 if i ̸= j. This gives the following local element mass
matrix

MK =
1

12

2 1 1
1 2 1
1 1 2

 |K| (3.67)

The mapping {1,2,3} 7→ {r,s, t} between the global node numbers r, s, and t and
the local node numbers 1, 2, and 3 is called the local to global mapping. It is used
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when adding the entries of the local element mass matrix MK into their appropriate
positions in the global mass matrix M. This is done by cycling the index i and j over
1, 2 and 3 while and adding MK

i, j to Mloc2glbi,loc2glb j , where loc2glb = [r,s, t]. This
gives a simple yet flexible way of organizing the assembly of the mass matrix. We
summarize this assembly technique below.

Algorithm 8 Assembly of the Mass Matrix
1: Let np be the number of nodes and nt the number of elements in a mesh described by its point

matrix P and connectivity matrix T .
2: Allocate memory for the np ×np matrix M and initialize all matrix entries to zero.
3: for K = 1,2, . . . ,nt do
4: Compute the 3×3 local element mass matrix MK given by

MK =
1

12

2 1 1
1 2 1
1 1 2

 |K| (3.68)

5: Set up the local to global mapping, loc2glb = [r,s, t].
6: for i = 1,2,3 do
7: for j = 1,2,3 do
8:

Mloc2glbi,loc2glb j = Mloc2glbi,loc2glb j +MK
i, j (3.69)

9: end for
10: end for
11: end for

The conversion of this algorithm into MATLAB code is straight forward.

function M = MassMat2D(p,t)
np = size(p,2); % number of nodes
nt = size(t,2); % number of elements
M = sparse(n,n); % allocate mass matrix
for K = 1:nt % loop over elements
loc2glb = t(1:3,K); % local-to-global map
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % y
area = polyarea(x,y); % triangle area
MK = [2 1 1;

1 2 1;
1 1 2]/12*area; % element mass matrix

M(loc2glb,loc2glb) = M(loc2glb,loc2glb) ...
+ MK; % add element masses to M

end

Input to this routine is the point matrix p and connectivity matrix t given by
initmesh. Output is the assembled global mass matrix M. Note that the allocation
of the mass matrix is done using the sparse command, which tells MATLAB to
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store only non-zero matrix entries. This is important in order to save memory, since
the number of nodes and consequently the matrix size might be big.

Running this function on our mesh of the rectangle, which has the point and
connectivity matrix

p=[0 1 2 2 0;
0 0 0 1 1]

t=[1 1 2;
4 2 3;
5 4 4];

we get the 5×5 global mass matrix

M =

0.2500 0.0417 0 0.1250 0.0833
0.0417 0.1667 0.0417 0.0833 0

0 0.0417 0.0833 0.0417 0
0.1250 0.0833 0.0417 0.3333 0.0833
0.0833 0 0 0.0833 0.1667

3.6.2 Assembly of the Load Vector

The load vector b is assembled using the same technique as the mass matrix M, that
is, by summing element load vectors bK over the mesh. On each element K we get
a local 3×1 element load vector bK with entries

bK
i =

∫
K

f φi dx, i = 1,2,3 (3.70)

Using node quadrature, for instance, to compute these integrals we end up with

bK
i ≈ 1

3
f (Ni)|K|, i = 1,2,3 (3.71)

We summarize the computation of the load vector with the following algorithm.
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Algorithm 9 Assembly of the Load Vector
1: Let np be the number of nodes and nt the number of elements in a mesh described by its point

matrix P and connectivity matrix T .
2: Allocate memory for the np ×1 vector b and initialize all entries to zero.
3: for K = 1,2, . . . ,nt do
4: Compute the 3×1 local element load vector bK given by

bK =
1
3

 f (N1)
f (N2)
f (N3)

 |K| (3.72)

5: Set up the local to global mapping, loc2glb = [r,s, t].
6: for i = 1,2,3 do
7:

bloc2glbi = bloc2glbi +bK
i (3.73)

8: end for
9: end for

Translated into MATLAB code the algorithm takes the following form.

function b = LoadVec2D(p,t,f)
np = size(p,2);
nt = size(t,2);
b = zeros(n,1);
for K = 1:nt
loc2glb = t(1:3,K);
x = p(1,loc2glb);
y = p(2,loc2glb);
area = polyarea(x,y);
bK = [f(x(1),y(1));

f(x(2),y(2));
f(x(3),y(3))]/3*area; % element load vector

b(loc2glb) = b(loc2glb) ...
+ bK; % add element loads to b

end

Here, we assume that f is a function handle to a routine specifying f , for example,

function f = Foo(x,y)
f = x.*y;

A main routine for computing the L2-projection π f of f = x1x2 on the unit square
Ω = [0,1]2 is given below.

function L2Projector2D()
g = Rectg(0,0,1,1); % unit square
[p,e,t] = initmesh(g,’hmax’,0.1); % create mesh
M = MassMat2D(p,t); % assemble mass matrix
b = LoadVec2D(p,t,@Foo); % assemble load vector
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Pf = M\b; % solve linear system
pdesurf(p,t,Pf) % plot projection

3.7 Problems

Exercise 3.1. Write down the geometry matrix geom for the unit square Ω = [0,1]2.

Exercise 3.2. Express the area of an arbitrary triangle in terms of its corner coordi-
nates (x(1)1 ,x(1)2 ), (x(2)1 ,x(2)2 ), and (x(3)1 ,x(3)2 ).

Exercise 3.3. Derive the basis functions for piecewise linear functions on the trian-
gle with corners at (−1,−1), (1,0), and (−1,1).

Exercise 3.4. Determine the basis functions for piecewise linear functions on an
arbitrary triangle with corner coordinates (x1,y1), (x2,y2) and (x3,y3).

Exercise 3.5. Determine a linear coordinate transform which maps an arbitrary tri-
angle onto the reference triangle K̄ with corners at origo, (1,0), and (0,1).

0 1

1

x2

x10
N1 N2 N3

N4 N5 N6

N7 N8 N9

Exercise 3.6. Given the triangulation of Figure 3.7.

(a) Write down the point matrix P and the connectivity matrix T .
(b) Determine the mesh function h(x).

Exercise 3.7. Looking at Figure 3.7, and draw the hat functions φ1 and φ5 corre-
sponding to nodes N1 and N5, respectively.

Exercise 3.8. Consider again the mesh of the unit square Ω shown in Figure 3.7.

(a) Determine the sparsity pattern of the mass matrix on this mesh.
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(b) Compute the integrals
∫

Ω ϕ1ϕ2 dx,
∫

Ω ϕ7ϕ4 dx,
∫

Ω ϕ7ϕ8 dx, and
∫

Ω x1ϕ1 dx.

Exercise 3.9. Let f = x1x2 and let Ω = [0,1]2 be the unitsquare.

(a) Calculate
∫

Ω f dx analytically.
(b) Compute

∫
Ω f dx by using the center of gravity rule on each triangle of the mesh

in Figure 3.7.
(c) Compute

∫
Ω f dx by using the corner quadrature rule on each triangle of the

mesh in Figure 3.7.

Exercise 3.10. Compute the L2-projection Ph f ∈Vh to f = x2
1 on the mesh shown in

Figure 3.7. Use the corner qudrature rule to evaluate the integrals of the mass matrix
and the load vector.





Chapter 4
The Finite Element Method in 2D

Abstract In this chapter we develop finite element methods for numerically solving
partial differential equations in two dimensions. The approach taken is the same as
before, that is, we first rewrite the equation in variational form, and then seek an ap-
proximate solution in the space of continuous piecewise linear functions. Although
the numerical methods presented are general in nature, we shall focus on linear sec-
ond order elliptic partial differential equations. The Poisson equation will be our
model problem. We prove basic error estimates, discuss the implementation of the
involved algorithms, and study some relevant examples of applications.

4.1 Green’s Formula

At the outset let us recall a few mathematical preliminaries, which will be of fre-
quent use later on.

Let Ω be a domain in R2, with boundary ∂Ω and exterior unit normal n. We
recall the following form of the divergence theorem∫

Ω

∂ f
∂xi

dx =
∫

∂Ω
f ni ds, i = 1,2 (4.1)

where ni is component i of n.
Setting f = f g we get the partial integration formula∫

Ω

∂ f
∂xi

gdx =−
∫

Ω
f

∂g
∂xi

dx+
∫

∂Ω
f gni ds, i = 1,2 (4.2)

Applying (4.2) with f = wi, the components of a vector field w on Ω , and g = v,
and taking the sum over i = 1,2 we obtain∫

Ω
(∇ ·w)vdx =−

∫
Ω

w ·∇vdx+
∫

∂Ω
(w ·n)vds (4.3)

67
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Finally, choosing w =−∇u in (4.3) we obtain Green’s formula∫
Ω
−∆uvdx =

∫
Ω

∇u ·∇vdx−
∫

∂Ω
n ·∇uvds (4.4)

4.2 The Finite Element Method for Poisson’s Equation

4.2.1 Poisson’s Equation

In two dimensions Poisson’s equation takes the form: find u such that

−∆u = f , in Ω (4.5a)
u = 0, on ∂Ω (4.5b)

where ∆ = ∂ 2/∂x2
1 + ∂ 2/∂x2

2 is the Laplace operator, and f ∈ L2(Ω) is a given
function.

4.2.2 Variational Formulation

To derive a variational formulation of Poisson’s equation we multiply −∆u = f by a
test function v, which is assumed to vanish on the boundary ∂Ω , and integrate using
Green’s formula (i.e., integration by parts). This yields∫

Ω
f vdx =−

∫
Ω

∆uvdx (4.6)

=
∫

Ω
∇u ·∇vdx−

∫
∂Ω

n ·∇uvds (4.7)

=
∫

Ω
∇u ·∇vdx (4.8)

since v = 0 on ∂Ω . Further, introducing the space V0, defined by

V0 = {v : ∥∇v∥+∥v∥< ∞, v|∂Ω = 0} (4.9)

we have the following variational formulation of (4.5): find u ∈V0 such that∫
Ω

∇u ·∇vdx =
∫

Ω
f vdx, ∀v ∈V0 (4.10)

With this choice of test and trial space V0 the integrals
∫

Ω ∇u ·∇vdx and
∫

Ω f vdx
are well defined. To see this, note that due to the Cauchy-Schwartz inequality we
have

∫
Ω f vdx ≤ ∥ f∥∥v∥, which is less than infinity by assumption. A similar line
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of reasoning applies to the other integral. Indeed, V0 is the largest space with the
property that the integrals in the variational formulation exist.

In this context we would like to a point out a subtlety that we have not yet touched
upon. Even though the solution to Poisson’s equation (4.5) is also a solution to
the variational formulation (4.10), the opposite is generally not true. To see this it
suffice to note that the solution to the variational equation does not have to be twice
differentiable. For this reason the variational formulation is sometimes called the
weak form, as opposed to the original strong form. Proving that a weak solution is
also a strong solution can be tricky, since it depends on the shape of the domain and
regularity of the coefficients.

4.2.3 Finite Element Approximation

Now, let K be a triangulation of Ω , and let Vh be the space of continuous piecewise
linears on K . Also, to satisfy the strong boundary conditions, let Vh,0 ⊂ Vh be the
subspace

Vh,0 = {v ∈Vh : v|∂Ω = 0} (4.11)

With this choice of approximation space the finite element method for (4.5) takes
the form: find uh ∈Vh,0 such that∫

Ω
∇uh ·∇vdx =

∫
Ω

f vdx, ∀v ∈Vh,0 (4.12)

4.2.4 Derivation of a Linear System of Equations

To compute the finite element approximation uh let {φi}ni
i=1 be a basis for Vh,0 with

ni hat functions. Here, ni is the number of internal nodes in the mesh, since the
functions of Vh,0 vanish on the boundary.

We note that the finite element method (4.12) is equivalent to∫
Ω

∇uh ·∇φi dx =
∫

Ω
f φi dx, i = 1,2, . . . ,ni (4.13)

Since uh belongs to Vh it can be written as

uh =
ni

∑
j=1

ξ jφ j (4.14)

with N unknowns ξ j, j = 1,2, . . . ,ni, to be determined.
Inserting the ansatz (4.14) into (4.13) we get
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Ω

f φi dx =
∫

Ω
∇uh ·∇φi dx (4.15)

=
∫

Ω
∇

(
ni

∑
j=1

ξ jφ j

)
·∇φi dx (4.16)

=
ni

∑
j=1

ξ j

∫
Ω

∇φ j ·∇φi dx, i = 1,2, . . . ,ni (4.17)

Using the notation

Ai j =
∫

Ω
∇φ j ·∇φi dx, i, j = 1,2, . . . ,ni (4.18)

bi =
∫

Ω
f φi dx, i = 1,2, . . . ,ni (4.19)

we have

bi =
ni

∑
j=1

Ai jξ j, i = 1,2, . . . ,ni (4.20)

which is a linear system for the unknowns ξ j. In matrix form we write this

b = Aξ (4.21)

where the entries of the ni × ni stiffness matrix A, and the ni × 1 load vector b is
defined by (4.18) and (4.19), respectively. Solving the linear system (4.20) we obtain
the unknowns ξ j, and thus uh.

4.2.5 Basic Algorithm to Compute the Finite Element Solution

The following algorithm summarizes the basic steps for computing the finite ele-
ment solution uh.
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Algorithm 10 Basic Finite Element Algorithm
1: Create a triangulation K of Ω and define the corresponding space of continuous piecewise

linear functions Vh,0 hat function basis {φi}ni
i=1.

2: Assemble the ni ×ni stiffness matrix A and the ni ×1 load vector b, with entries

Ai j =
∫

Ω
∇φ j ·∇φi dx, bi =

∫
Ω

f φi dx (4.22)

3: Solve the linear system
Aξ = b (4.23)

4: Set

uh =
ni

∑
j=1

ξ jφ j (4.24)

4.3 Basic Analysis of the Finite Element Method

4.3.1 Existence and Uniqueness of the Finite Element Solution

Theorem 4.1. The finite element solution uh, defined by (4.12) exists and is unique.

Proof. We first show the uniqueness claim. The argument is by contradiction. As-
sume that there are two finite element solutions uh and ũh satisfying (4.12). Then we
have ∫

Ω
∇uh ·∇vdx =

∫
Ω

f vdx, ∀v ∈Vh,0 (4.25)∫
Ω

∇ũh ·∇vdx =
∫

Ω
f vdx, ∀v ∈Vh,0 (4.26)

Subtracting these equations we get∫
Ω

∇(uh − ũh) ·∇vdx = 0, ∀v ∈Vh,0 (4.27)

Next setting v = uh − ũh ∈Vh,0 we get∫
Ω
|∇(uh − ũh)|2 dx = 0 (4.28)

From this identity we conclude that uh − ũh must be a constant function. However,
using the boundary conditions we see that this constant must be zero, since uh =
ũh = 0 on the boundary.

To prove existence we recall that the finite element solution is determined by
a square ni × ni linear system of equations. The existence of a solution to such a
system of linear equations follows from the uniqueness of the solution.
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4.3.2 A Priori Error Estimates

In this section we present the basic error estimates for the finite element approxi-
mation uh. The basic goal is to understand in what sense the error u− uh becomes
small when the mesh is refined.

Theorem 4.2 (Galerkin Orthogonality). The finite element approximation uh, de-
fined by (4.12), satisfies the orthogonality∫

Ω
∇(u−uh) ·∇vdx = 0, ∀v ∈Vh,0 (4.29)

Proof. From the variational formulation we have∫
Ω

∇u ·∇vdx =
∫

Ω
f vdx, ∀v ∈V0 (4.30)

and from the definition of the finite element method∫
Ω

∇uh ·∇vdx =
∫

Ω
f vdx, ∀v ∈Vh,0 (4.31)

Subtracting these and using the fact that Vh,0 ⊂V0 immediately proves the claim.

To estimate the error we introduce the following norm called the energy norm on
V0

|||v|||2 =
∫

Ω
∇v ·∇vdx (4.32)

Note that |||v|||= ∥∇v∥L2(Ω).
The next theorem is a best approximation result.

Theorem 4.3. The finite element solution uh, defined by (4.12) satisfies

|||u−uh||| ≤ |||u− v|||, ∀v ∈Vh,0 (4.33)

Proof. Writing u−u−h = u− v+ v−uh for any v ∈Vh,0 we have

|||u−uh|||2 =
∫

Ω
∇(u−uh) ·∇(u−uh)dx (4.34)

=
∫

Ω
∇(u−uh) ·∇(u− v)dx+

∫
Ω

∇(u−uh) ·∇(v−uh)dx (4.35)

=
∫

Ω
∇(u−uh) ·∇(u− v)dx (4.36)

≤ |||u−uh||| |||u− v||| (4.37)

where we used the Galerkin orthogonality property (4.29) to conclude that∫
Ω

∇(u−uh) ·∇(v−uh)dx = 0 (4.38)
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since v−uh ∈Vh,0. Dividing by |||u−uh||| concludes the proof.

This shows that the finite element solution uh is the closest of all functions in Vh
to the exact solution u when measuring distance using the energy norm. Next we
use this result together with interpolation estimates to study how the error depends
on the mesh size.

Theorem 4.4. The finite element solution uh, defined by (4.12) satisfies the a priori
error estimate

|||u−uh|||2 ≤ ∑
K∈K

Ch2
K∥D2u∥2

L2(K) (4.39)

with a constant C independent of hK .

Proof. Starting from the best approximation result (4.33) choosing v= πu and using
the interpolation estimate (3.19) we have

|||u−uh|||2 ≤ |||u−πu|||2 (4.40)

= ∑
K∈K

∥D(u−πu)∥2
L2(K) (4.41)

≤ ∑
K∈K

Ch2
K∥D2u∥2

L2(K) (4.42)

which proves the estimate. Here, we tacitly assume that u is two times differentiable
so that the quantity D2u is well defined.

Defining h = maxKK hK we conclude that

|||u−uh||| ≤Ch∥D2u∥L2(Ω) (4.43)

and thus the gradient of the error tends to zero as the maximum mesh size h tend to
zero.

The energy norm ||| · ||| is useful as it allows a simple derivation of the a pri-
ori error estimate (4.39). However, it is not a natural norm such as the L2-norm,
for instance. To deduce a primitive L2-estimate it is possible to use the Poincaré
inequality

∥v∥ ≤C∥∇v∥=C|||v||| (4.44)

which hold for any function v ∈V0. Using Theorem 4.4 we then have

∥u−U∥ ≤C|||u−U ||| ≤Ch∥D2u∥ (4.45)

which is the desired L2 estimate. The problem with this estimate is that it is subopti-
mal in the sense that we expect the L2 error to be proportional to h2 and not h since
we are using piecewise linears to approximate the solution. The next theorem shows
that this is indeed the case.

Theorem 4.5. The finite element solution uh, defined by (4.12) satisfies the a priori
error estimate
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∥u−uh∥ ≤Ch2∥D2u∥ (4.46)

with a constant C independent of h.

Proof. The proof utilizes a trick called Nitsche’s trick, which is really not a trick at
all but a rather general technique for deriving error estimates. Anyway, let e= u−uh
denote the error, and let ϕ be the solution of the so-called dual, or adjoint, problem

−∆ϕ = e, in Ω (4.47a)
ϕ = 0, on ∂Ω (4.47b)

Multiplying −∆ϕ = e by e and integrating using Green’s formula as usual we have∫
Ω

e2 dx =−
∫

Ω
e∆ϕ dx (4.48)

=
∫

Ω
∇e ·∇ϕ · dx−

∫
∂Ω

en ·∇ϕ ds (4.49)

=
∫

Ω
∇e ·∇ϕ dx (4.50)

=
∫

Ω
∇e ·∇(ϕ −πϕ)dx (4.51)

where we have used Galerkin orthogonality (4.29) in the last line to subtract an
interpolant πϕ ∈Vh,0 to ϕ . Further, using the Cauchy-Schwartz inequality we obtain

∥e∥2 ≤ ∥∇e∥∥∇(ϕ −πϕ)∥ (4.52)

Now, assuming that the domain Ω does not have any reentrant corners or cusps it
can generally be shown that ∥D2ϕ∥ is proportional to ∥∆ϕ∥. Combining this result
with the standard interpolation estimate for ∇(ϕ −πϕ) and recalling that −∆ϕ = e
we obtain

∥∇(ϕ −πϕ)∥ ≤Ch∥D2ϕ∥ ≤Ch∥∆ϕ∥=Ch∥e∥ (4.53)

Thus, by virtue of Theorem (4.4) we have

∥e∥2 ≤ ∥∇e∥∥∇(ϕ −πϕ)∥ (4.54)

≤Ch∥D2u∥Ch∥e∥ (4.55)

Dividing by ∥e∥ concludes the proof.

4.3.3 Properties of the Stiffness Matrix

Theorem 4.6. The stiffness matrix is symmetric and positive definite.
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Proof. A is symmetric since Ai j = A ji. To prove that A is positive definite we shall
show that ξ T Aξ > 0 for all ni×1 vectors ξ not equal to zero. Now, straight forward
calculations reveals that

ξ T Aξ =
ni

∑
i, j=1

ξiAi jξ j (4.56)

=
ni

∑
i, j=1

ξiξ j

∫
Ω

∇φ j ·∇φi dx (4.57)

=
∫

Ω
∇

(
ni

∑
i=1

ξiφi

)
·∇

(
ni

∑
j=1

ξ jφ j

)
dx (4.58)

=

∥∥∥∥∥∇

(
ni

∑
i=1

ξiφi

)∥∥∥∥∥
2

(4.59)

which is greater than zero as long as the sum s=∑ni
i=1 ξiφi is not a constant function.

Now, using the fact that s∈Vh,0 and that the only constant function in Vh,0 is the zero
function, we see that ξ T Aξ = 0 if and only if ξ = 0.

4.4 A Problem with Variable Coefficients

With the aim of writing a general finite element solver we next consider a slightly
more challenging model problem involving variable coefficients and more general
boundary conditions.

−∇ · (a∇u) = f , in Ω (4.60a)
−n · (a∇u) = κ(u−gD)−gN , on ∂Ω (4.60b)

where a > 0, f , κ , gD, and gN are given functions.
We shall seek a solution to this problem in the space

V = {v : ∥v∥+∥∇v∥< ∞} (4.61)

Multiplying −∇ · (a∇u) = f by a test function v ∈ V and integrating using
Green’s formula we have∫

Ω
f vdx =

∫
Ω
−∇ · (a∇u)vdx (4.62)

=
∫

Ω
a∇u ·∇vdx−

∫
∂Ω

n · (a∇u)vds (4.63)

=
∫

Ω
a∇u ·∇vdx+

∫
∂Ω

(κ(u−gD)−gN)vds (4.64)

where we used the boundary condition to replace −n ·a∇u by κ(u−gD)−gN .
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Collecting terms we get the following variational formulation: find u ∈ V such
that∫

Ω
a∇u ·∇vdx+

∫
∂Ω

κuvds =
∫

Ω
f vdx+

∫
∂Ω

(κgD +gN)vds, ∀v ∈V (4.65)

Based on this variational form we may now formulate a finite element method:
find uh ∈Vh ⊂V such that∫

Ω
a∇uh ·∇vdx+

∫
∂Ω

κuhvds =
∫

Ω
f vdx+

∫
∂Ω

(κgD +gN)vds, ∀v ∈Vh (4.66)

4.5 Computer Implementation

Writing a finite element solver can be quite complicated for higher dimensional
problems, and therefore we shall take a moment to go trough the implementation of
the finite element method (4.66). The linear system resulting form this discretization
process takes the form

(A+R)ξ = b+ r (4.67)

where the entries of the involved matrices and vectors are given by

Ai j =
∫

Ω
a∇φi ·∇φ j dx, (4.68)

Ri j =
∫

∂Ω
κφiφ j ds, (4.69)

bi =
∫

Ω
f φi dx, (4.70)

ri =
∫

∂Ω
(κgD +gN)φi ds (4.71)

with indices i, j = 1,2, . . . ,np with np the number of nodes in the mesh.

4.5.1 Assembly of the Stiffness Matrix

The assembly of the stiffness matrix A is performed in the same manner as shown
previously for the mass matrix M. Of course, the matrix entries of A are different
then those of M. The local element stiffness matrix is given by

AK
i j =

∫
K

a∇φi ·∇φ j dx, i, j = 1,2,3 (4.72)

We shall now compute these 9 integrals.
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Consider a triangle K with nodes Ni = (x(i)1 ,x(i)2 ), i= 1,2,3. To each node Ni there
is a hat function φi associated, which takes the value 1 at node Ni and 0 at the other
two nodes. Each hat function is a linear function on K so it has the form

φi = ai +bix1 + cix2 (4.73)

where the coefficients ai, bi, and ci, are determined by

φi(N j) =

{
1, i = j
0, i ̸= j

(4.74)

The explicit expresssions for the coefficients ai, bi, and ci are given by

ai =
x( j)

1 x(k)2 − x(k)1 x( j)
2

2|K|
, bi =

x( j)
2 − x(k)2

2|K|
, ci =

x(k)1 − x( j)
1

2|K|

with cyclic permutation of the index i, j,k over 1,2,3.
The gradient of φi is just the constant vector ∇φi = [bi,ci]

T . The gradients ∇φi
will occur very frequently, so therefore let us write a special routine for computing
them.

function [area,b,c] = Gradients(x,y)
area=polyarea(x,y);
b=[y(2)-y(3); y(3)-y(1); y(1)-y(2)]/2/area;
c=[x(3)-x(2); x(1)-x(3); x(2)-x(1)]/2/area;

Input x and y are two vectors holding the node coordinates of the triangle. Output
are the vectors b and c holding the coeffcients bi and ci of the gradients. Since the
area is computed as a by product we also return it in the variable area.

Once we have ∇φi it is easy to compute the local stiffness matrix. Using the
center of gravity quadrature formula we have

AK
i j =

∫
K

a∇φi ·∇φ j dx (4.75)

= (bib j + cic j)
∫

K
adx (4.76)

≈ ā(bib j + cic j)|K|, i, j = 1,2,3 (4.77)

where ā = a(x̄) with x̄ = (N1 +N2 +N3)/3 the center of gravity of K.
We summarize the assembly of the global stiffness matrix with the following

algorithm.
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Algorithm 11 Assembly of the Stiffness Matrix
1: Let n be the number of nodes and m the number of elements in a mesh, and let the mesh be

described by its point matrix P and connectivity matrix T .
2: Allocate memory for the n×n matrix A and initialize all matrix entries to zero.
3: for K = 1,2, . . . ,m do
4: Compute the gradients ∇φi = [bi,ci], i = 1,2,3 of the three hat functions φi on K.
5: Compute the 3×3 local element mass matrix AK given by

AK = ā

 b2
1 + c2

1 b1b2 + c1c2 b1b3 + c1c3
b2b1 + c2c1 b2

2 + c2
2 b2b3 + c2c3

b3b1 + c3c1 b3b2 + c3c2 b2
3 + c2

3

 |K| (4.78)

6: Set up the local to global mapping, loc2glb = [r,s, t].
7: for i = 1,2,3 do
8: for j = 1,2,3 do
9:

Aloc2glbiloc2glb j = Aloc2glbiloc2glb j +AK
i j (4.79)

10: end for
11: end for
12: end for

It is straight forward to translate this algorithm into MATLAB code.

function A = StiffMat2D(p,t,a)
np = size(p,2);
nt = size(t,2);
A = sparse(np,np);
for K = 1:nt
loc2glb = t(1:3,K); % local-to-global map
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % node y-
[area,b,c] = Gradients(x,y);
xc = mean(x); yc = mean(y); % element centroid
abar = a(xc,yc); % value of a(x,y) at centroid
AK = abar*(b*b’...

+c*c’)*area; % element stiffness matrix
A(loc2glb,loc2glb) = A(loc2glb,loc2glb) ...

+ AK; % add element stiffnesses to A
end

A few comments about this routine are perhaps in order. For each element we com-
pute the area and the gradients ∇φi = [bi,ci]

T using the Gradients routine. The
local element stiffness matrix AK is then the sum of the outer product of these vectors
times the element area |K| and ā (i.e., AK = abar*(b*b’+c*c’)*area. The
function a is assumed to be defined by a separate routine. Finally, AK is added to the
appropriate places in A using the vectorized command A(loc2glb,loc2glb)
= A(loc2glb,loc2glb) + AK. Input is the point and triangle matrix describ-



4.5 Computer Implementation 79

ing the mesh, and a function handle a to the routine specifying a. Output is the
assembled global stiffness matrix A.

The load vector b is exactly the same as for the L2-projection and assembled as
shown before.

We remark that the stiffness and mass matrices and the load vector can also be
assembled with the built-in routine assema. In the simplest case the syntax for
doing so is

[A,M,b] = assema(p,t,1,1,1);

4.5.2 Assembling the Boundary Conditions

We must also assemble the boundary matrix R and the boundary vector r containing
line integrals originating from the Robin boundary condition. To do so we observe
that if two nodes Ni and N j of a triangle K are located on the domain boundary
∂Ω , then the edge E between them will contribute to matrix entry Ri j, and to vector
entries ri and r j. In particular, we have the local element boundary matrix and vector

RE
i j =

∫
E

κφiφ j ds =
1
6

κ(1+δi j)|E|, i, j = 1,2 (4.80)

rE
i =

∫
E
(κgD +gN)φi ds =

1
2
(κgD +gN)|E|, i = 1,2 (4.81)

where |E| is the length of E. For simplicity, we have assumed that κ , gD, and gN are
constant on E.

We can think of R as a one-dimensional mass matrix on a mesh with nodes lo-
cated along ∂Ω instead of along the x1-axis. As a consequence, the assembly rou-
tines for these matrices are very similar.

MATLAB stores starting and ending nodes for the line segments on the mesh
boundary in the first two rows of the edge matrix e, which is output from initmesh.
To assemble R we loop over these edges and for each edge we add the entries of the
local element boundary matrix RK to the appropriate entries in the global boundary
matrix R. We list the code for this below.

function R = RobinMat2D(p,e,kappa)
np = size(p,2); % number of nodes
ne = size(e,2); % number of boundary segments
R = sparse(np,np);
for E = 1:ne
loc2glb = e(1:2,E); % boundary nodes
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % node y-
len = sqrt((x(1)-x(2))ˆ2+(y(1)-y(2))ˆ2); % edge length
xc = mean(x); yc = mean(y); % element centroid
k = kappa(xc,yc); % value of kappa at centroid
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RK = k/6*[2 1; 1 2]*len; % element boundary matrix
R(loc2glb,loc2glb) = R(loc2glb,loc2glb) + RK;

end

Input is the point and edge matrix describing the mesh, and a function handle to a
routine specifying κ . Output is the assembled global boundary matrix R.

The boundary vector r can be assembled similarly.

function r = RobinVec2D(p,e,kappa,gD,gN)
np = size(p,2);
ne = size(e,2);
r = zeros(np,1);
for E = 1:ne
loc2glb = e(1:2,E);
x = p(1,loc2glb);
y = p(2,loc2glb);
len = sqrt((x(1)-x(2))ˆ2+(y(1)-y(2))ˆ2);
xc = mean(x); yc = mean(y);
tmp = kappa(xc,yc)*gD(xc,yc)+gN(xc,yc);
rK = tmp*[1; 1]*len/2;
r(loc2glb) = r(loc2glb) + rK;

end

4.5.3 A Finite Element Solver for Poisson’s Equation

Next we present a physical application that can be simulated with the code written
so far.

4.5.3.1 Potential Flow Over a Wing

When designing aircrafts it is very important to know the areodynamical properties
of the wings to assess among other things the lift force. Therefore we now simulate
the flow of air over a wing. For simplicity we the wing to be very long so that the
problem can be reduced to two dimensions. Figure 4.1 shows a rectangular domain
surrounding a cross section of the wing. A potential equation for the airflow around
the wing follows from the somewhat unphysical assumption that the velocity field
u is steady and irrotational, that is, ∂tu = 0 with t time and ∇× u = 0. Then there
exists a scalar function ϕ such that u = −∇ϕ . This is called the flow potential and
is given as the solution of the Laplace equation

−∆ϕ = 0 (4.82)

We impose the following boundary conditions
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Fig. 4.1 Mesh surrounding a wing profile.

n ·∇ϕ = 1, on Γin (4.83)
ϕ = 0, on Γout (4.84)

n ·∇ϕ = 0, elsewhere (4.85)

A slight complication with the boundary conditions is that the Dirichlet condition
must be approximated with the Robin condition we have implemented. To this end
we set κ = 106 on Γout which penalizes any deviation of the solution from zero on
this boundary segment. On Γin we set κ = 0 and gN = 1.

We write the following subroutines, which specify κ , gD and gN .

function z = Kappa(x,y)
z=0;
if (x>29.99), z=1.e+6; end

function z = g_D(x,y)
z=0;

function z = g_N(x,y)
z=0;
if (x<-29.99), z=1; end

We also need the following subroutine to specify a = 1.

function z = One(x,y)
z=1;

The velocity potential can now be compted with just a couple of code lines

function PoissonSolver2D()
wing = Airfoil();
[p,e,t] = initmesh(wing,’hmax’,0.5);
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A = StiffMat2D(p,t,@One);
R = RobinMat2D(p,e,@Kappa);
r = RobinVec2D(p,e,@Kappa,@g_D,@g_N);
phi = (A+R)\r;
pdecont(p,t,phi)

Here, Airfoil is a subroutine specifying the geometry matrix. It is listed in the
Appendix.

Figure 4.2 shows the computed finite element approximation Φ to the velocity
potential.
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Fig. 4.2 Isocontours of the computed finite element velocity potential Φ .

The velocity field u is defined by u = −∇ϕ . Its computed counterpart can be
visualized by typing

[phix,phiy] = pdegrad(p,t,phi); % derivatives of ’phi’
u = -phix;
v = -phiy;
pdeplot(p,e,t,’flowdata’,[u; v]’)

Figure 4.3 shows the result.

Fig. 4.3 Velocity glyphs around the wing.

Finally, a pressure around the wing can be defined by p =−|∇Φ |2. In Figure 4.4
we show this pressure.
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Fig. 4.4 Pressure isocontours around the wing.

In the next three sections we shall study three problems that demand special
attention, namely, the pure Dirichlet problem, the pure Neumann problem and the
Eigenvalue problem.

4.6 The Dirichlet Problem

We consider the following model problem with inhomogeneous boundary condi-
tions: find u such that

−∆u = f , in Ω (4.86a)
u = g, on ∂Ω (4.86b)

where f and g are given functions.
This problem has different trial and test space due to the inhomogeneous strong

boundary condition. The trial space is given by

Vg = {v : ∥v∥+∥∇v∥< ∞, v|∂Ω = g} (4.87)

whereas the test space is given by V0.
Multiplying equation −∆u = f by a test function v ∈ V0 and integrating using

Green’s formula as usual we obtain∫
Ω

f vdx =−
∫

Ω
∆uvdx (4.88)

=
∫

Ω
∇u ·∇vdx−

∫
∂Ω

n ·∇uvds (4.89)

=
∫

Ω
∇u ·∇vdx (4.90)

since v = 0 on ∂Ω . Thus, we obtain the variational formulation: find u ∈ Vg such
that ∫

Ω
∇u ·∇vdx =

∫
Ω

f vdx, ∀v ∈V0 (4.91)

Now, let us assume that g is the restriction of a continuous piecewise linear func-
tion to the boundary. In other words there is a function uh,g ∈ Vh such that uh,g = g
on ∂Ω . If this is not the case we have to first approximate g by such a function, for
instance using interpolation on the boundary.
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Introducing the affine subspace

Vh,g = {v ∈Vh : v|∂Ω = g} (4.92)

the finite element method reads: find uh ∈Vh,g such that∫
Ω

∇uh ·∇vdx =
∫

Ω
f vdx, ∀v ∈Vh,0 (4.93)

To derive an equation for uh we write it in the form

uh = uh,0 +uh,g (4.94)

where uh,g is any fixed function in Vh,g and uh,0 = 0 on ∂Ω and, thus, uh,0 ∈Vh,0. This
construction of uh will satisfy the boundary conditions since uh,g = g on the bound-
ary. Further, since uh,g is known it remains to determine uh,0. We get the equation:
find uh,0 ∈Vh,0 such that∫

Ω
∇uh,0 ·∇vdx =

∫
Ω

f vdx−
∫

Ω
∇uh,g ·∇vdx, ∀v ∈Vh,0 (4.95)

This is a problem of the same kind as above but with a modified right hand side.
One can prove that uh is independent of the particular choice of uh,g. In practice uh,g
is often chosen to be zero at all interior nodes.

The implementation of this can be done as follows. Let np be the total number of
nodes and let us assume that that the first ni of these are interior, while the remaining
nb = np − ni nodes lie on the boundary. Further, let A and b be the usual np × np
stiffness matrix and np × 1 load vector output from assema. The linear system
resulting from equation (4.95) can be written as[

A00 A0g
0 I

][
ξ0
ξg

]
=

[
b0
g

]
(4.96)

where A00 is the upper left ni×ni block of A, A0g the ni×nb upper right block block
of A, I the nb×nb identity matrix, b0 the first ni entries of b, g the nb boundary node
values, and ξ0 and ξg the nodal values of uh,0 and uh,g, respectively. Rearranging the
first ni equations we obtain the discrete counterpart of (4.95)

A00ξ0 = b0 −A0gξg = b0 −A0gg (4.97)

from which the interior values ξ0 can be determined.
The translation of this to MATLAB is straight forward. Suppose we have a vector

fixed holding the numbers of all boundary nodes, and another (column) vector
g holding the corresponding nodal values. Then, we can form and solve equation
(4.97) with the following piece of code.

[A,unused,b] = assema(p,t,...); % assemble
np = size(p,2); % total number of nodes
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fixed = unique([e(1,:) e(2,:)]); % boundary nodes
free = setdiff([1:np],fixed); % interior nodes
b = b(free)-A(free,fixed)*g; % modify stiffness matrix
A = A(free,free); % modify load vector
xi = zeros(np,1); % allocate solution vector
xi(fixed) = g; % insert fixed node values
xi(free) = A\b; % solve for free node values

4.7 The Neumann Problem

Next we consider the following model problem: find u such that

−∆u = f , in Ω (4.98a)
n ·∇u = g, on ∂Ω (4.98b)

where f and g are given functions. This problem is solvable provided f and g satis-
fies the conservation property ∫

Ω
f dx+

∫
∂Ω

gds = 0 (4.99)

Note however that the solution is only uniquely determined up to a constant, since
any constant satisfies the problem with f = g = 0. A common trick to remedy this
is to impose the additional constraint∫

Ω
udx = 0 (4.100)

We shall seek a weak solution to (4.98) in the space V = {v : ∥∇v∥+ ∥v∥ <
∞,
∫

Ω vdx = 0}. Multiplying equation −∆u = f by a test function v ∈ V and inte-
grating using Green’s formula we have∫

Ω
f vdx =−

∫
Ω

∆uvdx (4.101)

=
∫

Ω
∇u ·∇vdx−

∫
∂Ω

n ·∇uvds (4.102)

=
∫

Ω
∇u ·∇vdx−

∫
∂Ω

gvds (4.103)

where we used the Neumann boundary condition n ·∇u = g. Thus, we obtain the
weak formulation: find u ∈V such that∫

Ω
∇u ·∇vdx =

∫
Ω

f vdx+
∫

∂Ω
gvds, ∀v ∈V (4.104)

The finite element method now reads: find uh ∈Vh such that
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Ω

∇uh ·∇vdx =
∫

Ω
f vdx+

∫
∂Ω

gvds, ∀v ∈Vh (4.105)

Based on this formulation a linear system Aξ = b may now be derived in the same
way as usual. In doing so, the constraint

∫
uh dx = 0 can be enforced using the

Lagrange multiplier technique. In doing so, the basic idea is as follows. The solution
ξ to an np ×np linear system Aξ = b with A symmetric and positive definite is also
the minimizer of the quadratic form Q(ξ ) = ξ T Aξ −ξ T b. Now, if we have a set of
nc constranits for x, say, Cx = 0 with C a given nc ×np matrix, then a fundamental
result from optimization says that ξ is found by seeking a stationary point for the
Lagrangian

L(ξ ,µ) = Q(ξ )−µTCξ (4.106)

where µ is an nc × 1 vector called the Lagrange multiplier. Differentialing L with
respect to ξ and µ and utilizing the first order optimality condition Lξ = Lµ = 0
leads to the augmented linear system[

A CT

C 0

][
ξ
µ

]
=

[
b
0

]
(4.107)

from which ξ can be obtained. Loosely speking we may think of µ as a force which
acts to enforce the constraints. In the case that A is the stiffness matrix, ξ a vector
holding node values of uh, and the constraint is a uh with zero mean value, C is just
a 1× np vector with entries Ci =

∫
Ω φi dx, where φi is a hat function. This is due

to the fact that we then have
∫

Ω uh dx =Cξ . Moreover, since Cξ = 0 is a constraint
which does not violate the underlying partial differential equation µ should vanish
or at least be very small.

