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The finite volume-complete flux scheme for
advection-diffusion-reaction equations

J.H.M. ten Thije Boonkkamp and M.J.H. Anthonissen
Department of Mathematics and Computer Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We present a new finite volume scheme for the advection-diffusion-reaction equation. The scheme is
second order accurate in the grid size, both for dominant diffusion and dominant advection, and has
only a three-point coupling in each spatial direction. Our scheme is based on a new integral repre-
sentation for the flux of the one-dimensional advection-diffusion-reaction equation, which is derived
from the solution of a local boundary value problem for the entire equation, including the source
term. The flux therefore consists of two parts, corresponding to the homogeneous and particular
solution of the boundary value problem. Applying suitable quadrature rules to the integral represen-
tation gives the complete flux scheme. Extensions of the complete flux scheme to two-dimensional
and time-dependent problems are derived, containing the cross flux term or the time derivative in the
inhomogeneous flux, respectively. The resulting finite volume-complete flux scheme is validated for
several test problems.

Keywords. Advection-diffusion-reaction equation, flux, finite volume method, integral representation of
the flux, numerical flux.

1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid mechanics,
combustion theory, plasma physics, semiconductor physics etc. These conservation laws are often of
advection-diffusion-reaction type, describing the interplay between different processes such as advection
or drift, diffusion or conduction and (chemical) reaction or recombination/generation. Examples are the
conservation equations for reacting flow [21] or the drift-diffusion equations for semiconductor devices
[11, 14].

Their numerical solution requires at least adequate space discretisation and time integration methods.
For space discretisation there are many (classes of) methods available, such as finite element, finite
difference, finite volume or spectral methods. We restrict ourselves to finite volume methods (FVM);
for a detailed account see e.g. [17, 34, 7]. Finite volume methods are based on the integral formulation,
i.e., the conservation law is integrated over a disjunct set of control volumes covering the domain. The
resulting (semi)discrete conservation law involves fluxes at the interfaces of the control volumes, which
need to be approximated. For time integration there exist many sophisticated methods, for a detailed
account see, e.g., [9].

Our objective in this paper is to present new expressions for the flux, which will subsequently be
used to derive numerical flux approximations. We require that for one-dimensional steady equations the
numerical flux has the following properties. First, it should be unconditionally second order accurate, in
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1 INTRODUCTION 2

particular, the flux approximation should remain second order accurate for highly dominant advection.
This excludes the hybrid scheme of Spalding [27], which reduces to the standard upwind scheme when
diffusion is absent. Second, the numerical flux should not produce spurious oscillations for dominant
advection, as the standard central difference scheme does, and third, the flux may only depend on neigh-
bouring values of the unknown, resulting in a three-point scheme. The latter requirement rules out high
resolution schemes based on flux/slope limiters [13, 34] or (W)ENO reconstruction [25].

Our scheme is inspired by two papers by Thiart [30, 31]. In these papers a finite volume method is
combined with an exponential scheme for the flux. More specifically, the fluxes at the cell interfaces are
computed from a local boundary value problem, assuming piecewise constant coefficients. The source
term is included in the computation of the fluxes. Similar schemes have been published in the last few
decades. Without trying to be complete, we just mention a few. Allen and Southwell [1] and Il’in [10]
introduced an exponentially fitted scheme, which is a hybrid central difference-upwind scheme such that
the difference scheme locally has the same (exponential) solutions as the corresponding differential equa-
tion; see also [5] for a detailed account. An improvement of this scheme is proposed by El-Mistikawy and
Werle [6]. These exponentially fitted schemes are a special case of the so-called locally exact schemes.
The basic idea is to represent the solution in two adjacent intervals in terms of an approximate Green’s
function; see [17] and references therein. Exponentially fitted schemes are nowadays widely used to
simulate advection-diffusion-reaction problems from continuum physics, especially to compute numeri-
cal solutions of the drift-diffusion model for semiconductor devices. For this application these schemes
are known as the Scharfetter-Gummel scheme; see e.g. [3, 4, 24]. An extension of this scheme is due
to Miller [16], who included the recombination term in the fluxes. A further extension to systems is
presented in [33], where the avalanche generation source term is included in the numerical flux vector.

Our scheme is an extension of the schemes by Thiart. We derive an integral representation for the
flux from the solution of a local boundary value problem (BVP) for the entire equation, including the
source term, but we do not restrict ourselves to (locally) constant coefficients. As a consequence, the
flux has a homogeneous and an inhomogeneous component, corresponding to the homogeneous and the
particular solution of the boundary value problem, respectively. Suitable quadrature rules are applied to
derive the numerical flux. The inclusion of the inhomogeneous flux will be of importance when advection
dominates diffusion.