4.8 The Eigenvalue Problem

The last of our model problems is the eigenvalue problem: find the function u and
the number λ such that

−∆u = λu, in Ω (4.108a)
n ·∇u = 0, on ∂Ω (4.108b)

Here, we have for simplicity assumed a Neumann condition on the boundary, but
Dirichlet conditions may also be applied. All the same the boundary conditions
must be homogenous though.

The significant feature of an eigenvalue problem is that the solution u appears
in both the left and right hand side of the equation. Moreover, we seek both the
function u and the number λ . We say that u is an eigenfunction, or eigenmode, and
λ an eigenvalue.
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The finite element discretization for eigenvalue problems is, however, similar to
standard problems.

Multiplying −∆u = λu by a test function v ∈ V and integrating using Green’s
formula we have

λ
∫

Ω
uvdx =−

∫
Ω

∆uvdx (4.109)

=
∫

Ω
∇u ·∇vdx−

∫
∂Ω

n ·∇uvds (4.110)

=
∫

Ω
∇u ·∇vdx (4.111)

Thus, the weak formulation reads: find u ∈V and λ ∈ R such that∫
Ω

∇u ·∇vdx = λ
∫

Ω
uvdx, ∀v ∈V (4.112)

The finite element method takes the form: find uh ∈Vh and Λ ∈ R such that∫
Ω

∇uh ·∇vdx = Λ
∫

Ω
uhvdx, ∀v ∈Vh (4.113)

The finite element discretization leads not to a linear system, but to a generalized
algebraic eigenvalue problem of the form

Aξ = ΛMξ (4.114)

where A and M are the usual stiffness and mass matrices, and ξ is a vector hold-
ing the nodal values of uh. The existence of a solution to this eigenvalue problem
follows from the spectral theorem. The eigenvectors ξ and eigenvalues Λ come in
pairs (ξ ,Λ), and there are as many pairs (ξi,Λi)

np
i=1 as there are nodes np in the

mesh. Moreover, the eigenvalues Λi are real positive and of increasing magnitude.
This is a consequence of the fact that both A and M are symmetric. Another con-
sequence is that the corresponding eigenvectors ξi are orthogonal with respect to
A, and orthonormal with respect to M. In MATLAB generalized sparse eigenvalue
problems can be solved using the eigs routine. Below we show how to compute
the first five eigenmodes with smallest magnitude on a disk. This geometry is pre-
defined in MATLAB. Assembly of the matrices A and M is done using the assema
routine.

g = ’circleg’; % built-in geometry of a cricle
[p,e,t] = initmesh(g,’hmax’,0.1); % mesh
[A,M] = assema(p,t,1,1,0); % assemble A and M
[Xi,La] = eigs(A,M,5,’SM’); % solve A*Xi=La*M*Xi
pdesurf(p,t,Xi(5,:)) % plot 5:th eigenmode
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4.9 Adaptive Finite Element Methods

As we have seen a posteriori error estimates are computable error estimates, which
can be used to control adaptive mesh refinement and thereby iteratively increase the
accuracy of the finite element solution. In this section we formulate adaptive finite
elements for Poisson’s equation.

4.9.1 A Posteriori Error Estimates

For the model problem (4.5) we have the following a posteriori error estimate.

Theorem 4.7. The finite element solution uh, defined by (4.12), satisfies the a poste-
riori estimate

|||u−uh|||2 ≤C ∑
K∈K

ρ2
K(uh) (4.115)

where the element residual ρK(uh) is defined by

ρK(uh) = hK∥ f +∆uh∥L2(K)+
1
2 h1/2

K ∥[n ·∇uh]∥L2(∂K\∂Ω) (4.116)

Here, [n·∇uh] denotes the jump in the normal derivative of uh on the edge ∂K1 ∩∂K2,
shared by any two elements K1 and K2, that is,

[n ·∇uh]|∂K1∩∂K2 = n1 ·∇uh|K1 +n2 ·∇uh|K2 (4.117)

with ni the exterior unit normal of Ki.

Proof. Letting e = u−uh be the error we have

|||e|||2 = ∥∇e∥2 =
∫

Ω
∇e ·∇edx =

∫
Ω

∇e ·∇(e−πe)dx (4.118)

where we have use the Galerkin orthogonality to subtract an interpolant πe ∈ Vh,0.
Splitting this into a sum over the elements and using Green’s formula we further
have

|||e|||2 = ∑
K∈K

∫
K

∇e ·∇(e−πe)dx (4.119)

= ∑
K∈K

−
∫

K
∆e(e−πe)dx+

∫
∂K

n ·∇e(e−πe)ds (4.120)

= ∑
K∈K

∫
K
( f +∆uh)(e−πe)dx+

∫
∂K

[n ·∇uh]/2(e−πe)ds (4.121)

The result in the last line follows from (4.120) by noting that there are two contribu-
tions for each interior edge ∂K1 ∩∂K2, one from triangle K1 and one from triangle
K2. Summing these contributions we get
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∂K1∩∂K2

(n1 ·∇e1(e1 −πe1)+n2 ·∇e2(e2 −πe2))ds, (4.122)

where ei = e|Ki and ni is the exterior unit normal of Ki for i = 1,2. Using the facts
that the exact solution has a continuous normal derivative and that the error and its
interpolant are continuous we get∫

∂K1∩∂K2

[n ·∇uh](e−πe)ds (4.123)

We proceed with estimating the right hand side of (4.121). First we estimate the
interior contribution using the Cauchy-Schwartz inequality followed by an interpo-
lation error estimate∫

K
( f +∆uh)(e−πe)dx ≤ ∥ f +∆uh∥K∥e−πe∥K (4.124)

≤ ∥ f +∆uh∥KChK∥De∥K (4.125)

For the the edge contributions we need the following inequality called the trace
inequality

∥v∥2
L2(K) ≤C(h−1

K ∥v∥2
L2(K)+hK∥∇v∥2

L2(K)) (4.126)

We then have, again using Cauchy-Schwartz inequality,∫
∂K

[n ·∇uh]/2(e−πe)ds ≤ ∥[n ·∇uh]/2∥∂K∥e−πe∥∂K (4.127)

≤ ∥[n ·∇uh]/2∥∂KC(h−1
K ∥e−πe∥2

K +hK∥D(e−πe)∥2
K)

1/2

(4.128)

≤ ∥[n ·∇uh]/2∥∂KChK∥De∥K (4.129)

Using these estimates together with the Cauchy-Schwartz inequality the estimate
follows directly.

4.9.2 Adaptive Mesh Refinement

There are two important issues to consider when constructing a mesh refinement
algorithm for a triangulation. First, invalid triangles (e.g., with hanging nodes) are
not allowed and we wish to refine as few elements as possible which are not in the
list of elements to be refined. Second, it is important that the minimal angle in the
triangulation is kept as large as possible. Otherwise the quality of the finite element
solution uh will deteriorate as we successively refine the mesh.

There are a number of refinement algorithms such as:

• Rivara refinement
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• Regular refinement

In the Rivara method a triangle is always refined by inserting a new edge from the
midpoint of the longest side to the opposite corner. Regular refinement consists of
splitting each triangle into four smaller ones. Both methods will typically manufac-
tures invalid triangles, that is, triangles with hanging nodes. To remedy this further
refinement using special refinement techniques is usually employed.

4.9.3 Adaptive Finite Elements using MATLAB

It is easy to write an adaptive finite element solver in MATLAB.
First we create a (coarse) initial mesh

g = ’cardg’; % predefined geometry of a cardioid
[p,e,t] = initmesh(g,’hmax’,0.25);

Then we compute the finite solution uh

[A,unused,b] = assema(p,t,...);
% .. application of B.C. etc ..
xi = A\b;

The next step is to evaluate the element residuals ρK , defined by (4.94). This can
be done with the routine pdejmps.

rho = pdejmps(p,t,...);

The pdejmps routine was originally designed for computing the element residuals
to −∇ · (c∇u)+au = f and its syntax is therefore

rho = pdejmps(p,t,c,a,f,xi,1,1,1);

where each of the three inputs c, a, and f can be either a constant or a row vector
specifying the values of the coefficients c, a, and f at the mid-points of the triangles.

As our refinement criterion we select the 10% most error prone elements to be
refined.

tol = 0.9*max(rho);
elements = find(rho > tol);

After these calls the vector elements contains the element numbers of the ele-
ments to be refined.

The actual refinement is done with the refinemesh routine.

[p,e,t] = refinemesh(g,p,e,t,elements,’regular’);

The mesh refinement algorithm used here is called longest edge bisection. We use
the simple stopping criterion that the maximum number of elements in the mesh
must not exceed, say, 10000.

Below we list a complete routine for adaptively solving Poisson’s equation
−∆u = 1 on a domain Ω shaped like a cardioid with u = 0 on the boundary ∂Ω .
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function AdaptivePoisson2D()
% set up geometry
g = ’cardg’;
% create initial mesh
[p,e,t] = initmesh(g,’hmax’,0.25);
% while not too many elements, do
while size(t,2) < 10000
% assemble stiffness matrix A, and load vector b
[A,unused,b] = assema(p,t,1,0,1);
% get the number of nodes
np = size(p,2);
% enforce zero Dirichlet BC
fixed = unique([e(1,:) e(2,:)]);
free = setdiff([1:np],fixed);
A = A(free,free);
b = b(free);
% solve for finite element solution U
xi = zeros(np,1);
xi(free) = A\b;
figure(1), pdesurf(p,t,U)
% compute element residuals
rho = pdejmps(p,t,1,0,1,xi,1,1,1);
% choose a selection criteria
tol = 0.9*max(rho);
% select elements for refinement
elements = find(rho > tol)’;
% refine elements using regular refinement
[p,e,t] = refinemesh(g,p,e,t,elements,’regular’);
figure(2), pdemesh(p,e,t)

end

To illustrate adaptive mesh refinement let us solve the problem

−∆u = 4a2(1−ar2)e−ar2
, in Ω = [0,1]2 (4.130a)

u = 0, on ∂Ω (4.130b)

where a is a parameter and r =
√
(x1 −0.5)2 +(x2 −0.5) is the distance from the

center of the unitsquare Ω = [0,1]2. If a is chosen sufficiently large, say a = 400,
then the analytical solution is given by u = ae−ar2

. This problem is computationally
demanding, since the solution is a very narrow pulse, with strong localized gradi-
ents, centered at (0.5,0.5). To obtain a good finite element approximation we thus
expect to have to resolve the region around this point by placing many triangles
there, but maybe we do not need so many triangles elsewhere. In Figures 4.5 and
4.6 below we show the results of running the adaptive code outlined above for 10
adaptive loops with a 25% refinement rule.
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Fig. 4.5 Adaptive meshes for the problem with solution u = ae−ar2
.

(a) 2 refinements (b) 4 refinements

(c) 6 refinements (d) 10 refinements

Fig. 4.6 Adaptively computed approximations to u = ae−ar2
.
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4.10 Problems

Exercise 4.1. Prove the Cauchy-Schwartz inequality |
∫

Ω uvdx| ≤ ∥u∥∥v∥.

Exercise 4.2. Verify that ∥∇u∥ satisfies the requirements of a norm on V0.

Exercise 4.3. Determine f so that u = x(1−x)y(1−y) is a solution to −∆u = f on
the unitsquare Ω = [0,1]2 with u = 0 on the boundary ∂Ω . Then compute ∇u, ∥u∥,
and ∥∇u∥.

Exercise 4.4. What are appropriate test and trial spaces for

−∆u = 0, x ∈ Ω
u = 0, x ∈ ΓD

n ·∇u = g, x ∈ ΓN

where ΓD and ΓN are two disjunct parts of the boundary and such that ΓD+ΓN = ∂Ω .

Exercise 4.5. Compute the element mass and stiffness matrices on the reference
triangle K̄ with corners at (0,0), (1,0), and (0,1).

Exercise 4.6. Define the geometry matrix g for the domain Ω = [−2,3]2 \ [−1,1]2

(i.e., a rectangle with a square hole). Use it to make a triangulation of this domain
with initmesh.

Exercise 4.7. Show that the solution u to

−∆u = f , x ∈ Ω
u = 0, x ∈ ∂Ω

satisfies the stability estimate
∥∇u∥ ≤C∥ f∥

where C is a constant. Hint: Multiply with u and integrate by parts. Also, recall the
Poincaré inequality ∥w∥ ≤ C∥∇w∥ which holds for all functions w that are zero at
the boundary ∂Ω .

Exercise 4.8. Show, that for

−∆u = 0, x ∈ Ω
u = 0, x ∈ ΓD

n ·∇u = g, x ∈ ΓN

holds the stability estimate
∥∇u∥ ≤C∥g∥ΓN

where C is a constant. Hint: Use the trace inequality ∥w∥∂Ω ≤C(∥w∥+∥∇w∥).
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Exercise 4.9. Write a MATLAB code to assemble the stiffness matrix A on a mesh
of a domain of your choice. Use eigs to compute the eigenvalues and verify that
one eigenvalue is zero. Why?

Exercise 4.10. Prove that

∥∇(u−uh)∥2 = ∥∇u∥2 −∥∇U∥2

where u is the exact solution and uh the finite element approximation to

−∆u = f , x ∈ Ω
u = 0, x ∈ ∂Ω

Exercise 4.11. Let K̄ be the reference triangle with corners at (0,0), (1,0) and (0,1)
and let

I(r,s) =
∫

K̄
xr

1xs
2 dx

where r and s are non-negative integers. Show that

I(r−1,s−1) =
s+1

r
I(r,s)

I(r,0) =
1

(r+1)(r+2)

and thus by induction that

I(r,s) =
r!s!

(r+ s+2)!

Exercise 4.12. Consider

−∆u+u = f , x ∈ Ω
u = 0, x ∈ ∂Ω

(a) Make a variational formulation.
(b) Formulate a finite element method in a suitable piecewise polynomial space Vh.
(c) Deduce the Galerkin orthogonality property∫

Ω
(∇(u−uh) ·∇v+(u−uh)v)dx = 0, ∀v ∈Vh

(d) Derive the a priori error estimate

∥∇(u−uh)∥2 +∥u−uh∥2 ≤ ∑
K∈K

Ch2
K∥D2u∥2

L2(K)



Chapter 5
Time-dependent Problems

Abstract Most real-world problems depend on time and in this chapter we shall
therefore construct numerical methods for solving time dependent differential equa-
tions. We do this by first discretizing in space using finite elements. As a result
we obtain a semi-discrete problem in time in the form of a system of ordinary dif-
ferential equations (ODE). We then discretize in time and solve this ODE system
numerically using a finite difference time stepping scheme. As model problems we
use two classical equations from mathematical physics, namely, the Heat equation
and the Wave equation. To assert the accuracy of the computed solutions we state
and prove both stability estimates and a priori error estimates.

5.0.1 Finite Difference Methods for Systems of ODE

We begin this chapter by deriving three simple finite difference methods for systems
of ordinary differential equations (ODE).

We wish to find the n× 1 time-dependent solution vector ξ = ξ (t) to the ODE
system

Mξ̇ (t)+Aξ (t) = b(t), 0 < t < T (5.1a)
ξ (0) = ξ0 (5.1b)

where ξ̇ means differentiation with respect to time t, T is the final time, M and A
are given constant n× n matrices, b(t) is a given time-dependent n× 1 vector, and
ξ0 is given n×1 vector with initial data.

To make a time discretization of (1.5) let 0 = t0 < t1 < t2 < · · ·< tL = T be a time
grid on the interval 0< t < T with time steps kl = tl −tl−1, l = 1,2, . . . ,L. Integrating
Mξ̇ +Aξ = b from tl−1 to tl we have, since M and A are constant matrices,

M
∫ tl

tl−1

ξ̇ (t)dt +A
∫ tl

tl−1

ξ (t)dt =
∫ tl

tl−1

b(t)dt (5.2)

95
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The first integral is trivial to evaluate, yielding

M(ξ (tl)−ξ (tl−1))+A
∫ tl

tl−1

ξ (t)dt =
∫ tl

tl−1

b(t)dt (5.3)

Now, let ξl denote an approximation to ξ (tl), l = 0,1, . . . ,L. Given ξl−1, we may
approximate the remaining integrals using quadrature to obtain a time stepping
scheme. For instance, using right end-point quadrature we obtain the following
equation for ξl

M(ξl −ξl−1)+ klAξl = klbl (5.4)

or equivalently

(M+ klA)ξl = Mξl−1 + klbl (5.5)

where we have introduced the notation bl = b(tl). Thus, starting with ξ0 we suc-
cessively get ξl l = 1,2, . . . ,L from the linear system (5.4). This is the so-called
backward Euler method.

Algorithm 12 Backward Euler Method
1: Create a time grid 0 = t0 < t1 < · · · < tL = T on the interval 0 < t < T with L time steps

kl = tl − tl−1.
2: Set ξ0 = ξ (0).
3: for l = 1,2, . . . ,L do
4: Solve the linear system

(M+ klA)ξl = Mξl−1 + klbl (5.6)

5: end for

Rearranging the terms of (5.4) we obtain

M
ξl −ξl−1

kl
+Aξl = bl (5.7)

from which it is obvious that the time derivative is approximated by the difference
quotient

ξ̇ (tl)≈
ξl −ξl−1

kl
(5.8)

Hence, Euler’s method is a finite difference formula.
Had we instead of right end-point quadrature used left dito when approximating

the integrals of (5.3) we would have obtained

Mξl = (M− klA)ξl−1 + klbl−1 (5.9)
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which gives the so-called forward Euler method. Similarly, use of the Trapezoidal
rule leads to (

M+
kl

2
A
)

ξl =

(
M− kl

2
A
)

ξl−1 +
kl

2
(bl +bl−1) (5.10)

and the so-called Crank-Nicolson method.
Each of these three method have its own characteristics regarding accuracy, sta-

bility, and computational cost. Loosely speaking, forward Euler is very fast, back-
ward Euler numerically stable, and Crank-Nicolson the most accurate.

5.1 The Heat Equation

Having studied numerical methods for ordinary differential equations we shall now
do the same for partial differential equations.

5.1.1 Derivation of the Time-dependent Heat Equation

We have already studied the derivation of the Heat equation, but under the assump-
tion of steady state. We now revisit this derivation taking also the dynamics of the
heat transfer process into account. Thus, let us consider the same one-dimensional
geometry as before with a thin metal rod of length L and cross section area A oc-
cupying the interval 0 < x < L. Let f be a heat source intensity, q the heat flux
along the direction of increasing x, and e the internal energy per unit length of the
rod. The principle of conservation of energy now states that the rate of change of
internal energy equals the sum of net heat flux and produced heat. Thus, we get∫ L

0
ė dx =

∫ L

0
f dx+A(0)q(0)−A(L)q(L) (5.11)

which can be rewritten as ∫ L

0
ė+(Aq)′ dx =

∫ L

0
f dx (5.12)

Assuming that the internal energy e is proportional to temperature T we have

e = cT (5.13)

where c is a constant of propotionallity called the heat conductivity. As before we
also assume that Fourier’s law, q = −kT ′, is valid. Combining these equations we
arrive at



98 5 Time-dependent Problems∫ L

0
cṪ +(AkT ′)′ dx =

∫
f dx (5.14)

from which we infer the time-dependent Heat equation

cṪ +(AkT ′)′ = f (5.15)

As usual this equation needs to be supplemented by boundary conditions at x = 0
and x = L of either Neumann, Dirichlet, or Robin type. These boundary conditions
should hold for all times. However, this is not enough to yield a unique solution T .
An initial condition of the form T (x,0) = T0(x), where T0(x), 0 < x < L, a given
function is also required to specify the solution at the initial time t = 0.

5.1.2 Model Problem

Thus, we consider the model problem

u̇− (au′)′ = f , 0 < x < 1, 0 < t ≤ T (5.16a)
u(0, t) = u(1, t) = 0 (5.16b)

u(x,0) = u0(x) (5.16c)

where u = u(x, t) is the unknown solution that we wish to find, a = a(x) ≥ a0 > 0
is a given positive function, f = f (x, t) a given source function, and u0(x) a given
initial condition.

5.1.3 Variational Formulation

Multiplying (5.16) by a function v and integrating by parts over 0 < x < 1 we have∫ 1

0
f vdx =

∫ 1

0
u̇vdx−

∫ 1

0
(au′)′vdx (5.17)

=
∫ 1

0
u̇vdx−au′(1)v(1)+au′(0)v(0)+

∫ 1

0
au′v′ dx (5.18)

=
∫ 1

0
u̇vdx+

∫ 1

0
au′v′ dx (5.19)

where we assumed that v(0) = v(1) = 0. Recalling the space V0 = {v : ∥v′∥+∥v∥<
∞, v(0) = v(1) = 0} we obtain the following variational formulation of (5.11): find
u such that, for every fixed t, u ∈V0 and∫ 1

0
u̇vdx+

∫ 1

0
au′v′ dx =

∫ 1

0
f vdx, ∀v ∈V0, 0 < t < T (5.20)



5.1 The Heat Equation 99

5.1.4 Spatial Discretization

In order to discretize the variational formulation in space, let 0 = x0 < x1 < · · · <
xn = 1 be mesh on the interval 0 < x < 1, and let Vh,0 ⊂ V0 be the corresponding
subspace of continuous piecewise linears vanishing at x = 0 and x = 1. The space
discrete counterpart of (5.20) takes the form: find uh such that, for every fixed fixed
t, uh ∈Vh,0 and∫ 1

0
u̇hvdx+

∫ 1

0
au′hv′ dx =

∫ 1

0
f vdx, ∀v ∈Vh,0, 0 < t < T (5.21)

We note that (5.21) is equivalent to∫ 1

0
u̇hφi dx+

∫ 1

0
au′hφ ′

i dx =
∫ 1

0
f φi dx, i = 1,2, . . . ,n−1, 0 < t < T (5.22)

where φi, i = 1,2, . . . ,n− 1 are the usual hat basis functions for Vh,0. Note that φ0
and φn do not belong to the basis, since all functions in Vh,0 are zero at the interval
end-points.

We now seek a solution uh to (5.22) expressed for every fixed t as a linear com-
bination of hat functions φ j(x), j = 1,2, . . . ,n−1, and time-dependent coefficients
ξ j(t). That is, we make the ansatz

uh(x, t) =
n−1

∑
j=1

ξ j(t)φ j(x) (5.23)

and seek to determine the time-dependent coefficient vector

ξ (t) =


ξ1(t)
ξ2(t)

...
ξn−1(t)

=


uh(x1, t)
uh(x2, t)

...
uh(xn−1, t)

 (5.24)

of nodal values of uh in such a way that (5.22) is satisfied.
We consider carefully the construction of uh. For every fixed time t, uh is a con-

tinuous piecewise linear function of x with time-dependent nodal values ξ j(t).
Substituting (5.23) into (5.22) we have

∫ 1

0
f φi dx =

n−1

∑
j=1

ξ̇ j(t)
∫ 1

0
φ jφi dx (5.25)

+
n−1

∑
j=1

ξ j(t)
∫ 1

0
aφ ′

jφ ′
i dx, i = 1,2, . . . ,n−1, 0 < t < T

Using the notation
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Mi j =
∫ 1

0
φ jφi dx, i, j = 1,2, . . . ,n−1 (5.26)

Ai j =
∫ 1

0
aφ ′

jφ ′
i dx, i, j = 1,2, . . . ,n−1 (5.27)

bi(t) =
∫ 1

0
f (t)φi dx, i = 1,2, . . . ,n−1 (5.28)

we have

bi(t) =
n−1

∑
j=1

Mi jξ̇ j(t)+
n−1

∑
j=1

Ai jξ j(t), i = 1,2, . . . ,n−1, 0 < t < T (5.29)

which is a system of n−1 ODE for the n−1 coefficients ξ j(t), j = 1,2, . . . ,n−1.
In matrix form we write this

Mξ̇ (t)+Aξ (t) = b(t), 0 < t < T (5.30)

where the entries of the (n− 1)× (n− 1) matrices M and A, and the (n− 1)× 1
vector b are defined by (5.22), (5.23), and (5.24), respectively. We recognize M, as
the mass matrix, A as the stiffness matrix, and b(t) as a time-dependent load vector.

The ODE system (5.30) is sometimes called a spatial semi-discretization of the
Heat equation, since the dependence on the space coordinate x has been eliminated.

We thus conclude that the coefficients ξ j(t), j = 0,1, . . . ,n, in the ansatz (5.23)
satisfy a system of ODE, which must be solved in order to obtain the space discrete,
or semi-discrete, solution uh.

5.1.5 Time Discretization

To discretize also in time, let 0= t0 < t1 < t2 < · · ·< tL = T be a time grid on 0< t <
T with time steps kl = tl − tl−1, l = 1,2, . . . ,L. Also, let ξl denote an approximation
to ξ (tl). Applying the backward Euler method to the ODE system (5.30) we obtain
the following algorithm for numerically solving the Heat equation.
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Algorithm 13 Backward Euler Metod for the Heat Equation
1: Create a mesh with n elements on the interval 0 < x < 1 and define the corresponding space of

continuous piecewise linear functions Vh,0.
2: Create a time grid 0 = t0 < t1 < · · · < tL = T on the interval 0 < t < T with L time steps

kl = tl − tl−1.
3: Choose ξ0.
4: for l = 1,2, . . . ,L do
5: Compute the (n−1)×(n−1) mass and stiffness matrices M and A, and the (n−1)×1 load

vector bl = b(tl) with entries

Mi j =
∫ 1

0
φ jφi dx, Ai j =

∫ 1

0
aφ ′

jφ ′
i dx, (bl)i =

∫ 1

0
f (tl)φi dx (5.31)

6: Solve the linear system

(M+ klA)ξl = Mξl−1 + klbl (5.32)

7: end for

Here, we observe that it is possible to define a solution approximation Ul at the
end of each time step by

Ul(x) =
n−1

∑
j=1

(ξl) jφ j(x), l = 0,1, . . . ,L (5.33)

This solution approximation is fully discrete in the sense that it is only defined for
the discrete times tl , in which case it is a continuous piecewise linear function on
0 < x < 1.

Regarding the starting vector ξ0 there are a few different possible choices of
initial data. The simplest choice is to let ξ0 = πu0, that is, the interpolant of u0 on
the mesh. Alternatively, we could let ξ0 be the nodal vector of the L2-projection of
u0, but this is of course more computationally expensive. As we shall see there are
also other choices for ξ0, for example, the Ritz projection of u0 to be presented in
the next section.

5.2 Stability Estimates

It is generally of interest to know something about the long term behaviors of the
solution to a time-dependent equation. In particular, one would like to know if the
solution grows with time or if it can be bounded by the data (e.g., the initial condition
and the right hand side) of the equation. For this purpose stability estimates are used.
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5.2.1 A Space Discrete Estimate

We first derive a stability estimate for the space discrete solution uh to the Heat
equation (5.16). Recall that uh = uh(t,x) is continuous when viewed as a function of
time t, but has only a discrete set of degrees of freedom when viewed as a function
of the space coordinate x.

Choosing v = uh in the variational formulation (5.20) we have∫ 1

0
u̇huh +au′2h dx =

∫ 1

0
f uh dx (5.34)

Noting that the first term can be written∫ 1

0
u̇huh dx =

∫ 1

0

1
2 ∂t(u2

h)dx = 1
2 ∂t∥uh∥2 = ∥uh∥∂t∥uh∥ (5.35)

and using the Cauchy Schwartz inequality we have

∥uh∥∂t∥uh∥+∥
√

au′h∥2 ≤ ∥ f∥∥uh∥ (5.36)

Here, we observe that
√

a is well defined since by assumption a has minimum value
a0 > 0. Thus, dropping the positive term ∥

√
au′h∥2 and dividing by ∥uh∥ we further

have

∂t∥uh∥ ≤ ∥ f∥ (5.37)

Finally, integrating this result with respect to time from 0 to t we obtain the stability
estimate

∥uh(·, t)∥= ∥uh(·,0)∥+
∫ t

0
∥ f (·,s)∥ds (5.38)

which shows that the size of uh is bounded in time by the initial condition uh(·,0)
and the source function f .

5.2.2 A Fully Discrete Estimate

Let us also derive a stability estimate for the fully discrete solution Ul , defined for
each discrete time tl , l = 0,1, . . . ,L, by (5.33). To do so we multiply the backward
Euler method with the vector ξl , which gives

ξ T
l (M+ klA)ξn = ξ T

l (Mξl−1 +bl) (5.39)

This is equivalent to
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∥Ul∥2 + kl∥
√

aU ′
l ∥2 =

∫ 1

0
Ul−1Ul dx+ kl

∫ 1

0
flUl dx (5.40)

where fl = f (tl). Using again the Cauchy-Schwartz inequality we have

∥Ul∥2 + kl∥
√

aU ′
l ∥2 ≤ ∥Ul−1∥∥Ul∥+ kl∥ fl∥∥Ul∥ (5.41)

Now, dropping first the positive term ∥
√

aU ′
l ∥2 and then dividing by ∥Ul∥, we get

∥Ul∥ ≤ ∥Ul−1∥+ kl∥ fl∥ (5.42)

Iterated used of this result implies that

∥Ul∥ ≤ ∥U0∥+
l

∑
i=1

ki∥ fi∥ (5.43)

which is our stability estimate.
This shows that the size of Ul is bounded for all times by the timestep kl , the

initial condition U0, and the source function f .

5.3 A Priori Error Estimates

Loosely speaking error estimates for time-dependent problems can be derived by
combining error estimates for the corresponding stationary problem with stability
estimates. We shall use this approach to derive error estimates for the Heat equation.

5.3.1 Ritz projection

Ritz projection is a technique for approximating a given function u, and is very simi-
lar to L2-projection. Both L2- and Ritz projection compute the orthogonal projection
of u onto a finite dimensional subspace with respect to a certain scalar product. For
L2-projection the subspace is Vh and the scalar product the usual L2-product

∫
uvdx.

However, for Ritz projection the subspace is Vh,0 and the scalar product
∫

au′v′ dx,
where a ≥ a0 > 0 is a positive weight function. The practical consequence of this
is that the mass matrix should be replaced by the stiffness matrix when switching
from computing L2- to Ritz projections. We shall not study Ritz projection in depth,
but only state its definition and approximation properties.

The Ritz projection Rhu ∈Vh,0 to a given function u ∈V0 is defined by∫ 1

0
a(u−Rhu)′v′dx = 0, ∀v ∈Vh,0 (5.44)
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With this definition we have the following approximation result.

Proposition 5.1. The following estimate holds.

∥u−Rhu∥ ≤Ch2∥D2u∥ (5.45)

Proof. The proof follows from a duality argument using Nitsche’s trick and the dual
problem −(aϕ ′)′ = u−Rhu with boundary conditions ϕ(0) = ϕ(1) = 0. We omit
the details.

5.3.2 A Space Discrete Estimate

Theorem 5.1. The space discrete solution uh defined by (5.23) satisfies the a priori
estimate

∥u(t)−uh(t)∥ ≤Ch2(∥u′′0∥+
∫ t

0
∥u̇′′(·,s)∥ds) (5.46)

Proof. We use the Ritz projection Rhu to rewrite the error u−uh as the sum

u−uh = u−Rhu+Rhu−uh = ρ +θ (5.47)

We can bound the first term ρ = u−Rhu by observing that

∥ρ(·, t)∥ ≤Ch2∥u′′(·, t)∥ (5.48)

≤Ch2∥u′′(·,0)+
∫ t

0
u̇′′(·,s)ds∥ (5.49)

≤Ch2(∥u′′0∥+
∫ t

0
∥u̇′′(·,s)∥ds) (5.50)

To bound the second term θ = Rhu−uh we insert it into the variational formulation
(5.20), yielding∫ 1

0
θ̇vdx+

∫ 1

0
aθ ′v′ dx =

∫ 1

0
˙(Rhu−uh)vdx+

∫ 1

0
a(Rhu−uh)

′v′ dx (5.51)

=
∫ 1

0
˙Rhuvdx−

∫ 1

0
u̇hvdx−

∫ 1

0
au′hv′ dx+

∫ 1

0
aRhu′v′ dx

(5.52)

=
∫ 1

0
˙Rhuvdx+

∫ 1

0
f vdx+

∫ 1

0
au′v′ dx (5.53)

=
∫ 1

0
˙Rhuvdx− u̇vdx (5.54)

=−
∫ 1

0
ρ̇vdx (5.55)
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From this we make the key observation that θ satisfies the Heat equation (5.16)
with −ρ̇ as right hand side. The unspoken hope is now that θ will be small since
we know that ρ is of order h2. To show that this is indeed the case we use the space
discrete stability estimate (5.38). We get

∥θ(·, t)∥ ≤ ∥θ(·,0)∥+
∫ t

0
∥ρ̇(·,s)∥ds (5.56)

By choosing uh(x,0) = Rhu(x,0) = Rhu0(x), we can eliminate ∥θ(·,0) = Rhu(·,0)−
uh(·,0)∥. Finally, we note that

∥ρ̇(·, t)∥= ∂t∥u(·, t)−Rhu(·, t)∥ ≤Ch2∂t∥u′′(·, t)∥=Ch2∥u̇′′(·, t)∥ (5.57)

5.3.3 A Fully Discrete Estimate

Theorem 5.2. The fully discrete solution Ul defined by (5.33) satisfies the a priori
estimate

∥u(t)−Ul∥ ≤Ch2(∥u′′0∥+
∫ t

0
∥u̇′′(·,s)∥ds)+Ck

∫ t

0
∥ü′′(·,s)∥ds (5.58)

where k is a uniform time step on 0 < t < T .

Proof. We assume that the time grid is uniform with a time step k. Again we write
the error u(tl)−Ul = (u(tl)−Rhu(tl))+ (Rhu(tl)−Ul) = ρl +θl . As before ρl can
be bounded by

∥ρl∥ ≤Ch2(∥u′′0∥+
∫ tl

0
∥u̇′′(·,s)∥ds) (5.59)

To bound also θl we insert it into the backward Euler method, which after some
elementary manipulations∫ 1

0

θl −θl−1

k
vdx+

∫ 1

0
aθ ′

l v′ dx =−
∫ 1

0
ωlvdx (5.60)

where

ωl = u̇(tl)−
Rhu(tl)−Rhu(tl−1)

k
(5.61)

Adding and subtracting k−1(u(tl)−u(tl−1)) from ωl we have
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ωl =

(
u̇(tl)−

u(tl)−u(tl−1)

k

)
(5.62)

+

(
u(tl)−Rhu(tl)

k
− u(tl−1)−Rhu(tl−1)

k

)
= ω1

l +ω2
l (5.63)

Applying the fully discrete stability estimate (5.43) we infer

∥θl∥ ≤ ∥θ0∥+ k
l

∑
i=1

∥ω1
i ∥+ k

l

∑
i=1

∥ω2
i ∥ (5.64)

As before, θ0 and can be eliminated by choosing U0 = Rhu0. Now, from Taylors
formula it follows that

u̇(tl)−
u(tl)−u(tl−1)

k
=−1

k

∫ tl

tl−1

(tl−1 − s)ü(·,s)ds (5.65)

which gives

k
l

∑
i=1

∥ω1
i ∥ ≤

l

∑
i=1

∥
∫ tl

tn−1

(tl−1 − s)ü(·,s)ds∥ ≤ k
∫ tl

0
∥ü(·,s)∥ds (5.66)

Furthermore, noting that

u(tl)−Rhu(tl)
k

− u(tl−1)−Rhu(tl−1)

k
=

1
k

∫ tl

tl−1

(I −Rh)u̇(x,s)ds (5.67)

and using that ∥u−Rhu∥ ≤Ch2∥u′′∥ we have

k
l

∑
i=1

∥ω2
i ∥ ≤

l

∑
i=1

∫ tl

tl−1

Ch2∥u̇′′(·,s)∥ds ≤Ch2
∫ tl

0
∥u̇′′(·,s)∥ds (5.68)

Together these estimates prove the theorem.

5.4 Computer Implementation

Heat is always spreading through the process of diffusion, which means that the
entire volume of a body will eventually become warm even if the body is heated
only in a single spot. This is built into the Heat equation, which is said to have
smoothing properties. Let us illustrate this property with a numerical example. The
amount of diffusion is given by the coefficient a. Consider the model problem with
a= 1, f = 2x, and u0 = 0.5−|x−0.5|. The initial condition looks like a triangle with
its peak at x = 0.5. The steady state solution is given by u(x,∞) = 3

2 x(x2−x), which
is assumed after roughly 0.5 time units. Figure 5.1 shows a series of snapshots of
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the computed solution as it evolves towards steady state. From the figure we see that
the peak of the triangle quickly diffuses and disappears, which shows the smoothing
property of the equation. The code for this simulation is listed below. We reuse
the assembly routines written for computing L2-projections and two-point boundary
value problems. Note that the assembly of the mass and stiffness matrices and also
the load vector can be done outside the time loop since neither of them are time-
dependent in this case.

function HeatSolver1D()
h = 0.01; % mesh size
x = 0:h:1; % mesh
L = 100; % number of time levels
T = 0.5; % final time
t = linspace(0,T,L+1) % time grid
U = 0.5-abs(0.5-x)’; % inital condition
kappa = [1.e+6 1.e+6]; % Robin BC parameters
g = [0 0];
A = StiffMat1D(x,@One,kappa); % stiffness matrix
M = MassMat1D(x); % mass matrix
b = LoadVec1D(x,@Twox,kappa,g); % load vector
for l = 1:L % time loop
k = t(l+1) - t(l); % time step;
U = (M + k*A)\(M*U + k*b); % backward Euler method
plot(x,U), axis([0 1 0 1]), pause(0.1) % plot

end

function y = One(x)
y = 1; % coefficient a=1

function y = Twox(x)
y = 2*x; % function f=2x
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Fig. 5.1 Snapshots showing transient solution evolving to steady state. Note the fast smoothing of
the initial peak.
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5.5 The Wave Equation

As we have seen the Heat equation quickly diffuses any high gradients to produce
smooth solutions at steady state. This is a typical feature for equations involving just
one time derivative. We shall now study what happens if the number of time deriva-
tives is increased from one to two, because it turns out that this seemingly small
change dramatically alters the behavior of the solutions. Indeed this new equation
allows for oscillating solutions and does not have a steady state. The equation is
called the Wave equation.

5.5.1 Derivation of the Acoustic Wave Equation

The Wave equation is a frequently occurring partial differential equation in engi-
neering and scientific applications and can be derived in many ways. Below we
derive it from the point of view of acoustics. The acoustic Wave equation describes
sound waves in a continuum (i.e., liquid or gas), and in this context sound is in-
terpreted as a pressure disturbance. To this end let Ω be a domain occupied by a
continuum with density ρ , pressure p, and velocity u. Our basic hypothesis is that
any instantaneous movement of a small volume of matter within the continuum is
counteracted by the built up of a pressure gradient. Thus, Newton’s second law, that
is, net force equals mass times acceleration, gives us

ρ u̇ =−∇p (5.69)

Further, if this movement leads to expansion of the small volume of matter, then a
pressure drop must occur to preserve energy. Similarly, volume contraction leads to
a rise in pressure. Now, a local measure of expansion and contraction is the diver-
gence of u, which suggests the relation

ṗ =−K∇ ·u (5.70)

where K is a constant of proportionality indicating the incompressibility (i.e., resis-
tance to compression) of the continuum. Differentiating (5.70) with respect to time
and using (5.69) we obtain

p̈ =−K∇ · u̇ = K∇ · ∇p
ρ

(5.71)

If ρ abd K are constant this simplifies to

p̈ = c2∆ p (5.72)

where c2 = K/ρ . This is the acoustic Wave equation.
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The boundary conditions for the Wave equation are the same as for any equa-
tion involving the Laplace term −∆ p, and can be of either Dirichlet, Neumann, or
Robin type. However, since the Wave equation also involves a term p̈ with two time
derivatives there must be two initial conditions, one for p and one for ṗ. These take
the form p(x, t0) = u0 and ṗ(x, t0) = v0 at the staring time t0.

Needless to say solutions to the Wave equation look like waves. Hence, the name.

5.5.2 Model Problem

We consider the following model problem

ü− c2∆u = f , in Ω × I (5.73a)
u = 0, on Ω × I (5.73b)
u = u0, in Ω , for t = 0 (5.73c)
u̇ = v0, in Ω , for t = 0 (5.73d)

where I = (0,T ] is the time interval, c2 is a parameter, f is a given source function,
and u0 and v0 given initial conditions.

5.5.3 Variational Formulation

Multiplying ü− c2∆u = f by a test function v, which is zero on the boundary, and
integrating using Green’s formula we have∫

Ω
f vdx =

∫
Ω

üvdx− c2
∫

Ω
∆udx (5.74)

=
∫

Ω
üvdx+ c2

∫
Ω

∇u ·∇vdx− c2
∫

∂Ω
n ·∇uvds (5.75)

=
∫

Ω
üvdx+ c2

∫
Ω

∇u ·∇vdx, t ∈ I (5.76)

Using the familiar space V0 = {v : ∥∇v∥+ ∥v∥ < ∞, v|∂Ω= 0} the variational for-
mulation of (5.73) reads: find u such that for every fixed t, u ∈V0 and∫

Ω
üvdx+ c2

∫
Ω

∇u ·∇vdx =
∫

Ω
f vdx, ∀v ∈V0, t ∈ I (5.77)
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5.5.4 Spatial Discretization

Let Vh,0 ⊂ V0 be the subspace of continuous piecewise linears on a mesh K of Ω .
The space discrete counterpart of (5.77) reads: find uh such that for every fixed t,
uh ∈Vh,0 and∫

Ω
ühvdx+ c2

∫
Ω

∇uh ·∇vdx =
∫

Ω
f vdx, ∀v ∈Vh,0, t ∈ I (5.78)

We note that (5.78) is equivalent to∫
Ω

ühφi dx+ c2
∫

Ω
∇uh ·∇φi dx =

∫
Ω

f φi dx, i = 1,2, . . . ,ni, t ∈ I (5.79)

where φi, i = 1,2, . . . ,ni are the usual hat basis functions for Vh,0 and ni the number
of internal nodes in the mesh.

Next we make a space discrete ansatz

uh =
ni

∑
j=1

ξ j(t)φ j (5.80)

where ξ j are ni time-dependent coefficients to be determined.
Substituting (5.80) into (5.79) we have

ni

∑
j=1

ξ̈ j(t)
∫

Ω
φ jφi dx+

ni

∑
j=1

ξ j(t)c2
∫

Ω
∇φ j ·∇φi dx

=
∫

Ω
f φi dx, i = 1,2, . . . ,ni, t ∈ I (5.81)

We recognize this as an ni ×ni system of ODE

Mξ̈ (t)+ c2Aξ (t) = b(t), t ∈ I (5.82)

where M, A, and b are the usual mass matrix, stiffness matrix, and load vector,
respectively.

5.5.5 Time Discretization

Looking at the ODE system (5.82) we see that it is of second order, which is kind
of problematic since all our finite difference time stepping schemes are designed to
handle first order systems only. The solution is to introduce a new variable η = ξ̇
and rewrite the second order system as two first order systems. In doing so we end
up with
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Mξ̇ (t) = Mη(t) (5.83)

Mη̇(t)+ c2Aξ (t) = b(t) (5.84)

Now, application the Crank-Nicolson method to each of these two systems gives
us

M
ξl −ξl−1

kl
= M

ηl +ηl−1

2
(5.85)

M
ηl −ηl−1

kl
+ c2A

ξl +ξl−1

2
=

bl +bl−1

2
(5.86)

In block matrix form this can be written more compactly as[
M − kl

2 M
c2kl

2 A M

][
ξl
ηl

]
=

[
M kl

2 M

− c2kl
2 A M

][
ξl−1
ηl−1

]
+

[
0

kl
2 (bl +bl−1)

]
(5.87)

Here, the starting iterates ξ0 and η0 can be chosen either by nodal interpolation of
u0 and v0, or as their Ritz projections, for example.

The reason for choosing the Crank-Nicolson time stepping method is that it is
more accurate than the Euler methods and that it has the property of conserving
energy, which loosely speaking means that the computed solution will not get nu-
merically smeared out. Thus, it is a suitable method for the Wave equation.

We summarize the Crank-Nicolson method for solving the Wave equation with
the following algorithm.

Algorithm 14 The Crank-Nicolson Method for the Wave Equation
1: Create a triangulation K of Ω and define the corresponding space of continuous piecewise

linear functions Vh,0 hat function basis {φi}ni
i=1.

2: Create a time grid 0 = t0 < t1 < · · · < tL = T on the interval I = (0,T ] with L time steps
kl = tl − tl−1.

3: Choose ξ0 and η0.
4: for l = 1,2, . . . ,L do
5: Compute the ni ×ni mass and stiffness matrices M and A, and the ni ×1 load vector bl , with

entries

Mi j =

∫ 1

0
φ jφi dx, Ai j =

∫ 1

0
φ ′

jφ ′
i dx, (bl)i =

∫ 1

0
f (tl)φi dx (5.88)

6: Solve the linear system[
M − kl

2 M
c2kl

2 A M

][
ξl
ηl

]
=

[
M kl

2 M

− c2kl
2 A M

][
ξl−1
ηl−1

]
+

[
0

kl
2 (bl +bl−1)

]
(5.89)

7: end for
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5.6 Stability Estimates

5.6.1 Energy Conservation

In the absence of external forces or damping the solution u to the Wave equation
(5.73) is some kind of traveling wave, which move back and forth over the domain
eternally, and although the wave may disperse the energy content (i.e., the sum of
kinetic and potential energy) of the initial condition is not diminished. This is the
content of the next estimate.

Theorem 5.3. With f = 0 the solution u to (5.73) satisfies the estimate

∥u̇(·, t)∥2 +∥∇u(·, t)∥2 =C (5.90)

with constant C independent of time.

Proof. Choosing v = u̇ in the variational formulation (5.77) we have

0 =
∫

Ω
üu̇dx+

∫
Ω

∇u ·∇u̇dx (5.91)

=
∫

Ω
1
2 ∂t(u̇)2 dx+

∫
Ω

1
2 ∂t(∇u)2 dx (5.92)

= 1
2 ∂t(∥u̇∥2 +∥∇u∥2) (5.93)

Integrating this result with respect to to time t from 0 to T we have

∥u̇(·,T )∥2 +∥∇u(·,T )∥2 = ∥v0∥2 +∥∇u0∥2 (5.94)

The proof ends by noting that the right hand side is independent of time t.

5.7 A Priori Estimate

Theorem 5.4. The space discrete solution uh defined by (5.80) satisfies the a priori
estimate

∥u(t)−uh(t)∥ ≤Ch2(∥u′′(t)∥+
∫ t

0
∥ü(·,s)∥ds) (5.95)

Proof. The proof follows by writing the error u−uh = u−Rhu+Rhu−uh, inserting it
into the variational formulation, and using a variant of the stability estimate (5.90).
We omit the details.
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5.8 Computer Implementation

A MATLAB code for solving the Wave equation is given below. The specific prob-
lem under consideration is ü−∆u = 0 on a square domain with two columns added
on one side. The boundary conditions are u = 0.1sin(8πt) on the line segments
x =−0.25, and n ·∇u = 0 on the rest of the boundary. Thus, we have both Dirichlet
and Neumann conditions. Zero initial conditions are assumed. This set up corre-
sponds to a situation where coherent light in the form of a sine wave impinges on
a screen with two narrow slits. This creates interference on the other side of the
screen. The explanation for this has to do with the distance traveled by the wave
from the two slits. As the light passes the screen the waves from the two sources are
in phase. However, as we move away from the screen, the path traveled by the light
from one slit is larger than that traveled by the light from the other slit. When the
difference in path is equal to half a wavelength the waves extinguish each other and
the amplitude of their sum vanish. Similarly, when the difference in path length is
equal to a wavelength, the waves interact to enhance each other.

function WaveSolver2D()
g = Dslit(); % double slit geometry
h = 0.025; % mesh size
k = 0.005; % time step
T = 2; % final time
[p,e,t] = initmesh(g,’hmax’,h);
np = size(p,2); % number of nodes
x = p(1,:)’; y = p(2,:)’; % node coordinates
fixed = find(x < -0.24999); % Dirichlet nodes
xi = zeros(np,1); % set zero IC
eta = zeros(np,1);
[A,M,b] = assema(p,t,1,1,0); % assemble A, M, and b
for l = 1:round(T/k) % time loop
time = l*k;
LHS = [M -0.5*k*M; 0.5*k*A M]; % Crank-Nicholson
rhs = [M 0.5*k*M; -0.5*k*A M]*[xi; eta] ...

+ [zeros(np,1); k*b];
sol = LHS\rhs;
xi = sol(1:np);
eta = sol(np+1:end);
xi(fixed) = 0.1*sin(8*pi*time); % set BC the ugly way
pdesurf(p,t,xi), axis([-1 1 -1 1 -.5 .5])
pause(0.1)

end

The enforcement of the Dirichlet boundary condition demands some explanation.
Since these are time-dependent we have to evaluate and set them inside the time loop
at every time step. This can be done by counting the free and the fixed nodes and
reducing the linear system resulting from the Crank-Nicholson scheme. However,
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we use a quick and dirty way instead. At each time step we first apply the Dirichlet
boundary conditions to the solution from the previous time step, and then solve the
linear system with Neumann boundary conditions. This is simple and works if the
time step is small.

The geometry matrix for the double slit domain is given by the routine Dslit
listed in the Appendix.

In Figure 5.2 we show snapshots of the amplitude of the light wave at a few time
steps. The evolution of the interference pattern is clearly seen.

(a) t = 0.1 (b) t = 0.4

(c) t = 0.7 (d) t = 1.0

(e) t = 1.3 (f) t = 1.6

Fig. 5.2 Simulation of light interference with the double slit experiment. Light wave amplitude at
a various times.

5.9 Problems

Exercise 5.1. Make two iterations using backward Euler on the ODE system
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ċ(t)+Ac(t) = f , t > 0, c(0) = c0,

where

A =

[
1 0
0 2

]
, f =

[
0
−1

]
, c0 =

[
1
1

]
Assume time step k = 1/2.

Exercise 5.2. Show that a space discretization of the problem

u̇−∆u+u = f , x ∈ Ω , t > 0
u = 0, x ∈ ∂Ω , t > 0
u = u0, x ∈ Ω , t = 0

leads to a system of ODE of the form

Mξ̇ (t)+Aξ (t)+Mξ (t) = b(t)

Also, identify the entries of the involved matrices and vectors.

Exercise 5.3. Show that the homogenous Heat equation u̇−∆u = 0, with boundary
condition u = 0, and intitial condition u(x,0) = u0(x) obeys the stability estimate

∥u(·, t)∥ ≤ ∥u0∥

Interpret this result. Hint: Multiply by u and integrate.

Exercise 5.4. Modify HeatSolver1D and solve the heat problem

u̇ = u′′/10, 0 < x < 1, t > 0
u(0) = u(1) = 0

u(x,0) = x(1− x)

Use a mesh with 100 elements, final time 0.1 and timestep 0.001. Plot the finite
element solution at each time step. Compare with the exact solution, given by the
infinite sum

u(x, t) =
4

π3

∞

∑
n=1

(−1)n −1
n2 e−n2π2t/10 sin(nπx)

Trunkate the sum after, say, 25 terms.

Exercise 5.5. Show that the Ritz projector Rhu satisfies the estimate ∥e′∥≤Ch∥u′′∥,
where e = u−Rhu.

Hint: Start from ∥
√

ae′∥2 =
∫ 1

0 ae′2 dx and write e = u−πu−πu−Rhu, where
πu ∈ Vh,0 is the usual node interpolant of u. Then use the definition of the Ritz
projector, the following variant of Cauchy-Schwartz inequality

∫ 1
0 ae′(u−πu)′ dx ≤

∥
√

ae′∥∥
√

a(u−πu)′∥, and a standard interpolation estimate.



Chapter 6
Iterative Methods for Large Sparse Linear
Systems

Abstract In the previous chapters we have seen how finite element discretization
give rise to linear systems, which must be solved in order to obtain the finite element
solution. These linear systems are generally very large since they are direct propor-
tional to the number of nodes in the finite element mesh. Recall that is not unusual
to have millions of nodes in large meshes. This puts high demands on the linear al-
gebra algorithms and software that is used to solve the linear systems regarding the
computational complexity (i.e., number of floating point operations needed), mem-
ory requirements, and time consumption. In this context a good thing is that matri-
ces stemming from finite element discretization are generally sparse meaning that
they have very few non-zero entries. This is due to the fact that since the hat func-
tions have very limited support they only interact with their nearest neighbors. In
this chapter we review the most common iterative methods for solving large sparse
linear systems.

6.1 Introduction

6.1.1 Linear Systems

Throughout this chapter we shall consider the problem of solving the linear system
of algebraic equations

Ax = b (6.1)

where A is a given n× n matrix, b is a given n× 1 vector, and x the sought n× 1
solution vector.

Our basic assumption is that n is large, say, 105, and that A is sparse. A sparse
matrix is somewhat vaguely defined as one with very few non-zero entries Ai j. The
prime example of such a matrix is the stiffness matrix resulting from finite element
discretization of the Laplace operator −∆ .

117



118 6 Iterative Methods for Large Sparse Linear Systems

We recall that if A is invertible, which by the way is the usual case when the
underlying differential equation is well posed, the solution x to (6.1) can formally be
found by first computing the inverse A−1 to A and then multiply it with b to obtain
x = A−1b. However, this requires the computation of the n× n matrix A−1 which
might seem wasteful since our aim is to find the n× 1 vector x. This is especially
true if n is large. Indeed, as we shall see it is almost never necessary to compute any
matrix inverse to solve a linear system.

There are two broad classes of solution methods for linear systems, namely:

• Direct methods
• Iterative methods

6.1.2 Direct Methods

Direct methods refers to Gaussian elimination, or, LU factorization, and its variants.
The common feature of direct methods are that the solution x is retrieved after a
fixed number of floating point operations. Unfortunately, for a linear system with
n unknowns this operation count is proportional to n3, which is way too expensive
even for modern supercomputers if n happens to be large. As a result direct methods
are not particularly well suited for solving liner systems from finite element appli-
cations, and we shall not discuss them further here. Instead we now focus on the
other class of iterative solution methods for linear systems.

6.1.3 Iterative Methods

Unlike direct methods, iterative methods do not have a fixed number of floating point
operations attached to them for computing the solution x to a linear system. Instead,
a solution approximation xk is sought iteratively, such that xk → x in the limit k →∞.
Of course the unspoken hope is that this iteration process will converge and with a
small number of iterations k. As we shall see these hopes do certainly not always
come true, but when they do iterative methods are cheap, fast, and the preferred
choice for solving large sparse linear systems.

6.2 Basic Iterative Methods

It is simple to create a framework for a basic iterative method. Consider again the
linear system Ax = b.

Let us first split A into
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A = M−K (6.2)

where M is any non-singular matrix and K the remainder K = M−A. We then have

(M−K)x = b (6.3)
Mx = Kx+b (6.4)

x = M−1Kx+M−1b (6.5)

If we have a starting guess x0 for x, this suggests the following iteration scheme:

xk+1 = M−1Kxk +M−1b (6.6)

Although we do not know for which linear systems this iteration converges, if any,
we tacitly summarize it as our basic iterative method for solving linear systems. We
shall return to the convergence issue shortly.

Algorithm 15 Basic Iterative Method for a Linear System
1: Choose a staring guess x0.
2: for k = 0,1,2 until convergence do
3:

xk+1 = M−1Kxk +M−1b (6.7)

4: end for

For this iteration to be computationally practical, it is important that the splitting
of A is chosen such that M−1K and M−1b are easy to calculate, or at least their
action on any given vector. Recall that we do not want to compute inverses.

In the following we shall study splittings of A of the form

A = D−U −L (6.8)

where D is the diagonal of A, and −U and −L the strict upper and lower triangular
part of A, respectively. This leads to two classical iterative methods, known as the
Jacobi and the Gauss-Seidel methods.

6.2.1 Jacobi’s Method

Jacobi iteration is defined by choosing M = D and K = L +U , which gives the
iteration scheme

xk+1 = D−1(L+U)xk +D−1b (6.9)
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Here, we note that D is easy to invert since it is a diagonal matrix.

6.2.2 The Gauss-Seidel Method

In the Gauss-Seidel method M =D−L and K =U , which gives the iteration scheme

xk+1 = (D−L)−1(Uxk +b) (6.10)

We note that since D−L is lower triangular the effect of (D−L)−1 can be computed
by forward elimination.

A naive implementation of the Gauss-Seidel method takes only a few lines of
code.

D = diag(diag(A)) % diagonal
L = -tril(A,-1) % minus lower triangle
U = -triu(A, 1) % minus upper triangle
for k = 1:maxiter
y = (D-L)\(U*x + b); % Gauss-Seidel iteration scheme
x = y

end

6.2.3 Convergence Analysis

We now return to the question of convergence of the basic iterative method (6.7).
Inspecting it we see that it and all the above methods can be written

xk+1 = Rxk + c (6.11)

where R is called the iteration matrix and given by R = M−1K, and c = M−1b.
A relation between the errors in successive approximations can be be derived by

subtracting x = Rx+ c from (6.11)

xk+1 − x = R(xk − x) = . . .= Rk+1(x0 − x) (6.12)

Taking norms and using the Cauchy inequality we have

∥xk+1 − x∥ ≤ ∥Rk+1∥∥x0 − x∥ ≤ ∥R∥k+1∥x0 − x∥ (6.13)

From this we see that a sufficient condition for convergence is that ∥R∥ < 1 in any
norm.

Based on the small error analysis above it is clear that ∥R∥ should be as small as
possible since this is the amplification factor for the error in each iteration. Hence,
the splitting of A should be chosen such that:
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• Rx = M−1Kx and x = M−1b are easy to evaluate.
• ∥R∥ is small.

Unfortunately, these goals are contradictory, and a balance has to be struck. For
example,

• M = I makes M−1 trivial, but probably not ∥A− I∥< 1.
• M = A gives K = 0 and thus ∥R∥= ∥M−1K∥= 0, but then M−1 = A−1 is expen-

sive to compute.

Before stating a general convergence criterion for Jacobi’s and the Gauss-Seidel
methods let us pause for a moment to introduce the concept of a diagonally dominant
matrix.

A square n×n matrix A is said to be (strictly) diagonally dominant if the absolute
value of each diagonal element is greater than the sum of the absolute values of the
other elements in its row. That is, if

|Aii|>
n

∑
j=0, j ̸=i

|Ai j|, ∀i = 1,2, . . . ,n (6.14)

For example, the matrix

A =

 4 1 0
−2 −5 1
6 0 −7

 (6.15)

is diagonally dominant.
Thus, by now we understand that the success of an iterative method depends on

the type of linear system Ax = b it is applied to. More formally we have following
convergence criteria.

Theorem 6.1.

• Jacobi’s method converges if A is strictly diagonally dominant.
• The Gauss-Seidel method converges if A is symmetric and positive definite (SPD).

Proof. Let us prove the first part of the theorem as the second part is somewhat
technical.

In Jacobi’s method the iteration matrix R has the elements

Ri, j =
Ai j

Aii
, i ̸= j, Ri,i = 0 (6.16)

Taking the infinity norm gives

∥R∥∞ = max
1≤i≤n

n

∑
j=1, j ̸=i

|Ai j|
|Aii|

(6.17)

which shows that ∥R∥< 1 if A is strictly diagonal dominant, and we are done.
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We mention that the Jacobi method sometimes converges even if its convergence
criterion is not satisfied. This is just how iterative methods work. They are somewhat
unpredictable.

So what if the matrix A is non-singular, but unsymmetric or indefinite? Well, in
these cases it is possible to apply the Gauss-Seidel method to the familiar normal
equations

AT Ax = AT b (6.18)

Since AT A is a symmetric and positive definite matrix if A is non-singular the Gauss-
Seidel method will converge. However, the rate of convergence can be very slow.

6.3 Projection Methods

The basic iterative methods are cheap but generally slow to converge. To remedy
this a great deal of work has been devoted to developing fast iterative methods.
This has lead to the development of iterative methods for solving linear systems
Ax = b, which are based on the requirement that the residual r = b−Ax should
be orthogonal to subspaces of Rn, just like the finite element method requires the
residual of a partial differential equation to be orthogonal to Vh. In fact, modern
iterative methods for linear systems share many features with the Galerkin method.
But let us not rush ahead, but start from the beginning. Suppose we seek a solution
approximation x̃ to Ax = b from a (small) m-dimensional subspace K ⊂ Rn, such
that the residual

r = b−Ax̃ (6.19)

is orthogonal to another m-dimensional subspace L ⊂ Rn, that is,

b−Ax̃ ⊥ L (6.20)

The subspace K is called trial space, and the subspace L is called test space.
There are two classes of projection methods:

• Orthogonal, where L = K .
• Oblique, where K and L are (more or less) unrelated.

As we shall see this distinction gives rise to different types of iterative methods.
If we have a starting guess x0 for x, then we seek the solution in the affine space

x0 +K (6.21)

instead of just K . That is, we let

x̃ = x0 +δ

where δ is some vector in K .
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Our problem is thus to find x̃ ∈ x0 +K such that

r = b−Ax̃ = b−A(x0 +δ ) = r0 −Aδ ⊥ L

where we have introduced the initial residual r0 = b−Ax0.
Now, suppose that V = [v1,v2, . . . ,vm] and W = [w1,w2, . . . ,wm] are two n×m

matrices whose columns {vi}m
i=1 and {wi}m

i=1 form a basis for K and L , respec-
tively. Then we can write

x̃ = x0 +δ = x0 +V y (6.22)

for some m×1 vector y to be determined.
Next we note that the orthogonality r = r0 −Aδ ⊥ L means that

wT (r0 −AV y) = 0, ∀w ∈ L (6.23)

and since W is a basis for L this is equivalent to

W T (r0 −AV y) = 0 (6.24)

or
W T AV y =W T r0 (6.25)

Hence, if the m×m matrix W T AV can be inverted then we end up with the expression

x̃ = x0 +V y = x0 +V (W T AV )−1W T r0 (6.26)

for the approximate solution x̃.
There are two instances when it is guaranteed that W T AV can be inverted:

• If A is SPD and L = K .
• If A is non-singular and L = AK .

We omit the proof of this.
Equation (6.26) is a basic projection step. Most modern methods use a succession

of such projections. Typically, a new projection step uses a new pair of subspaces
K and L with the initial guess x0 equal to the most recent approximation obtained.

6.3.1 One-dimensional Projection Methods

The simplest choice of trial and test space is to let K and L be one-dimensional,
that is,

K = span {v}, W = span {w} (6.27)

where v and w are two n×1 vectors. In this case x̃ is given by

x̃ = x0 +αv (6.28)
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where the scalar α is given by

α =
wT r0

wT Av
(6.29)

A classic choice is to set v = w = r (i.e., K = L ). This yields the Steepest
Descent algorithm.

Algorithm 16 Steepest Descent
1: Choose a starting guess x0.
2: for k = 0,1,2, . . . until convergence do
3: rk = b−Axk

4: α = rkT rk/rkT Ark

5: xk+1 = xk +αrk

6: end for

Since L = K steepest decent works for cases where A is SPD.
Other choices of v and w include v = r and w = Ar, which is the minimal residual

method (MINRES).
One-dimensional projection methods are simple, but as one might expect not

very efficient.

6.3.2 Krylov Subspaces

The most important iterative methods for sparse linear systems uses projection onto
so-called Krylov subspaces. We shall now study these.

The m-th Krylov subspace Km(A;v)⊂ Rn is defined by

Km(A;v) = span{v,Av,A2v, . . . ,Am−1v} (6.30)

where A is a given n×n matrix and v is a given n×1 vector. We say that v generates
Km. Often v = b.

Let us try to motivate why the Krylov subspaces are defined as they are. Consider
a linear system with

A =

[
5 1
0 2

]
, b =

[
20
10

]
(6.31)

The characteristic polynomial p(λ ) of A is given by

p(λ ) = det(A−λ I) = λ 2 −7λ +10 (6.32)

Now, according to the Cayley-Hamilton theorem a matrix satisfies its characteristic
equation, p(A) = 0. That is,
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0 = A2 −7A+10I (6.33)

Multiplying with A−1 and rearranging the terms we end up with

A−1 = 7
10 I − 1

10 A (6.34)

Hence, we have

x = A−1b = ( 7
10 I − 1

10 A)b = 7
10 b− 1

10 Ab =

[
3
5

]
(6.35)

The key observation here is that the solution x to Ax = b is a linear combination of
the vectors b and Ab, which make up the Krylov subspace K2(A,b). In other words
the solution to Ax = b has a natural representation as a member of a Krylov space,
and therefore we can understand why one would construct approximations to x from
this space. Of course if the dimension m of Km is small, then a Krylov method has
the opportunity to find a good approximation x in a few iterations.

Because the Krylov vectors {A jv}m−1
j=0 tend very quickly to become almost lin-

early dependent, methods relying on Krylov subspaces frequently involve some
orthogonalization procedure. The most general of these is the Arnoldi procedure,
which is an algorithm for building an orthonormal basis {q j}m

j=1 to Km(A,v). One
variant of the algorithm is given below:

Algorithm 17 Arnoldi’s Orthogonalization Procedure
1: Choose a vector v and set q1 = v/∥v∥
2: for j = 1,2, . . . ,m do
3: Compute z = Aq j
4: for i = 1,2, . . . , j do
5: Hi j = qT

i z
6: z = z−Hi, jqi
7: end for
8: H j+1 j = ∥z∥
9: if H j+1 j = 0 then

10: quit
11: end if
12: q j+1 = z/H j+1 j
13: end for

At each step the algorithm multiplies the previous Arnoldi vector q j by A and
then orthonormalizes the resulting vector z = Aq j against all the previous qi, i =
1,2, . . . , j by a standard Gram-Schmidt procedure. Inspecting the algorithm, we see
that z = Aq j is a linear combination of the Arnoldi vectors qi, i = 1,2, . . . j+1. The
coefficients of this linear combination are the numbers Hi j.

The MATLAB realization of the Arnoldi algorithm is given below.

function [Q,H] = Arnoldi(A,q,m)
n=size(A,1);
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Q=zeros(n,m+1);
H=zeros(m+1,m);
Q(:,1)=q/norm(q);
for j=1:m
z=A*Q(:,j);
for i=1:j

H(i,j)=dot(z,Q(:,i));
z=z-H(i,j)*Q(:,i);

end
H(j+1,j)=norm(z);
if H(j+1,j)==0, break, end
Q(:,j+1)=z/H(j+1,j);

end

Loosely speaking the Arnoldi procedure gives a factorization of the matrix A.
Indeed, at stage m of the Arnoldi algorithm, it computes the decomposition

AQm = Qm+1H̄m (6.36)

where

Qm =

q1 q2 . . . qm

 (6.37)

is the n×m orthonormal matrix containing the Arnoldi vectors qi, i = 1,2, . . . ,m,
and where H̄m is the (m+1)×m matrix

H̄m =



H11 H12 H13 H1m
H21 H22 H23 H2m
0 H32 H33 H3m
0 0 H43 H4m
...

. . .
...

0 0 . . . 0 Hm+1m−1 Hm+1m


(6.38)

We remark that a H̄ is called an upper Hessenberg matrix. By definition such a
matrix has all zero entries below the first subdiagonal.

Since the columns of Qm are orthonormal it is easy to confirm that

QT
mAQm = Hm (6.39)

where Hm is the m×m matrix obtained by deleting the last row from H̄m.
If A is symmetric the Arnoldi algorithm simplifies and is then called the Lanczos

algorithm. In this case the Hessenberg matrix Hm reduces to tridiagonal form.
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6.3.3 CG

We shall now combine the prototype projection method (6.26) with the Krylov sub-
space Km(A;v) to derive the Conjugate Gradient (CG) algorithm, which is the most
famous Krylov method.

Given a linear system Ax = b with a symmetric positive definite system matrix
A, and a starting guess x0 for its solution we now consider a projection method with
test and trial space L = K = Km(A,r0), where r0 = b−Ax0 is the initial residual
vector. As we have seen this method seeks an approximation xm to x from the space
x0 +Km by imposing the orthogonality condition

b−Axm ⊥ Km(A;r0) (6.40)

To generate a basis Qm for the test and trial spaces we can do m steps of the
Arnoldi procedure on r0 with the initial Arnoldi vector chosen as q1 = r0/∥r0∥.
Substituting Qm = V = W into the left hand side of (6.26) we have by virtue of
(6.39)

W T AV = QT
mAQm = Hm (6.41)

Furthermore, setting β = ∥r0∥ and substituting Qm =W into the right hand side of
(6.26) we have, since all columns of Qm except the first are orthogonal against r0,

QT
mr0 = QT

m(βq1) = βe1 = β [1,0, . . . ,0]T (6.42)

Thus, (6.26) reduces to

Hmym = βe1 (6.43)

and, as a result, the approximate solution xm is given by

xm = x0 +Qmym = x0 +QmH−1
m βe1 (6.44)

The quality of xm depends on the dimension m of the Krylov space. In practice
we would like to be able to improve xm by choosing m in a dynamic fashion. This
line of reasoning leads to the following algorithm called the Full Orthogonalization
Method (FOM), and which is the ancestor of, and mathematically equivalent to, the
CG algorithm.
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Algorithm 18 Full Orthogonalization Method
1: Choose a starting guess x0.
2: for m = 1,2,3, ... until convergence do
3: β = ∥r0∥
4: Compute Qm by doing m steps of Arnoldi’s procedure.
5: ym = H−1βe1
6: xm = x0 +Qmym
7: end for

Let us very swiftly show how FOM can be improved to yield the very elegant CG
algorithm. Since we assume that A is symmetric the Hessenberg matrix Hm reduces
to tridiagonal form, and the linear system Hmym = βe1 can therefore be computed
efficiently using LU factorization, since both the L and U factors only consists of
the diagonal and a sub or superdiagonal, respectively. To this end, let LmUm = Hm
be the LU factorization of Hm. This gives us

xm = x0 +QmU−1
m L−1

m βe1 = x0 +Pmzm (6.45)

where we have introduced the n × m matrix Pm = QmU−1
m and the m × 1 vector

zm = L−1
m βe1. Now, the difference between the (m−1)× (m−1) matrix Hm−1 and

the m×m matrix Hm is the addition of a new last row and column. All other matrix
entries are the same. This in turn implies that the difference between L−1

m−1 and L−1
m

is the addition of a last row lm and a zero column except the diagonal entry which is
always unity, viz.

L−1
m =

[
L−1

m−1 0
lm 1

]
(6.46)

From this it is easy to see that

zm =

[
zm−1
ζm

]
(6.47)

where the (m− 1)× 1 vector zm−1 stems from the previous iteration and ζm is a
scalar. As a consequence, we get

xm = x0 +Pmzm (6.48)

= x0 +
[
Pm−1 pm

][zm−1
ζm

]
(6.49)

= x0 +Pm−1zm−1 +ζm pm (6.50)

where pm is the last column of Pm. Noting that x0+Pm−1zm−1 = xm−1 it follows that

xm = xm−1 +ζm pm (6.51)
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We conclude that, at stage m, xm is formed simply by updating xm−1 by a number,
ζm, times a search direction (i.e., a gradient) pm. It turns out that similar updating
relations holds for the residuals rm, and the search directions pm. Moreover, the
search directions are A conjugate in the sense that pT

i Ap j = 0 if i ̸= j. Hence, the
name of the algorithm.

With a little more work it is possible to formulate this projection method as the
very compact algorithm, the Conjugate Gradient algorithm.

Algorithm 19 Conjugate Gradient algorithm
1: Compute r0 = b−Ax0 and set p0 = r0.
2: for j = 0,1,2, . . . until convergence do
3: α j = rT

j r j/p jAp j
4: x j+1 = x j +α j p j
5: r j+1 = r j −αAp j
6: β j = rT

j+1r j+1/rT
j r j

7: p j+1 = r j+1 +β j p j
8: end for

This is a very cheap algorithm both regarding computational cost and memory:

• Only one matrix-vector multiplication Ap j per iteration needed.
• Only requires storage of a few vectors, and not all the m vectors in Qm.

The rate of convergence of the CG method depends on the condition number
κ = |λmax/λmin| of A, that is, the quotient of the smallest and largest eigenvalues of
A. It is a tedious task to show that the error em = x− xm decreases as

∥em∥A

∥e0∥A
≤ 2

(√
κ −1√
κ +1

)m

(6.52)

where we have introduced the energy norm ∥v∥A =
√

vT Av.
The errors are also monotonically decreasing

∥em+1∥A ≤ ∥em∥A, m ≤ n (6.53)

This is due to the fact that the Krylov spaces are nested (i.e., Km ⊂ Km+1).
In Matlab conjugate gradients are implemented as a black box solver

x = pcg(A, b, tol, maxit)

Input is the system matrix A, the right hand side vector b, a desired tolerance related
to the size of the relative residual, and the maximum number of iterations. Output is
the solution approximation xm.
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6.3.4 GMRES

Conjugate gradients only works for linear systems with a symmetric positive definite
system matrix A. This is somewhat limiting and we shall therefore now study a
Krylov method which works for a general linear system without any assumptions
on A.

The Generalized Minimum Residual method (GMRES) is a projection method
based on taking K = Km and L = AKm. This choice of trial and test spaces has
the property that the solution xm minimizes the residual norm ∥rm∥ over all vectors
in x0 +Km. In other words, GMRES is a least squares method. We will exploit this
optimality property together with the Arnoldi factorization to derive the GMRES
algorithm.

We recall that any vector x in x0 +Km can be written as

x = x0 +Qmy (6.54)

for some m×1 vector y to be determined. Defining now the least squares functional

J(y) = ∥b−Axm∥2 = ∥b−A(x0 +Qmym)∥2 (6.55)

the result (6.39) implies

b−Ax = b−A(x0 +Qmy) (6.56)
= r0 −AQmy (6.57)
= βq1 −Qm+1H̄my (6.58)
= Qm+1(βe1 − H̄my) (6.59)

Further, since Qm is orthonormal we have

J(y) = ∥b−A(x0 +Qmy)∥2 = ∥βe1 − H̄my∥2 (6.60)

Now, the GMRES approximation xm is defined as xm = x0 +Qmym, where ym is
the minimizer of J(y) over x0+Km. This minimizer is inexpensive to compute since
it only requires the solution of a (m+ 1)×m linear least squares problem with m
typically small. Standard methods from dense linear algebra (i.e., QR factorization)
are used to do this.

Algorithm 20 Generalized Minimum Residual (GMRES)
1: Compute r0 = b−Ax0 and set q1 = r0/∥r0∥.
2: for m = 1,2, . . . until convergence do
3: Compute Qm with Arnoldi.
4: Compute ym, the minimizer of J(y) = ∥βe1 − H̄my∥.
5: Set xm = x0 +Qmym.
6: end for
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In GMRES the computational cost per iteration is not fixed but increases be-
cause all the m Arnoldi vectors q j are required for computing H̄m. The memory
cost is therefore O(mn). This cost can limit the largest affordable value of m for
large n. One remedy is to restart the algorithm periodically with the latest solution
approximation as starting guess.

6.3.5 Other Krylov Methods

The is a plethora of Krylov methods. Below we characterize a few of these.

• CG on the Normal Equations (CGNE)

– Solve AT Ax = AT b using conjugate gradients.
– Matrix A need not be SPD.
– Poor convergence, squared condition number κ(AT A) = κ(A)2.

• Bi-Conjugate Gradients (BiCG)

– Makes residuals orthogonal to another Krylov subspace, based on AT .
– Memory requirements are small.
– Convergence sometimes comparable to GMRES, but unpredictable.

• Conjugate Gradients Squared (CGS)

– Avoids multiplication by AT , sometimes twice as fast convergence as BiCG.

6.4 Preconditioning

The convergence rate of all Krylov methods depend on the condition number κ
of the matrix A. To accelerate convergence it is customary to try to transform the
linear system Ax = b into one that has the same solution, but a more favorable (i.e.,
smaller) condition number. This is accomplished through so-called preconditioning.
A preconditioner M is a matrix that approximates A in some sense, but is more easy
to invert.

Multiplying by M−1 from the left we have the transformed linear system

M−1Ax = M−1b (6.61)

which has the same solution as Ax = b, but the condition number of the matrix
M−1A may be better. If M is a good preconditioner, then M−1A ≈ I with a condition
number close to 1. Note that M = I is a useless preconditioner, while M = A is
the most expensive, since it imples inverting A. Hence, we seek a middle route in
constructing a good preconditioner.
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6.4.1 Jacobi Preconditioning

The simplest preconditioner consists of just the diagonal of the matrix A, that is, M =
diag(A). This is known as Jacobi preconditioning and can sucessfully be applied to
linear systems with A SPD. The Jacobi preconditioner need very little storage, and
is easy to implement. On the other hand, more sophisticated preconditioners usually
yield a faster rate of convergence.

6.4.2 Incomplete Factorizations

Many modern preconditioners are based on incomplete LU factorization (ILU). The
basic idea is simple. One computes the ordinary LU factorization A = LU , but in do-
ing so entries of L and U that are too small are discarded to save memory. The pre-
conditioner M is then defined by M = LU . This type of preconditioning has proven
to be very efficient and is commonly used in combination with CG or GMRES to
solve linear systems arising form finite element discretizations. The difficulty is to
choose a good drop tolerance, that is, the level below which the matrix entries of
M are ignored. A high drop tolerance yields a dense M, while a low drop tolerance
might make M inefficient.

Matlab has a built-in function called luinc for computing the incomplete LU
factorization with a user defined drop tolerance. To solve a linear system with ILU
preconditioning and GMRES we type

[L,U] = luinc(A,1.e-3) % drop tolerance = 0.001
x = gmres(A,b,[],tol,m,L,U)

6.5 A Note on Iterative Methods for Eigenvalue Problems

We end this chaper by briefly describe how the Arnoldi algorithm can also be used
to find a few eigenvalues of a large sparse n×n matrix A.

Recall that the Hessenberg matrix Hm and the orthonormal matrix Qm is com-
puted at stage m of Arnoldi’s procedure. Due to the fact that Hm is a projection, that
is, approximation, of A onto the Krylov space spanned by the columns of Qm, a natu-
ral idea is to use the eigenvalues of Hm to approximate the eigenvalues of A. Thus, at
each step m, or at occasional steps, the eigenvalues of Hm are computed by standard
methods such as QR iteration. These are the Ritz values. Since m is much smaller
then n for feasible computations, one cannot expect to compute all the eigenvalues
of A by this process. Typically, it finds the extreme eigenvalues with either largest
or smallest magnitude. This line of reasoning gives the following simple algorithm
called Arnoldi iteration.



6.6 Problems 133

Algorithm 21 Arnoldi Iteration
1: for m = 1,2, . . . until convergence do
2: Compute Hm with Arnoldi.
3: Compute the m eigenvalues θi, i = 1, . . . ,m, the Ritz values, to Hm.
4: Use the Ritz values as approximations to the m largest eigenvalues λi of A.
5: end for

Of course, this is only a basic sketch of the algorithm. The practical implemen-
tation is very elaborate.

Let V T
m ΘmVm = Hm with Θm = diag([θ1, . . . ,θm]) be the eigendecomposition of

Hm obtained from the QR iteration. Approximations to the eigenvectors m of A
corresponding to the m largest eigenvalues are given by the columns of QmVm. These
are the Ritz vectors.

Arnoldi iteration is particularly efficient when the matrix A is symmetric, since
this simplifies the Arnoldi algorithm, makes Hm tridiagonal, and allows error esti-
mates for the Ritz values and vectors to be rigoruosly proved. For a deeper discus-
sion of iterative methods for large sparse eigenvalue problems we refer the reader to
any textbook on sparse linear algebra.

6.6 Problems

Exercise 6.1. Write two Matlab routines Jacobi.m and GS.m implementing Ja-
cobi and Gauss-Seidel iteration. Let the syntax for calling the routines be given by

[x,k] = Jacobi(A,b,tol)
[x,k] = GS(A,b,tol)

where tol is a number specifying the desired relative residual ∥rk∥/∥r0∥, and k is
the number of iterations k performed. Test your codes by solving the linear system
with

A =


12 1 0 0 0 −1
1 10 1 0 0 0
2 0 20 2 0 0
0 0 1 12 −1 0
0 3 0 0 30 3
0 0 0 2 −2 24

 , b =


8
24
70
46
174
142


Exercise 6.2. Use Jacobi.m and GS.m to compare the number of iterations re-
quired by these methods to converge to a given accuracy from a zero starting guess.
Let A and b be defined by

e = ones(n,1);
A = spdiags([-e 2*e -e], -1:1, n, n);
b = rand(n,1);
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Record the number of iterations needed to achieve the tolerance 0.1, 0.01, 0.001,
and 0.0001 for a few different values of n, say 10, and 100. How many times faster
is Gauss-Seidel than Jacobi?