Extension of our scheme to two-dimensional equations is not just the separate application in x-
and y-direction. Instead, in order to accurately resolve the two-dimensional structure of the solution, we
include the cross flux in the flux approximation. This means that for the computation of the x-component
of the numerical flux, say, we put all y-derivatives in the right hand side and solve the resulting quasi-
one-dimensional BVP. Therefore, the x-component of the flux will contain a part of the y-component.
Mutatis mutandis, we derive the y-component of the flux. The resulting scheme is an upwind weighted
space discretisation.

Likewise, for time-dependent problems, we include the time derivative in the source term and solve
the resulting quasi-stationary BVP to derive the numerical flux. Consequently, the numerical flux con-
tains the time derivative, resulting in an implicit ODE system. This semidiscretisation has usually much
smaller dissipation and dispersion errors than the standard semidiscretisation, at least for smooth so-
lutions. For high wave number solutions, as they might occur in discontinuities, say, also our scheme
is prone to significant dispersion errors. For time integration of the semidiscretisation we can use any
suitable method. In this paper we choose the trapezoidal rule.

Our scheme is suitable to discretise a large class of advection-diffusion-reaction equations. Espe-
cially for dominant advection the scheme will perform well. The discretisation gives accurate approxi-
mations for smooth solutions, but also steep interior/boundary layers can be represented well. However,
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we have to exclude discontinuities, since the solution on which the flux is based is assumed to be con-
tinuous across a cell interface. Typical applications would be the numerical computation of the detailed
structure of a flame front for laminar flames or of a pn-junction in semiconductor devices. Applications
in fluid dynamics are restricted to incompressible or weakly compressible flow. We like to emphasise that
the method is also suitable to solve pure advection-reaction problems, provided the solution is smooth.

We have organised our paper as follows. The finite volume method is briefly summarised in Section
2. In Section 3 we derive an integral representation for the flux, in terms of a Green’s function, which
will be used in Section 4 to derive the numerical flux approximation. The combined complete flux-
finite volume scheme is presented in Section 5. Extension of the method to two-dimensional and time-
dependent equations is presented in Section 6 and Section 7, respectively. To test the scheme, we apply
it in Section 8 to several model problems. Finally, we end with a summary and conclusions in Section 9.

2 Finite volume discretisation

In this section we outline the FVM for a generic conservation law of advection-diffusion-reaction type,
defined on a domain in Rd (d = 1, 2, 3). Therefore, consider the following equation

∂ϕ

∂t
+∇·(uϕ− ε∇ϕ) = s, (2.1)

where u is a velocity or an electric field (flow/drift), ε ≥ εmin > 0 a diffusion/conduction coefficient
and s a source term. The unknown ϕ can be, e.g., the temperature or the concentration of a species in a
reacting flow. The parameters ε and s are usually functions of the unknown ϕ, however, for the sake of
discretisation we will consider these as given functions of the spatial coordinate x and the time t. The
vector u has to be computed from (flow) equations corresponding to (2.1) and is also considered to be a
function of x and t. Equations of this type arise, e.g., in combustion theory [21] or plasma physics [23].

Associated with equation (2.1) we introduce the flux vector f , defined by

f := uϕ− ε∇ϕ. (2.2)

Equation (2.1) then reduces to ∂
∂tϕ +∇·f = s. Integrating this equation over a fixed domain Ω ⊂ Rd

we obtain the integral form of the conservation law, i.e.,

d
dt

∫
Ω
ϕdV +

∮
Γ

f ·n dS =
∫

Ω
s dV, (2.3)

where n is the outward unit normal on the boundary Γ = ∂Ω. This equation is the basic conservation
law, which reduces to (2.1) provided ϕ is smooth enough.