Exercise 6.3. Show that Jacobi iteration may take the form

xk+1 = xk +Hrk

where H is a matrix to be defined by you and rk = b−Axk is the residual at stage k.
Can you interpret this result from the point of view of one-dimensional projection
methods for Ax = b.

Exercise 6.4. Consider the m-th Krylov space Km(A;b), and the corresponding
Krylov matrix

Km =
[
b Ab A2b . . . Am−1b

]
Let A=diag([1 2 3 4]) and b=[1 1 1 1]’.

(a) Compute the Krylov matrix K4. Then express the vector x=A−1b= [1, 1
2 ,

1
3 ,

1
4 ]

T

as a linear combination of the columns of K4.
(b) Use the routine arnoldi.m to compute the 4× 4 matrices Q and H in the

Arnoldi factorization of A, (i.e., such that AQ=QH). Use q1 = b/∥b∥ as starting
vector. (Note that since the Arnoldi algorithm stops at stage 3, the last column
of H is not actually computed. It comes from a final command H(:,4) =
Q’*A*Q(:,4).)

(c) Assume that we have run Arnoldi’s algorithm for 2 steps so that we have access
to the orthogonal basis Q2 = [q1,q2] that span the Krylov subspace K2(A;b).
Show how the matrix H2 can be used to get a Galerkin solution x2, that is, such
that the residual r2 = b−Ax2 is orthogonal to the span of the basis vectors q1
and q2. Compute x2. What is the residual r2?



Chapter 7
Abstract Finite Element Analysis

Abstract In this chapter we study the mathematical theory of finite element methods
from a broader perspective by introducing a general theory for linear second order
elliptic partial differential equations. This allows us to handle a large class of prob-
lems with the same analytical techniques. We do this by first introducing a general
elliptic problem and its abstract weak form posed on a so-called Hilbert space. We
show that this weak problem has a solution by proving the Lax-Milgram Lemma,
and that this solution is unique. Knowing that the solution exist we then show how
to approximate it by finite elements. Finally, we prove basic a priori and a posteriori
error estimates for the finite element approximation.

7.1 Elliptic Problems

Let Ω be a simply connected bounded domain in Rd , with d = 2 the number of space
dimensions, and with smooth boundary ∂Ω . Although the analysis to be presented
is very generell and holds without changes also for d = 1 or 3 let us stick to two
dimensions for simplicity.

We shall study partial differential equations of the form

Lu = f , in Ω (7.1a)
u = 0, on ∂Ω (7.1b)

where L is the linear second order differential operator

Lu =
d

∑
i, j=1

− ∂
∂xi

(
ai j

∂u
∂x j

)
+ cu (7.2)

with ai j, i, j = 1, . . . ,d, and c are given coefficients depending only on the space
coordinates xi. We shall assume that there is a value a0 such that ai j > a0 for all
i, j = 1, . . . ,d, and that these coefficients are symmetric in the sense that ai j = a ji.

135
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Further, we also assume that c ≥ 0. This kind of partial differential equation is a
called elliptic.

Using vector notation (7.2) can be written

Lu =−∇ · (a∇u)+ cu (7.3)

where a is a d ×d matrix with the coefficients ai j as entries.
The class of elliptic equations is large and includes many important equations.

For example:

• The Laplace equation ∆u = 0.
• The Poisson equation −∇ · (a∇u) = f .
• The Diffusion-Reaction equation −∆u+ cu = f .

We shall now present a general theory to handle all these equations using the
same analytical tools.

7.2 Abstract Weak Form

Multiplying Lu = f by a test function v in a suitable space V that satisfies the zero
boundary conditions and integrating by parts we obtain the abstract weak form of
(7.1): find u ∈V such that

a(u,v) = l(v), v ∈V (7.4)

where, with a slight abuse of notation,

a(u,v) = (Lu,v) (7.5)
l(v) = ( f ,v) (7.6)

The function space V on which the abstract weak form (7.4) is posed on is gener-
ally called a Hilbert space. Hilbert spaces are linear spaces characterized by the fact
that they have a scalar product and a norm, so that it is possible to measure the angle
between two functions and the size of a function in these spaces. Hilbert spaces are
also complete, which means that every Cauchy sequence in them converges. From
this on we shall let V denote a Hilbert space.

The left hand side l(v) in (7.4) is a linear form. A linear form l(·) is a mapping
V → R such that for any u,v ∈V

1. l(u+ v) = l(u)+ l(v).
2. l(αv) = α l(v), α ∈ R.

Similarly, the left hand side a(u,v) in (7.4) is called a bilinear form. A bilinear form
a(·, ·) is a mapping V ×V → R such that for any u,v ∈V

1. a(u+ v,w) = a(u,w)+(v,w).
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2. (αu,v) = α(u,v), α ∈ R.

In the following l(·) and a(·, ·) shall always denote a linear and bilinear form, re-
spectively.

A bilinear form is said to be symmetric if a(u,v) = a(v,u). If also

a(u,u)≥ 0 (7.7)

with equality if and only if u = 0, then a(·, ·) defines a scalar product on V .
Given a scalar product a(·, ·) on V we can easily define an associated norm ∥ ·∥V

on V by

∥u∥V =
√

a(u,u) (7.8)

This norm is called the energy norm.
For the energy norm holds the ubiquitous Cauchy-Schwartz inequality

|a(u,v)| ≤ ∥u∥V∥v∥V (7.9)

the Triangle inequality

∥u+ v∥V ≤ ∥u∥V +∥v∥V (7.10)

and the Parallelogram law

∥u+ v∥2
V +∥u− v∥2

V ≤ 2(∥u∥2
V +∥v∥2

V ) (7.11)

7.2.1 Three Common Hilbert Spaces

There are three Hilbert spaces that frequently occur when dealing with weak forms
of partial differential equations. First there is the familiar space of square integrable
functions L2 = L2(Ω), defined by

L2(Ω) = {v :
∫

Ω
v2 dx < ∞} (7.12)

The functions in L2 are regular in the sense that they can be squared and still have a
bounded integral. However, this is generally not the case for their derivatives. This
is bad news since the weak form of a partial differential equation usually requires
integration of derivatives of either the test function v or the trial function u, or both.
Thus, we need spaces in which both a function and its derivatives are bounded. This
leads us to introduce the Hilbert space H1 = H1(Ω), defined by

H1(Ω) = {v : v ∈ L2, ∂v/∂xi ∈ L2, i = 1, . . . ,d} (7.13)

or equivalently



138 7 Abstract Finite Element Analysis

H1 = {v : ∥∇v∥+∥v∥< ∞} (7.14)

We see that the functions in H1 are those in L2 that also have all their partial deriva-
tives in L2. Thus, we have the inclusion H1 ⊂ L2. In other words L2 contains more
functions and is a bigger space than H1. For us H1 or some variant of it will be the
usual space to pose our abstract weak form on.

As said before, a Hilbert space have a scalar product and norm. For L2 the scalar
product (u,v)L2(Ω) is the usual integral

(u,v)L2(Ω) =
∫

Ω
uvdx, u,v ∈ L2(Ω) (7.15)

and the associated norm ∥ · ∥L2(Ω) is defined by

∥u∥L2(Ω) =
√
(u,u)L2(Ω), u ∈ L2(Ω) (7.16)

As is customary we shall often omit the subscript and write simply (·, ·) and ∥ · ∥ to
denote the L2 scalar product and norm, respectively.

The scalar product and norm on H1 is defined by

(u,v)H1(Ω) = (∇u,∇v)+(u,v), u,v ∈ H1(Ω) (7.17)

∥u∥H1(Ω) = (∥∇u∥2 +∥u∥2)1/2, u ∈ H1(Ω) (7.18)

Note that the H1 norm contains both ∥∇v∥ and ∥v∥ which is necessary to assert
that ∥v∥H1 = 0 if, and only if, v = 0. If we for some reason would try to use only
∥∇v∥ as norm on H1 then we would get the so-called semi-norm, which has all the
characteristics of a real norm except for the fact that it is not only zero for the zero
function v = 0. To see this just think of v =C with C a constant. The H1 semi-norm
is denoted |v|1 = ∥∇v∥. However, there is is one exception to this. On the subspace

H1
0 = {v ∈ H1, v|∂Ω= 0} (7.19)

the semi-norm |v|1 actually defines a norm. This has to do with the fact that the only
constant function in this subspace is the zero function.

On H1
0 holds the useful Poincaré inequality

∥v∥ ≤C|v|1 (7.20)

In fact this inequality holds on any subspace of H1 as long as v is zero on some part
of the boundary.

The reason for introducing H1 was to gain more control over the derivatives of
L2 functions. Even so it turns out that H1 contains many highly irregular functions.
In fact a H1 function need not have well defined point values in two and three
dimensions. This is a discovery with far reaching implications as it forces us to
redefine what we mean by a derivative. Recall that to define the derivative of a
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function it is necessary to evaluate the function at certain points. However, we shall
not dwell on this matter. Suffice it to say that there exist a concept called weak
derivatives, which can be used to give the derivative of a H1 function a precise
meaning. The basic idea is to interpret the derivatives in a distributional sense.

If the boundary ∂Ω is smooth or polygonal, then the following trace inequality
holds

∥v∥L2(∂Ω) ≤C∥v∥H1(Ω), v ∈ H1(Ω) (7.21)

Conversely, the functions on ∂Ω that can be extended as H1 functions into Ω is
denoted by H1/2(∂Ω).

7.3 Equivalent Minimization Problem

A key observation is that the abstract weak form (7.4) can be interpreted as the
minimization problem: find u ∈ v such that

F(u) = min
v∈V

F(v) (7.22)

where the functional F(v) is given by

F(v) = 1
2 a(v,v)− l(v) (7.23)

We shall now actually prove that the abstract weak problem is equivalent to the
above minimization problem. We begin by showing that the minimization problem
implies the weak problem. To this end suppose that u solves the minimization prob-
lem (7.22) and consider the auxiliary function

g(ε) = F(u+ εv) (7.24)

for a fixed, but arbitrary, function v ∈ V . Note that g(ε) is a scalar function of the
single variable ε , and attains its minimum for ε = 0. Obviously, this means that
g′(0) = 0. Expanding g(ε) = F(u+εv) and using the symmetry a(u,v) = a(v,u) we
have

g(ε) = F(u+ εv) (7.25)

= 1
2 a(u+ εv,u+ εv)− l(u+ εv) (7.26)

= 1
2 (a(u,u)+2εa(u,v)+ ε2a(v,v))− l(u)− εl(v) (7.27)

Differentiating this result with respect to ε we obtain

g′(ε) = a(u,v))− εa(v,v)− l(v) (7.28)

which gives
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g′(0) = a(u,v))− l(v) = 0 (7.29)

for each v ∈V . This is exactly the abstract weak problem.
Let us now instead suppose that u solves the weak form (7.4) and show that this

implies the minimization problem. To do so we observe that for any w ∈V we have

F(u+w) = 1
2 a(u+w,u+w)− l(u+w) (7.30)

= 1
2 (a(u,u)+2a(u,w)+a(w,w))− l(u)− l(w) (7.31)

= F(u)+a(u,w)− l(w)+ 1
2 a(w,w) (7.32)

= F(u)+ 1
2 a(w,w) (7.33)

≥ F(u) (7.34)

where we have used that a(u,w) = l(w). From this we conclude that F(u+w) attains
its minimum value for w = 0. This proves the claim.

7.4 The Lax-Milgram Lemma

Next we prove that the solution to the minimization problem (7.22) exist and is
unique. This result is known as the Lax-Milgram Lemma and is one of the most
important theorems in applied mathematics. However, for the Lax-Milgram Lemma
to hold there are a couple of requirements that must be satisfied. First, the linear
form l(·) and the bilinear form a(·, ·) must be continuous on the space V . That is,
there must exist constants C1 and C2 such that

|l(v)| ≤C1∥v∥V (7.35)
|a(u,v)| ≤C2∥u∥V∥v∥V (7.36)

Second, the bilinear form a(·, ·) must be coercive, which means that there must exist
a constant α > 0 such that

a(u,u)≥ α∥u∥2
V (7.37)

Third, we require a(·, ·) to be symmetric. Under these three assumptions we then
have the following lemma.

Theorem 7.1 (Lax-Milgram Lemma). Let a(·, ·) be a continues coercive bilinear
form, and let l(·) be a continuous linear form on the Hilbert space V . Then there
exist a solution u ∈V to the minimization problem

F(u) = min
v∈V

F(v) (7.38)

where F(v) = 1
2 a(v,v)− l(v).
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Proof. The idea is to show first that F is bounded from below. Otherwise there will
not exist a minimum. Second, we take a sequence {ui} in V such that F(ui) →
minF(u). Third, we then show that this sequence is a Cauchy sequence, and thus
that it converges since V is a Hilbert space. That is, there exist a u ∈ V such that
ui → u when i → ∞. Finally, the continuity of F implies that limi→∞ F(ui) = F(u).
But let us begin from the beginning.

The functional F(·) is bounded from below, since from the coercivity of a(·, ·)
and the continuity of l(·) it follows that

F(v) = 1
2 a(v,v)− l(v)≥ 1

2 α∥v∥2
V − c∥v∥V (7.39)

This is clearly a quadratic function of the variable v, and the minimum is attained
for v =− 1

2C2/α . Therefore we conclude that there is a minimum value β such that

β = min
v∈V

F(v) (7.40)

We can now choose a sequence {ui}∞
1 in V such that

F(ui)→ β , (7.41)

as i → ∞. Further, this sequence is in fact a Cauchy sequence since due to the coer-
civity of a(·, ·) and the parallelogram law we have

α∥ui −u j∥2
V ≤ a(ui −u j,ui −u j) (7.42)

= 2a(ui,ui)+2a(u j,u j)−4a(
ui +u j

2
,

ui +u j

2
) (7.43)

= 4(F(ui)+ l(ui))+4(F(u j)+ l(u j))−8(F(
ui +u j

2
)− l(

ui +u j

2
))

(7.44)

= 4F(ui)+4F(u j)−8F(
ui +u j

2
)+4l(ui)+4l(u j)−8l(

ui +u j

2
)

(7.45)

≤ 4F(ui)+4F(u j)−8β (7.46)

But, both F(ui) and F(u j) tend to β as i and j tend to infinity, which implies that
∥ui −u j∥ → 0 as i, j → ∞. We thus conclude that that {ui}∞

1 is a Cauchy sequence.
Now, sine V is a Hilbert space it follows by definition that every Cauchy sequence
has a limit in V and thus that there exist a u ∈V such that ui → u as i → ∞.

We must finally show that the found limit u is the minimizer of F . We know that
ui → u and that F(ui)→ β as i → ∞. Because F is continuous it follows that

lim
i→∞

F(ui) = F(lim
i→∞

ui) = F(u) = β (7.47)

and the proof is complete.
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We remark that there exist also a variant of the Lax-Milgram Lemma for problems
with a non-symmetric bilinear form.

The Lax-Milgram lemma asserts that the minimization problem, and thus also
the abstract weak problem, has a solution. We next show that this solution is unique.

Theorem 7.2. If a(·, ·) is a continuous coercive bilinear form, and l(·) a continuous
linear form on the Hilbert space V , then the abstract weak problem: find u ∈V such
that

a(u,v) = l(v), ∀v ∈V (7.48)

has a unique solution u.

Proof. The proof is by contradiction. Suppose there are two solutions u1 ∈ V and
u2 ∈V satisfying

a(u1,v) = l(v), ∀v ∈V (7.49)
a(u2,v) = l(v), ∀v ∈V (7.50)

Subtraction of the equations yields

a(u1 −u2,v) = 0, ∀v ∈V (7.51)

Now, choosing v = u1 −u2 we have

a(u1 −u2,u1 −u2) = 0, ∀v ∈V (7.52)

Using the coercivity of a(·, ·) we find that

a(u1 −u2,u1 −u2)≥ α∥u1 −u2∥2
V = 0 (7.53)

Thus, ∥u1 −u2∥2
V = 0, and hence u1 = u2. We are done.

Let us demonstrate the usability of the Lax-Milgram Lemma by working trough
some examples.

Let us first revisit Poisson’s equation

−∆u = f , x ∈ Ω , u = 0, x ∈ ∂Ω (7.54)

As we have seen the bilinear and linear forms of this equation are given by

a(u,v) = (∇u,∇v) (7.55)
l(v) = ( f ,v) (7.56)

and the appropriate Hilbert space is V = H1
0 with norm ∥v∥V = ∥v∥H1

0
= ∥∇v∥. To

show that the weak form of this equation has a unique solution we must show that
a(·, ·) is continuous and coercive, and that l(·) is continuous on V . The continuity
and coercivity of a(·, ·) follows from the Cauchy-Schwartz inequality, since we have
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a(u,v) = (∇u,∇v)≤ ∥∇u∥∥∇v∥ ≤ ∥u∥V∥v∥V (7.57)

and

a(u,u) = (∇u,∇u) = ∥∇u∥2 ≥ α∥u∥2
V (7.58)

with α = 1. The continuity of l(·) follows from the Cauchy-Schwartz inequality
again and the Poincaré inequality, which hold on H1

0 , since both u and v are zero on
the boundary. We have

l(v) = ( f ,v)≤ ∥ f∥∥v∥ ≤C∥ f∥∥∇v∥ ≤C∥ f∥∥v∥V ≤C∥v∥V (7.59)

where we have absorbed the norm of f into the constant C in the last line. This
shows why it is natural to demand f ∈ L2, since otherwise the norm ∥ f∥ might not
be well defined. Based on these findings we thus conclude the the requirements for
the Lax-Milgram Lemma are satisfied and that there exist a solution to the weak
form.

As a second example we consider the problem

−∆u+ cu = f , x ∈ Ω , n ·∇u = 0, x ∈ ∂Ω (7.60)

where c ∈ L2 is a given positive function with minimum value c0 > 0 on Ω , and
f ∈ L2 a given function. The bilinear and linear forms of this equation are given by

a(u,v) = (∇u,∇v)+(cu,v) (7.61)
l(v) = ( f ,v) (7.62)

and the appropriate Hilbert space is V = H1 because of the boundary conditions
on the normal derivative. We recall that the H1 norm is given by ∥v∥2

H1 = ∥v∥2
V =

∥∇v∥2 +∥v∥2. To show that the requirements for the Lax-Milgram Lemma are ful-
filled in this case we make repeated use of the Cauchy-Schwartz inequality. The
coercivity can be established in the following way

a(u,u) = (∇u,∇u)+(cu,u) (7.63)

≥ ∥∇u∥2 + c0∥u∥2 (7.64)

≥ min(1,c0)(∥∇u∥2 +∥u∥2) (7.65)

≥ α∥u∥2
V (7.66)

with the coercivity constant α = min(1,c0). The continuity of a(·, ·) follows from
the Cauchy-Schwartz inequality.
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a(u,v) = (∇u,∇v)+(cu,v) (7.67)
≤ ∥∇u∥∥∇v∥+∥c∥∥u∥∥v∥ (7.68)
≤C(∥∇u∥∥∇v∥+∥u∥∥v∥) (7.69)

≤C(∥∇u∥2 +∥u∥2)1/2(∥∇v∥2 +∥v∥2)1/2 (7.70)
≤C∥u∥V∥v∥V (7.71)

The continuity of l(·) is shown in a similar manner.

l(v) = ( f ,v)≤ ∥ f∥∥v∥ ≤C∥ f∥∥∇v∥ ≤C∥ f∥(∥∇v∥+∥v∥)≤C∥v∥V (7.72)

As our final example we consider

−∆u = 0, x ∈ Ω , u = 0, x ∈ ΓD, n ·∇u = gN , x ∈ ΓN (7.73)

where gN ∈ L2(ΓN) is a given function, and ΓD and ΓN are two disjoint segments
of the boundary associated with the Dirichlet and Neumann boundary conditions,
respectively. The bilinear and linear forms of this equation are given by

a(u,v) = (∇u,∇v) (7.74)
l(v) = (gN ,v)ΓN (7.75)

Due to the boundary conditions the Hilbert space on which the weak form is posed
is given by V = {v ∈ H1 : v|ΓD= 0} with norm ∥v∥V = ∥∇v∥. The coercivity and
continuity of a(·, ·) is easy to establish. However, the continuity of l(·) requires us
to estimate the norm of v on the boundary segment ΓN . To do so, we use the trace
inequality (7.21), which yields

l(v) = (gN ,v)ΓN ≤ ∥gN∥ΓN∥v∥ΓN ≤C∥gN∥ΓN∥v∥V ≤C∥v∥V (7.76)

which shows that l(·) is continuous.

7.5 Abstract Finite Element Approximation

7.5.1 Abstract Finite Element Method

From the Lax-Milgram Lemma we know that the solution u to the abstract weak
problem (7.4) exist and is unique. We can now approximate it using finite elements.
To this end let Vh ⊂ V be a finite dimensional subspace of V typically consisting
of continuous piecewise linear polynomials on a mesh K of Ω with global mesh
size h. The finite element approximation of the weak problem takes the form: find
uh ∈Vh such that
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a(uh,v) = l(v), ∀v ∈Vh (7.77)

7.5.2 Galerkin Orthogonality

To extract information about the error e = u−uh we subtract the finite element ap-
proximation (7.77) from the weak form (7.4). We then obtain the following Galerkin
orthogonality property

a(e,v) = 0, ∀v ∈Vh (7.78)

We interpret this as the error e being orthogonal to Vh with respect to the scalar
product a(·, ·).

7.5.3 A Priori Error Estimates

We now have the following abstract best approximation result know as Cea’s
Lemma.

Theorem 7.3 (Cea’s Lemma). For the error e = u−uh it holds that

∥e∥V ≤ C2

α
∥u− v∥V , ∀v ∈Vh (7.79)

where α is the coercivity and C the continuity constant of a(·, ·).

Proof. Starting from the coercivity of a(·, ·) we have for any v ∈Vh

α∥e∥2
V ≤ a(e,e) (7.80)
= a(e,u−uh) (7.81)
= a(e,u− v+ v−uh) (7.82)
= a(e,u− v)+a(e,v−uh) (7.83)
= a(e,u− v)+0 (7.84)
≤C2∥e∥V∥u− v∥V (7.85)

where we have used the Galerkin orthogonality to deduce that a(e,v− uh) = 0. In
the last line we have also used the continuity of a(·, ·). The claim follows by dividing
by ∥e∥V .

We can extend Cea’s Lemma by choosing v = πu ∈ Vh the interpolant of u, and
recalling a standard interpolation estimate. In doing so we immediately have the
following a priori error estimate.

Theorem 7.4. The error e = u−uh satisfies the a priori estimate
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∥e∥V ≤Ch2∥D2u∥ (7.86)

This shows that the error will tend to zero as the mesh size h tend to zero.

7.5.4 A Posteriori Error Estimate

A posteriori estimates can not be derived so elegantly as a priori estimates in the
abstract setting. All the same, to derive a formal a posteriori estimate we observe
that for any v ∈Vh we have

α∥e∥2
V ≤ a(e,e) (7.87)
= a(e,e− v) (7.88)
= a(u,e− v)−a(uh,e− v) (7.89)
= l(e− v)−a(uh,e− v) (7.90)

Now, introducing the weak residual R(uh), defined by

(R(uh),w) = l(w)−a(uh,w), ∀w ∈V (7.91)

we infer the following error representation formula

α∥e∥2
V ≤ (R(uh),e− v) (7.92)

which is the starting point for deriving a posteriori error estimates for elliptic equa-
tions.

By defining the following so-called dual norm of R(uh)

∥R(uh)∥V ∗ = sup
w∈V

(R(uh),w)
∥w∥V

(7.93)

and using (7.92) with v = 0 we have

α∥e∥2
V =

(R(uh),e)
∥e∥V

∥e∥V ≤ sup
w∈V

(R(uh),w)
∥w∥V

∥e∥V = ∥R(uh)∥V ∗∥e∥V (7.94)

Dividing by ∥e∥V we formally have the a posteriori estimate

∥e∥V ≤ 1
α
∥R(uh)∥V ∗ (7.95)

As simple as its looks the dual norm is still complicated to compute due to the
supremum. Therefore the error representation formula is usually instead used as is
for the particular equation under consideration with v = πe ∈ Vh, the interpolant
of e. The unspoken hope is to extract factors of type ∥e∥V to divide with and also
to obtain something that is simple to computable. Fortunately, this is often possi-
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ble. For example, for the general equation Lu = f with zero boundary conditions
and L the general second order elliptic operator defined by (7.2), we have the error
representation formula

∥∇e∥2 ≤ ( f ,e−πe)− (a∇uh,∇(e−πe))− (cuh,e−πe) (7.96)

which can be further manipulated to yield

∥∇e∥2 ≤C

(
∑

K∈K

h2
K∥ f +∇ · (a∇uh)− cuh∥2

K + 1
4 hK∥[n · (a∇uh)]∥2

∂K

)1/2

∥∇e∥

(7.97)

which is our desired a posteriori error estimate.

7.6 Problems

Exercise 7.1. Show that the solution u to the abstract weak problem (7.4) satisfies
the stability estimate ∥u∥V ≤C/α . Hint: Use the coercivity and continuity of a(·, ·).

Exercise 7.2. Show that if u satisfies a(u,v) = l(v) for all v ∈ V then u also mini-
mizes the functional J(v) = 1

2 a(v,v)− l(v) on V .

Exercise 7.3. Use the Poincaré inequality to show that ∥∇v∥ and ∥v∥H1 = ∥∇v∥+
∥v∥ are equivalent norms on H1

0 (Ω). In particular, verify that ∥∇v∥ = 0 implies
v = 0 on H1

0 (Ω).

Exercise 7.4. What numerical values do the constants α , C1, and C2 have for the
problem −∆u = xy2 on the square Ω = [−1,2]× [0,3] assuming a zero boundary
condition? Hint: The relevant space is H1

0 (Ω) with norm ∥v∥H1
0
= ∥∇v∥.

Exercise 7.5. Consider

a(u,v) = vT Au, l(v) = vT b, V = Rn

where A is a real n×n matrix, b is a real n×1 vector, and ∥ ·∥V the usual Euclidean
norm.

(a) Show by a simple argument from linear algebra that there exist a unique solution
u ∈V to (7.4) assuming that a(·, ·) is coercive on V .

(b) Show that the coerciveness of a(·, ·) is not really necessary in this case when V
has finite dimension, and that it suffice that a(v,v)> 0.

Exercise 7.6. Verify the trace inequality (7.21) for the particular choice v = x on the
square Ω = [0,L]2 with side length L. How does the constant C in the inequality
depend on L?





Chapter 8
The Finite Element

Abstract In this chapter we study the concept of a finite element in some depth.
We begin with the classical definition of a finite element as the triplet of a simplex,
a polynomial space, and a set of functionals. We then show how to derive shape
functions for the most common Lagrange elements on the reference triangle. The
isoparametric mapping is introduced as a tool to allow for curved elements, and to
simplify the computation of the element stiffness matrix and load vector. We finish
by presenting some more exotic elements, such as the Raviart Thomas and Nedelec
vector elements.

8.1 Different Types of Finite Elements

8.1.1 Formal Definition of a Finite Element

Formally, a finite element consists of the following triplet:

• A geometric simplex K.
• A polynomial function space P on K.
• A set of n = dim(P) functionals Li(·), i = 1,2, . . . ,n, defining the degrees of

freedom.

The standard choice of geometric simplex are triangles, or tetrahedrons, but
quadrilaterals, prisms, and bricks are also quite common. Triangle and tetrahedron
meshes have the advantage of being able to represent geometries with curved bound-
aries. On the other hand, quadrilaterals and bricks might be more easy to implement
in software. For example, if the mesh consists of uniformly shaped squares or cubes,
then the element stiffness matrix can be precomputed and stored away once and for
all. This obviously helps writing clean and correct code. Prisms are primarily used
for geometries with cylindrical symmetries, such as pipes, for instance. Powerful
mesh generators have been developed over the years for these simplex types. In

149
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the following we shall concentrate on triangular simplex for the sake of simplic-
ity. However, the ideas presented are quite general and the reader should have no
difficulties extending them to three dimensions.

To facilitate working with the space P let us equip it with a basis {N j}n
j=1. The

basis functions S j are generally called shape functions.
The n functionals L j(·), j = 1,2, . . . ,n, can be used to uniquely define the shape

functions S j by requiring them to satisfy

Li(S j) = δi j, i, j = 1,2, . . . ,n (8.1)

The set of shape functions is then said to be a nodal basis for P. The ability of the
functionals to uniquely determine the shape functions is called unisolvency, and can
be thought of as a compatibility condition for Li(·) and P. From the strict mathe-
matical point of view a finite element is called unisolvent if, and only if, Li(v) = 0
implies v = 0 for all v ∈ P and i. As we shall see the actual calculation of the shape
functions is easy as it amounts to solving a linear system of size n×n.

However, there is a more important but also more subtle task for the function-
als Li(·), namely, that of specifying the behavior of the shape functions between
adjacent simplex. To see this let us say we want our finite element functions to be
continuous on the whole domain Ω = ∪K. We must then take care when choosing
the functionals Li(·) so that the corresponding shape functions also become continu-
ous, especially across simplex boundaries. In other words, the functionals ultimately
determine the smoothness and approximation properties of the finite element space
Vh.

The particular choice of functionals Li(·) give rise to families of finite elements
sharing similar properties, although they might have different polynomial order, for
instance. The Lagrange family is the most popular and widely used. In two dimen-
sions the defining functionals are

Li(v) = v(Ni), i = 1,2, . . . ,n (8.2)

where Ni = (x(i)1 ,x(i)2 ) are a set of n carefully selected node points. Notice that the
functionals are the simplest possible in the sense that they only consist of point
evaluation of v at the nodes. In the linear case P = P1(K) and with K a triangle
these node points are the triangle vertices, and the shape functions N j, j = 1,2,3,
are the familiar hat functions.

The Lagrange shape functions are continuous, but have discontinuous deriva-
tives across element boundaries. Thus, it is a C0 element, which suffice to approx-
imate H1 space. In some applications it is, however, necessary to use more regular
(i.e., smoother) elements. An example of a C1 element is the triangular Argyris ele-
ment, which is a quintic polynomial with continuous derivatives. This element was
invented to approximate the Hilbert space H2 = {v : v ∈ L2,Dv ∈ L2,D2v ∈ L2},
which is the appropriate space for some fourth order problems, such as ∆ 2u = 0 for
instance. Not surprisingly, construction of the Argyris elements is more elaborate
than for the Lagrange element. Indeed, there are 21 defining functionals involving
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point evaluation of first, normal, and second order derivatives for the Argyris ele-
ment.

On the other hand, it is also possible to have completely discontinuous finite ele-
ments with no continuity between adjacent simplex. However, this kind of element
requires modification of the variational formulation to work.

In the next section we shall see how the shape functions can be computed for a
few different finite elements.

8.1.2 Shape Functions for the Linear Lagrange Triangle

Let us derive the shape functions for the linear Lagrange finite element. To this end,
let K̄ be the domain K̄ = {(r,s) : 0 < r,s < 1,r + s < 1}, that is, the triangle with
vertices at origo, (1,0), and (0,1). This triangle is often called the reference triangle,
see Figure (8.1). For reasons soon to become clear we use r and s as coordinates
rather than x1 and x2.

0

1.0

0 1.0

rs̄K

Fig. 8.1 Node points for the linear Lagrange element on the reference triangle K̄.

By definition, the appropriate space P is the space of linear polynomials P1(K̄)
on K̄, and the defining functionals are given by

L1(v) = v(0,0), L2(v) = v(1,0), L3(v) = v(0,1) (8.3)

Perhaps the simplest basis for P1(K) is the canonical basis {1,r,s}, so anyone of
the three shape functions S j, j = 1,2,3, can be expressed as a linear combination of
1, r, and s. For example, S1 can be written S1 = c1 + c2r+ c3s, where ci, i = 1,2,3
are coefficients to be determined. To do so, we demand that Li(S1) = δi1, which
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gives the 3×3 linear system

e1 =

1
0
0

=

L1(1) L1(r) L1(s)
L2(1) L2(r) L2(s)
L3(1) L3(r) L3(s)

c1
c2
c3

=

1 0 0
1 1 0
1 0 1

c1
c2
c3

=V c (8.4)

for the unknown coefficients ci. Note that the entries of V are simple to evaluate. For
example, the first row is point evaluation of the functions 1, r, and s at origo. This
immediately gives us V11 = L1(1) = 1, V12 = L1(r) = 0, V13 = L1(s) = 0, and so
on. The matrix V is generally called a Vandermonde matrix. Computing V−1e1 we
readily obtain c = [1, −1, −1]T , from which we deduce that S1 = c1 + c2r+ c3s =
1− r− s. Proceeding similarly for the shape functions S2 and S3 we eventually find
that

S1 = 1− r− s (8.5)
S2 = r (8.6)
S3 = s (8.7)

which we recognize as the usual hat functions on K̄.
We summarize by listing a routine for evaluating the linear shape functions and

their partial derivatives at a point (r,s) in K̄.

function [S,dSdr,dSds] = P1shapes(r,s)
S=[1-r-s; r; s];
dSdr=[-1; 1; 0];
dSds=[-1; 0; 1];

8.1.3 Shape Functions for the Quadratic Lagrange Triangle

For the quadratic Lagrange shape functions on the reference triangle K̄, the polyno-
mial space P is P2(K̄), and the defining functionals are given by

L1(v) = v(0,0), L2(v) = v(1,0), L3(v) = v(0,1) (8.8)
L4(v) = v(0.5,0.5), L5(v) = v(0,0.5), L6(v) = v(0.5,0) (8.9)

In other words the nodes are the triangle vertices and the mid-points of the edges.
See Figure 8.2.

Since a general polynomial of two variables has six coefficients, there must be
six shape functions S j, j = 1,2, . . . ,6. To see this note that the canonical basis for
P2(K̄) is {1,r,s,r2,rs,s2}, and that N j is a linear combination of these monomials.
Thus, we have S1 = c1 + c2r+ c3s+ c4r2 + c5rs+ c6s2 for example. To determine
the coefficients ci, i = 1,2, . . . ,6, we again demand that Li(S1) = δi1, which gives us
the 6×6 linear system
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0

0.5

1.0

0 0.5 1.0

rs

Fig. 8.2 Node points for the quadratic Lagrange element.

e1 =


1
0
0
0
0
0

=


L1(1) L1(r) L1(s) L1(r2) L1(rs) L1(s2)
L2(1) L2(r) L2(s) L2(r2) L2(rs) L2(s2)
L3(1) L3(r) L3(s) L3(r2) L3(rs) L3(s2)
L4(1) L4(r) L4(s) L4(r2) L4(rs) L4(s2)
L5(1) L5(r) L5(s) L5(r2) L5(rs) L5(s2)
L6(1) L6(r) L6(s) L6(r2) L6(rs) L6(s2)




c1
c2
c3
c4
c5
c6

 (8.10)

=


1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 0.5 0.5 0.25 0.25 0.25
1 0 0.5 0 0 0.25
1 0.5 0 0.25 0 0




c1
c2
c3
c4
c5
c6

=V c (8.11)

from which it follows that c = [1, −3, −4, 2, 4, 2]T .
In a similar fashion for the other shape functions can be found. Their explicit

formulas are

S1 = 1−3r−3s+2r2 +4rs+2s2 (8.12)

S2 = 2r2 − r (8.13)

S3 = 2s2 − s (8.14)
S4 = 4rs (8.15)

S5 = 4s−4rs−4s2 (8.16)

S6 = 4r−4r2 −4rs (8.17)
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We summarize by listing a routine for evaluating the quadratic shape functions
and their partial derivatives at a point (r,s) in K̄.

function [S,dSdr,dSds] = P2shapes(r,s)
S=[1-3*r-3*s+2*rˆ2+4*r*s+2*sˆ2;

2*rˆ2-r;
2*sˆ2-s;
4*r*s;
4*s-4*r*s-4*sˆ2;
4*r-4*rˆ2-4*r*s];

dSdr=[-3+4*r+4*s; 4*r-1; 0; 4*s; -4*s; 4-8*r-4*s];
dSds=[-3+4*r+4*s; 0; 4*s-1; 4*r; 4-4*r-8*s; -4*r];

8.1.4 Higher Order Triangular Lagrange Elements

The procedure for computing Lagrange shape functions on the reference triangle
K̄ generalizes to higher order. If there order of the polynomials space P is o, then
there are n = (o+1)(o+2)/2 nodes and shape functions. The nodes are positioned
in a lattice called the principal lattice of the reference triangle K̄. We have already
seen this lattice for o = 1 and 2. Figure 8.3 shows it also for o = 3 and 4. The
generalization to any higher order should be obvious.

o = 3o = 4

Fig. 8.3 Node points for the cubic and quartic Lagrange elements.

8.1.5 Shape Functions for the Bilinear Elements

Shape functions can also be constructed on quadrilaterals. To do so, let Q̄ be the
reference square Q̄ = {(r,s) : −1 < r,s < 1}, and let P(Q̄) be the space of bi-
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linear functions spanned by the canonical basis {1,r,s,rs}. The nodes (x(i)1 ,x(i)2 ),
i = 1,2,3,4 are the four corners of Q̄, and the defining functionals are again given
by Li(v) = v(x(i)1 ,x(i)2 ). We leave it as a simple exercise to the reader to verify that
the shape functions take the form

S1 = (1− r)(1− s) (8.18)
S2 = (1+ r)(1− s) (8.19)
S3 = (1+ r)(1+ s) (8.20)
S4 = (1− r)(1+ s) (8.21)

1

−1

1−1

rs

Fig. 8.4 Node points for the bilinear element on the reference square Q̄.

8.2 The Isoparametric Mapping

Up to now we have used various tricks to integrate the entries of the element stiff-
ness matrix and load vector. However, this approach quickly gets cumbersome for
higher order elements. Also, to improve the geometry representation of the compu-
tational domain and not only the solution approximation we would like to be able
to work with elements with curved boundaries. Fortunately, it turns out that these
two obstacles can be overcome through the concepts of numerical quadrature and
isoparametric elements, respectively. The combination of these two ideas allows
for a simple and uniform treatment of the elemental assembly procedure. We shall
present the isoparametric mapping for triangle elements, although the ideas directly
carry over to other element types, such as tetrahedrons for instance.
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The setting up the isoparametric map is easily described. Suppose we have a
mesh triangle K with nodes at Ni = (x(i)1 ,x(i)2 ), i = 1,2, . . . ,n. We will refer to K this
as the physical element, as opposed to the reference element K̄. Now, the basic idea
is to use the shape functions S j on K̄ to describe the geometry of K through the
formulas

x1(r,s) =
n

∑
i=1

x(i)1 Si(r,s) (8.22)

x2(r,s) =
n

∑
i=1

x(i)2 Si(r,s) (8.23)

In other words given a point (r,s) in K̄ the above formulas maps it to the physical
point (x1,x2) in K. Thus, the coordinates x1 and x2 are parameterized by r and s.
This is the isoparametric mapping. Observe that this yields curved boundaries on
K whenever the node coordinates (x(i)1 ,x(i)2 ) lying on triangle edges do not lie on a
straight lines between the vertices.

Of course, any finite element function v on K is also expressed using the shape
functions.

v(r,s) =
n

∑
i=1

viSi(r,s) (8.24)

Since the stiffness matrix involves partial derivatives of v we use the chain rule to
differentiate with respect to r and s, yielding

∂v
∂x1

=
∂v
∂ r

∂ r
∂x1

+
∂v
∂ s

∂ s
∂x1

(8.25)

∂v
∂x2

=
∂v
∂ r

∂ r
∂x2

+
∂v
∂ s

∂ s
∂x2

(8.26)

In matrix form we can write this as[
∂v
∂x1
∂v
∂x2

]
=

[
∂ r

∂x1
∂ s

∂x1
∂ r

∂x2
∂ s

∂x2

][ ∂v
∂ r
∂v
∂ s

]
= J−1

[ ∂v
∂ r
∂v
∂ s

]
(8.27)

where we have introduced the Jacobian matrix J, defined by

J =

[
∂x1
∂ r

∂x2
∂ r

∂x1
∂ s

∂x2
∂ s

]
(8.28)

Here, the explicit expressions for the entries of J are given by
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J11 =
∂x1

∂ r
= ∑

i

∂Si

∂ r
x(i)1 (8.29)

J12 =
∂x2

∂ r
= ∑

i

∂Si

∂ r
x(i)2 (8.30)

J21 =
∂x1

∂ s
= ∑

i

∂Si

∂ s
x(i)1 (8.31)

J22 =
∂x2

∂ s
= ∑

i

∂Si

∂ s
x(i)2 (8.32)

To summarize, given the node coordinates, shape functions, and nodal values vi
of a finite element function, we can compute its partial derivative at a point (x1,x2)
in K, or equivalently, (r,s) in K̄, by solving the 2×2 linear system (??).