In the FVM we cover the domain with a finite number of disjunct control volumes or cells Ωj and
impose the integral form (2.3) on each of these cells. The index j is an index vector for multi-dimensional
problems. We restrict ourselves to rectangular cells and adopt the cell-centred approach [34], i.e., we
choose the grid points xj where the variable ϕ has to be approximated in the cell centres. Consider as
an example the two-dimensional cell Ωj in Figure 1, for which equation (2.3) can be written as

d
dt

∫
Ωj

ϕdA+
∑

k∈N (j)

∫
Γj,k

f ·n ds =
∫

Ωj

s dA, (2.4)
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Figure 1: A two-dimensional control volume Ωj, j = (i, j), with its four adjacent cells Ωk. The circles
denote grid points xj and xk; the arrows denote the normal components of the numerical flux (F ·n)j,k.

where N (j) is the index set of neighbouring grid points of xj and where Γj,k is the segment or edge of
the boundary Γj = ∂Ωj connecting the adjacent cells Ωj and Ωk. The orientation of Γj is counterclock-
wise. Approximating all integrals in (2.4) by the midpoint rule, we obtain the following semi-discrete
conservation law for ϕj(t) ≈ ϕ(xj, t), i.e.,

ϕ̇j(t)Aj +
∑

k∈N (j)

(F ·n)j,k `j,k = sj(t)Aj, (2.5)

where Aj is the area of Ωj, `j,k the length of Γj,k, ϕ̇j(t) ≈ ∂
∂tϕ(xj, t) and sj(t) = s(xj, t). Fur-

thermore, (F ·n)j,k is the normal component on Γj,k, directed from xj to xk, at the interface point
xj,k := 1

2

(
xj + xk

)
∈ Γj,k of the numerical flux vector F , approximating f ·n(xj,k, t). Obviously, for

stationary problems all time derivatives in (2.4) and (2.5) can be discarded.
The FVM has to be completed with expressions for the numerical flux. We require that (F ·n)j,k

depends on ϕ and a modified source term s̃ in the neighbouring grid points xj and xk, i.e., we are looking
for an expression of the form

(F ·n)j,k = αj,kϕj − βj,kϕk + dj,k
(
γj,ks̃j + δj,ks̃k

)
, (2.6)

where dj,k := |xj−xk|. The variable s̃ includes the source term and additional terms like the cross flux
or time derivative, when appropriate. Substitution of (2.6) into (2.5) leads to a linear system for stationary
problems or an implicit ODE system for time-dependent problems. The derivation of expressions for the
numerical flux is detailed in the next sections.

3 Integral representation for the flux

In this section we restrict ourselves to one-dimensional steady conservation laws, for which the flux is
given by

f = uϕ− εϕ′, (3.1)
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where the prime (′) denotes differentiation with respect to x. Our objective is to derive an integral
representation for this flux, based on a Green’s function. The derivation is a modification of the theory
in [8].

The derivation of the expression for the flux fj+1/2 at the cell edge xj+1/2 = 1
2

(
xj + xj+1

)
is based

on the following model BVP(
uϕ− εϕ′

)′ = s, xj < x < xj+1, (3.2a)

ϕ(xj) = ϕj , ϕ(xj+1) = ϕj+1. (3.2b)

We like to emphasise that fj+1/2 corresponds to the solution of the inhomogeneous BVP (3.2), implying
that fj+1/2 not only depends on u and ε but on s as well.

In the following, we need the variables λ, P , Λ and S, defined by

λ :=
u

ε
, P := λ∆x, Λ(x) :=

∫ x

xj+1/2

λ(ξ) dξ, S(x) :=
∫ x

xj+1/2

s(ξ) dξ, (3.3)

with ∆x := xj+1 − xj . We refer to the variables P and Λ as the (numerical) Peclet function and Peclet
integral, respectively, generalising the well-known (numerical/grid) Peclet number [17, 34]. Integrating
equation (3.2a) from xj+1/2 to x ∈ (xj , xj+1) we get the integral balance

f(x)− fj+1/2 = S(x). (3.4)

Using the definition of Λ in (3.3), it is clear that expression (3.1) for the flux can be rewritten as

f = −ε
(
ϕ e−Λ

)′eΛ. (3.5)

Substituting (3.5) in (3.4) and integrating the resulting equation from xj to xj+1 we obtain the following
expression for the flux fj+1/2:

fj+1/2 = fh
j+1/2 + f i

j+1/2, (3.6a)

fh
j+1/2 = −

(
e−Λj+1ϕj+1 − e−Λjϕj

) /∫ xj+1

xj

ε−1e−Λ dx, (3.6b)

f i
j+1/2 = −

∫ xj+1

xj

ε−1e−ΛS dx
/∫ xj+1

xj

ε−1e−Λ dx, (3.6c)

where fh
j+1/2 and f i

j+1/2 are the homogeneous and inhomogeneous part, corresponding to the homoge-
neous and particular solution of (3.2), respectively.