We remark that the invertability of J depends on the quality of K, which can be
used to show that the isoparametric map is one to one.

We observe that for the linear Lagrange finite element the Jacobian matrix is
given by

J =

[
x(2)1 − x(1)1 x(2)2 − x(1)2

x(3)2 − x(1)2 x(3)2 − x(1)2

]
(8.33)

where (x(i)1 ,x(i)2 ), i = 1,2,3, are the vertices of K. Further, the determinant of J is
given by

det(J) = 2|K| (8.34)

This is to be expected since we might recall from calculus that the determinant of
a mapping is the area scale between the image and range of the mapping (i.e., two
domains K and K̄). Now, the area of K̄ is 1/2. Hence, the factor 2 in front of |K|.
Needless to say det(J) is constant for this element.

A routine for computing the Jacobian J at (r,s) given the n node coordinates
(x(i)1 ,x(i)2 ) is given below.

function [S,dSdx,dSdy,detJ] = Isopmap(x,y,r,s,shapefcn)
[S,dSdr,dSds]=shapefcn(r,s);
j11=dot(dSdr,x); j12=dot(dNdr,y);
j21=dot(dSds,x); j22=dot(dNds,y);
detJ=j11*j22-j12*j21;
dSdx=( j22*dSdr-j12*dSds)/detJ;
dSdy=(-j21*dSdr+j11*dSds)/detJ;

Here, shapefun is assumed to be a function handle, which can be either of the
subroutines P1shapes and P2shapes, depending on if we want to evaluate linear
or quadratic shape functions.
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8.2.1 Quadrature

The entries of the stiffness matrix and load vector involves integrals over the physi-
cal elements K. However, since we want to compute on the reference element K̄ we
have to study how the isoparametric map (x1,x2) 7→ (r,s) affects integrals. To do so,
we recall the following change of variables formula∫

K
f (x1,x2)dx =

∫
K̄

f (r,s)det(J(r,s))drds (8.35)

which allows us to integrate over K̄ instead of K.
Now, approximating the integral over K̄ by a quadrature formula we have

∫
K̂

f (r,s)det(J(r,s))drds ≈
nq

∑
q=1

wq f (rq,sq)det(J(rq,sq)) (8.36)

where Nq is the number of quadrature points, wq the quadrature weights, and (rq,sq)
the quadrature points.

The construction of efficient quadrature rules on triangles is difficult and still
to some extent unexplored territory. All the same, a routine which tabulates Gauss
quadrature weights and points on K̄ up to precision four (i.e., polynomials of maxi-
mal degree four can be integrated exactly) is given below. The weights are scaled so
that they sum to one. As a consequence the determinant det(J) needs to be divided
by two to integrate correctly.

function [rspts,qwgts] = Gausspoints(precision)
switch precision
case 1
qwgts=[1];
rspts=[1/3 1/3];
case 2
qwgts=[1/3 1/3 1/3];
rspts=[1/6 1/6;
2/3 1/6;
1/6 2/3];
case 3
qwgts=[-27/48 25/48 25/48 25/48];
rspts=[1/3 1/3;
0.2 0.2;
0.6 0.2;
0.2 0.6];
case 4
qwgts=[0.223381589678011
0.223381589678011
0.223381589678011
0.109951743655322



8.2 The Isoparametric Mapping 159

0.109951743655322
0.109951743655322];
rspts=[0.445948490915965 0.445948490915965;
0.445948490915965 0.108103018168070;
0.108103018168070 0.445948490915965;
0.091576213509771 0.091576213509771;
0.091576213509771 0.816847572980459;
0.816847572980459 0.091576213509771];
otherwise
error(’Quadrature precision too high’)

end

As a small example of use we integrate the mass matrix MK = (Si,S j)K on a
triangle K with vertices at (0,0), (3,0) and (−2,4), using linear Lagrange shape
functions.

[rspts,qwgts]=Gausspoints(2) % quadrature rule
x=[0 3 -2]; % node x-coordinates
y=[0 0 4]; % y-
MK=zeros(3,3); % allocate element mass matrix
for q=1:length(qwgts) % quadrature loop
r=rspts(q,1); % r coordinate
s=rspts(q,2); % s
[S,dSdx,dSdy,detJ]=Isopmap(x,y,r,s,@P1shape); % map
wxarea=qwgts(q)*detJ/2; % weight times det(J)
MK=MK+(S*S’)*wxarea; % compute and add integrand to MK

end

8.2.2 Renumbering the Mesh for Quadratic Nodes

As we have seen triangular Lagrange finite elements have n = (o + 1)(o + 2)/2
nodes per element. To correctly assemble the stiffness matrix and load vector it is
therefore necessary to modify the mesh to include all nodes. In this section we show
how this can be done efficiently for the special case o = 2. Recall that quadratic La-
grange elements have nodes at the vertices and the mid-points of the edges. As the
vertex nodes are already numbered by the mesh generator initmesh the problem
boils down to numbering the edge nodes. To do so, we first record the node to edge
incidence by using a sparse matrix A. More precisely, if there is a edge between ver-
tex i and j then we set A(i, j) =−1. Using the standard point and triangle matrices
p and t this can efficiently be done with the following code snippet.

np=size(t,2); % number of vertices
nt=size(t,2); % number of triangles
i=t(1,:); % i=1st vertex within all elements
j=t(2,:); % j=2nd
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k=t(3,:); % k=3rd
A=sparse(j,k,-1,np,np); % 1st edge is between (j,k)
A=A+sparse(i,k,-1,np,np); % 2nd (i,k)
A=A+sparse(i,j,-1,np,np); % 3rd (i,j)

Since the edge between vertex i and j trivially also lies between vertex j and i we
should have A(i, j) = A( j, i) =−1. To ensure this we add the transpose AT to A and
look for negative matrix entries, that is,

A=-((A+A.’)<0);

We can look at the stored matrix entries (i.e., created edges) by typing

A=triu(A); % extract upper triangle of A
[r,c,v]=find(A); % rows, columns, and values(=-1)

Now, to number the edges we simply tale the matrix values, which are all −1, and
renumber them consecutively, staring from 1. Then, we reassemble the upper tri-
angle part of A. Finally, we expand A to symmetric form by again adding AT to
A.

v=[1:length(v)]; % renumber values (ie. edges)
A=sparse(rows,cols,entries,np,np); % reassemble A
A=A+A’; % expand A to a symmetric matrix

The edge numbers for the three edges of each element can now be read form A.

edges=zeros(nt,3);
for k=1:nt
edges(k,:)=[A(t(2,k),t(3,k))

A(t(1,k),t(3,k))
A(t(1,k),t(2,k))]’;

end

In the Appendix we list a routine called Tri2Edge containing the above code.
Using the edge numbering routine it is straight forward to insert the new nodes

into the point and triangle matrices p and t.

function [p,t] = ChangeP1toP2Mesh(p,t)
np=size(p,2); % number of nodes
edges=Tri2Edge(p,t); % get element edge numbers
edges=edges+np; % change edges to new nodes
i=t(1,:); j=t(2,:); k=t(3,:);
e=edges(:,1);
p(1,e)=0.5*(p(1,j)+p(1,k)); % edge node coordinates
p(2,e)=0.5*(p(2,j)+p(2,k));
e=edges(:,2);
p(1,e)=0.5*(p(1,i)+p(1,k));
p(2,e)=0.5*(p(2,i)+p(2,k));
e=edges(:,3);
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p(1,e)=0.5*(p(1,i)+p(1,j));
p(2,e)=0.5*(p(2,i)+p(2,j));
t(7,:)=t(4,:); % move subdomain info, resize t
t(4:6,:)=edges’; % insert edge nodes into t

For higher order Lagrange elements it is necessary to insert more nodes on the
edges, but this is fairly simple once these have been properly numbered. Higher
order elements also contains interior nodes, but these are trivial to number uniquely.

8.2.3 Assembly of the Isoparametric Quadratic Stiffness Matrix

We next show how to assemble the usual stiffness matrix on a mesh renumbered for
isoparametric Lagrange finite elements of order 2.

function [A,M,F] = IsoP2StiffMat2D(p,t,force)
[rspts,qwgts]=Gausspoints(4); % quadrature rule
np=size(p,2); % number of nodes
nt=size(t,2); % number of elements
A=sparse(np,np); % allocate stiffness matrix
for i=1:nt % loop over elements
nodes=t(1:6,i); % node numbers
x=p(1,nodes); % node x-coordinates
y=p(2,nodes); % y-
AK=zeros(6,6); % elements stiffness
for q=1:length(qwgts) % quadrature loop
r=rspts(q,1); % quadrature r-coordinate
s=rspts(q,2); % s-
[S,dSdx,dSdy,detJ]=Isopmap(x,y,r,s,@P2shapes);
wxarea=qwgts(q)*detJ/2; % weight times area
AK=AK+(dSdx*dSdx’+dSdy*dSdy’)*wxarea; % element stiffness

end
A(nodes,nodes)=A(nodes,nodes)+AK;

end

To call this routine one can type for example

[p,e,t] = initmesh(’squareg’);
[p,t] = ChangeP1toP2Mesh(p,t);
A = IsoP2StiffMat2D(p,t);

8.3 Some More Exotic Finite Elements

Finite elements are often invented for a particular purpose. They might be designed
for a specific application area, or constructed to mimic a particular function space.
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As we recall Lagrange elements approximate H1 functions, while the Argyris ele-
ment approximate H2 functions. In this section we shall briefly look at a few exotic
elements, which are tailor made to mimic a certain Hilbert space, or are somewhat
peculiar.

8.3.1 The Crouzeix-Raviart Element

The Crouzeix-Raviart element is a finite element defined on triangles or tetrahe-
drons. It a linear element which is only continuous at the mid-points of the triangle
edges or tetrahedron faces. Figure 8.5 shows a mesh of the unit square and the
Crouzeix-Raviart interpolant of 1+ 2sin(3x1). Note that the interpolant is discon-
tinuous except at the mid-point of the triangle edges.
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Fig. 8.5 Crouzeix-Raviart interpolant of 1+2sin(3x1) on a mesh of the unit square.

On a standard straight sided triangle K, the polynomial space for the Crouzeix-
Raviart element is P1(K), and the defining functionals are given by

Li(v) = (v,1)Ei , i = 1,2,3 (8.37)

where Ei is triangle edge i. In other words the degrees of freedom is the mean value
of v over Ei.Now, since the mean of a linear function over Ei is the value of v at the
mid-point mi of Ei, we can alternatively define the functionals by

Li(v) = v(mi), i = 1,2,3 (8.38)
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The explicit expressions for the shape functions are given by

SCR
1 =−φ1 +φ2 +φ3, SCR

2 = φ1 −φ2 +φ3, SCR
3 = φ1 +φ2 −φ3 (8.39)

where φi are the usual hat functions on K.
Because the Crouzeix-Raviart functions are continuous only at each edge mid-

point they are generally discontinuous along the edges. Thus, this finite element
space is not a subspace of H1, which is a little strange since the Crouzeix-Raviart
element is used to approximate precisely H1. Finite element spaces that are not a
subspace of the continuous space on which the variational equation is posed is called
non-conforming.

The Crouzeix-Raviart element finds application in fluid mechanics.

8.3.2 The Lowest Order Raviart-Thomas Element

Not all finite elements are scalar. There are also vector valued elements. As the name
suggests vector valued elements are used to approximate vector valued equations.
One such element is the Raviart-Thomas element, which is used to approximate the
Hilbert space H(div) = {v ∈ [L2(Ω)]2 : ∇ ·v}, that is, the space of all vectors v ∈R2

with bounded divergence ∇ · v. A simple application of Green’s formula shows that
all such functions must have continuous normal components, which is the basic
design feature of the Raviart-Thomas element. Typical applications include finite
element methods for acoustics and elasticity.

Actually there is a whole family of Raviart Thomas elements, but we shall only
study the simplest of them called the RT0 element. On a general triangle K the
polynomial space for RT0 is P = [P0(K)]2 +[x1, x2]

T P0(K), that is, all vectors v of
the form

v =
[

a1
a2

]
+b
[

x1
x2

]
(8.40)

for some coefficients a1, a2, and b. Further, the defining functionals are given by

Li(v) = (ni,v)Ei , i = 1,2,3 (8.41)

where ni is a unit normal on edge Ei of K.
Closed form formulas for the RT0 shape functions can be derived and is given by

SRT0
i =

1
2|K|

[
x1 − x(i)1

x2 − x(i)2

]
, i = 1,2,3 (8.42)

where (x(i)1 ,x(i)2 ) are the coordinates of the vertex opposite edge Ei, see Figure 8.6.
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(a) N1 (b) N2 (c) N3

Fig. 8.6 RT0 shape functions on a triangle.

If the normal is chosen consistently on each edge Ei in the mesh, then by con-
struction is the RT0 shape functions are normal continuous across any edge of two
adjacent elements. This ensures that the RT0 functions belong to H(div).

The isoparametric map can not be used for RT0 elements since the divergence is
not preserved by this mapping.

8.3.3 The Lowest Order Nedelec Element

The Nedelec, or edge, elements is another example of a family of vector valued
finite elements. The Nedelec elements are used to approximate the space H(curl) =
{v ∈ [L2(Ω)]2 : ∇× v ∈ L2(Ω)}, that is the space of vectors v ∈ R2 with bounded
curl. This space is the natural one for certain electromagnetic problems.

On a triangle K the polynomial space for the lowest oder Nedelec element is
P = [P0(K)]2 +[x2, x1]

T P0(K) and the defining functionals are

Li(v) = (ti,v)Ei , i = 1,2,3 (8.43)

where t is a unit tangent vector on edge Ei.
The explicit formulas for the shape functions are given by

S1 = φ2∇φ3 −φ3∇φ2 (8.44)
S2 = φ1∇φ3 −φ3∇φ1 (8.45)
S3 = φ1∇φ2 −φ2∇φ1 (8.46)

where φi are the usual hat functions, see Figure 8.7.
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(a) N1 (b) N2 (c) N3

Fig. 8.7 Lowest order Nedelec shape functions on a triangle.

The Nedelec shape functions are tangent continuous across element edges pro-
vided that the tangent is chosen consistently on each edge in the mesh.

The isoparametric map can not be used for Nedelec elements since the curl is not
preserved by this mapping.

8.4 Problems

Exercise 8.1. Work out the formulas for the cubic Lagrange shape functions on the
reference traingle K̄.

Exercise 8.2. Show that the bilinear element is not unisolvent if the four nodes are
placed at (−1,0), (0,−1), (1,0), and (0,1) on the reference square Q̄.

Exercise 8.3. Write a routine IsoP2MassMat for assembling the mass matrix M.

Exercise 8.4. Calculate the Crouzeix-Raviart interpolant of f = 2x1x2 + 4 on the
reference triangle K̄.

Exercise 8.5. How does the isoparametric map look in three dimensions?





Chapter 9
Non-linear Problems

Abstract Many real-world problems are modeled by non-linear mathematical mod-
els. Plasticity of highly stressed materials, drying paint, and turbulent flow of atmo-
spheric gases are just some examples of such non-linear phenomenons. In fact, most
of the physical, biological, and chemical processes going on around us everyday are
described by more or less non-linear laws of nature. Thus, non-linear equations
are of special interest, but unfortunately, they are intrinsically hard to solve. In this
chapter we study the standard methods for tackling non-linear partial differential
equations discretized by finite element methods, namely, Newton’s method and its
simplified variant Piccard, or, fixed-point iteration.

9.1 Piccard Iteration

Piccard, or fixed-point, iteration is perhaps the most primitive technique for solving
non-linear equations. It is applicatble to equations of the form

x = g(x) (9.1)

where we for simplicity assume that g is a scalar non-linear function of a single
variable x. The basic idea is to take a first rough guess at the solution x0, and then to
compute successively until convergence

xk = g(xk−1) (9.2)

This leads to the following algorithm:

167
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Algorithm 22 Piccard Iteration for a Scalar Non-linear Equation
1: Choose a staring guess x0, and a desired accuracy ε .
2: for k = 1,2,3, . . . do
3: Compute the next solution guess from xk+1 = g(xk).
4: if |δ k|< ε then
5: Stop.
6: end if
7: end for

This algorithm will converge if the operator g is a contraction mapping, that is,
if there exist a constant L < 1 such that ∥g(x)−g(y)∥ ≤ L∥x− y∥ for all x and y. To
see this, let x̄ be the exact solution to (9.1) (i.e., a so-called fixed point). Then, by
subtracting x̄ = g(x̄) from (9.1) we have ∥xk+1− x̄∥= ∥g(xk)−g(x̄)∥ ≤ L∥xk − x̄∥ ≤
Lk∥x0 − x̄∥, from which we see that convergence is indeed guaranteed if L < 1.

Piccard iteration is simple to implement, but its rate of convergence is often slow.

9.2 Newton’s Method

Besides Piccard iteration there is also Newton’s method for solving non-linear equa-
tions. Newton’s method is more complicated than the Piccard iteration technique,
but it usually converges much faster. To explain Newton’s method let us again con-
sidering the non-linear equation g(x) = 0.

The first step is to assume that the solution x̄ can be written as the sum

x̄ = x0 +δ (9.3)

where x0 is some known guess of x̄ and δ a correction. The unspoken hope is that
x0 is close to x̄ so that δ is small. Next, from the Taylor expansion of g(x) around x̄,
we have

g(x̄) = g(x0 +δ ) = g(x0)+g′(x0)δ +O(δ 2) (9.4)

Neglecting second order terms, and using that g(x̄) = 0, we further have

0 ≈ g(x0)+g′(x0)δ (9.5)

The pivotal point here is that this is a linear relation with respect to δ , and even if
it is not really an equation, we use it to define an approximate correction δ 0 ≈ δ .
Thus, by evaluating

δ 0 =−g(x0)/g′(x0) (9.6)
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and adding δ 0 to x0 we ought to get a better approximation of x̄ than x0, at least if
x0 is close to x̄. This line of reasoning leads to the following algorithm, which is
precisely Newton’s method:

Algorithm 23 Newton’s Method for a Scalar Non-linear Equation
1: Choose a staring guess x0, and a desired accuracy ε .
2: for k = 1,2,3, . . . do
3: Compute the correction δ k =−g(xk)/g′(xk).
4: Update the solution guess xk+1 = xk +δ k.
5: if |δ k|< ε then
6: Stop.
7: end if
8: end for

Newton’s method is popular because it usually converges rapidly. One can show
that

∥xk+1 − x̄∥ ≤C∥xk − x̄∥2 (9.7)

when xk is sufficiently close to x̄. From this we see that the asymptotic rate of con-
vergence is quadratic, which is very fast for any numerical method.

The primary drawback of Newton’s method is that it requires information about
the derivative g′(x), which can be costly to compute.

9.3 The Non-linear Poisson Equation

Having derived Newton’s method for a scalar equation we shall now do the same
for a non-linear partial differential equation. We do this by first linearizing the con-
tinuous problem and then apply finite element discretization. As model problem we
use the non-linear Poisson equation

−∇ · (a(u)∇u) = f , in Ω (9.8a)
u = 0, on ∂Ω (9.8b)

where a and f are given coefficients. The non-linearity is due to the coefficient
a = a(u), which depends on the unknown solution u. In order to fulfill the Lax-
Milgram lemma we assume that a(u) is a positive function on Ω . Typically, a(u) is,
or can be approximated, by a polynomial in u.
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9.3.1 The Newton-Galerkin Method

As usual, multiplying −∇ · (a(u)∇u) = f by a test function which is zero on the
boundary ∂Ω , and integrating by parts we obtain the weak form of (9.1): find u∈H1

0
such that

(a(u)∇u,∇v) = ( f ,v), ∀v ∈ H1
0 (9.9)

Newton’s method is in the context of non-linear variational equations known as
the Newton-Galerkin method, and to derive it for the weak form above we first write
u as the sum

u = u0 +δ (9.10)

where u0 is a some known approximation of u, and δ is a correction. This gives us

(a(u0 +δ )∇(u0 +δ ),∇v) = ( f ,v), ∀v ∈ H1
0 (9.11)

Making a Taylor expansion of a(u) = a(u0 +δ ) around u0 we get

a(u0 +δ ) = a(u0)+a′u(u
0)δ +O(δ 2) (9.12)

Substituting this into (9.11) we have

((a(u0)+a′u(u
0)δ +O(δ 2))∇(u0 +δ ),∇v) = ( f ,v), ∀v ∈ H1

0 (9.13)

Neglecting in particular the term (a′u(u
0)δ∇δ ,∇v) and all other terms that are

quadratic in δ , we end up with an equation for an approximate correction δ 0 ≈ δ :
find δ 0 ∈ H1

0 such that

(a(u0)∇δ 0 +a′u(u
0)δ 0∇u0,∇v) = ( f ,v)− (a(u0)∇u0,∇v), ∀v ∈ H1

0 (9.14)

Once we have found δ 0 the Newton-Galerkin method is then to set u1 = u0 +δ 0

and iterate, starting with the new solution guess u1.

9.3.2 Finite Element Approximation

Let K = {K} be a mesh of Ω , and let Vh,0 ⊂ H1
0 be the usual space of continuous

piecewise linears on K . Replacing H1
0 with Vh,0 in the weak form we obtain the

finite element approximation of (9.7): find δ 0
h ∈Vh,0 such that

(a(u0)∇δ 0
h +a′u(u

0
h)δ

0
h ∇u0

h,∇v) = ( f ,v)− (a(u0)∇u0,∇v), ∀v ∈Vh,0 (9.15)
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Here, we have tacitly assumed that u0 = u0
h is a function in the finite element space

Vh,0.
The finite element method (9.15) is equivalent to

(a(u0)∇δh +a′u(u
0
h)δh∇u0

h,∇φi) = ( f ,φi)− (a(u0)∇u0,∇φi), i = 1, . . . ,ni
(9.16)

where {φi}ni
1 is the usual set of hat functions which forms a basis for Vh,0. Further,

writing δh as the sum

δh =
ni

∑
j=1

d jφ j (9.17)

and inserting into (9.15) we get

ni

∑
j=1

d j(a(u0
h)∇φ j +a′u(u

0
h)φ j∇u0

h,∇φi) = ( f ,φi)− (a(u0
h)∇u0,∇φi), i = 1, . . . ,ni

(9.18)

which is a system of ni linear equations for the ni unknown coefficients d j. Indeed,
in matrix form we write this

Jd = r (9.19)

where J is the ni ×ni Jacobian matrix with entries

Ji j = (a(u0
h)∇φ j,∇φi)+(a′u(u

0
h)φ j∇u0

h,∇φi), i, j = 1, . . . ,ni (9.20)

and r is the ni ×1 residual vector with entries

ri = ( f ,φi)− (a(u0
h)∇u0

h,∇φi), i = 1, . . . ,ni (9.21)

We can now formulate a discrete Newton-Galerkin method.
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Algorithm 24 Newton-Galerkin Method for the Non-linear Poisson Equation
1: Choose a starting guess u0

h ∈Vh,0, and a desired tolerance ε .
2: for k = 1,2,3, . . . do
3: Assemble the Jacobian matrix Jk and the residual vector rk with entries

Jk
i j = (a(uk

h)∇φ j,∇φi)+(a′u(u
k
h)φ j∇uk

h,∇φi) (9.22)

rk
i = ( f ,φi)− (a(u0

h)∇u0
h,∇φi) (9.23)

4: Solve the linear system

Jkdk = rk (9.24)

5: Set uk+1
h = uk

h +δ k
h .

6: if ∥δ k
h ∥< ε then

7: Stop.
8: end if
9: end for

Here, we terminate the iteration process when the correction δ k
h is small, which

indicates that the iteration error uk+1
h − uk

h is small, but we could equally well stop
iterating when the residual rk is small, which would indicate that the equation is
well satisfied by uk

h. Both these termination criteria are natural and it does not matter
which one is used.

In practice, the assembly of the Jacobian matrix is simplified by using mass lump-
ing, that is, replaced by a diagonal matrix containing the origonal matrix row sums.
Since ∑ j φ j = 1 we have the approximation

(a′u(u
k
h)φ j∇uk

h,∇φi)≈ δi j(a′u(u
k
h)∇uk

h,∇φi) (9.25)

where δi j is 1 if i = j and 0 otherwise. As a consequence, if A and b are the usual
stiffness matrix and load vector with entries A(a)

i j = (a∇φ j,∇φi), i, j = 1, . . . ,ni, and
bi = ( f ,∇φi), i = 1, . . . ,ni, then

Jk ≈ diag(A(a′u)uk)+A(a) (9.26)

and

rk = b−A(a)uk (9.27)

where uk is the ni ×1 vector of nodal values for uk
h.
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9.3.3 Piccard Iteration as a Simplified Newton Method

The computation of the Jacobian is numerically costly and we would like to sim-
plify this as much as possible. We have already done so by using mass lumping to
obtain the approximate Jacobian Jk ≈ diag(A(a′u)uk)+A(a). However, a more brutal
approximation is to omit the diagonal matrix all together. This gives the simplified
Newton iteration

uk+1 = uk +dk (9.28)

= uk + Jk−1
rk (9.29)

= uk +A(a)−1
(b−A(a)uk) (9.30)

= A(a)−1
b (9.31)

We recognize this as Piccard iterations on A(a)u = b. Recall that this non-linear
system of equations is precisely what one gets when applying finite elements to the
original non-linear Poisson equation −∇ ·(a(u)∇u) = f . Thus, Piccard iteration can
be seen as a simplified Newton method in which the Jacobian J is approximated
by the stiffness matrix A(a). Of course, this method will work only for very mildly
non-linearities.

9.3.4 Computer Implementation

Below we present a MATLAB code for assembling the Jacobian matrix (9.26) and
the residual vector (9.27). The computation of the derivative a′u is done using nu-
meric differentiation.

function [J,r] = JacRes(p,e,t,u,Afcn,Ffcn)
i=t(1,:); j=t(2,:); k=t(3,:); % triangle vertices
xc=(p(1,i)+p(1,j)+p(1,k))/3; % triangle centroids
yc=(p(2,i)+p(2,j)+p(2,k))/3;
% Evaluate u, a, a’, and f.
tiny=1.e-8;
uu=(u(i)+u(j)+u(k))/3;
aa=Afcn(uu); % a(u)
da=Afcn(uu+tiny); % a(u+tiny)
da=(da-aa)/tiny; % da(u)/du
ff=Ffcn(xc,yc);
% Assemble Jacobian and residual.
[Aa ,unused,b]=assema(p,t,aa’,0,ff);
[Ada,unused] =assema(p,t,da’,0,0);
J=diag(Ada*u)+Aa; % Jacobian
r=b-Aa*u; % residual
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% Enforce zero Dirichlet BC.
fixed=unique([e(1,:) e(2,:)]); % boundary nodes
for i=1:length(fixed)
n=bdry(i); % a boundary node
J(n,:)=0; % zero out row n of the Jacobian, J
J(n,n)=1; % set diagonal entry J(n,n) to 1
r(n)=0; % set residual entry r(n) to 0

end

Input to this routine is the usual point, edge, and triangle matrices p, e, and t, and
a vector u containing the nodal values of the current approximation uk. The coef-
ficients a and f are assumed to be defined by two separate subroutines Afcn and
Ffcn defined elsewhere and passed via function handles. Output is the assembled
Jacobian matrix Jk and the residual vector rk. The actual assembly of the necessary
matrices are done with assema.

As a numerical experiment let us compute the finite element solution to the non-
linear Poisson equation (9.1) on the unit square Ω = [0,1]2 with a(u) = 0.125+u2,
and f = 1. The necessary code is listed below.

function NewtonPoissonSolver()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.05); % create mesh
u=zeros(size(p,2),1); % initial guess
for k=1:5 % non-linear loop
[J,r]=JacRes(p,e,t,u,@Afcn,@Ffcn); % assemble J and r
d=J\r; % solve for correction
u=u+d; % update solution
sprintf(’|d|=%f, |r|=%f’, norm(d), norm(r))

end
pdesurf(p,t,u)

function z = Afcn(u)
z=0.125+u.ˆ2;

function z = Ffcn(x,y)
z=1;

In Figure 9.1 we show the computed solution uh. Due to the non-linearity uh is
flatter on the top and has steeper gradients near the boundary than in the linear case
a = 0.125.
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Fig. 9.1 Computed solution to the non-linear Poisson equation −∇ · ((0.125+u2)∇u) = 1 on the
unit square Ω = [0,1]2, with zero boundary conditions.

At each Newton step k we monitor the 2-norm of the vectors dk and the rk holding
the nodal values of the correction and the residual. Table 9.1 shows these numbers.
Clearly the method converges, but not with a quadratic rate of convergence. The
reason for this is the cheat with mass lumping when assembling the Jacobian.

k ∥dk∥ ∥rk∥
1 8.767519 0.038330
2 1.061985 0.038821
3 0.886889 0.009474
4 0.285174 0.003118
5 0.048836 0.000787

Table 9.1 Norm of correction and residual in each Newton step.

9.4 The Bistable Equation

Instead of deriving a Newton method by first linearizing the continuous problem and
then discretizing with finite elements, there is of course also the possibility of doing
these things in reverse order. That is, applying Newton’s method after finite element
discretization. For completeness let us do this on the following equation called the
Bistable equation.
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u̇− ε∆u = u−u3, in Ω × I (9.32a)
n ·∇u = 0, in ∂Ω × I (9.32b)

u = u0, in ∈ Ω , for t = 0 (9.32c)

Here, ε > 0 is a small number, I = (0,T ] is the time interval, and u0 a given initial
condition. Obviously, this is a non-linear equation due to the the cubic term u3.

9.4.1 Weak Form

The weak form of (9.32) reads: find u such that for every fixed time t, u ∈ H1 and

(u̇,v)+ ε(∇u,∇v) = ( f (u),v), ∀v ∈ H1 (9.33)

where f (u) = u−u3.

9.4.2 Space Discretization

As always for transient problems we make the space discrete ansatz

uh =
np

∑
j=1

ξ j(t)φ j (9.34)

where φ j, j = 1,2, . . . ,np, are the usual hat basis functions of Vh and np the number
of mesh nodes.

Substituting uh into (9.33) and choosing v = φi, i = 1,2, . . . ,np, we get a system
of np

np

∑
j=1

ξ̇ j(φ j,φi)+ ε
np

∑
j=1

ξ j(∇φ j,∇φi) = ( f (ξ )),φi) (9.35)

In matrix notation we write this

Mξ̇ +Aξ = b(ξ ) (9.36)

where M is the mass matrix, A is the stiffness matrix, and b a non-linear load vector,
with entries

Mi j = (φ j,φi) (9.37)
Ai j = ε(∇φ j,∇φ j), (9.38)

bi(ξ ) = ( f (U(ξ )),φi) (9.39)
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9.4.3 Time Discretization

Applying backward Euler on the ODE system (9.36) we get the following time
stepping scheme

M
ξl −ξl−1

kl
+Aξl = b(ξl) (9.40)

or equivalently

(M+ klA)ξl = Mξl−1 + klb(ξl) (9.41)

We must now solve this non-linear system of equations using either Piccard iter-
ation or Newton’s method.

9.4.4 Piccard Iteration

Applying Piccard iteration to (9.41) yields

ξ k
l = (M+ klA)−1(Mξl−1 + klb(ξ k−1

l )) (9.42)

This iteration scheme has the structure of a double for loop over the indices l and k.
The outer loop evolves time and the loop index l counts the discrete time steps. For
each time step l we have to solve the non-linear problem (9.41), and the loop index
k keeps track of the Piccard iterates ξ k

l and ξ k+1
l needed for doing so. The natural

choice for ξ 0
l is the solution ξ l−1 from the previous time step. Once a new solution

has been computed in the inner loop ξ l−1 is overwritten by ξ k+1
l and the outer time

loop is incremented one step. The double for loop is clearly seen in the code below,
which solves the Bistable equation (9.32) on the unit square Ω = [0,1]2 with the
parameter ε = 0.01 and the initial condition u0 = cos(2πx2

1)cos(2πx2
2).

function PiccardBiStableSolver()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.025);
x=p(1,:)’; y=p(2,:)’;
xi_old=cos(2*pi*x.ˆ2).*cos(2*pi*y.ˆ2); % IC
xi_new=xi_old;
dt=0.1; % time step
epsilon=0.01;
[A,M]=assema(p,t,1,1,0);
for l=1:100 % time loop
for k=1:3 % non-linear loop

xi_tmp=xi_new;
b=M*(xi_tmp-xi_tmp.ˆ3);
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xi_new=(M+dt*epsilon*A)\(M*xi_old+dt*b);
fixpterror=norm(xi_tmp-xi_new)

end
xi_old=xi_new;
pdesurf(p,t,xi_new)
axis([0,1,0,1,-1,1]), caxis([-1,1]), pause(.1);

end

In Figure 9.2 we show a few snapshots of the finite element solution uh at various
times. The Bistable equation is a little peculiar because it has three steady states,
u =±1 and u = 0. The first two of these are stable, while the third is unstable. As a
consequence there is always a struggle between regions where the solution is 1 and
regions where it is −1. In the end, however, one of these will win and the solution
will always end up being constnat and either 1 or −1. Which of these states it will
be is somewhat random and depends on the parameter ε , and in the discrete setting
also the mesh size h, and the time step kl . Indeed, fron the figure we see that the
final solution at t = 25 is constant −1.
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(a) t = 0.1 (b) t = 1

(c) t = 2.5 (d) t = 5

(e) t = 20 (f) t = 25

Fig. 9.2 Snapshots of the computed solution to the Bistable equation.

9.4.5 Newton’s Method

We end this chapter by also deriving Newton’s method for the time stepping scheme
(9.41). In order to do so we recast this non-linear system of equations into the equiv-
alent form

ρ(ξl) = 0 (9.43)
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where ρ is defined by

ρ(ξl) = (M+ klA)ξl −Mξl−1 − klb(ξl) (9.44)

As we know by now Newton’s method consists of taking a first rough guess ξ 0
l at

the solution ξl , and then repeatedly solving the linearized equations

J(ξ k+1
l −ξ k

l ) =−ρ(ξ k
l ) (9.45)

where the Jacobian matrix J has the entries Ji j = ∂ρi/∂ (ξl) j, i, j = 1,2, . . . ,np.
To compute J, we note that the first term in the left hand side of (9.44) is easy to

differentiate with respect to ξl . We have

∂ ((M+ klA)ξl)i

∂ (ξl) j
= Mi j + klAi j (9.46)

Further, the second term, Mξl−1, does not depend on ξl , and so its derivative is there-
fore identically zero. The third term, though, is a bit complicated to differentiate. To
do so we use the chain rule as follows

∂b(ξl)i

∂ξ j
=

∂
∂ξ j

∫
Ω

f (ξl)φi dx =
∫

Ω

∂ f
∂uh

∂uh

∂ξ j
φi dx =

∫
Ω

∂ f
∂u

φ jφi dx (9.47)

since ∂ f/∂uh = ∂ f/∂u. This is just a mass matrix M( f ′) with the coefficient ∂ f/∂u.
Thus, the Jacobian J is given by

J = (M+ klA)− klM( f ′) (9.48)

The MATLAB implementation of Newton’s method described above takes the
following form.

function NewtonBiStableSolver()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.02);
x=p(1,:); y=p(2,:);
xi_old=(cos(2*pi*x.ˆ2).*cos(2*pi*y.ˆ2))’;
xi_new=xi_old;
dt=0.1; % time step
epsilon=0.01;
[A,M]=assema(p,t,1,1,0);
for l=1:100 % time loop
for k=1:3 % non-linear loop

ii=t(1,:); jj=t(2,:); kk=t(3,:);
xi_tmp=xi_new; % copy temporary solution to new
xi_tmp_mid=(xi_tmp(ii)+xi_tmp(jj)+xi_tmp(kk))/3;
f =(xi_tmp_mid-xi_tmp_mid.ˆ3); % evaluate f
df=1-3*xi_tmp_mid.ˆ2; % evaluate derivative df of f
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[crap,Mdf,b]=assema(p,t,0,df’,f’);
J=(M+dt*epsilon*A)-dt*Mdf; % Jacobian
rho=(M+dt*epsilon*A)*xi_new ...

-M*xi_old-dt*b; % residual
xi_new=xi_tmp-J\rho; % Newton update
error=norm(xi_tmp-xi_new)

end
xi_old=xi_new; % copy old solution to new
pdesurf(p,t,xi_new)
axis([0 1 0 1 -1 1]), caxis([-1,1]), pause(.25)

end

9.5 Problems

Exercise 9.1. Derive Newton’s method for the non-linear problems −∆u = u+u3,
−∆u+ sin(u) = f , and −∇ · ((1+u2)∇u) = f with homogeneous Dirichlet bound-
ary conditions u = 0.

Exercise 9.2. Use NewtonPoissonSolver to solve the non-linear Poisson equa-
tion (9.8) on the unit square with a = 0.1+u2 and f = 1. Study the influence of the
non-linear term u2 by comparing with the linear case a = 0.1 and f = 1. Study in
particular the shape of the computed solutions.

Exercise 9.3. Verify numerically that the assumption a > 0 is necessary for ex-
istence of a solution by trying to solve non-linear Poisson equation (9.8) with
a = ε + u2 for ε = 1, 0.1, 0.075, 0.05, and 0.01. You should find that the method
breaks down already at ε = 0.05. This can be temporarily remedied by using a mod-
ified update formula of type uk+1 = uk +αdk, where 0 < α ≤ 1 is a (small) number,
typically α = ε . This is the damped Newton method. The introduction of α affects
the rate of convergence and it thus takes more iterations to achieve a desired level of
accuracy. Of course, even damping can not prevent the method from breaking down
as ε becomes really small.

Exercise 9.4. Derive Newton’s method for −∆u= f (u) with f (u) is a differentiable
function of u. Assume u = 0 on the boundary.

Exercise 9.5. Modify NewtonPoissonSolver and solve the equation −∆u =
e−u with u = 0 on the boundary using Newton’s method. Use assema for assembly
of the involved matrices and vectors.





Chapter 10
Transport Problems

Abstract In this chapter we study the important transport equation, which occurs in
almost all applications in continuum mechanics. In particular, this equation models
convective heat transport, that is, a situation where heat is transported by some ex-
ternal physical process, such as a air blown by a fan or a moving fluid, for instance.
We analysis this equation in the abstract framework outlined and prove existence
and uniqueness of the solution using the Lax-Milgram Lemma. To handle trans-
port involving high convection and low diffusion we introduce the Galerkin Least
Squares (GLS) method and discuss its basic features.

10.1 The Transport Equation

The transport equation takes the form

−ε∆u+b ·∇u = f , in Ω (10.1a)
u = 0, on ∂Ω (10.1b)

where ε is a small parameter, b a given vector field and f is a given function.
Loosely speaking each of the two operators −ε∆ , and b ·∇ play a specific role

for the solution u, and can each be given a simple interpretation. The first smears
u proportionally to ε , while the second transports u in the direction of the vector
b. Therefore we say that these operators model the physical processes of diffusion,
and convection, respectively. In fact, the transport equation is sometimes called the
Convection-Diffusion equation.

For this problem to be well-posed we must require that ∇ ·b = 0.
For simplicity we shall perform the analysis using homogeneous Dirichlet con-

ditions. However, other types of boundary conditions are of course possible. Indeed,
for the numerical experiments we shall use both Neumann and Robin conditions.