Assume first that u, ε and s are constant on the interval [xj , xj+1]. In this case we can determine
all integrals in (3.3). The Peclet function reduces to the Peclet number, i.e., P = u∆x/ε. Furthermore,
Λ(x) = λ(x − xj+1/2) and S(x) = s(x − xj+1/2). Substituting these expressions in (3.6b) and (3.6c)
and evaluating all integrals involved, we find

fh
j+1/2 = − ε

∆x
(
B(P )ϕj+1 −B(−P )ϕj

)
, (3.7a)

f i
j+1/2 =

(
1
2 −W (P )

)
s∆x, (3.7b)

where we have introduced the functions B and W , defined by

B(z) :=
z

ez − 1
, W (z) :=

ez − 1− z
z
(
ez − 1

) ; (3.8)
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Figure 2: The Bernoulli function B (left) and the function W (right).

see Figure 2. The function B is the generating function of the Bernoulli numbers [28], in short referred
to as the Bernoulli function. Note that W satisfies 0 ≤ W (z) ≤ 1 and W (−z) + W (z) = 1. Clearly,
the inhomogeneous flux f i

j+1/2 is of importance when |P | � 1, i.e., for advection dominated flow. For
the constant coefficient homogeneous flux we introduce the function

fh
j+1/2 = Fh

(
ε/∆x, P ;ϕj , ϕj+1

)
= αj+1/2

(
ε/∆x, P

)
ϕj − βj+1/2

(
ε/∆x, P

)
ϕj+1/2, (3.9)

to denote the dependence of fh
j+1/2 on the parameters ε/∆x and P and on the function values ϕj and

ϕj+1; cf. (2.6). The constant coefficient homogeneous flux is often used as approximation of the flux
(2.2); see, e.g., [20].

We will next generalize the constant coefficient fluxes (3.7a) and (3.7b) for the case of variable u,
ε and s. Let 〈a, b〉 denote the usual inner product of two functions a = a(x) and b = b(x) defined on
(xj , xj+1), i.e.,

〈a, b〉 :=
∫ xj+1

xj

a(x)b(x) dx. (3.10)

Introducing the average Λ̄j+1/2 := 1
2

(
Λj + Λj+1

)
and using the relation Λj+1 − Λj = 〈λ, 1〉, we can

rewrite the expression (3.6b) for the homogeneous flux as

fh
j+1/2 = −e−Λ̄j+1/2

(
e−〈λ,1〉/2ϕj+1 − e〈λ,1〉/2ϕj

)
/〈ε−1, e−Λ〉. (3.11)

It is even possible to formulate this expression as a modification of the constant coefficient homogeneous
flux (3.7a), in the following way

fh
j+1/2 = Fh

(〈λ, e−Λ〉/〈λ, 1〉
〈ε−1, e−Λ〉 , 〈λ, 1〉;ϕj , ϕj+1

)
. (3.12)

Our numerical approximation of the homogeneous flux will be based on (3.12).
The inhomogeneous flux can be written as a weighted average of the variable S as follows:

f i
j+1/2 = −〈ε

−1S, e−Λ〉
〈ε−1, e−Λ〉 . (3.13)



3 INTEGRAL REPRESENTATION FOR THE FLUX 7

Substituting the expression for S in (3.6c) and changing the order of integration we find the following
alternative representation for the inhomogeneous flux

f i
j+1/2 = ∆x

∫ 1

0
G(σ)s(x(σ)) dσ, σ(x) :=

x− xj
∆x

, (3.14)

where σ = σ(x) is the normalised coordinate on [xj , xj+1] and x = x(σ) its inverse, and where G(σ) is
the Green’s function for the flux, given by

G(σ) =


∆x
∫ σ

0
ε−1(x(η)) e−Λ(x(η)) dη/〈ε−1, e−Λ〉 for 0 ≤ σ ≤ 1

2 ,

−∆x
∫ 1

σ
ε−1(x(η)) e−Λ(x(η)) dη/〈ε−1, e−Λ〉 for 1

2 < σ ≤ 1,

(3.15)

with x(η) := xj + η∆x. Note that G relates the flux to the source term and is different from the usual
Green’s function, which relates the solution to the source term; see e.g. [17]. For the special case of
constant u and ε this Green’s function reduces to

G(σ;P ) =


1− e−Pσ

1− e−P
for 0 ≤ σ ≤ 1

2 ,

−1− eP (1−σ)

1− eP
for 1

2 < σ ≤ 1;

(3.16)

see Figure 3. Note that we use the notation G = G(σ;P ) to denote the dependence on the numerical
Peclet number P . For constant s we can evalute the integral in (3.14) and recover the constant coefficient
flux (3.7b).

The Green’s function (3.16) for the flux has the following properties. First, it is discontinuous at
σ = 1

2 , corresponding to x = xj+1/2, with jump G(1
2−;P ) − G(1

2+;P ) = 1. Second, for |P | � 1,
the average value on the half interval upwind of σ = 1

2 , i.e., the interval [0, 1
2 ] for u ≥ 0 and [1

2 , 1] for

0 0.2 0.4 0.6 0.8 1
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Figure 3: Green’s function for the flux for P > 0 (left) and P < 0 (right).
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u < 0, is much larger than the average on the downwind half, which means that for dominant advection
the upwind value of the source term is the relevant one. On the other hand, for dominant diffusion, i.e.,
|P | is small, the average value 1

2 − W (P ) is close to 0, implying that the inhomogeneous flux is not
important. Finally, it satisfies the symmetry property G(σ;P ) = −G(1− σ;−P ).

When only u(x) = Const 6= 0 on [xj , xj+1], the expression (3.14) for the inhomogeneous flux can
be written as

f i
j+1/2 = ∆x

∫ 1

0
G
(
σ; 〈λ, 1〉

)
s(x(σ)) dσ, (3.17)

with G(σ;P ) the constant coefficient Green’s function defined in (3.16) and where σ is a weighted
normalised coordinate defined by

σ(x) :=
∫ x

xC

λ(ξ) dξ/〈λ, 1〉. (3.18)

Note that σ′ > 0 implying that σ is monotonically increasing from 0 to 1 indeed.
To summarise, the flux fj+1/2 is the superposition (3.6a) of the homogeneous flux fh

j+1/2, given in
(3.12), and the inhomogeneous flux f i

j+1/2. For the latter flux we approximate u(x) on [xj , xj+1] by a
constant and employ the representation (3.17), with G(σ;P ) defined in (3.16).

4 Derivation of the numerical flux

In this section we give quadrature rules for the inner products 〈λ, 1〉 and 〈a, e−Λ〉, (a = λ, ε−1). This
readily gives an approximation of (3.12). Moreover, we propose an approximation for the integral in
(3.17). Our objective is to obtain a numerical flux approximation that is second order accurate, uniformly
in the local Peclet numbers.

First, we introduce the average āj+1/2, the weighted average ãj+1/2 and the upwind value au,j+1/2

of a variable a = a(x) as follows

āj+1/2 := 1
2(aj + aj+1), (4.1a)

ãj+1/2 := W (−P̄j+1/2)aj +W (P̄j+1/2)aj+1, (4.1b)

au,j+1/2 :=

{
aj if ūj+1/2 ≥ 0,
aj+1 if ūj+1/2 < 0.

(4.1c)

The weights in the expression for ãj+1/2 are determined by the average Peclet number P̄j+1/2. Note that
the weighted average ãj+1/2 reduces to the ordinary average āj+1/2 for P̄j+1/2 → 0 and to au,j+1/2 for
|P̄j+1/2| → ∞. This is also apparent from the following relation

ãj+1/2 = 2W (|P̄j+1/2|) āj+1/2 +
(
1− 2W (|P̄j+1/2|)

)
au,j+1/2, (4.2)

which can be readily verified from (4.1). In the derivation of the numerical flux that follows, we need the
‘product rule’

ãj+1/2b̃j+1/2 = (̃ab)j+1/2 −W (P̄j+1/2)W (−P̄j+1/2)(aj+1 − aj)(bj+1 − bj). (4.3)

A similar rule for āj+1/2 can be easily derived substituting P̄j+1/2 = 0 in (4.3).
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For the inner product 〈λ, 1〉 we use the standard trapezoidal rule, which can be written as

〈λ, 1〉 = P̄j+1/2 − 1
12λ
′′(ξ)∆x3, ξ ∈ (xj , xj+1). (4.4)

In the derivation of the trapezoidal rule (4.4) we have replaced λ by its linear interpolant on [xj , xj+1],
however, this is not a suitable approach for the inner products 〈a, e−Λ〉. Instead, we approximate both a
and Λ by their linear interpolants, resulting in the following generalised trapezoidal rule

〈a, e−Λ〉
〈1, e−Λ〉 = ãj+1/2 + Ej+1/2(a), |Ej+1/2(a)| < C∆x2, (4.5)

for some C > 0, which holds provided a is twice and P once continuously differentiable on (xj , xj+1).
For a proof of this rule see [8].