183
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10.1.1 Weak Form

The weak form of the transport equation (10.1) reads: find u ∈ V0 = H1
0 (Ω) such

that

a(u,v) = l(v), ∀v ∈V0 (10.2)

where the bilinear and linear forms a(·, ·) and l(·) are given by

a(u,v) = ε(∇u,∇v)+(b ·∇u,v) (10.3)
l(v) = ( f ,v) (10.4)

10.1.2 Existence and Uniqueness of the Solution

The bilinear form a(·, ·) is bounded and coercive on V0. To see this note that

a(u,v)≤ ε∥∇u∥∥∇v∥+maxb∥∇u∥∥v∥ (10.5)
≤C(∥∇u∥∥∇v∥+∥∇u∥∥v∥) (10.6)
≤C∥∇u∥∥∇v∥ (10.7)

due to the Poincare inequality ∥v∥ ≤ C∥∇v∥. This proves that a(·, ·) is bounded on
V . To prove that a(·, ·) also is coercive we first notice that from the chain rule we
have

(∇ · (bv2),1) = (∇ ·b,v2)+2(b ·∇v,v) = 2(b ·∇v,v) (10.8)

since by assumption ∇ · b = 0. Here, the first integral is zero, which follows from
Green’s formula

(∇ · (bv2),1) = (b ·n,v2)∂Ω = 0 (10.9)

and the fact that v = 0 on ∂Ω . Using this result, we then have

a(v,v) = ε(∇v,∇v)+(b ·∇v,v)+(cv,v) (10.10)
= ε(∇v,∇v)+(b ·∇v,v) (10.11)

≥ ε∥∇v∥2 (10.12)

which shows that a(·, ·) is coercive on V . Also l(·) is bounded since we trivially have
l(v)≤∥ f∥∥v∥≤C∥∇v∥. Thus, invoking the Lax-Milgram Lemma we conclude that
there exist a unique solution u to (10.2).
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10.1.3 Standard Finite Element Approximation

To formulate a numerical method let K = {K} be a mesh of Ω and let Vh,0 ⊂V0 be
the space of continuous piecewise linears on K that vanish on the boundary. The
standard finite element approximation of (10.2) then reads: find uh ∈Vh,0 such that

a(uh,v) = l(v), ∀v ∈Vh,0 (10.13)

10.1.4 Computer Implementation

Let {φi}ni
i=1 be the usual hat function basis for Vh with ni the number of inte-

rior nodes. Expanding the finite element ansatz uh = ∑ni
i=1 ξ j and choosing v = φi,

i = 1,2, . . . ,ni in the finite element method (10.13) we obtain the following linear
system

(A+C)ξ = b (10.14)

where the matrix and vector entries are given by

Ai j = ε(∇φ j,φi) (10.15)
Ci j = (b ·∇φ j,φi) (10.16)
bi = ( f ,φi) (10.17)

with i, j = 1,2, . . . ,ni.
The diffusion (i.e., stiffness) matrix A, and load vector b can be assembled using

the built-in assema routine for instance. However, we have no routine to assem-
ble the convection matrix C. To write such a routine we observe that the element
convection matrix is approximately given by

CK
i j = (b ·∇φ j,φi)K = b(xc) · [b j,c j]

T (φi,1)K = b(xc) · [b j,c j]
T |K|/3, i, j = 1,2,3

(10.18)

where ∇φ j = [b j,c j]
T is the gradient of hat function φ j, and xc the centroid of K.

This immediately translates into a assembly routine for C.

function C = ConvMat2D(p,t,bx,by)
np=size(p,2);
nt=size(t,2);
C=sparse(np,np);
for i=1:nt
loc2glb=t(1:3,i);
x=p(1,loc2glb);
y=p(2,loc2glb);
[area,b,c]=Gradients(x,y);
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bxmid=mean(bx(loc2glb));
bymid=mean(by(loc2glb));
CK=ones(3,1)*(bxmid*b+bymid*c)’*area/3;
C(loc2glb,loc2glb)=C(loc2glb,loc2glb)+CK;

end

Input us the usual point and triangle matrix p and t and the components bx and
by of the convection field b = [b1,b2]. The components are and given as two np ×1
vectors of nodal values with np the total number of nodes. Output is the assembled
global convection matrix C.

A main routine for solving the transport equation −ε∆u+ [1,1]T ·∇u = 1 on
the square Ω = [−1,1]2 with homogeneous Dirichlet boundary conditions is listed
below.

function TransportSolver()
epsilon=0.1; % diffusion parameter
[p,e,t]=initmesh(’squareg’,’hmax’,0.05); % create mesh
np=size(p,2); % number of nodes
[A,crap,b]=assema(p,t,1,0,1); % diffusion and load
C=ConvMat2D(p,t,ones(np,1),ones(np,1)); % convection
fixed=unique([e(1,:) e(2,:)]); % boundary nodes
free=setdiff([1:np],fixed); % interior nodes
b=b(free); % modify load
A=A(free,free); C=C(free,free); % modify stiffness
U=zeros(np,1); % solution vector
U(free)=(epsilon*A+C)\b; % solve for free node values
pdesurf(p,t,U) % plot

Running the code with ε = 0.1 we get the results of Figure 10.1. Note how the finite
element solution uh is offset in the direction of b = [1,1]T . This is more clearly seen
in Figure 10.2, which shows isocontours. The compression of the isocontours seen
in the upper right corner, where uh must bend downwards to satisfy the Dirichlet
boundary condition, is called a layer.
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Fig. 10.1 Surface plot of uh.
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Fig. 10.2 Isocountours of uh.
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10.1.5 The Need for Stabilization

Using the Poincaré inequality ∥u∥ ≤C∥∇u∥ it is a simple task to derive the stability
estimate

√
ε∥∇u∥ ≤C∥ f∥ (10.19)

which also holds also for the finite element approximation uh. From this we see that
as ε decreases we loose control of the gradients of u. In other words small perturba-
tions of f can lead to large local gradients. Indeed, this is a common feature of the
solution which often have thin regions called layers where it changes rapidly. As we
have already seen layers typically arise near a boundary where u must adhear to a
Dirichlet boundary condition. However, there layers may also occur in the interior
of the domain.

Standard finite element methods have great difficulties handling layers. In fact
layers may trigger oscillations throughout the whole computational domain that ren-
ders the finite element approximation useless. Too see this it suffice to consider the
transport in one dimension, say,

−εuxx +ux = 1, 0 < x < 1, u(0) = u(1) = 0 (10.20)

For small ε the exact solution to this equation looks like u = x except near x = 0
where it drastically changes from 1 to 0 in order to satisfy the boundary condition
u(1) = 0. This change takes place over a small distance of length proportional to ε
and is therefore a layer.

Application of standard finite elements to 10.20 using a continuous piecewise
linear approximation for uh on a uniform mesh with n+ 1 nodes and mesh size h
leads to the linear system

−ε
ui+1 −2ui −ui−1

h2 +
ui+1 −ui−1

2h
= 1, i = 1,2, . . . ,n−1 (10.21)

where ξi are the nodal values of uh with ξ0 = ξn = 0. From this we see that if
ε is small then information is only shared between every other node through the
convective term. This opens up for the possibility of oscillations since node i+ 1
and i−1 talk with each other, but not with node i. Furthermore, in a layer we know
that there is naturally a large variations between the node values ξi. Now, suppose
that node i − 1 has value ξi−1 = −1 and node i has value ξi = 1. Then, due to
the finite element method (10.21), and neglecting the unit load which has a small
influence on a fine mesh, we will get ξi+1 = −1, ξi+2 = 1, ξi+3 = −1 and so on.
That is, a highly oscillatory finite element solution uh. Figure 10.3 shows the finite
element solution uh for ε = 0.01 on two meshes with n = 10 and n = 100 elements,
respectively.
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Fig. 10.3 Illustration of oscillations due to under resolution of the mesh (a). Increasing the number
of elements resolves the issue and yields a good finite element solution (b). Red asterisks denote
node values.

We emphasize that oscillations might occur only if the diffusion parameter ε is
smaller than the mesh size h. In this case the diffusion acts on a length scale below
the mesh resolution. That is, the the solution can not be accurately represented on
the mesh. Loosely speaking, this triggers the onset of oscillations.

The oscillatory behavior is present also in higher dimension.

10.1.6 Least-Squares Stabilization

The forming of layers and the inability of the standard finite element method to deal
with these calls for modification of the numerical method. Since the oscillations are
due to the small diffusion parameter ε a simple way of stabilizing is to add more
diffusion. In doing so the general idea is to add as little as possible not do sacrifice
accuracy, but as much as needed to obtain stability. A natural choice is to add h to
ε . Then the stabilization will automatically decrease when using a finer mesh. This
is known as isotropic stabilization. However, due to this O(h) perturbation of the
equation such a method can only be first order accurate. It turns out that a better
way to stabilize is to use a least squares stabilization which we shall describe in
some detail next.

To explain the least squares stabilization technique let us consider the abstract
equation

Lu = f (10.22)

where L is a differential operator, u the sought solution, and f a given function. We
do not worry about boundary conditions for the moment.

As we know by now, the weak form, or standard Galerkin method, is given by
multiplying the equation by a test function v from a suitable space V and integrate.
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This leads to the weak form: find u ∈V such that

(Lu,v) = ( f ,v), ∀v ∈V (10.23)

We can interpret this as a demand for residual orthogonality (r,v) = 0 with r the
residual r = f −Lu. A potential problem with this equation is if the product (Lu,v)
does not define a norm on V , in which case it is not associated with a minimization
principle. This can happen if (Lu,v) is not coercive or symmetric on V . In this case
the numerical method resulting from finite element discretization might be unstable.
As we have seen this is so for the transport equation.

Using instead the idea of orthogonal minimization we seek a solution u ∈ V ,
which is the minimizer of the problem

J(u) = min
v∈V

J(v) (10.24)

where

J(v) = ∥Lu− f∥2
V (10.25)

The first order optimality condition for this optimization problem takes the form:
find u ∈V such that

(Lu,Lv) = ( f ,Lv), ∀v ∈V (10.26)

From linear algebra we recognize this as the normal equations of the Least Squares
method.

An advantage of the Least Squares method is that the functional J(·), which is
artificial in the sense that it is invented by us, does not need to have a physical in-
terpretation, yet its minimizer almost always exist and is stable. Indeed, the bilinear
form (Lu,Lv) is always symmetric and coercive.

Least squares methods are known to be very robust, only requiring a minimum
of regularity of the underlying equation. However, they are often not very accurate.

The Galerkin Least Squares (GLS) method is obtained by combining the standard
Galerkin and the Least Squares method. In effect this amounts to replacing the test
function v by v+δLv, where δ is a parameter to be chosen. In doing so, we obtain
the variational equation: find u ∈V such that

(Lu,v+δLv) = ( f ,v+δLv), ∀v ∈V (10.27)

or

(Lu,v)+δ (Lu,Lv) = ( f ,v)+δ ( f ,Lv), ∀v ∈V (10.28)

Needless to say one hopes to combine the accuracy of the Galerkin method with the
robustness of the Least Squares method.
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10.1.7 GLS for the Transport Equation

The transport equation (10.1) can be written Lu = f with L = −ε∆ + b ·∇. As a
consequence, the Galerkin Least Squares finite element approximation takes the
form: find uh ∈Vh,0 such that

a(uh,v) = lh(v), ∀v ∈Vh,0 (10.29)

where the bilinear and linear form ah(·, ·) and lh(·) are defined by

ah(u,v) = ε(∇u,∇v)+(b ·∇u,v)+δ ∑
K∈K

(−∆u+b ·∇u,−∆v+b ·∇v) (10.30)

lh(v) = ( f ,v)+δ ∑
K
( f ,−∆v+b ·∇v) (10.31)

Note that we have written the stabilizing terms (Lu,Lv) and ( f ,Lv) as a sum over the
elements K. This is due to the fact that the term −ε∆v does not lie in L2(Ω) since
the second order derivatives of the test function v are unbounded across element
boundaries. However, it does lie in L2(K) for all K. To obtain a well defined integrals
we have therefore applied all GLS terms only within each element. This is a general
feature of GLS methods.

We next observe that the exact solution u satisfies the GLS method, that is,

ah(u,v) = lh(v), ∀v ∈Vh,0 (10.32)

Subtracting (10.32) from (10.29) we immediately obtain the Galerkin orthogonality

ah(u−uh,v) = 0, ∀v ∈Vh,0 (10.33)

Because of this we say that the GLS method is consistent.
To measure the size of the error e = u−uh we define the following norm on V0

|||v|||2 = ε∥∇v∥2 +δ∥b ·∇v∥2 (10.34)

The reason for introducing this norm is twofold. First, we want to have a norm that
is related to ah(·, ·) to be able to use the consistency of this bilinear form. Second,
if we can prove an error estimate in this norm, then we have regained at least partial
control over the solution gradient through the term δ∥b ·∇uh∥. In other words if
we have a bound on this term then it cannot be too small because of the stabiliza-
tion parameter δ in front. Due to the fact that b ·∇u is the the derivative along the
streamline b this GLS method is sometimes called the streamline-diffusion method.

An important question to ask is if the GLS method we have formulated is void or
if it leads to a well defined solution approximation uh. This is indeed the case since
ah(·, ·) is coercive on Vh,0, that is,

ah(v,v)≥ |||v|||2, ∀v ∈Vh,0 (10.35)
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To see this note that for any v ∈Vh,0 we have

ah(v,v) = ε∥∇v∥2 +(b · v,v)+δ ∑
K
∥− ε∆v+b ·∇v∥2

K (10.36)

= ε∥∇v∥2 +∥b ·∇v∥2 (10.37)

= |||v|||2 (10.38)

Note, however, that the coercivity depends on the stabilization parameter δ , which
consequently must not be too small for problems with small ε . On the other hand if
ε is big then we can practically let δ vanish. A good choice of δ turns out to be

δ =

{
Ch2, if ε > h
Ch/∥b∥∞, if ε < h

(10.39)

As we shall see this follows from the error analysis.
For the GLS method we have the a priori estimate

|||e||| ≤Ch3/2∥D2u∥ (10.40)

The proof of this is a bit technical and relies on writing the error e = u − uh =
(u−πu)+ (πu− uh), where πu ∈ Vh,0 is the interpolant to u. The unspoken hope
is that u−πu is easy to handle with interpolation estimates and that πu−uh is also
easy to handle since it is discrete function in Vh,0. Thus, if we can bound these terms
individually the Triangle inequality then gives us |||e||| ≤ |||u−πu|||+ |||πu−uh|||.
The interested reader might ask why we cannot apply Cea’s lemma as usual to derive
an priori estimate. The answer is that we want to estimate the error in the ||| · ||| norm,
which is related to ah(·, ·) and not to a(·, ·).

Now, using the coercivity of ah(·, ·) on Vh,0 we have

|||uh −πu|||2 ≤ ah(uh −πu,uh −πu) (10.41)
= ah(uh −πu,uh −πu)+ah(u−uh,uh −πu) (10.42)
= ah(u−πu,uh −πu) (10.43)

where we have used the Galerkin orthogonality (10.33). Let us estimate each of the
three terms in ah(u−πu,uh −πu) separately using the trivial estimates

√
ε∥∇v∥ ≤

|||v||| and
√

δ∥b ·∇v∥ ≤ |||v|||. First, we have

ε(∇(u−πu),∇(uh −πu))≤
√

ε∥∇(u−πu)∥
√

ε∥∇(uh −πu)∥ (10.44)

≤C
√

εh∥D2u∥|||uh −πu||| (10.45)

Then, using integration by parts and again that ∇ ·b = 0 we have
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(b ·∇(u−πu),uh −πu) =−(u−πu,∇ · (b(uh −πu))) (10.46)
≤ ∥u−πu∥∥∇ ·b(uh −πu)∥ (10.47)

≤Ch2∥D2u∥|||uh −πu|||/
√

δ (10.48)

Finally, we have

δ ∑
K
(L(u−πu),L(uh −πu))K ≤

√
δ

(
∑
K
∥L(u−πu)∥2

K

)1/2

|||uh −πu||| (10.49)

where

∥L(u−πu)∥2
K = ∥− ε∆(u−πu)+b ·∇(u−πu)∥2

K ≤C(ε2 +h2)∥D2u∥2
K (10.50)

since ∆(πu) = 0, ∥∆u∥2 ≤ C∥D2u∥, and ∥b ·∇(u− πu)∥ ≤ ∥b∥∞∥∇(u− πu)∥ ≤
Ch∥D2u∥.

Now, by definition transport with high convective effects means that ε =Ch and
consequently that δ =Ch. Thus, all of the three terms (10.44), (10.46), and (10.49),
above are of order h3/2. Hence, we have

|||uh −πu|||2 ≤Ch3/2∥D2u∥ (10.51)

It remains to estimate |||u−πu|||. However, repeating the above estimates it is
easily seen that this term is also of order h3/2. Thus, we infer the a priori estimate
(10.40).

The assembly of the GLS stabilization term (b ·∇u,b ·∇v) for piecewise linears
is easy. A routine is listed below.

function Sd = SDMat2D(p,t,bx,by)
np=size(p,2);
nt=size(t,2);
Sd=sparse(np,np);
for i=1:nt
loc2glb=t(1:3,i);
x=p(1,loc2glb);
y=p(2,loc2glb);
[area,b,c]=Gradients(x,y);
bxmid=mean(bx(loc2glb));
bymid=mean(by(loc2glb));
SdK=(bxmid*b+bymid*c)*(bxmid*b+bymid*c)’*area;
Sd(loc2glb,loc2glb)=Sd(loc2glb,loc2glb)+SdK;

end

Input is the same as for the routine ConvMat2D.
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10.1.8 Heat Transfer in a Fluid Flow

We now study a real-world application with more general boundary conditions,
namely, heat transfer in a fluid flow. This kind of physical problem is of interest
when designing heat exchangers or electronic devises for instance. To this end we
consider a heated object submerged into a channel with a flowing fluid. See Figure
10.4. The channel is rectangular and fluid is flowing from left to right round a heated
circle.
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Fig. 10.4 Geometry of the channel domain and boundaries.

The fluid flow is given by the velocity field

b1 =U∞

(
1− x2 − y2

(x2 + y2)2

)
(10.52)

b2 =−2U∞
xy

(x2 + y2)2 (10.53)

where U∞ = 1 is the free stream velocity of the fluid. Figure 10.5 shows a glyph plot
of b.
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Fig. 10.5 Glyphs showing the fluid velocity field b.

For later use let us write a routine to evaluate the vector field b.

function [bx,by] = FlowField(x,y)
a=1; % cylinder radius
Uinf=1; % free stream velocity
r2=x.ˆ2+y.ˆ2; % radius vector squared
bx=Uinf*(1-aˆ2*(x.ˆ2-y.ˆ2)./r2.ˆ2); % x-component of b
by=-2*aˆ2*Uinf*x.*y./r2.ˆ2; % y-

We assume that the cylinder is kept at constant temperature 1. Further, the walls
of the channel are insulated so that no heat can flow across them. In other words,
the normal heat flux n · q is zero on the walls, where q is given by the generalized
Fourier’s law

q =−ε∇u+bu (10.54)

At the outflow diffusive effects are usually negligible which means that εn ·∇u = 0.
Finally, at the inflow the fluid has zero temperature.

All in all, we have the following transport equation and boundary conditions for
the fluid temperature u.

−ε∆u+b ·∇u = 0, in Ω (10.55a)
u = 0, on Γin (10.55b)
u = 1, on Γcyl (10.55c)

−εn ·∇u = 0, on Γout (10.55d)
n · (−ε∇u+bu) = 0, on Γwall (10.55e)

In order to simplify the computer implementation we first approximate the
Dirichlet conditions (10.55b) and (10.55c) using the Robin conditions −εn ·∇u =
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106u on Γin and −εn ·∇u = 106(u−1) on Γcyl, respectively. Multiplying −ε∆u+b ·
∇u = 0 by a test function v and integrating both the diffusive and convective term
by parts, we then have

0 = ε(∇u,∇v)− ε(n ·∇u,v)∂Ω − (u,b ·∇v)+(n ·bu,v)∂Ω (10.56)

= ε(∇u,∇v)+106(u,v)Γin +106(u−1,v)Γcyl − (u,b ·∇v)+(n ·bu,v)Γout

(10.57)

As a consequence the weak form reads: find uh ∈V = H1 such that

ε(∇u,∇v)+106(u,v)Γin +106(u,v)Γcyl

−(u,b ·∇v)+(n ·bu,v)Γout = 106(1,v)Γcyl , ∀v ∈V (10.58)

To approximate V let Vh ⊂ V be the usual space of all continuous piecewise
linears. Adding now the least squares term δ (b ·∇u,b ·∇v) to the weak form we
obtain the finite element approximation: find uh ∈Vh such that

ε(∇u,∇v)+106(u,v)Γin +106(u,v)Γcyl

−(u,b ·∇v)+(n ·bu,v)Γout +δ (b ·∇u,b ·∇v) = 106(1,v)Γcyl , ∀v ∈Vh (10.59)

We observe that the left hand side boundary terms can be written (κu,v)∂Ω with κ
chosen as

κ =


106, on Γin ∪Γcyl

b ·n, on Γout

0, elsewhere
(10.60)

or, written as a MATLAB routine,

function k = Kappa(x,y)
k=0;
if x<-1.99 % inflow
k=1e6;

end
if sqrt(xˆ2+yˆ2)<1.01 % cylinder
k=1e6;

end
if x>5.99 % outflow
[bx,by]=FlowField(x,y);
nx=1; ny=0; % normal components
k=bx*nx+by*ny; % kappa = dot(b,n)

end

We can now compute the left hand side boundary terms with a call to RobinMat2D
with a function handle to Kappa as argument. Similarly, the right hand side bound-
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ary integral can be computed with a call to RobinVec2D with function handles to
the following two routines as arguments.

function g = g_D(x,y)
g=0;
if sqrt(xˆ2+yˆ2)<1.01, g=1; end

function g = g_N(x,y)
g=0;

Finally, we notice that the convection matrix stemming from the term −(u,b ·∇v)
is just the negative transpose of the matrix assembled by the routine ConvMat2D.

Putting all pieces together we obtain the following main routine.

function HeatFlowSolver()
channel=RectCirc(); % channel geometry
epsilon=0.01; % diffusion parameter
h=0.1; % meshsize
[p,e,t]=initmesh(channel,’hmax’,h); % create mesh
A=assema(p,t,1,0,0); % stiffness matrix
x=p(1,:); y=p(2,:); % node coordinates
[bx,by]=FlowField(x,y); % evaluate vector filed b
C =ConvMat2D(p,t,bx,by); % convection matrix
Sd=SDMat2D(p,t,bx,by); % GLS stabilization matrix
R =RobinMat2D(p,e,@Kappa); % RHS boundary terms
g =RobinVec2D(p,e,@Kappa,@g_D,@g_N); % LHS boundary term
delta=h; % stabilization parameter
U=(epsilon*A-C’+R+delta*Sd)\g; % solve linear system
pdecont(p,t,U), axis equal % plot solution

Note that the mesh size h = 0.1 while the diffusion parameter ε = 0.01, which can
lead to potential problems with oscillations. However, by choosing the stabilization
parameter δ proportional to h we get additional diffusion along the streamlines of b
that prevents the solution uh from oscillating. Running this code we get the result of
Figure 10.6.
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Fig. 10.6 Isocontours of the temperature uh in the fluid.

From this figure it is clearly seen how the temperature behind the cylinder is
transported downstream by the fluid flow, whereas a boundary layer is formed in
front of the cylinder. As expected the temperature is decreasing downstream due to
the artificial diffusion and no oscillations are visible. A nice detail visible is that
the outflow appears transparent in the sense that the temperature isocontours seem
unaffected by the domain boundary.

10.2 Problems

Exercise 10.1. Compute the least squares solution to the linear system Ax = b with

A =

1 0
0 1
1 1

 , x =
[

x1
x2

]
, b =

1
2
6


Which norm is minimized by this solution?

Exercise 10.2. Show the stability estimate (10.19). Hint: look at the derivation of
the coercvity for the bilinear form a(·, ·).

Exercise 10.3. Verify that a standard one-dimensional finite element method for the
transport equation yields the linear system (10.21).

Exercise 10.4. Derive a GLS method for the problem

−ε∆u+b ·∇u+ cu = f , x ∈ Ω , u = 0, x ∈ ∂Ω

Also, using a standard continuous piecewise linear approximation of the solution
what does the linear system resulting from finite element discretization look like?
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Exercise 10.5. Fill in the details of the a priori error estimate (10.40) for the GLS
method.

Exercise 10.6. Use TransportSolver to verify that standard Galerkin is unsta-
ble also in higher dimensions. Choose the diffusion parameter ε = 0.01 and the
mesh size h = 0.05, for example.





Chapter 11
Solid Mechanics

Abstract Arguably one of the most important areas of application for finite element
methods is solid mechanics. Today, finite elements are used together with computed
aided design (CAD) tools to optimize and speed up the design and manufacturing
process of practically all mechanical structures, ranging from bridges to airplanes.
In this chapter we derive the equations of linear elasticity and formulate finite ele-
ment approximations of them. We do this in the abstract framework of elliptic par-
tial differential equations and prove existence and uniqueness of the solution using
the Lax-Milgram Lemma. A priori and a posteriori error estimates are also proved.
Particular effort is laid on explaining the somewhat intricate implementation of the
finite element method. We study several applications, including thermal stress and
modal analysis.

11.1 Governing Equations

11.1.1 Cauchy’s Equilibrium Equation

We shall now derive the partial differential equation governing linear elasticity. Be-
cause elastic deformation is a three dimensional phenomenon we must work in three
dimensions and not two as we have done up till now.

The basic idea behind elastostatics is that the total force acting on any material
volume must vanish.

There are two kinds of forces which can act on a volume Ω ∈ R3. First there
are forces penetrating the whole volume. These are described by a force density f .
The most common example is gravity with f =−ρg. Then there are contact forces
which acts on the surface ∂Ω . Even if they only act on the surface, contact forces
are described by vector fields imagined to exist throughout the whole volume. A
simple example is the pressure p within a fluid that acts along the normal to any real
or imagined fluid surface and with a force proportional to the surface area.

201
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The fundamental concept for describing contact forces is the stress tensor. The
stress tensor is a 3×3 matrix σ , defined such that component σi j, i, j = 1,2,3, is the
force per unit area acting in direction xi on a surface with unit normal in direction
x j. Thus, the force on a small surface ds with unit normal n is given by σ ·nds. The
total force F on a volume Ω with surface ∂Ω is consequently the sum of volume
and surface contributions

F =
∫

Ω
f dx+

∫
∂Ω

σ ·nds (11.1)

Using the divergence theorem we may convert the surface integral over the sur-
face into a volume integral.

F =
∫

Ω
( f +∇ ·σ)dx (11.2)

where we have introduced the notation

(∇ ·σ)i =
3

∑
j=1

∂σi j

∂x j
, i = 1,2,3 (11.3)

In equilibrium the total force F must vanish for any volume Ω and we thus infer

f +∇ ·σ = 0 (11.4)

This is Cauchy’s equation of equilibrium. It says that the net force vanishes on every
material particle throughout the volume. It can be thought of as a specialization of
Newton’s second law, which says that the net force on any material particle equals
equals mass times acceleration.

Cauchy’s equilibrium equation (11.4) consists of three differential equations. In
component form they are given by

f1 +
σ11

∂x1
+

σ12

∂x2
+

σ13

∂x3
= 0 (11.5a)

f2 +
σ21

∂x1
+

σ22

∂x2
+

σ23

∂x3
= 0 (11.5b)

f3 +
σ31

∂x1
+

σ32

∂x2
+

σ33

∂x3
= 0 (11.5c)

In order to obtain a closed set of equations it is necessary to supplement (11.5)
with additional so-called constitutive equations, expressing the local relations be-
tween the stresses and the local state of matter. Different kinds of matter (i.e., gases,
liquids, or solids) only differ by their constitutive equations. We shall see below
how this is done for isotropic linear elastic solids and later also for incompressible
viscous fluids.

The stress tensor σ has by default nine independent components. However, from
conservation of angular momentum it follows that σ is be symmetric, that is,
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σ = σT (11.6)

which reduces the number of independent components to six.

11.1.2 Constitutive Equations and Hooke’s Law

Any deformation of a material body may be described by specifying how each mate-
rial particle within the body is displaced from its initial position. The displacement
of a material particle is naturally defined as the vector u = x− x0, where x is the
current and x0 the initial position of the particle.

The general displacement of a body includes translations and rotations that really
should not be classified as deformations, since a true deformation is characterized
by geometric changes within the body such as stretching, for example. The relevant
quantity for describing deformation is the strain tensor, which under the assumption
of small displacement gradients, is defined by

ε =
1
2
(∇u+∇uT ) (11.7)

or, in component form,

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, i, j = 1,2,3 (11.8)

A displacement u is defined as a deformation such that the strain tensor ε does
not vanish everywhere. This is in contrast to translations and rotations, so-called
rigid body modes, for which ε = 0.

Geometrically, the diagonal component εii is the relative change in length along
the xi-axis, whereas the off-diagonal component εi j is proportional to the change in
angle between the initially orthogonal coordinate axes xi and x j.

Pure translations and rotations should not create stresses, implying that the local
stresses can only depend on the local strains. When the strains are small, it is rea-
sonable to assume that the relation between the stress tensor and the strain tensor
is approximately linear. This assumption is called Hooke’s law and is a constitutive
equation, meaning that it is not a law of nature, but rather deduced from empirical
measurements and experiments.

In the most general case it takes a relation of the form σi j = ∑kl Ci jklεkl , where
Ci jkl is a fourth order tensor with up to 36 independent components, or, elastic mod-
uli, to characterize the most complex linear elastic material. In contrast isotropic
materials (i.e., materials characterized by properties which are independent of spa-
tial direction) only require two elastic moduli for their description.

Assuming that there are no stresses before any deformation of a body occupied
by a linear elastic isotropic material, the stress and strain relation can for symmetry
reasons only take the form
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σ = 2µε(u)+λ (∇ ·u)I (11.9)

where I is the 3×3 identity matrix. The elastic moduli µ and λ are called the Lamé
parameters and are defined by

µ =
E

2(1+ν)
λ =

Eν
(1+ν)(1−2ν)

(11.10)

where E is Young’s elastic modulus, and ν is Poisson’s ratio.
Young’s modulus is a material parameter that describes the stiffness of the mate-

rial. Poisson’s ratio is a measure of the tendency for a material to narrow its cross
section when it is stretched. In principal E and ν may change throughout the mate-
rial but for homogeneous materials they are constant.

Combining the equilibrium equation (11.4) with the constitutive equation (11.9)
we get a system of two vector valued partial differential equations governing the
displacement field u

−∇ ·σ = f (11.11a)
σ = 2µε(u)+λ (∇ ·u)I (11.11b)

Alternatively, substituting (11.11a) into (11.11b) using the vector identity ∇ ·(2ε) =
∆u+∇(∇ · u) we eventually end up with a single vector valued partial differential
equation for u called the Cauchy-Navier equation

f +µ∆u+(λ +µ)∇(∇ ·u) = 0 (11.12)

11.1.3 Boundary Conditions

To obtain a unique solution u, (11.12) must be supplemented by boundary con-
ditions, which can be of the two standard types, Dirichlet and Neumann boundary
conditions. Dirichlet boundary conditions are constraints on the displacements u and
take the form u = gD where gD is given function. Often gD = 0 which corresponds
to a situation where the material is clamped to the surroundings and unable to move
at the boundary. Neumann boundary conditions are constraints on the normal stress
and take the form σ · n = gN , where n is the outward unit normal on the boundary
and gN is a given traction load.

11.2 The Equations of Linear Elastostatics

Thus, the basic problem of linear elastostatics is to find the stress tensor σ and the
displacement vector u such that
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−∇ ·σ = f , in Ω (11.13a)
σ = 2µε(u)+λ (∇ ·u)I, in Ω (11.13b)
u = 0, on ΓD (11.13c)

σ ·n = gN , on ΓN (11.13d)

where ΓD and ΓN are two boundary segments associated with the Dirichlet and
Neumann boundary conditions, respectively, and such that ΓD ∪ ΓN = ∂Ω and
ΓD ∩ΓN = /0.

11.2.1 Variational Formulation

In order to derive a variational formulation of (11.13) let

V = {v ∈ [H1(Ω)]3 : v|ΓD= 0} (11.14)

Multiplying −∇ ·σ = f with a test function v ∈ V and integrating by parts we
have

(−∇ ·σ ,v) =
3

∑
i, j=1

(−
∂σi j

∂x j
,vi) (11.15)

=
3

∑
i, j=1

−(σi j,n jvi)∂Ω +(σi j,
∂vi

∂x j
) (11.16)

= ( f ,v) (11.17)

Introducing the contraction operator : defined by

A : B =
3

∑
i, j=1

Ai jBi j (11.18)

for any two 3×3 matrices A and B we can write (11.15) as

−(σ ·n,v)∂Ω +(σ : ∇v) = ( f ,v) (11.19)

where the entries of the 3×3 gradient matrix ∇v are given by [∇v]i j = ∂vi/∂v j.
From the boundary condition σ ·n = gN on ΓN , and since v = 0 on ΓD we further

have

(σ ·n,v)∂Ω = (σ ·n,v)ΓD +(σ ·n,v)ΓN = 0+(gN ,v)ΓN (11.20)

Thus, we end up with the variational equation

(σ : ∇v) = ( f ,v)+(gN ,v)ΓN , ∀v ∈V (11.21)
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Next we note that if A is symmetric and B anti-symmetric with zero diagonal then
A : B = 0. Further, recalling that any matrix A can be decomposed into its symmetric
and anti-symmetric part by writing A = (A+AT )/2+(A−AT )/2, we have

σ : ∇v = σ : 1
2 (∇v+∇vT )+σ : 1

2 (∇v−∇vT ) = σ : ε(v)+0 (11.22)

since σ is symmetric. This allows us to replace ∇v with ε(v) in (11.21). We then get

(σ(u) : ε(v)) = ( f ,v)+(gN ,v)ΓN , ∀v ∈V (11.23)

or, if we insert σ = 2µε(u)+λ (∇ ·u)I and use that I : ε(v) = ∇ · v∫
Ω

2µε(u) : ε(v)+λ (∇ ·u)(∇ · v)dx = ( f ,v)+(gN ,v)ΓN , ∀v ∈V (11.24)

In abstract form the variational formulation of (11.13) thus reads: Find u ∈ V
such that

a(u,v) = l(v) ∀v ∈V (11.25)

where the bilinear from a(·, ·) and the linear form l(·) are defined by

a(u,v) =
∫

Ω
2µε(u) : ε(v)+λ (∇ ·u)(∇ · v)dx (11.26)

l(v) =
∫

Ω
f · vdx+

∫
ΓN

gN · vds (11.27)

11.2.2 Existence and Uniqueness of Solutions

One of the first question we must ask us is if the variational equation (11.25) is well
posed and has a unique solution u? As we know this follows form the Lax-Milgram
lemma if we can establish coercivity and continuity of the bilinear form a(·, ·) on
V , and also continuity of the linear form l(·) on V . To this end we equip V with the
standard H1(Ω) norm ∥ · ∥V = ∥ · ∥H1(Ω). Furthermore, to measure the size of the
various tensors and vectors involved we also introduce the following norms on V

∥A∥2
V =

3

∑
i, j=1

∥ai j∥2
V , ∥b∥2

V =
3

∑
i=1

∥bi∥2
V (11.28)

for A a 3×3 tensor, and b a 3×1 vector.
We begin by showing the continuity of a(·, ·). Using the Cauchy-Schwartz in-

equality we have
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a(u,v) =
∫

Ω
2µε(u) : ε(v)+λ (∇ ·u)(∇ · v)dx (11.29)

≤ 2µ∥ε(u)∥∥ε(v)∥+λ∥∇ ·u∥∥∇ · v∥ (11.30)
≤C∥∇u∥∥∇v∥ (11.31)
≤C∥u∥V∥v∥V (11.32)

The continuity of the linear form l(·) follows from the trace inequality

∥v∥L2(Γ ) ≤C(∥∇v∥+∥v∥)≤C∥v∥V (11.33)

where Γ is any part of the boundary ∂Ω . Using this inequality we have

l(v)≤ ( f ,v)+(g,v)ΓN (11.34)
≤ ∥ f∥∥v∥+∥g∥L2(ΓN)

∥v∥L2(ΓN)
(11.35)

≤ ∥ f∥∥v∥V +∥g∥L2(ΓN)
∥v∥V (11.36)

≤C∥v∥V (11.37)

which proves continuity of l(·).
To prove coercivity of the bilinear form a(·, ·) we need the following result.

Theorem 11.1 (Korn’s Inequality). There exist a positive constant C such that

C∥∇v∥2 ≤ ∥ε(v)∥2 =
∫

Ω

3

∑
i, j=1

εi j(v)εi j(v)dx (11.38)

Proof. For simplicity let us assume that u = 0 on the whole boundary ∂Ω . Straight
forward calculation reveals that∫

Ω

3

∑
i, j=1

εi j(v)εi j(v)dx =
∫

Ω

3

∑
i, j=1

1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
dx (11.39)

=
1
4

∫
Ω

3

∑
i, j=1

(
∂vi

∂x j

)2

+2
∂vi

∂x j

∂v j

∂x j
+

(
∂v j

∂xi

)2

dx (11.40)

=
1
2
∥∇v∥2 +

1
2

3

∑
i, j=1

∫
Ω

∂vi

∂x j

∂v j

∂x j
dx (11.41)

The theorem now follows if we can show that the second term in the last line is
positive. Now, using partial integration twice and that v = 0 on ∂Ω , we have
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3

∑
i, j=1

∫
Ω

∂vi

∂x j

∂v j

∂x j
dx =−

3

∑
i, j=1

∫
Ω

vi
∂ 2v j

∂x j∂x j
dx+

∫
∂Ω

n jvi
∂v j

∂xi
ds (11.42)

=
3

∑
i, j=1

∫
Ω

∂vi

∂xi

∂v j

∂x j
dx−

∫
∂Ω

nivi
∂v j

∂x j
ds (11.43)

=
∫

Ω

(
3

∑
i=1

∂vi

∂xi

)(
3

∑
j=1

∂v j

∂x j

)
dx (11.44)

=
∫

Ω
(∇ · v)2 dx ≥ 0 (11.45)

We are done.

The coercivity of a(·, ·) now follows from the Poincaré inequality ∥v∥V ≤C∥∇v∥,
since

a(u,u) = 2µ∥ε(u)∥2 +λ∥∇ ·u∥2 ≥ 2µ∥ε(u)∥2 ≥C∥∇u∥2
V ≥C∥v∥2

V (11.46)

In view of these results we thus conclude that the requirements for the Lax-
Milgram lemma are satisfied, and hence that there exist a unique solution u ∈ V to
the abstract variational equation (11.25).

11.2.3 Finite Element Approximation

From the Lax-Milgram lemma we know that the variational equation (11.25) has a
unique solution u ∈V , which can be approximated using finite elements. To this end
let K = {K} be a partition of Ω into tetrahedrons K.

We shall choose to approximate the displacement field using continuous piece-
wise linears for each displacement component. The appropriate discrete space for
doing so is

V h =
{

v ∈ [Sh]
3 : v|ΓD= 0

}
(11.47)

where Sh is the space of continuous piecewise linears on K .
The finite element approximation to (11.25) reads: Find uh ∈V h, such that

a(uh,v) = l(v), ∀v ∈V h (11.48)

11.3 A Priori Error Estimate

As always we need to assert the accuracy of the finite element solution uh by esti-
mating the error e = u−uh.

We have the following a priori result.
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Theorem 11.2. The finite element solution uh satisfies the following estimate

∥∇e∥ ≤Ch∥D2u∥ (11.49)

where C is constant independent of u, uh, and the meshsize h.

Proof. Starting from the coercivity result we have

C∥∇e∥2 ≤ a(e,e) = a(e,u−uh) = a(e,u−πu+πu−uh) = a(e,u−πu) (11.50)

where we have added and subtracted an interpolant πu ∈ V h to u from the finite
element space, and used that a(e,πu) = 0 by Galerkin orthogonality. Using also the
continuity if a(·, ·) we have

C∥∇e∥2 ≤ a(e,u−πu)≤C∥∇e∥∥∇(u−πu)∥ (11.51)

Now, from interpolation theory we have the estimate

∥∇(u−πu)∥ ≤Ch∥D2u∥ (11.52)

from which the theorem immediately follows.

11.4 Engineering Notation

In the engineering business it is customary to rewrite the bilinear form a(uh,v) as a
product of a few matrices, since this allows a simple bookkeeping of the index i, j,
and of the components (uh) j and vi. The starting point is to rearrange the indepen-
dent components of the stress tensor into a vector, viz.

σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T (11.53)

The strain tensor is written as a vector as well

ε =
[
ε11 ε22 ε33 2ε12 2ε23 2ε31

]T (11.54)

Hooke’s law (11.9) can now be expressed as

σ = Dε (11.55)

with
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D =


λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (11.56)

for three-dimensional elasticity.
For two-dimensional applications one has to differ between plane strain

ε13 = ε23 = ε31 = 0, σ33 = ν(σ11 +σ22) (11.57)

and plane stress

σ13 = σ23 = σ31 = 0, ε33 =− ν
E
(σ33 +σ22) (11.58)

Both cases can be handled by a constitutive law of the form σ = Dε , but now with

σ =
[
σ11 σ22 σ12

]T
, ε =

[
ε11 ε22 2ε12

]T (11.59)

and

D =

λ +2µ λ 0
λ λ +2µ 0
0 0 µ

 (11.60)

for plane strain and

D =
E

1−ν2

1 ν 0
ν 1 0
0 0 (1−ν)/2

 (11.61)

for plane stress. We shall return to this later on.
The engineering notation adopted above to define the stress and strain tensors

allows us to write

ε : σ = εT σ = εT Dε (11.62)

which implies that

a(u,v) =
∫

Ω
ε(v) : σ(u)dx =

∫
Ω

εT (v)σ(u)dx =
∫

Ω
εT (v)Dε(u)dx (11.63)

It is convenient to write the finite element ansatz uh ∈V h in matrix form as
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uh =

(uh)1
(uh)2
(uh)3

=

φ1 0 0 φ2 0 0 . . . φni 0 0
0 φ1 0 0 φ2 0 . . . 0 φni 0
0 0 φ1 0 0 φ2 . . . 0 0 φni





d11
d12
d13
d21
d22
d23

...
dN1
dN2
dN3


= φd (11.64)

where φi, i = 1,2, . . . ,ni are the hat basis functions in three dimensions, and d is a
vector containing the nodal displacements. Note that there are three displacements
di j = (uh) j(Ni) per node Ni, and thus that d is of length three times the number of
(internal) nodes, ni.

The strain field is linked to the displacements by (11.8). An alternative way of
writing this is 

ε11
ε22
ε33
2ε12
2ε23
2ε31

=


∂/∂x1 0 0

0 ∂/∂x2 0
0 0 ∂/∂x3

∂/∂x2 ∂/∂x1 0
0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1


u1

u2
u3

 (11.65)

Introducing the strain matrix

B =


∂/∂x1 0 0

0 ∂/∂x2 0
0 0 ∂/∂x3

∂/∂x2 ∂/∂x1 0
0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1


φ1 0 0 φ2 0 0 . . . φni 0 0

0 φ1 0 0 φ2 0 . . . 0 φni 0
0 0 φ1 0 0 φ2 . . . 0 0 φni

 (11.66)

we have the discrete strains and stresses

ε = Bd (11.67)
σ = DBd (11.68)

With these definitions the matrix formulation of the finite element method (11.48)
becomes (∫

Ω
BT DBdx

)
d =

∫
Ω

φT f dx+
∫

ΓN

φT gds (11.69)

or simply
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Kd = F (11.70)

where K is the 3ni ×3ni stiffness matrix

K =
∫

Ω
BT DBdx (11.71)

and F is the 3ni ×1 load vector

F =
∫

Ω
φT f dx+

∫
ΓN

φT gds (11.72)

11.4.1 Computer Implementation

Although deformation is a genuine three-dimensional phenomenon it is sometimes
possible to reduce the analysis to two dimensions. For example, say that we have
a very slender structure oriented along the x3-axis with length much greater than
cross-section area. Then the strains associated with length (i.e, ε13, ε23, and ε33) are
small compared to the cross-sectional strains, since they are constrained by nearby
material. In this case it suffice to consider a reduced two-dimensional elastic prob-
lem within the cross-section to deduce the deformation of the structure. The condi-
tions that u3 = 0 and that there is no variation with respect to x3 (i.e., ∂/∂x3 = 0)
are precisely the assumptions of plain strain. The state of plane stress applies to
structures which are large but thin, such as plates or shells, for instance.

Let us work through the details of writing a two-dimensional finite element
solver. To this end let Ω ⊂R2 from now on denote a two-dimensional domain within
the x1x2-plane, and let K = {K} be a triangle mesh of Ω .

As usual the stiffness matrix (11.71) and the load vector (11.72) can be assem-
bled by summing integral contributions from each element. Consider therefore an
element K with the three nodes Ni, i = 1,2,3. On K the element displacements uK

h
are given by

uK
h =

[
φ1 0 φ2 0 φ3 0
0 φ1 0 φ2 0 φ3

]


d11
d12
d21
d22
d31
d32

= φKdK (11.73)

where φi are hat functions. Recall that these are given by

φi =
1

2|K|
(ai +bix1 + cix2) (11.74)
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where |K| is the area of K, and where the coefficients ai, bi, and ci are determined
from the requirement φi(N j) = δi j.

The element strains are given by

εK =

∂/∂x1 0
0 ∂/∂x2

∂/∂x2 ∂/∂x1

uK
h =

1
2|K|

b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3

dK = BKdK (11.75)

We note that the strain matrix BK is constant and hence that that the strains are
constant on the element. Because the element strains are constant, so are the element
stresses σK = DεK .

The element stiffness matrix is now given by

KK =
∫

K
BKT

DBK dx (11.76)

which simplifies to KK = BKT DBK |K|, since the integrand is constant. Here, let us
assume a state of plane strain in which case the matrix D is given by (11.57).

Writing a code for computing KK is easy.

function KK = ElasticStiffness(x,y,mu,lambda)
% triangle area and gradients (b,c) of hat functions
[area,b,c]=Gradients(x,y);
% elastic matrix
D=mu*[2 0 0; 0 2 0; 0 0 1]+lambda*[1 1 0; 1 1 0; 0 0 0];
% strain matrix
BK=[b(1) 0 b(2) 0 b(3) 0 ;

0 c(1) 0 c(2) 0 c(3);
c(1) b(1) c(2) b(2) c(3) b(3)];

% element stiffness matrix
KK=BK’*D*BK*area;

Input to this routine is the node coordinates x and y, and the Lamé parameters
lambda and mu. Output is the 6×6 element stiffness matrix KK.

The element load vector is given by

FK =
∫

K
φKT

f dx =
∫

K


φ1 0
0 φ1

φ2 0
0 φ2

φ3 0
0 φ3


[

f1
f2

]
dx (11.77)

To evaluate these integrals without pain we can use the old trick of replacing f with
its linear interpolant π f , and then integrate the interpolant. Recall that π f is defined
on K by
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π f =
[

π f1
π f2

]
=

[
φ1 0 φ2 0 φ3 0
0 φ1 0 φ2 0 φ3

]


f11
f21
f12
f22
f13
f23

= φKT
f K (11.78)

where fi j = fi(N j) are the nodal force values. This now gives us

FK =
∫

K
φKT

f dx ≈
∫

K


φ1 0
0 φ1

φ2 0
0 φ2

φ3 0
0 φ3


[

φ1 0 φ2 0 φ3 0
0 φ1 0 φ2 0 φ3

]


f11
f21
f12
f22
f13
f23

 dx (11.79)

=
∫

K


φ2

1 0 φ2φ1 0 φ3φ1 0
0 φ2

1 0 φ2φ1 0 φ3φ1
φ1φ2 0 φ2

2 0 φ3φ2 0
0 φ1φ2 0 φ2

2 0 φ3φ2
φ1φ3 0 φ2φ3 0 φ2

3 0
0 φ1φ3 0 φ2φ3 0 φ2

3




f11
f21
f12
f22
f13
f23

 dx = MK f K (11.80)

where MK is the element mass matrix. Evaluating its integrals one finds that

MK =
1
12


2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

 |K| (11.81)

which immediately translates into MATLAB code.

function MK = ElasticMass(x,y)
area=polyarea(x,y);
MK=[2 0 1 0 1 0;

0 2 0 1 0 1;
1 0 2 0 1 0;
0 1 0 2 0 1;
1 0 1 0 2 0;
0 1 0 1 0 2]*area/12;

Since the element load is approximately given by FK = MK f K on each element, it
is straight forward to assemble the load vector F as the sum F = ∑K FK .

When performing the assembly of the global system of equations, one needs to
recall that there are two unknowns, or, degrees of freedom, per node. This makes the
insertion of element matrix contributions into the global system matrix a bit more
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trickier than usual. In order to add the local stiffness KK
i j to its correct location in the

global stiffness matrix K, we have to make a map between the node numbers and the
numbering of the displacement degrees of freedom. To be honest we have already
set up this mapping when ordering the nodal displacements in the vector d. Recall
that all odd vector entries d2i−1 have to do with the x1-displacement (uh)1, and that
all even entries d2i has to do with the x2-displacement (uh)2. This is also true for the
element displacement vector dK . Thus the two displacement components in node
number i is mapped onto vector entries d2i−1 and d2i, i = 1,2, . . . ,N, and the map
between a node Ni and its degrees of freedom is consequently i 7→ (2i− 1,2i). For
example, if element K has the nodes 3, 5 and 6, then the degrees of freedom is 5, 6,
9, 10, 11, and 12. From this it follows that the local stiffness KK

15 should be added to
row 5 column 11 in the global stiffness matrix K.

Using the subroutines ElastStiffness and ElastMass we can now write
a routine for assembling the global stiffness matrix K and the global load vector F .
For later use we also assemble the global mass matrix M.

function [K,M,F] = ElasticAssema(p,e,t,lambda,mu,force)
ndof=2*size(p,2); % total number of degrees of freedom
K=sparse(ndof,ndof); % allocate stiffness matrix
M=sparse(ndof,ndof); % allocate mass matrix
F=zeros(ndof,1); % allocate load vector
dofs=zeros(6,1); % allocate element degrees of freedom
for i=1:size(t,2) % assemly loop over elements
nodes=t(1:3,i); % element nodes
x=p(1,nodes); y=p(2,nodes); % node coordinates
dofs(2:2:end)=2*nodes; % element degrees of freedom
dofs(1:2:end)=2*nodes-1;
f=force(x,y); % evaluate force at nodes
KK=ElasticStiffness(x,y,lambda,mu); % element stiffness
MK=ElasticMass(x,y); % element mass
fK=[f(1,1) f(2,1) f(1,2) f(2,2) f(1,3) f(2,3)]’;
FK=MK*fK; % element load
K(dofs,dofs)=K(dofs,dofs)+KK; % add to stiffness matrix
M(dofs,dofs)=M(dofs,dofs)+MK; % add to mass matrix
F(dofs)=F(dofs)+FK; % add to load vector

end

Input is the usual point, edge, and triangle matrices p, e, and t, the Lamé parameters
lambda, and mu, and a function handle force to a subroutine specifying the body
force f . For example,

function f = Force(x,y)
f=[35/13*y-35/13*y.ˆ2+10/13*x-10/13*x.ˆ2;
-25/26*(-1+2*y).*(-1+2*x)];

Output is the global stiffness matrix K, the global mass matrix M, and the global load
vector F.
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The Lamé parameters λ and µ can conveniently be computed from the Young
modulus E and the Poisson’s ratio ν , which are the usual physical data available,
with the following subroutine.

function [mu,lambda] = Enu2Lame(E,nu)
mu=E/(2*(1+nu));
lambda=E*nu/((1+nu)*(1-2*nu));

For the stiffness matrix to be invertible some boundary conditions must be en-
forced. Assuming a Dirichlet type boundary condition this can be done as usual with
a list fixed containing the fixed degrees of freedom on the Dirichlet boundary ΓD,
and another list values with the corresponding nodal displacement values. For
example, if we have the homogeneous Dirichlet condition u = gD = 0 on the whole
boundary, then the construction of fixed and values can be done with the code

bdry=unique([e(1,:) e(2,:)]); % boundary nodes
fixed=[2*bdry-1 2*bdry]; % boundary degrees of freedom
values=zeros(length(fixed),1); % zero boundary values

The elimination of the boundary degrees of freedom and subsequent solution of the
linear system Kd = F is then done with the lines

ndof=length(F);
free=setdiff([1:ndof],fixed);
F=F(free)-K(free,fixed)*values;
K=K(free,free);
d=zeros(ndof,1);
d(free)=K\F;
d(fixed)=values;

The main routine for our linear elastic finite element solver is given below.

function ElasticitySolver()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.1);
E=1; nu=0.3;
[mu,lambda]=Enu2Lame(E,nu);
[K,M,F]=ElasticAssema(p,e,t,mu,lambda,@Force);
bdry=unique([e(1,:) e(2,:)]);
fixed=[2*bdry-1 2*bdry];
values=zeros(length(fixed),1);
ndof=length(F);
free=setdiff([1:ndof],fixed);
F=F(free)-K(free,fixed)*values;
K=K(free,free);
d=zeros(ndof,1);
d(free)=K\F;
d(fixed)=values;
U=d(1:2:end); V=d(2:2:end);
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figure(1), pdesurf(p,t,U), title(’(u_h)_1’)
figure(2), pdesurf(p,t,V), title(’(u_h)_2’)

11.4.2 Verifying the Energy Norm Convergence

Let us verify that the finite element solver outlined above is implemented correctly.
By taking the logarithm of the estimate

√
a(e,e)≤Ch, which can be deduced from

the proof of the a priori estimate (11.49), we find that the error e = u−uh satisfies

log
√

a(e,e)≤ log(Ch) =C+ logh (11.82)

where C is a constant depending on D2u. The quantity
√

a(·, ·) is called the energy
norm and is sometimes denoted ∥ · ∥E . From (11.82) it follows that if we make a
plot of logh versus log∥e∥E we should asymptotically get a straight line with slope
1. However, to be able to compute e we need to know the exact solution u, and we
shall therefore manufacture a problem with known solution. Let Ω = [0,1]× [0,1]
be the unit square and let u = [x1(1−x1)x2(1−x2),0]. This choice of u assures that
u = 0 on the boundary ∂Ω . Using u to first compute the strain tensor ε , and then the
stress tensor σ , and finally −∇ ·σ , we find that f equals

f =
[

35/13x2 −35/13x2
2 +10/13x1 −10/13x2

1
−25/26(−1+2x2)(−1+2x1)

]
(11.83)

with E = 1 and ν = 0.3. In the same way we also find that

a(u,u) =
∫

Ω
σ(u) : ε(u)dx = 1/52 (11.84)

To compute a(e,e) we note that a(e,e) = a(u,u)−a(uh,uh) by Galerkin orthogonal-
ity, and that a(uh,uh) can be easily computed as a(uh,uh) = dT Kd = FT d. Record-
ing the meshsize h and the energy norm error ∥e∥E for 10 different uniform meshes
we get the results shown in Table 11.1. In Figure 11.1 we show a loglog plot of the
data points. Looking at the plot we see that it is almost a straight line and by doing a
linear least squares fit on the data we find that the slope of the line is 1.0104, which
indeed is close to the predicted value of 1.
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h
√

FT d ∥e∥E

0.1250 0.1372 0.0201
0.1125 0.1374 0.0187
0.1000 0.1377 0.0162
0.0875 0.1379 0.0146
0.0750 0.1381 0.0125
0.0625 0.1383 0.0103
0.0500 0.1384 0.0083
0.0375 0.1385 0.0061
0.0250 0.1386 0.0040
0.0125 0.1387 0.0020

Table 11.1 Convergence of error in the energy norm.

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

log(h)

lo
g(

||e
|| E

)

Fig. 11.1 Loglog plot of error in energy norm versus mesh size.

11.5 A Posteriori Estimate

In order to formulate adaptive finite elements we want to derive a posteriori esti-
mates for the error e = u− uh. In doing so let us for simplicity assume zero dis-
placement boundary conditions along the whole boundary. Starting from Korn’s
inequality and the Galerkin orthogonality, a(e,v) = 0 for all v ∈ V h, with v chosen
as the interpolant πe ∈V h, we have
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C∥∇e∥2 ≤ a(e,e) (11.85)
= a(e,e−πe) (11.86)
= a(u,e−πe)−a(uh,e−πe) (11.87)
= ( f ,e−πe)−a(uh,e−πe) (11.88)

= ∑
K∈K

( f ,e−πe)K − (σ : ε(e−πe))K (11.89)

= ∑
K∈K

( f ,e−πe)K +(∇ ·σ ,e−πe)− (σ ·n,e−πe)∂K\∂Ω (11.90)

= ∑
K∈K

( f +∇ ·σ ,e−πe)K +( 1
2 [σ ·n],e−πe)∂K\∂Ω (11.91)

where as usual [σ ·n] denotes the jump in the normal stress over the element bound-
aries. Recall that if K+ and K− are two elements sharing edge E with unit normal
nE pointing from K+ to K−, then by definition [σ ·n] = (σ |K−−σ |K−) ·nE on E.

Using the Cauchy-Schwartz inequality on each term of (11.91) we further have

∥∇e∥2 ≤C ∑
K∈K

∥ f +∇ ·σ∥K∥e−πe∥K (11.92)

+h−1/2
K ∥ 1

2 [σ ·n]∥∂K\∂Ω h1/2
K ∥e−πe∥∂K\∂Ω

since both u and uh, and thus also e and πe, are zero on the boundary.
Recalling next the trace inequality ∥v∥∂K ≤C(h−1/2

K ∥v∥K +h1/2
K ∥∇v∥K), the in-

terpolation estimate ∥v−πv∥K ≤ChK∥∇v∥K , and the stability estimate ∥∇(πv)∥ ≤
C∥∇v∥, we obtain

h1/2
K ∥e−πe∥∂K ≤C(∥e−πe∥K +hK∥∇(e−πe)∥K)≤ hK∥∇e∥K (11.93)

Using this result and the Cauchy-Schwartz inequality again we have

∥∇e∥2 ≤C ∑
K∈K

(hK∥ f +∇ ·σ∥K +h1/2
K ∥ 1

2 [σ ·n]∥∂K\∂Ω )∥∇e∥K (11.94)

≤C

(
∑

K∈K

h2
K∥ f +∇ ·σ∥2

K +hK∥ 1
2 [σ ·n]∥2

∂K\∂Ω

)1/2

∥∇e∥ (11.95)

Finally, dividing by ∥∇e∥ we end up with the a posteriori estimate

∥∇e∥ ≤C

(
∑

K∈K

h2
K∥ f +∇ ·σ∥2

K +hK∥ 1
2 [σ ·n]∥2

∂K\∂Ω

)1/2

(11.96)

≤C ∑
K∈K

hK∥ f +∇ ·σ∥K +h1/2
K ∥ 1

2 [σ ·n]∥∂K\∂Ω (11.97)

Thus, we have proved the following theorem.
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Theorem 11.3. The finite element solution uh satisfies the a posteriori error esti-
mate

∥∇e∥ ≤C ∑
K∈K

ηK (11.98)

where the element indicator ηK is the sum of the cell residual RK = hK∥ f +∇ ·σ∥K

and the edge residual rK = h1/2
K ∥ 1

2 [σ ·n]∥∂K\∂Ω .

Next we show how to compute the cell and edge residuals.
The cell residual is easy to compute with one point quadrature. Note that it sim-

plifies to RK = ∥ f∥K for a piecewise linear uh.

function RK = CellResiduals(p,t,force)
nt=size(t,2); % number of elements
RK=zeros(nt,1); % allocate element residuals
for i=1:nt % loop over elements
nodes=t(1:3,i); % nodes
x=p(1,nodes); y=p(2,nodes); % node coordinates
[area,ds]=Triutils(x,y); % area and side lengths
f=force(mean(x),mean(y)); % force at element centroid
h=max(ds); % local mesh size is max side length
RK(i)=h*sqrt(dot(f,f)*area); % cell residual h|f|_K

end

Here, we use the following utility routine to compute the area, edge lengths, and
outward unit normals on an element. Edge 1 is opposite node 1, edge 2 opposite
node 2, etc.

function [area,ds,nx,ny] = Triutils(x,y)
area=polyarea(x,y); % triangle area
dx=[x(3)-x(2); x(1)-x(3); x(2)-x(1)];
dy=[y(2)-y(3); y(3)-y(1); y(1)-y(2)];
ds=sqrt(dx.*dx+dy.*dy); % side lengths
nx=-dy./ds; % outward unit normal components
ny=-dx./ds;

The edge residual is a little more complicated to compute than the cell resid-
ual, since it requires information about the element neighbors. A routine called
Tri2Tri for computing element neighbors is given in the Appendix.

function rK = EdgeResiduals(p,t,E,nu,U,V)
nt=size(t,2);
rK=zeros(nt,1); % allocate edge residuals
nbrs=Tri2Tri(p,t); % get element neighbours
[mu,lambda]=Enu2Lame(E,nu);
[ux,uy]=pdegrad(p,t,U); % gradient of U
[vx,vy]=pdegrad(p,t,V);
for i=1:nt
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nodes=t(1:3,i);
x=p(1,nodes); y=p(2,nodes);
r=0; % sum of edge residuals sqrt(h)|0.5[n.sigma]|_dK
[area,ds,nx,ny]=Triutils(x,y);
h=max(ds);
for j=1:3 % loop over element edges

n=nbrs(i,j); % element neighbour
if n<0 % no neighbour

continue; % don’t compute on boundary
end
Sp=Stress(mu,lambda,ux,uy,vx,vy,i); % stress on element i
Sm=Stress(mu,lambda,ux,uy,vx,vy,n); % stress on neighbour
jump=0.5*(Sm-Sp)*[nx(j); ny(j)]; % stress jump
r=r+dot(jump,jump)*ds(j);

end
rK(i)=sqrt(h)*sqrt(r);

end

To compute the stress tensor on a given element we use the following subroutine.

function sigma = Stress(mu,lambda,ux,uy,vx,vy,i);
div=ux(i)+vy(i); % div U
grad=[ux(i) uy(i); vx(i) vy(i)]; % grad U
epsilon=(grad+grad’)/2; % strain
sigma=2*mu*epsilon+lambda*div*eye(2); % stress

11.5.1 Adaptive Mesh Refinement on a Rotated L-shaped Domain

We illustrate the use of the element indicator ηK by adaptively solving a problem
with a manufactured solution. The domain Ω is a rotated L-shaped polygon with
vertex points (−1,−1), (0,0), (−1,1), (0,2), (2,0), and (0,−2), see Figure 11.2.
The solution u is known in polar coordinates (r,θ).

ur(r,θ) =
1

2µ
rα((c2 −α −1)cos((α −1)θ)− (α +1)cos((α +1)θ)) (11.99)

uθ (r,θ) =
1

2µ
rα((α +1)sin((α +1)θ)+(c2 +α −1)sin((α −1)θ)) (11.100)

where the exponent α is the solution to the equation α sin(2ω)+sin(2ωα) = 0 with
ω = 3π/4, c1 = −cos((α + 1)ω)/cos((α − 1)ω), and c2 = 2(λ + 2µ)/(λ + µ).
This displacement field satisfies (11.13) with f = 0 and ΓD = ∂Ω . In the computa-
tions we use E = 1 and ν = 0.3.

The most prominent feature of the solution u is that its gradient tends towards
infinity at origo, which coincides with the reentrant corner of the L-shaped domain.
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In order to capture this rapid growth of the gradient it is necessary to have a high
density of nodes near origo. Moreover, from the a posteriori estimate we have the
upper bound ∥∇e∥ ≤ C ∑K ηK , which implies that we get accurate values of the
gradient when using the element indicators ηK to select elements for refinement.
Indeed, starting with the coarse mesh with ten elements and making ten adaptive
refinement loops we obtain the mesh shown in Figure 11.2. Clearly, the adaptive
algorithm has identified and resolved the region around the reentrant corner. The
computed displacement is shown in Figure 11.3.
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Fig. 11.2 Final adapted mesh.
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Fig. 11.3 Computed displacement of the rotated L-shaped domain.
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11.6 The Equations of Linear Thermoelasticity

Heating or cooling of a material leads to isotropic expansion or contraction. The
strains associated with this are called thermal strains and is to first order given by

τ = α(T −T0)I (11.101)

where α is the thermal expansion coefficient and T0 a reference temperature. It is
common to write the total strain ε as the sum of the thermal strains and the mechani-
cal strains, where the stresses from the latter obeys Hooke’s law. These assumptions
give rise to a generalized Hooke’s law relating stresses, temperature, and displace-
ment

σ = 2µε(u)+λ (∇ ·u)I −α(3λ +2µ)(T −T0)I (11.102)

Given the temperature T this modified stress strain relationship can is combined
with the equations of motion −∇ ·σ = f to yield the equations of linear thermo-
elasticity for u. In variational form, assuming for simplicity f = 0, these equations
takes the form: find u ∈V such that∫

Ω
2µε(u) : ε(v)+λ (∇ ·u)(∇ · v)dx =

∫
Ω

α(3λ +2µ)(T −T0)(∇ · v)dx, ∀v ∈V

(11.103)

From this we see that the thermal strains yield a load proportional to the temperature
raise T −T0.

Usually the temperature T is not available in closed form, but has to be computed
(e.g., by solving a heat transfer problem with finite elements).

11.7 The Equations of Linear Elastodynamics

So far we have only dealt with statics, but since it is easy to extend the analysis to
dynamics let us do so. To this end recall that Newton’s second law F = ma says
that the net force F acting on a particle equals the mass m of the particle times its
acceleration a. Translated to the continuum setting these equations of motion takes
the form

ρ ü = f +∇ ·σ (11.104)

where ρ is the density of the material and is the second derivative of the displace-
ment u with respect to time t. To see the analogy between Newton’s second law and
(11.104) we note that if we consider a small particle with volume dV inside a ma-
terial body, then ρdV is precisely the mass of the particle, ü is its acceleration, and
( f +∇ ·σ)dV is the net force acting on it. We recognize f dV as externally applied
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forces, such as gravity for instance, and ∇ ·σdV = σ ·ndS as internal stresses acting
on the surface dS of dV with n the outward unit normal on dS.

We can now write down the basic problem of linear elastodynamics: Find the
time dependent symmetric stress tensor σ and the time dependent displacement
vector u such that

ρ ü−∇ ·σ = f , in Ω × I (11.105a)
σ = 2µε(u)+λ (∇ ·u)I, in Ω × I (11.105b)
u = 0, on ΓD × I (11.105c)

σ ·n = 0, on ΓN × I (11.105d)
u = u0, in Ω , for t = 0 (11.105e)
u̇ = v0, in Ω , for t = 0 (11.105f)

where I = (0,T ] is the time interval, and u0 and v0 is a given initial displacement
and velocity, respectively.

11.7.1 Modal Analysis

Noting that the equations of motion (11.104) resembles a wave equation it is natural
to look for solutions in the form of plane waves, that is,

u = zsin
√

λ t (11.106)

where z is a function independent of time and λ a number. Needless to say both z
and λ are unknown. Inserting this ansatz into ρ ü−∇ ·σ(u) = f , assuming ρ = 1
and f = 0, we obtain

−∇ ·σ(z) = λ z (11.107)

which we recognize as a continuous eigenvalue problem for the pair (z,λ ).
The variational formulation of the eigenvalue problem reads: Find (z,λ )∈V ×R

such that

a(z,v) = λ (z,v), ∀v ∈V (11.108)

and the corresponding finite element approximation takes the form: Find (Z,Λ) ∈
V h ×R such that

a(Z,v) = Λ(Z,v), ∀v ∈V h (11.109)

In matrix form we have

Kd = ΛMd (11.110)
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where K, is the stiffness matrix, M the mass matrix, and d a vector containing the
nodal values of Z.

The computation of eigenmodes and eigenvalues is important in engineering and
is routinely done to avoid vibrations that can cause mechanical structures to wear
out unreasonably fast or fail. In doing so, the aim is to avoid getting resonance
phenomenons if the structure is subjected to a harmonically varying external force.

11.7.1.1 Eigenvalues and Eigenmodes of a Steel Bracket

As a computational example we compute the ten lowest eigenvalues and eigenmodes
of a freely vibrating steel bracket, see Figure 11.3. The relevant code for assembling
the mass and stiffness matrix and calling the eigenvalue solver eigs is given below.

function ElastModalSolver()
E=1; nu=0.3;
[mu,lambda]=Enu2Lame(E,nu);
[K,M]=ElastAssema(p,e,t,mu,lambda,@force);
[D,lambda]=eigs(K,M,10,’SM’);

The computed eigenvalues are listed in Table 11.2, and in Figure 11.5 we show the
corresponding eigenmodes 1, 4, 5 and 8. Note that the three lowest eigenvalues are
zero. This is explained by the fact that we have three rigid body modes, namely,
two translations and one rotation, for problems with stress free boundary conditions
in two dimensions. These eigenmodes are not proper displacements and causes no
stress or strain on the structure. Hence, they belong to the kernel of the bilinear form
a(·, ·), or equivalently, the null space of the stiffness matrix K.
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Fig. 11.4 Steel bracket and mesh.



226 11 Solid Mechanics

i Λi

1 0.00
2 -0.00
3 -0.00
4 1.67
5 15.07
6 35.20
7 93.94
8 154.25
9 119.29

10 185.92

Table 11.2 The ten lowest eigenvalues of the steel bracket.
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Fig. 11.5 Eigenmodes 1, 4, 5, and 8 of the steel bracket.

11.8 Problems

Exercise 11.1. Given the stress field σ11 = x1x2, σ12 = (1− x2
2)/2, and σ22 = 0.

Determine if this corresponds to a state of equilibrium under a zero body force.
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Exercise 11.2. Show the vector identity 2∇ · ε(v) = ∆v+∇(∇ · v) for v = [v1, v2].

Exercise 11.3. Use the previous result to rewrite (11.13) as the single equation
µ∆u+(λ +µ)∇(∇ ·u)+ f = 0.

Exercise 11.4. Show that the strain tensor ε(u) is zero under the deformation

u =

[
a
b

]
+

[
0 −θ
θ 0

][
x1
x2

]
where a, b, and θ are constants. Can you give a physical interpretation of u, assum-
ing that θ is small?

Exercise 11.5. Show that ε(v) : I = ∇ · v.

Exercise 11.6. Show that the bilinear form can be written

a(u,v) =
∫

Ω
2µε(u) : ε(v)+λ (∇ ·u)(∇ · v)dx

Exercise 11.7. Verify that the conditions for the Lax-Milgram lemma are satisfied
for the variational equation (11.25). For simplicity, you only have to consider the
case of homogeneous Dirichlet boundary conditions u = 0 on the whole boundary
∂Ω . Hint: Korn’s inequality is useful.

Exercise 11.8. Calculate the element stiffness matrix Ke by hand for the triangle
with corners at (0,0), (3,1), and (2,2). Assume that

D =

4 1 0
1 4 0
0 0 2


Verify that Ke has three zero eigenvalues. Can you explain why?

Exercise 11.9. Calculate by hand the element mass matrix Me assuming a unit den-
sity on the reference triangle with vertices at origo, (1,0), and (0,1).

Exercise 11.10. A mesh of the square domain Ω = [−1,1]2 is obtained by typing
[p,e,t]=initmesh(’squareg’). Compute and plot the ten lowest eigen-
modes on this domain. Assume elastic constants ρ = 1, E = 1, and ν = 0.3. Test
both clamped and stress free boundary conditions.





Chapter 12
Fluid Mechanics

Abstract In this chapter we study finite elements for incompressible fluids, that is,
most liquids and gases. We start by reviewing the governing equations of mass and
momentum balance and derive the Navier-Stokes equations. Restricting attention to
laminar flow we then introduce the Stokes system and formulate a finite element
methods for the velocity and pressure. We briefly discuss the inf-sup condition and
the solution of saddle point linear systems. Finally, we introduce Chorin’s projection
method for simulating also time-dependent nearly turbulent fluid flow.

12.1 Governing Equations

12.1.1 Conservation of Mass

In classical physics mass can neither be destroyed nor created. This means that
the mass of any small volume dx of matter (e.g., a fluid) can change over time
only by flow in and out of the boundary ds. Letting u denote the flow velocity we
immediately obtain the following a mass balance equation for a fluid occupying the
domain Ω ⊂ Rd , with d = 2 or 3.

(ρ̇,1)+(ρ,u ·n)∂Ω = 0 (12.1)

Here, ρ is the density of the fluid. Since dm = ρdx is the mass of dx the first term
represents the rate of change of mass within the domain. Further, during the small
time span dt a total volume of matter of dm = ρu ·nds will flow out of the surface
ds, the second term represents the rate of mass loss through the domain boundary.

Using the divergence theorem on the surface integral we have

ρ̇ +∇ · (ρu) = 0 (12.2)

If the density ρ is constant, then this simplifies to

229
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∇ ·u = 0 (12.3)

Physically this means that the volume of any small fluid particle dx does not change
under deformation. Such fluids are said to be incompressible. Most everyday fluids
(e.g., water) are incompressible to a very high degree.

12.1.2 Momentum Balance

Besides mass conservation a fluid also obeys conservation of momentum (i.e., New-
ton’s second law). The momentum of a particle with mass m and velocity u is de-
fined as the product p = mu. Newton’s second law says that the rate of change of
momentum equals the net force F acting on the particle, or ṗ = F .

Now, the momentum d p of a small volume of fluid dx is given by d p = ρudx.
Taking into account that momentum can be transported in and out of the surface

∂Ω of a domain Ω we have the following equation for momentum balance of a
fluid.

(ρ̇u,1)+(ρu,u ·n)∂Ω = F (12.4)

where F is the net force acting on the fluid. We can use our knowledge from me-
chanics to write F = ∇ ·σ + f with σ the stress tensor of the fluid and f a given
body load, such as gravity, for instance.

Using the divergence theorem on the surface integral we arrive at

(ρ̇u,1)+∇ · (ρuu) = ∇ ·σ + f (12.5)

Here, the right left side can be simplified by differentiating using the chain rule.

ρ̇u+∇ · (ρuu) = uρ̇ +ρ u̇+u∇ · (ρu)+ρ(u ·∇)u (12.6)
= ρ u̇+ρ(u ·∇)u (12.7)

where we have used the conservation of mass equation to eliminate first and third
term in the right hand side of (12.6). Thus, we end up with the momentum balance
equation

ρ u̇+ρ(u ·∇)u = ∇ ·σ + f (12.8)

12.1.3 Incompressible Newtonian Fluids

The stresses acting on a fluid particle are of two types, namely:

• Internal stresses due to the fluid pressure.
• Viscous stresses.
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Internal stresses always arise when a fluid is brought into motion, since the pres-
sure p is changed from that existing when the fluid is at rest. The corresponding
stress tensor takes the form

σ =−pI (12.9)

with I the d ×d identity tensor.
Viscosity is a measure of the resistance of a fluid to being deformed by stresses.

It may be thought of as a friction caused by neighboring layers of fluid rubbing
against each other. In reality it is fluid molecules with different velocities that bump
into each other. Viscosity is commonly perceived as the thickness of the fluid. Thus,
water is thin, having a lower viscosity, while oil is thick having a higher viscosity.
All real fluids have some resistance to stress, but a fluid which has no resistance is
called either inviscid or ideal.

Viscous stresses oppose deformation of neighboring fluid particles. Since a con-
stant velocity field does not give rise to any relative movement between the fluid
particles it is reasonable to assume that the stress tensor σ is related only to the
velocity gradients ∇u. Clearly, the simplest assumption is that this relation is linear.
Recalling that σ is symmetric gives us

σ =−pI +µ(∇u+∇uT ) (12.10)

where the coefficient of proportionality µ is the viscosity of the fluid. Fluids obeying
this constitutive law are called Newtonian.

Now, inserting the constitutive law into the equation for balance of momentum
(12.8) using that ∇ · σ = µ(∆u +∇(∇ · u))−∇p, and assuming that the fluid is
incompressible so that ∇ ·u = 0, we obtain a set of partial differential equations for
the velocity u and pressure p,

u̇+(u ·∇)u = ν∆u− ∇p
ρ

+ f (12.11a)

∇ ·u = 0 (12.11b)

where ν = µ/ρ . These are the Navier-Stokes equations.

12.1.4 Boundary- and Initial Conditions

In order to yield a unique velocity-pressure pair (u, p) the Navier-Stokes equations
must be supplemented by appropriate boundary conditions. The most common of
these have names and include:

• Slip, u ·n = 0.
• No-slip, u = g.
• Stress free, σ ·n = 0.
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• Do-nothing, n ·∇u− pn = 0.

Slip and no-slip boundary conditions apply at a solid wall with normal n. Slip bound-
ary conditions says that the fluid flow is parallel to the boundary (i.e., orthogonal to
n).

No-slip conditions prescribe that the velocity u agrees with a known vector g on
the boundary. This might model fluid flow near a moving wall. Often g = 0 mean-
ing that the wall has a rough surface, which prevents the fluid nearest the wall to
move. Stress free and do-nothing boundary conditions are generally used on outflow
boundaries. Stress free boundary conditions model free flow into a large reservoir,
while do-nothing boundary conditions are used to truncate very long channel like
domains.

Due to the time derivative on the velocity it is also necessary to specify initial
conditions of the type u(·, t0) = u0 with u0 a given velocity at the initial time t0.

12.2 The Stokes System

12.2.1 The Stationary Stokes System

Many applications concerns laminar fluid flow meaning that the flow is calm with
essentially parallel streamlines. In such cases it is possible to omit the non-linear
term (u ·∇)u, which governs inertial effects, from the Navier-Stokes equations. Fur-
thermore, assuming that the flow is independent of time t we recover the stationary
Stokes equations.

−∆u+∇p = f , in Ω (12.12a)
∇ ·u = 0, in Ω (12.12b)

u = g, on ∂Ω (12.12c)

where f and g are given functions. For simplicity, we assume a unit viscosity ν .
The Stokes equations equations are much easier to analyze than the Navier-stokes

equations (e.g., they are linear), but they still provide a realistic model of fluid flow.
This justifies our study of them.

Since only the gradient of the pressure enters the equations p is only determined
up to an arbitrary constant. We say that the hydrostatic pressure level is undeter-
mined. To fix this constant it is customary to require the pressure to have a zero
mean value, that is,

(p,1) = 0 (12.13)

This is a characteristic feature of enclosed flows.
We also require the boundary condition g to satisfy (g,n)∂Ω = 0.
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Other types of boundary conditions than Dirichlet conditions are of course pos-
sible. For example,

−(n ·∇u,v)+(pn,v) = 0 (12.14)

which is a kind of Neumann condition typically used on outflow boundaries. A nice
feature with this boundary condition is that it automatically fixes the hydrostatic
pressure level.

12.2.2 Variational Formulation

In order to make a variational formulation of the Stokes equations we need to intro-
duce two function spaces V and Q for the velocity u and pressure p, respectively.
Let

Vg = {v ∈ [H1(Ω)]d : v|∂Ω= g} (12.15)

Q = {q ∈ L2(Ω) : (q,1) = 0} (12.16)

We see that the pressure space Q is the subset of L2 functions, which have zero
mean.

Now, multiplying the momentum equation f = −∆u + ∇p by a test function
v ∈V0 and integrating by parts we have

( f ,v) = (−∆u,v)+(∇p,v) (12.17)
= (−n ·∇u,v)∂Ω +(∇u : ∇v)+(pn,v)∂Ω − (p,∇ · v) (12.18)

which, since v = 0 on ∂Ω , simplifies to

( f ,v) = (∇u : ∇v)− (p,∇ · v) (12.19)

Similarly, multiplying the incompressibility constraint ∇ ·u= 0 by a test function
q ∈ Q we trivially have

(∇ ·u,q) = 0 (12.20)

One might ask why Q is the appropriate test space for the incompressibility con-
straint ∇ · u = 0. After all, the functions in Q are somewhat peculiar since they all
have a zero mean value. The reason is that it suffice to test against these functions,
since the variational equation is zero anyway for q constant. To see this let c be any
constant and recall that by assumption (g,n)∂Ω = 0. Using integration by parts we
have

(∇ ·u,c) = (u,nc)∂Ω +(u,∇c) = c(g,n)∂Ω = 0 (12.21)
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Thus, the variational formulation of (12.12) reads: find u ∈ Vg and p ∈ Q such
that

a(u,v)+b(v, p) = ( f ,v), ∀v ∈V0 (12.22a)
b(u,q) = 0, ∀q ∈ Q (12.22b)

where we have introduced the bilinear forms

a(u,v) = (∇u : ∇v) (12.23)
b(u,q) =−(∇ ·u,q) (12.24)

The sign of the incompressibility constraint (12.23) can be chosen arbitrarily, since
the right hand side is zero anyway. Usually, b(u,q) = 0 is preferred over the per-
haps more correct −b(u,q) = 0, since it gives a symmetric variational form. From a
theoretical point of view it usually does not matter what the sign is, however, it can
have a large impact on the numerics. Recall that symmetric matrices are often to be
preferred when it comes to solving linear systems.