For the homogeneous flux (3.12) we need to evalute the first argument of Fh. Applying the quadra-
ture rules (4.4), (4.5) and the product rule (4.3), with a = ε and b = ε−1, we can derive the following
second order approximation

〈λ, e−Λ〉/〈λ, 1〉
〈ε−1, e−Λ〉

.=
1

P̄j+1/2

λ̃j+1/2(̃
ε−1
)
j+1/2

.=
λ̃j+1/2

λ̄j+1/2

ε̃j+1/2

∆x
. (4.6)

Note that λ̃j+1/2/λ̄j+1/2 → 1 and ε̃j+1/2 → ε̄j+1/2 for P̄j+1/2 → 0; cf. (4.2). Substituting this
expression in (3.12) we obtain the homogeneous numerical flux

F h
j+1/2 = Fh

(Ej+1/2

∆x
, P̄j+1/2;ϕj , ϕj+1

)
, Ej+1/2 :=

λ̃j+1/2

λ̄j+1/2

ε̃j+1/2, (4.7)

which is in fact the constant coefficient flux defined in (3.7a) and (3.9), with ε and P replaced by Ej+1/2

and P̄j+1/2, respectively.
For the inhomogeneous flux we note that the Green’s function G(σ;P ) has a clear bias towards the

upwind side of the interval when |P | � 1. For that reason we replace s(x(σ)) in (3.17) by its upwind
value and evaluate the resulting integral exactly. This way we obtain for the inhomogeneous numerical
flux

F i
j+1/2 =

(
1
2 −W (P̄j+1/2)

)
su,j+1/2 ∆x, (4.8)

which is the constant coefficient flux (3.7b) with P and s replaced by P̄j+1/2 and su,j+1/2, respectively.
The final numerical flux Fj+1/2 is the superposition of the homogeneous part F h

j+1/2 and the inho-
mogeneous part F i

j+1/2, i.e.,

Fj+1/2 = F h
j+1/2 + F i

j+1/2, (4.9)

with F h
j+1/2 and F i

j+1/2 given in (4.7) and (4.8), respectively; see also [8]. We refer to the flux approxi-
mation in (4.7)-(4.9) as the complete flux (CF) scheme.
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5 The finite volume-complete flux scheme

To derive the final scheme, we combine the complete flux approximation in (4.7)-(4.9) with the discrete
conservation law for (3.2a), given by

Fj+1/2 − Fj−1/2 = sj∆x, (5.1)

cf. (2.5). The numerical flux at the cell interface xj+1/2 can be written as

Fj+1/2 = αj+1/2 ϕj − βj+1/2 ϕj+1 + ∆x
(
γj+1/2 sj + δj+1/2 sj+1

)
, (5.2a)

where the coefficients αj+1/2, βj+1/2 etc. are defined by

αj+1/2 :=
Ej+1/2

∆x
B−j+1/2, βj+1/2 :=

Ej+1/2

∆x
B+
j+1/2, B±j+1/2 := B

(
± P̄j+1/2

)
,

γj+1/2 = max
(

1
2 −W

+
j+1/2, 0

)
, δj+1/2 = min

(
1
2 −W

+
j+1/2, 0

)
, W+

j+1/2 := W
(
P̄j+1/2

)
,

(5.2b)

cf. (2.6). The formulae for γj+1/2 and δj+1/2 hold provided the grid size is small enough such that
sgn
(
ūj+1/2

)
= sgn

(
P̄j+1/2

)
, which we henceforth assume. A similar expression holds for the numerical

flux Fj−1/2 at the cell interface xj−1/2. Substituting these in the discrete conservation law (5.1) we obtain

−aW,jϕj−1 + aC,jϕj − aE,jϕj+1 = bW,jsj−1 + bC,jsj + bE,jsj+1, (5.3)

referred to as the finite volume-complete flux (FV-CF) scheme, with the coefficients aW,j , bW,j etc.
defined by

aW,j := αj−1/2, aE,j := βj+1/2, aC,j := αj+1/2 + βj−1/2,

bW,j := γj−1/2 ∆x, bE,j := −δj+1/2 ∆x bC,j =
(
1− γj+1/2 + δj−1/2

)
∆x. (5.4)

Note that bW,j , bE,j , bC,j ≥ 0 and bW,j + bC,j + bE,j =
(
1+W+

j+1/2−W
+
j−1/2

)
∆x. The FV-CF scheme

has a three-point coupling for both ϕ and s, resulting in the following linear system

Aϕ = Bs + b, (5.5)

where ϕ and s are the vector of unknowns and source terms, respectively, and where the vector b contains
the boundary data. Both matrices A and B are tridiagonal. For the special case of constant u and ε, we
can easily prove that aW,j , aE,j ≥ 0 and aC,j = aW,j + aE,j , and as a consequence the matrix A is an
M-matrix, provided not both boundary conditions are of Neumann type.

In our numerical examples in Section 8 we compare the CF scheme for the flux approximation with
the homogeneous flux (HF) scheme, which only includes the homogeneous component (4.7). This means
that γj+1/2 = δj+1/2 = 0 in (5.2a) and hence bW,j = bE,j = 0 and bC,j = ∆x in (5.3).

It is instructive to consider some limiting cases of the FV-CF scheme. First, we take u = 0, i.e., we
consider the equation−

(
εϕ′
)′ = s. In this case P̄j±1/2 = 0 and consequently the inhomogeneous fluxes

vanish, resulting in the second order central difference scheme

− 1
∆x

(
ε̄j+1/2

(
ϕj+1 − ϕj

)
− ε̄j−1/2

(
ϕj − ϕj−1

))
= sj ∆x. (5.6)
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Another limiting case is ε = 0, corresponding to the reduced equation
(
uϕ
)′ = s. For this equation we

have to distinguish between u > 0 and u < 0. In the former case, P̄j±1/2 → +∞ and the FV-CF scheme
(5.3) reduces to

ujϕj − uj−1ϕj−1 = 1
2

(
sj−1 + sj

)
∆x. (5.7a)

In the latter case, P̄j±1/2 → −∞, giving the scheme

uj+1ϕj+1 − ujϕj = 1
2

(
sj + sj+1

)
∆x. (5.7b)

Both schemes in (5.7) can be interpreted a second order cell-vertex FVM [18] with the control volumes
moved over a distance 1

2∆x in the upwind direction. Here we see why it is important that our flux
approximation includes the source term. Standard methods like the HF scheme omit the inhomogeneous
flux, so that the schemes in (5.7) further reduce to ujϕj − uj−1ϕj−1 = sj∆x for u > 0 or uj+1ϕj+1 −
ujϕj = sj∆x for u < 0, which is just the first order upwind scheme for the reduced advection-reaction
equation.

From these observations we conclude that the FV-CF scheme (5.3) can be interpreted as a combi-
nation of the central difference scheme (5.6) and the schemes (5.7), the combination determined by the
(average) Peclet numbers P̄j±1/2.

6 Extension to two-dimensional conservation laws

In this section we extend the derivation to two-dimensional steady conservation laws. In particular, we
derive the expression for the x-component of the numerical flux (the derivation of the y-component is
similar) and present the final scheme. For ease of notation, we use the compass notation; see Figure 4.
Thus, ϕC should be understood as ϕi,j , fe as fi+1/2,j etc.

The flux corresponding to equation (2.1) is given by

f = f1ex + f2ey =
(
uϕ− ε∂ϕ

∂x

)
ex +

(
vϕ− ε∂ϕ

∂y

)
ey. (6.1)

We outline the derivation of the x-component of the numerical flux F1,e at the eastern edge of the control
volume ΩC; see Figure 4. The derivation of the y-component F2,n of the numerical flux at the northern
edge is completely analogous and is therefore omitted. Analogous to the derivation in Section 3, the
numerical flux F1,e follows from the quasi-one-dimensional BVP

∂

∂x

(
uϕ− ε∂ϕ

∂x

)
= sx, xC < x < xE, y = ye, (6.2a)

ϕ(xC) = ϕC, ϕ(xE) = ϕE, (6.2b)

where the modified source term sx is defined by

sx := s− ∂f2

∂y
. (6.2c)

The derivation of the expression for the numerical flux is essentially the same as in the one-dimensional
case, the main difference being the inclusion of the cross flux term ∂f2/∂y in the source term. In
the computation of sx we replace ∂f2/∂y by its central difference approximation and for f2 we take
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Figure 4: Control volume ΩC and corresponding stencil using compass notation.

the homogeneous numerical flux. A similar procedure applies to the y-component of the flux. Putting
everything together, we obtain the two-dimensional complete flux scheme on the next page.