If the boundary data g is sufficiently smooth it can be extended form ∂Ω to Ω .
We can then write u= g+u0, where u0 ∈V0 is a new unknown solution which is zero
on the boundary. This allows us to work solely with the space V0 with homogeneous
boundary data. In this case the variational formulation takes the form: find u0 ∈ V0
such that

a(u0,v)+b(v, p) = ( f ,v)−a(g,v), ∀v ∈V0 (12.25a)
b(u0,q) = 0, ∀q ∈ Q (12.25b)

From this we see that the effect of the inhomogeneous boundary condition can be
accounted for by defining a new body force f̃ by ( f̃ ,v) = ( f ,v)− a(g,v) for all
v ∈V0. Thus, from now on we consider only the case g = 0 and set Vg =V0 =V .

12.2.3 The Inf-Sup Condition

The existence and uniqueness of a solution (u, p) to the variational equation (12.22)
depends on four conditions, namely, the boundedness and coercivity a(·, ·) on V , the
boundedness of b(·, ·) on V ×Q, and the following result called the inf-sup condi-
tion.

Theorem 12.1. There exist a constant β > 0 such that

β ≤ inf
q∈Q

sup
v∈V

b(v,q)
∥q∥Q∥v∥V

(12.26)

The inf-sup condition may be though of as a abstract condition of the angle between
the spaces V and Q.
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Establishing the inf-sup condition is difficult and outside the scope of this book.
It is easy to show that u exist and is unique. To this end let Z = {v ∈V : ∇ ·v = 0}

be the subspace of V containing all divergence free vectors and notice that b(v, p) =
0 for all v ∈ Z. As a consequence the variational equation (12.22) reduces to: find
u ∈ Z such that

a(u,v) = ( f ,v), ∀v ∈ Z (12.27)

Now, since Z is a Hilbert space on which a(·, ·) is bounded and coercive we can
simply invoke the Lax-Milgram Lemma to show existence and uniqueness of u ∈
Z ⊂V .

Once it is proven that u exist it is possible to prove also existence of p using the
inf-sup condition. However, this is a bit technical and we omit the proof.

12.2.4 Finite Element Approximation

In order to formulate a numerical method let K be a mesh of Ω . Further, to approxi-
mate the velocity and pressure let Vh and Qh be two spaces of piecewise polynomials
on K that approximates V and Q in some sense to be made precise.

The finite element approximation of (12.22) takes the form: find uh ∈ Vh and
ph ∈ Qh such that

a(uh,v)+b(v, ph) = ( f ,v), ∀v ∈Vh (12.28a)
b(uh,q) = 0, ∀q ∈ Qh (12.28b)

Let {φi}n
1 be a set of vector valued basis functions for Vh, and let {χi}m

1 be a set
of scalar basis functions for Qh. The finite element method (12.28) results in a linear
system which can be written in block form as[

A BT

B 0

][
ξ
ϖ

]
=

[
b
0

]
(12.29)

where A is the n× n stiffness matrix, and B is the n×m divergence matrix with
entries

Ai j = a(φ j,φi) (12.30)
Bi j = b(φ j,χi) (12.31)

and b is the n× 1 load vector with entries bi = ( f ,φi). Further, ξ and ϖ are n× 1
and m× 1 vectors containing the unknown degrees of freedom of uh = ∑n

j=1 ξ jφ j
and ph = ∑m

j=1 ϖ jχ j, respectively.
Equation systems of the form (12.29) are called saddle-point linear systems, and

are notoriously difficult to solve due to the all zero m×m lower diagonal block.
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Very often the components of uh are approximated using a single finite element
space Sh with Vh = Sh ×Sh. Moreover, if {ϕi}o

i=1 is a basis for Sh, then a basis for Vh
can be trivially constructed viz

{φi}n
i=1 =

{[
ϕ1
0

]
,

[
ϕ2
0

]
, . . . ,

[
ϕo
0

]
,

[
0
ϕ1

]
,

[
0
ϕ2

]
, . . . ,

[
0
ϕo

]}
(12.32)

with n = 2o. In this case the saddle-point linear system (12.29) can be writtenA11 0 BT
1

0 A11 BT
2

B1 B2 0

ξ1
ξ2
ϖ

=

b1
b2
0

 (12.33)

where the matrix and vector entries are given by

(A11)i j = (∇ϕ j,∇ϕi), i, j = 1,2, . . . ,o (12.34)
(Bs)i j =−(∂xk ϕ j,χi), i = 1,2 . . . ,m, j = 1,2 . . . ,o (12.35)
(bs)i = ( fk,φi), i = 1,2, . . . ,o (12.36)

with s = 1,2.

12.2.5 The Discrete Inf-sup Condition

So far we have not said anything more specific about the finite element spaces Vh
and Qh. In fact we do not even know if the finite element solution (uh, ph) is well
defined. To assert this we must make sure that the saddle-point linear system (12.29)
can be inverted. It turns out that this is equivalent to establishing a discrete inf-sup
condition on Vh and Qh. In other words, there must exist a constant γ > 0 such that

γ ≤ min
q∈Rm,q ̸=1

max
v∈Rn,v̸=0

|(Bv,q)|
(q,Mq)1/2(v,Av)1/2 (12.37)

where A is the stiffness matrix, B the divergence matrix, and M the m×m pressure
mass matrix with entries Mi j = (χ j,χi). We emphasize that it is not trivial task to
show this because even if we know that the inf-sup condition is satisfied on the
continuous spaces V and Q, it need not hold on the discrete spaces Vh and Qh, not
even if the inclusions Vh ⊂V and Qh ⊂ Q hold. All the same, let us for the moment
assume that the discrete inf-sup condition do hold and do block elimination on the
(n+m)× (n+m) saddle-point linear system (12.29). From the first row we have
ξ = A−1(b−Btϖ). Plugging this into the second row Bξ = 0, and rearranging we
get the m×m linear system

BA−1BT ϖ = BA−1b (12.38)
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for the pressure degrees of freedom ϖ . We now claim that the matrix BA−1BT , which
is called the Schur complement, is invertible. To see this note that the discrete inf-
sup condition (12.37) implies

0 < γ ≤ min
q̸=1

max
v̸=0

|(q,Bv)|
(v,Av)1/2(q,Mq)1/2 (12.39)

= min
q ̸=1

1
(q,Mq)1/2 max

w=A1/2v,v ̸=0

|(q,BA−1/2w)|
(w,w)1/2 (12.40)

= min
q ̸=1

1
(q,Mq)1/2 max

w ̸=0

|(A−1/2BT q,w)|
(w,w)1/2 (12.41)

Here, the maximum is attained for w =±A−1/2BT q. Using this we have

0 < γ ≤ min
q̸=1

(A−1/2BT q,A−1/2BT q)1/2

(q,Mq)1/2 = min
q ̸=1

(BA−1BT q,q)1/2

(q,Mq)1/2 (12.42)

This shows that BA−1BT is coercive and invertible.
Once ϖ has been found we can solve the n×n linear system

Aξ = b−BT ϖ (12.43)

for the velocity degrees of freedom ξ . This is of course possible since the stiffness
matrix A is symmetric and positive definite.

To summarize we conclude that it is important to choose the finite element spaces
so that the discrete inf-sup condition is satisfied. In the next section we present a
three finite elements that has this property.

12.2.6 Three Inf-Sup Stable Finite Elements

12.2.6.1 The Taylor-Hood Element

The Taylor-Hood finite element is the standard finite element for simulating in-
compressible fluid flow, since it gives a good approximation of both velocity and
pressure, and since it is not too numerically costly to use. The element consists of
a continuous piecewise quadratic approximation of each velocity component and
a continuous piecewise linear approximation of the pressure. That is, the velocity
space is Vh = {v ∈ [C0(Ω)]d : v|K∈ [P2(K)]d}, and the pressure space Qh = {v ∈
C0(Ω) : v|K∈ P1(K)}. Figure 12.1 shows the position of the velocity and pressure
nodes on an element K.
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Fig. 12.1 Velocity • and pressure ⃝ nodes for the Taylor-Hood element.

12.2.6.2 The MINI Element

The MINI element is the simplest inf-sup stable element. It consists of a standard
continuous piecewise linear approximation for both each velocity component and
the pressure. However, on each element the velocity space is enriched by cubic
bubble functions of the form

φbubble = φ1φ2φ3 (12.44)

where φi, i = 1,2,3, are the usual hat functions. More precisely, the velocity
space is given by V = {v ∈ [C0(Ω)]d : v|K∈ [P1(K)]d

⊕
[B(K)]d}, where B(K) =

span{φbubble} is the space of bubble functions on element K. Needless to say, the
bubble function has earned its name from the fact that it looks like a bubble. By
construction the bubble function φbubble vanishes on the boundary ∂K, which is im-
portant since it allows all bubble functions to be eliminated from the saddle-point
linear system before attempting to invert it. The MINI element has become popular
because it is easy to implement. Unfortunately, it is also known for giving a poor
approximation of the pressure. The velocity and pressure nodes on K are shown in
Figure 12.2.

12.2.6.3 The Non-conforming P1 −P0 Element

The non-conforming P1 −P0 element is constructed by approximating the velocity
by Crouzeix-Raviart functions and the pressure by piecewise constants. This ele-
ment has the desirable property of being able to yield a finite element solution that
is exactly divergence free. As we shall see shortly it is also fairly easy to implement.
The node locations are shown in Figure 12.3.
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Fig. 12.2 Velocity • and pressure ⃝ nodes for the MINI element.

Fig. 12.3 Velocity • and pressure ⃝ nodes for the Crouzeix-Raviart element.

12.2.7 Computer Implementation

12.2.7.1 The Lid-Driven Cavity

To get some hands on experience with numerics for fluid flow let us implement
a Stokes solver and simulate a classical benchmark problem called the lid-driven
cavity problem. The problem setup is very simple. A square cavity Ω = [−1,1]2 is
filled with a viscous incompressible fluid. No-slip boundary conditions apply on all
four sides of the cavity. On the bottom and walls u = 0, while u1 = 1 and u2 = 0
on the lid. This creates a swirling flow inside the cavity. There is no body load. The
task is to compute the velocity field and pressure distribution.

Let us write our solver based on the non-conforming P1 −P0 element. For this
purpose, we must compute the matrices A11, and Bs, s = 1,2, defined by (12.34) and
(12.35), respectively. Moreover, the functions ϕi and χi occurring in the matrix en-
tries of these matrices should be the basis functions for the Crouzeix-Raviart space
and the space of piecewise constants, respectively. Recall that the former space has
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dimension ne the number of edges, and the latter has dimension nt the number of
elements. Indeed, since the nodes of the Crouzeix-Raviart element is associated
with the edges, we must number these before the assembly. Reusing our routine
Tri2Edge the setup of the mesh and numbering of the edges is done with the
following lines of code.

function CRStokesSolver()
[p,e,t]=initmesh(’squareg’); % mesh square [-1,1]ˆ2
t2e=Tri2Edge(p,t); % triangle-to-edge adjacency
nt=size(t,2); % number of triangles
ne=max(t2e(:)); % number of edges

Next we allocate the matrices A11, B1 and B2, and a vector holding element areas.

A=sparse(ne,ne);
Bx=sparse(nt,ne);
By=sparse(nt,ne);
areas=zeros(nt,1);

The assembly of these matrices is done as usual. We start by looping over the ele-
ments. For each element we fetch the vertex numbers and the vertex coordinates.

for i=1:nt
vertex=t(1:3,i);
x=p(1,vertex);
y=p(2,vertex);

Now, on each element K the three non-zero Crouzeix-Raviart basis functions
ϕi = SCR

i , are given by

SCR
i =−φ̂i + φ̂ j + φ̂k (12.45)

where φ̂i are the usual hat functions and with cyclic permutation of i, j,k over
{1,2,3}. Since the gradient of a hat function is the constant vector ∇φ̂i = [bi,ci]

T

we readily find that

∇SCR
i = [−bi +b j +bk,−ci + c j + ck]

T (12.46)

Here, we can use the subroutine Gradients to compute the constants bi and ci.

[area,b,c]=Gradients(x,y);
Sx=[-b(1)+b(2)+b(3); b(1)-b(2)+b(3); b(1)+b(2)-b(3)];
Sy=[-c(1)+c(2)+c(3); c(1)-c(2)+c(3); c(1)+c(2)-c(3)];

The 3×3 element matrix (AK
11)i j = (∇SCR

j ,∇SCR
i )K is then given simply by

AK = (Sx*Sx’+Sy*Sy’)*area;

To assemble this we retrieve the edge numbers on this element and add AK to the
appropriate matrix entries.
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edges=t2e(i,:);
A(edges,edges)=A(edges,edges)+AK;

Next we observe that the piecewise constant basis function χi is just the charac-
teristic function of element Ki, that is, χi = 1 on Ki and zero otherwise. Thus, on Ki
we set χi = 1 and so it is a piece of cake to compute and the assemble the 1×3 ele-
ment matrices (BK

1 )i j =−(∂x1 SCR
j ,χi)K and(BK

2 )i j =−(∂x2 SCR
j ,χi)K . We also store

the element area.

Bx(i,edges)=-Sx’*area;
By(i,edges)=-Sy’*area;
areas(i)=area;

end

We can now build the big saddle-point linear system (12.33).

nu=0.1; % viscosity parameter
LHS=[nu*A sparse(ne,ne) Bx’;

sparse(ne,ne) nu*A By’;
Bx By sparse(nt,nt)];

RHS=zeros(ndofs,1);

Should be attempt so solve this we would find that the matrix LHS is singular. This
is of course due to the fact that we have neither enforced boundary conditions on
the velocity nor a zero mean on the pressure.

In the discrete setting zero mean value on ph means that

(ph,1) =
nt

∑
K=1

ϖK(χi,1)K = aT ϖ = 0 (12.47)

where a is the vector areas. To enforce this constraint we augment the saddle-
point linear system with this equation together with a Lagrangian multiplier µ to
get 

A11 0 B1 0
0 A11 B2 0

BT
1 BT

2 0 a
0 0 aT 0




ξ1
ξ2
ϖ
µ

=


b1
b2
0
0

 (12.48)

Here, the load vectors b1 and b2 are zero since there is no body load. The code to
modify the linear system looks like

last=[zeros(2*ne,1); areas]; % last row and column
LHS=[LHS last; last’ 0];
RHS=[RHS; 0];

The last thing we need to do is to enforce the no-slip boundary condition u = g.
We do this as described by first writing uh = gh + u0 with gh a Crouzeix-Raviart
interpolant of g, and then modifying the right hand side vector RHS accordingly. The
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setting up of gh is a bit messy since we do not have the node coordinates available.
All the same, the following piece of code computes these.

i=t(1,:); j=t(2,:); k=t(3,:); % triangle vertices
edgrow=t2e(:); % all edges in a long row
nstart=[j i i]; % start vertices of all edges
nstop =[k k j]; % stop
xmid=(p(1,start)+p(1,stop))/2; % x-coordinates of

% edge mid-points
ymid=(p(2,start)+p(2,stop))/2; % y-
[edgrow,idx]=unique(edgrow); % remove duplicate edges
xmid=xmid(idx);
ymid=ymid(idx);

The node numbers and node values of gh can now be found by looping over the
edges.

fixed=[]; % fixed nodes
gvals=[]; % nodal values of g
for i=1:length(edgrow) % loop over edges
r=edgrow(i); % node number
x=xmid(i); % node x-coordinate
y=ymid(i); % y-
if (x<-0.99 | x>0.99 | y<-0.99 | y>0.99) % boundary

fixed=[fixed; r; r+ne];
u=0; v=0; % bc values
if (y>0.99), u=1; end % lid
gvals=[gvals; u; v];

end
end

The modification of the linear system for the boundary condition is as usual.

neq=2*ne+nt+1; % number of equations
free=setdiff([1:neq],fixed);
RHS=RHS(free)-LHS(free,fixed)*gvals;
LHS=LHS(free,free);
SOL=zeros(neq,1); % allocate solution
SOL(fixed)=gvals; % insert no-slip values
SOL(free)=RHS\LHS; % solve linear system

Finally, to plot the velocity and pressure we type

U=SOL(1:ne); V=SOL(1+ne:2*ne); P=SOL(2*ne+1:2*ne+nt);
figure(1), pdesurf(p,t,P’)
figure(2), quiver(xmid,ymid,U’,V’)

Running the code we get the velocity and pressure of Figures 12.4 and 12.5.
As expected the velocity glyphs shows a swirling fluid due to the moving lid. The
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pressure distribution shows a high pressure in the upper right corner of the cavity,
where the fluid crashes into the right wall. Similarly, a low pressure is visible in the
upper left corner, where the fluid is swept away from the left wall by the moving lid.
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Fig. 12.4 Glyphs of velocity uh in the cavity.

To check our implementation we can make a test and compute the null space
of the matrix BT = [B1 B2]

T , which is the discrete gradient operator −∇. Recall
that this operator determines the pressure ph and should therefore have a null space
consisting of the single vector 1, or a scaled copy of this vector. This is the discrete
hydrostatic pressure mode, which we eliminated by adding the zero mean value con-
straint for ph. The BT matrix can be extracted from the saddle-point linear system.
In doing so we must remember that the matrix LHS shrunk when we removed the
boundary conditions. The null space is computed using the null command.

nfix=length(fixed);
n=2*ne-nfix; % number of free velocity nodes
Bt=LHS(1:n,n+1:n+nt); % extract B’
nsp=null(full(Bt)) % compute null space of B’

Indeed, the result of executing these lines is the vector nsp, which is a constant
times the vector 1. This is a necessary condition for a finite element to be inf-sup
stable. Of course it does not prove inf-sup stability, but it is one way of testing
the code. Other ways to validate the code include computing the eigenvalues of
the Schur complement, which should be positive, or checking that the Lagrange
multiplier is close to the machine precision.
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Fig. 12.5 Pressure distribution ph in the cavity.

In this context we mention that the naive choice of equal order polynomial spaces
for both the velocity and pressure does not satisfy the inf-sup condition. Thus, it is
not possible to use piecewise linears for both uh and ph. Doing so yields a gradient
matrix BT with a too large null space. The basis vectors for this larger null space are
called spurious pressure modes and pollute ph. Typically, such artificial pressures
are oscillating. The problem with equal order interpolation is that the the discrete
inf-sup constant γ is proportional to the the mesh size h, and vanish as h tends to
zero. As a consequence the numerical stability is lost under mesh refinement. A
remedy for this is to use the GLS stabilization technique.

12.3 The Navier-Stokes Equations

Having studied some of the basic features and difficulties with simulating in-
compressible fluid flow we now turn to consider the full fledged Navier-Stokes
equations, which in addition to the Stokes system are both non-linear and time-
dependent. Indeed, the Navier-Stokes equations are so complex that their numerical
study has grown into a discipline of its own called computational fluid dynamics,
abbreviated CFD. This is a vast field involving continuum mechanics, thermody-
namics, mathematics, and computer science. The applications are many and ranges
from optimizing the mix of air and fuel in turbine engines to predicting the stresses
in the walls of human blood vessels. However, the grand theoretical challenge for
CFD is the understanding of turbulence. Turbulence is the highly chaotic flow pat-
tern exhibited by a fast moving fluid with low viscosity. Think of the irregular plume
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of smoke rising from a cigarette, for example. Physically, turbulence is caused by
a combination of dissipation of energy into heat at the microscopic level, with a
large transport of momentum at the macroscopic level. The basic measure of the
tendency for a fluid to develop a turbulent flow is the dimensionless Reynolds num-
ber, defined as Re =UL/ν , where ν is the viscosity and U and L is a representative
velocity and length scale, respectively. A high Reynolds number implies a turbulent
flow, while a low implies a steady state laminar flow. Because turbulence occurs
on all length scales, down to the smallest so-called Kolmogorov scale Re−3/4, it
is very difficult to simulate using finite elements on a perhaps coarse mesh. This
is further complicated by the fact that turbulent flows are highly convective, which
requires stabilization of the corresponding finite element methods with subsequent
potential loss of accuracy. To remedy this substantial efforts have been made to
model the effect of turbulence on the small scales by statistical means and derive
additional terms supplementing the original equations. This has lead to turbulence
models which hope to account for turbulence effects on average. In the simplest
case this amounts to changing the viscosity ν to ν + νT , where νT is a variable
eddy viscosity depending on the magnitude of the local velocity gradients. This is
the frequently used Smagorinsky turbulence model. Obviously, there is much more
to say on this matter, but we shall not attempt to do so here. Suffice it to say that
many important fluid mechanic applications are somewhere in between laminar and
turbulent.

For completeness we recall that the Navier-Stokes equations takes the form

u̇+(u ·∇)u+∇p−ν∆u = f , in Ω × I (12.49a)
∇ ·u = 0, in Ω × I (12.49b)

u = g, in ΓD × I (12.49c)
νn ·∇u− pn = 0, in ΓN × I (12.49d)

u = u0, in Ω , for t = 0 (12.49e)

where ν is viscosity, u and p the sought velocity and pressure, and f a given body
force. We assume that boundary ∂Ω of the domain Ω is divided into two parts ΓD
and ΓN associated with the no-slip and the do-nothing boundary conditions (12.49c)
and (12.49d) with g is a given function describing the velocity on ΓD. Typically, Ω
is a channel and ΓD denotes either the rigid walls of the channel, with g = 0, or the
inflow region, with g the inflow velocity profile, while ΓN denotes the outlet with
the boundary condition νn ·∇u− pn = 0. The velocity at time t = 0 is given by the
initial condition u0 and I = (0,T ] is the time interval with final time T .

12.3.1 Chorin’s Projection Method

There are many ways to derive a numerical method for the Navier-Stokes equations
and it is not easy to know which one is the best. For example, should we use New-
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ton’s method or fixed-point iteration for the non-linearity, a GLS method or some
kind of inf-sup stable element, implicit or explicit time stepping? Needless to say,
each of these choices has its own pros and cons regarding accuracy and computa-
tional cost and a balance has to be struck as usual. Here, we shall favor compu-
tational speed and present a simple method called Chorin’s projection method for
discretizing the Navier-Stokes equations. The basic idea is as follows.

Discretizing the momentum equation (12.49a) in time using the forward Euler
method we have the time stepping scheme

un+1 −ul

kl
+(ul ·∇)ul +∇pl −ν∆ul = fl (12.50)

where kl is the timestep and the subscript l indicates the iterate. Now, adding and
subtracting a tentative velocity u∗ in the discrete time derivative k−1

l (ul+1 −ul) we
further have

ul+1 −u∗+u∗−ul

kl
+(ul ·∇)ul +∇pl −ν∆ul = fl (12.51)

Obviously, this equation holds if

u∗−ul

kl
=−(ul ·∇)ul +ν∆ul + fl (12.52)

and

ul+1 −u∗
kl

=−∇pl (12.53)

hold simultaneously.
The decomposition of (12.49a) into (12.52) and (12.53) is called operator split-

ting. The rationale is that we get a decoupling of the diffusion and convection of the
velocity, and the pressure acting to enforce the incompressibility constraint. Thus,
assuming we know ul , we can compute u∗ from (12.52) separately without having
to worry about the pressure. However, to determine also the pressure we take the
divergence of (12.53), yielding

∇ · ul+1 −u∗
kl

=−∇ · (∇pl) (12.54)

Now, since we desire ∇ ·ul+1 = 0 this reduces to

−∇ · u∗
kl

=−∆ pl (12.55)

It follows that the pressure pl can be determined from a Poisson type equation. In
fact (12.55) is frequently referred to as the Pressure Poisson Equation (PPE). Thus,
given u∗ we can solve (12.55) to get a pressure pl which makes the next velocity



12.3 The Navier-Stokes Equations 247

ul+1 divergence free. Since pl is manufactured from the tentative velocity u∗, it is
not the actual pressure p, but at best a first order approximation in time.

The actual computation of ul+1 is done by reusing (12.53), but now in the form

ul+1 = u∗− kl∇pl (12.56)

This line of reasoning leads us to the following algorithm:

Algorithm 25 Chorin’s Projection Method
1: Given the initial condition u0 = 0.
2: for n = 1,2,3, . . . do
3: Compute the tentative velocity u∗ from

u∗−ul

kl
=−(ul ·∇)ul +ν∆ul + fl (12.57)

4: Solve the pressure Poisson equation

−∇ ·u∗ =−kl∆ pl (12.58)

5: Update the velocity

ul+1 = u∗− kl∇pl (12.59)

6: end for

The boundary conditions for u∗ and pl are not clear and has been the source
of some controversy. The simplest way of enforcing these is to put the Dirichlet,
or no-slip, velocity boundary conditions (12.49d) on u∗, and a Neumann boundary
condition n ·∇pl = 0 on the pressure. The exception is at the outflow, where the
do-nothing boundary condition (12.49e) is imposed term by term by assuming n ·
∇ul = 0 and pl = 0. This generally means that ul+1 will not satisfy the velocity
boundary conditions other than in a vague sense. The cause of controversy is the
zero Neumann boundary condition for the pressure, which is unphysical and leads
to a poor quality of both pl and ul+1 near the boundary. This has raised questions
of the validity of the projection method. Numerous methods have been suggested to
remedy this with, at least, partial success.

12.3.1.1 The Discrete Chorin Projection Method

To obtain a fully discrete method we apply finite elements to Algorithm 12.3.1.
Therefore, let Vh be the usual space of piecewise linears with the hat function basis
{φi}

np
i=1 on a mesh K of Ω . A nice thing with operator splitting it that it allows us

to use equal order polynomial spaces for both the velocity and pressure. This seem-
ingly circumvents the cumbersome inf-sup condition. We say seemingly because
spurious pressure modes may still occur if the time step kl is much smaller than the
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mesh size h. However, as we shall see the ability to use the same space for both u
and p allows for great simplicity when it comes to implementation. Thus, we set

u1,l ≈
np

∑
j=1

(ξ1,l) jφ j, u2,l ≈
np

∑
j=1

(ξ2,l) jφ j, pl ≈
np

∑
j=1

(ϖl) jφ j (12.60)

with a similar representation for u∗.
Next we observe that (12.52) decouples into one equation for u1,∗ and one for

u2,∗. After finite element discretization and in matrix notation these equations take
the form

Mξ1,∗ = Mξ1,l − kl(Cl +νA)ξ1,l +b1 (12.61)
Mξ2,∗ = Mξ2,l − kl(Cl +νA)ξ2,l +b2 (12.62)

where M is the mass matrix, A the stiffness matrix, and Cl = C(ul) the convection
matrix with convection field ul . Note that Cl depends on the current velocity and
must be reassembled at each timestep n. As usual the load vectors bs, s = 1,2, con-
tain contributions from any body force f .

As said before the PPE (12.55) is a standard Poisson equation, yielding the matrix
form

Aϖl =−(B1ξ1,∗+B2ξ2,∗)/kl (12.63)

where A again is the stiffness matrix, and Bs are convection matrices with corre-
sponding convection fields [1,0] for s = 1 and [0,1] for s = 2. Of course this equa-
tion has to be adjusted for boundary conditions (i.e., ϖ = 0 on Γl) to yield a unique
solution.

Finally, the discrete form of the update (12.56) is given by

Mξ1,l+1 = Mξ1,∗− klB1ϖl (12.64)
Mξ2,l+1 = Mξ2,∗− klB2ϖl (12.65)

The time step of the presented numerical method is limited by the use of the
forward Euler scheme. For numerical stability it is necessary that the time step kl is
of magnitude h/u for convection dominated flow with ν < uh, and h2/ν for diffusion
dominated flow with ν ≥ uh.

12.3.2 Computer Implementation

12.3.2.1 The DFG Benchmark

We now turn to the practical implementation of the Chorin projection method de-
scribed above. As test problem we use the DFG benchmark, which is channel flow
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around a cylinder. The flow is assumed to be two-dimensional. The channel is rect-
angular with length 2.2 and height 0.41. At the point (0.2,0.2) is a circle with di-
ameter 0.1. The fluid has viscosity ν = 0.001 and unit density. On the upper and
lower wall and on the cylinder a zero no-slip boundary condition is prescribed. A
parabolic inflow profile with maximum velocity Umax = 0.3 is prescribed on the left
wall

u1 =
4Umaxy(0.41− y)

0.412 , u2 = 0 (12.66)

The boundary conditions on the right wall is of do-nothing type, since this is the
outflow. There are no body forces. Zero initial conditions are assumed.

The channel geometry is output from the routine DFGg listed in the Appendix.
We start writing our solver by calling this routine, creating the mesh, and extracting
the number of nodes and the node coordinates from the point matrix p.

function NSChorinSolver()
channel=DFGg();
[p,e,t]=initmesh(channel,’hmax’,0.25);
np=size(p,2);
x=p(1,:);
y=p(2,:);

The zero boundary condition on the pressure is most easily enforced by adding
large weights, say 106, to the diagonal entries of A corresponding to nodes on the
outflow. This penalizes any deviation from zero of the pressure in these nodes. It is
convenient to store the weights in a diagonal matrix R, which can be built with the
following lines of code.

out=find(x>2.199); % nodes on outflow
wgts=zeros(np,1); % weights
wgts(out)=1.e+6;
R=spdiags(wgts,0,np,np); % diagonal penalty matrix

Moreover, the boundary conditions on the velocity can be be enforced little simpler
than usual due to the explicit time stepping. In each time step we can simply zero
out any current value of the no-slip nodes and replace with the correct boundary
values. To do so we need two vectors mask and g to identify nodes with no-slip
boundary conditions and to store the corresponding nodal value.

in =find(x<0.001); % nodes on inflow
bnd=unique([e(1,:) e(2,:)]); % all nodes on boundary
bnd=setdiff(bnd,out); % remove outflow nodes
mask=ones(np,1); % a mask to identify no-slip nodes
mask(bnd)=0; % set mask for no-slip nodes to zero
x=x(in); % x-coordinate of nodes on inflow
y=y(in); % y-
Umax=0.3; % maximum inflow velocity
g=zeros(np,1); % no-slip values
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g(in)=4*Umax*y.*(0.41-y)/0.41ˆ2; % inflow profile

The assembly of all matrices M, A, Cl , and Bs is easy to do by using the built-in
routine assema for A and M, and our own ConvMat2D for Bs and Cl . To speed up
the computation we lump the mass matrix M.

[A,crap,M]=assema(p,t,1,0,1);
Bx=ConvMat2D(p,t,ones(np,1),zeros(np,1));
By=ConvMat2D(p,t,zeros(np,1),ones(np,1));

Using these data structures the actual time loop with the projection scheme can be
very compactly written.

dt=0.01; % time step
nu=0.001; % viscosity
V=zeros(np,1); % x-velocity
U=zeros(np,1); % y-
for n=1:100
% assemble convection matrix
C=ConvMat2D(p,e,t,U,V);
% compute tentative velocity
U=U-dt*(nu*A+C)*U./M;
V=V-dt*(nu*A+C)*V./M;
% enforce no-slip BC
U=U.*mask+g;
V=V.*mask;
% solve PPE
P=(A+R)\-(Bx*U+By*V)/dt;
% update velocity
U=U-dt*(Bx*P)./M;
V=V-dt*(By*P)./M;
pdeplot(p,e,t,’flowdata’,[U V]),axis equal,pause(.1)

end

The setup gives a Reynolds number of Re = 20 with the characteristic velocity
U = 2

3Umax = 0.2 the mean of the parabolic profile and L= 0.1 the cylinder diameter.
This is a low Reynolds number and we expect to see a laminar flow. Running the
code and simulating the flow during one second we obtain the results of Figures
12.6-12.8. Due to the low Reynolds number a steady state flow has evolved and
from the glyphs plot we see that it is indeed laminar. As we might have anticipated
the pressure isocontours shows a high pressure in front of the cylinder and a low
pressure behind it. In this region we also see a small wake with recirculating flow
forming. This is typical for incompressible fluid flow.
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Fig. 12.6 Velocity glyphs for the DFG benchmark (Re=20).
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Fig. 12.7 Isocontours of the pressure (Re=20).

Fig. 12.8 Magnitude of the velocity (Re=20).

12.4 Problems

Exercise 12.1. Formulate a finite element approximation of the Stokes equations
using the Taylor-Hood element. In particular, deduce the entries of the saddle-point
linear system, resulting from finite element discretization.

Exercise 12.2. Formulate a GLS finite element approximation of the Stokes equa-
tions using piecewise linears for both the velocity components and the pressure. Can
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you guess the dependence between the GLS stability parameter δ and the mesh size
h?

Exercise 12.3. Modify CRStokesSolver and solve the following problem called
the colliding flow problem. The domain is the square Ω = [−1,1]2, with Dirichlet
boundary conditions on the whole boundary ∂Ω given by the manufactured solution

u1 = 20x1x3
2, u2 = 5x4

1 −5x4
2, p = 60x2

1x2 −20x3
2

which satisfies the Stokes equations with ν = 1, zero body force f = 0, and zero
mean pressure.

Exercise 12.4. A simple way of iteratively solving saddle-point linear systems of
the form (12.33) is the Uzawa method, which is defined by the following iteration
scheme. Set u0 = p0 = 0. For k = 1,2, . . . until convergence do

ξ k = ξ k−1 +A−1(b−Aξ k −BT ϖk−1)

ϖk = ϖk−1 + τM−1Bξ k

where 0 < τ < 2ν is a relaxation parameter, and M a preconditioner.
Write a routine DoUzawa for computing the solution SOL to the saddle-point

linear system LHS*SOL=RHS in CRStokesSolver. The calling syntax should
be SOL(free)=doUzawa(A,Bt,b,areas,nu);. The relevant matrices and
vectors can be extracted from LHS and RHS with the code

A=LHS(1:n,1:n); Bt=LHS(1:n,n+1:n+nt); b=RHS(1:n);

Note that the zero mean pressure condition must be enforced at each iteration k.
That is, the constant vector 1 must be filtered out of ϖk. This can be done by setting

ϖk = ϖk − (aT ϖk)/(aT 1)1

at the end of each iteration. Here, a is the areas vector.
For simplicity, let M = diag(a).

Exercise 12.5. How would the Chorin projection method look with Euler backward
time stepping? What is the pros and cons of this as compared to Euler forward time
stepping?

Exercise 12.6. Run a sequence of simulations on the DFG benchmark with varying
viscosity from ν = 0.1 to 0.005. In each run make 1000 timesteps using kl = 0.01.
Study the transition from laminar to almost turbulent flow when you decrease ν .
Make plots of the velocity and pressure.

Exercise 12.7. Simulate the Lid-Driven cavity problem using Chorin’s projection
method and with viscosity ν = 0.1 and 0.005. To fix the pressure you can set p = 0
at (−1,0). Make plots of the velocity magnitude. Can you say something about the
effect of the non-linear term u(·∇u)?
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Exercise 12.8. Since the Navier-Stokes equations are non-linear it is possible to
use Newton’s method to solve them. This is particularly effective in the stationary
case. However, this requires the linearization of the 3×1 vector [−ν∆u+(u ·∇u)+
∇p,∇ ·u]T . Do this by setting ui = u0

i +δui, i = 1,2, and p = p0 +δ p, and discard
all terms proportional to δ 2.





Appendix A
Some Additional Matlab Code

A.1 Tri2Edge.m

The following routine numbers the edges of a triangle mesh.

function edges = Tri2Edge(p,t)
np=size(t,2); % number of vertices
nt=size(t,2); % number of triangles
i=t(1,:); % i=1st vertex within all elements
j=t(2,:); % j=2nd
k=t(3,:); % k=3rd
A=sparse(j,k,-1,np,np); % 1st edge is between (j,k)
A=A+sparse(i,k,-1,np,np); % 2nd (i,k)
A=A+sparse(i,j,-1,np,np); % 3rd (i,j)
A=-((A+A.’)<0);
A=triu(A); % extract upper triangle of A
[r,c,v]=find(A); % rows, columns, and values(=-1)
v=[1:length(v)]; % renumber values (ie. edges)
A=sparse(rows,cols,entries,np,np); % reassemble A
A=A+A’; % expand A to a symmetric matrix
edges=zeros(nt,3);
for k=1:nt
edges(k,:)=[A(t(2,k),t(3,k))

A(t(1,k),t(3,k))
A(t(1,k),t(2,k))]’;

end

Input is the standard point and triangle matrix p and t. Output is a nt × 3 matrix,
with nt the number of triangles, edges contaning the edge numbers. In element i
the global edge number of local edge j is given by edges(i,j). In triangle i local
edge j lies opposite local vertex j.

255
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A.2 Tri2Tri.m

The following routine finds neighbouring elements in a triangle mesh.

function neighbors = Tri2Tri(p,t)
edges=tri2edg(p,t); % get edge numbers
ned=max(edges(:)); % number of edges
e1=edges(:,1); e2=edges(:,2); e3=edges(:,3);
nel=size(t,2); % number of edges
tris=[1:nel]; % all triangle numbers
% Build edge-to-triangle adjacency matrix A.
% If edge i is local edge j, j=1,2,3, in triangel k,
% then A(i,k)=j.
A=sparse(e1,tris,1,ned,nel);
A=A+sparse(e2,tris,2,ned,nel);
A=A+sparse(e3,tris,3,ned,nel);
neighbors=-ones(nel,3); % allocate element neighbours
for i=1:ned % loop over edges
% Get elements sharing edge i.
[crap,elnbrs,locedgs]=find(edg2tri(i,:));
if length(elnbrs)==2 % edge i is shared by 2 elements,

% so they are neighbors
neighbors(elnbrs(1),locedgs(1))=elnbrs(2);
neighbors(elnbrs(2),locedgs(2))=elnbrs(1);

end
end

Input is the standard point and triangle matrix p and t. Output neighbors is a
nt × 3 matrix, with nt the number of triangles, in which row i contanins the three
element neighbours to element i. No neighbour is indicated by −1. Each row is
ordered in the sense that the first neighbour shares edge one with the element, the
second neighbour shares edge two, and so on.

A.3 Dslit.m

Geometry matrix for the double slit geometry.

function g = Dslit()
g=[2 0 1.0000 0 0 1 0

2 1.0000 1.0000 0 1.0000 1 0
2 1.0000 0 1.0000 1.0000 1 0
2 -0.2500 0 0.3333 0.3333 2 0
2 0 -0.2500 0.4167 0.4167 2 0
2 -0.2500 0 0.5833 0.5833 3 0
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2 0 -0.2500 0.6667 0.6667 3 0
2 0 0 0 0.3333 0 1
2 0 0 0.3333 0.4167 2 1
2 0 0 0.4167 0.5833 0 1
2 0 0 0.5833 0.6667 3 1
2 0 0 0.6667 1.0000 0 1
2 -0.2500 -0.2500 0.3333 0.4167 0 2
2 -0.2500 -0.2500 0.5833 0.6667 0 3]’;

A.4 Airfoil.m

Geometry matrix for a wing.

function g=Airfoil()
g=[2 17.7218 16.0116 1.5737 1.6675 1 0

2 16.0116 9.0610 1.6675 1.3668 1 0
2 9.0610 -0.5759 1.3668 -0.1102 1 0
2 -0.5759 -9.5198 -0.1102 -1.8942 1 0
2 -9.5198 -15.6511 -1.8942 -2.5938 1 0
2 -15.6511 -18.1571 -2.5938 -1.7234 1 0
2 -18.1571 -16.9459 -1.7234 0.2051 1 0
2 -16.9459 -12.4137 0.2051 2.2238 1 0
2 -12.4137 -5.4090 2.2238 3.4543 1 0
2 -5.4090 2.8155 3.4543 3.5046 1 0
2 2.8155 10.6777 3.5046 2.6664 1 0
2 10.6777 16.3037 2.6664 1.7834 1 0
2 16.3037 17.7218 1.7834 1.5737 1 0
2 -30.0000 30.0000 -15.0000 -15.0000 1 0
2 30.0000 30.0000 -15.0000 15.0000 1 0
2 30.0000 -30.0000 15.0000 15.0000 1 0
2 -30.0000 -30.0000 15.0000 -15.0000 1 0}’;

A.5 RectCirc.m

Geometry matrix for a rectangle with a circle cut-out.

function g = RectCirc()
g=[ 2 2 2 2 1 1 1 1

6 6 -2 -2 -1 0 1 0
6 -2 -2 6 0 1 0 -1

-2 2 -2 -2 -0 -1 0 1
2 2 2 -2 -1 0 1 0
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1 1 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1];

A.6 DFGg.m

Geometry matrix for the DFG benchmark.

function g = DFGg()
g=[2 2 2 2 1 1 1 1

2.20 2.20 0 0 0.15 0.20 0.25 0.20
2.20 0 0 2.20 0.20 0.25 0.20 0.15
0 0.41 0 0 0.20 0.15 0.20 0.25
0.41 0.41 0.41 0 0.15 0.20 0.25 0.20
1 1 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 0 0 0 0.20 0.20 0.20 0.20
0 0 0 0 0.20 0.20 0.20 0.20
0 0 0 0 0.05 0.05 0.05 0.05];