The stencil of the flux approximation for F1,e is depicted in Figure 4. Assume first that ūe > 0. Then
F1,e depends on ϕ in the grid points xC and xE, on s in the central point xC and on the homogeneous
fluxes F h

2,n and F h
2,s and through these fluxes again on ϕ in xN and xS. For ūe < 0, F1,e again depends

on ϕC and ϕE, but this time on the source term sE and the homogeneous fluxes F h
2,En and F h

2,Es, inducing
a further dependency on ϕNE and ϕSE. Thus, in addition to the direct neighbours, F1,e depends on a few
other values of ϕ, determined by the local upwind direction; cf. (2.6).

Next, we formulate the discretisation scheme based on this flux approximation. Introducing flux
differences like

δxF1,C :=
1

∆x
(
F1,e − F1,w), δyF2,C :=

1
∆y
(
F2,n − F2,s), (6.3)

it is clear that the discrete conservation law (2.5) can be written as

δxF1,C + δyF2,C = sC. (6.4)

All numerical fluxes in (6.4) contain a difference of a homogeneous cross flux. Therefore, substituting
the numerical fluxes defined above in (6.4) we obtain the discretisation

γ2,s δxF
h
1,S +

(
1− γ2,n + δ2,s

)
δxF

h
1,C − δ2,n δxF

h
1,N+

γ1,w δyF
h
2,W +

(
1− γ1,e + δ1,w

)
δyF

h
2,C − δ1,e δyF

h
2,E =(

1− γ2,n + δ2,s − γ1,e + δ1,w

)
sC + γ2,s sS − δ2,n sN + γ1,w sW − δ1,e sE,

(6.5)
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Two-dimensional CF scheme

Peclet function

P1 := u∆x/ε P2 := v∆y/ε

(weighted) average

āe := 1
2(aC + aE) ān := 1

2(aC + aN)

ãe := W (−P̄1,e)aC +W (P̄1,e)aE ãn := W (−P̄2,n)aC +W (P̄2,n)aN

homogeneous flux

F h
1,e = Fh

( P̃1,e

P̄1,e

ε̃e

∆x
, P̄1,e;ϕC, ϕE

)
F h

2,n = Fh
( P̃2,n

P̄2,n

ε̃n

∆y
, P̄2,n;ϕC, ϕN

)
source term with cross wind diffusion

sx,C = sC −
1

∆y
(
F h

2,n − F h
2,s

)
sy,C = sC −

1
∆x
(
F h

1,e − F h
1,w

)
upwinded source term

sx,u,e =

{
sx,C if ūe ≥ 0
sx,E if ūe < 0

sy,u,n =

{
sy,C if v̄n ≥ 0
sy,N if v̄n < 0

inhomogeneous flux

F i
1,e =

(
1
2 −W (P̄1,e)

)
sx,u,e ∆x F i

2,n =
(

1
2 −W (P̄2,n)

)
sy,u,n ∆y

complete flux

F1,e = F h
1,e + F i

1,e F2,n = F h
2,n + F i

2,n

where the coefficients γ2,s etc. are defined by

γ1,e := max
(

1
2 −W

(
P̄1,e

)
, 0
)
, δ1,e = min

(
1
2 −W

(
P̄1,e

)
, 0
)
, (6.6a)

γ2,n := max
(

1
2 −W

(
P̄2,n

)
, 0
)
, δ2,n = min

(
1
2 −W

(
P̄2,n

)
, 0
)
. (6.6b)

The scheme contains a combination of at most six flux differences, three in x-direction and three in
y-direction. Consequently, the discretisation stencil involves the twelve fluxes and nine grid points indi-
cated in Figure 4.

It is instructive to consider the constant coefficient case, i.e., we assume that u, v and ε are constant.
Using the property W (z) +W (−z) = 1, we can show that the scheme (6.5) reduces to(

1
2 +W

(
|P2|

))
δxF

h
1,C +

(
1
2 −W

(
|P2|

))
δxF

h
1,uy,C +

(
1
2 +W

(
|P1|

))
δyF

h
2,C+(

1
2 −W

(
|P1|

))
δyF

h
2,ux,C =

(
W
(
|P1|

)
+W

(
|P2|

))
sC +

(
1
2 −W

(
|P2|

))
suy,C+(

1
2 −W

(
|P1|

))
sux,C,

(6.7)

where xux,C is the grid point located upwind (w.r.t. u) of xC, i.e., xux,C = xW if u ≥ 0 and xux,C = xE

if u < 0; likewise for xuy,C. Note that the scheme is a weighted average of flux differences at the central
point xC and at the grid points xux,C and xuy,C located upwind of xC.
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Finally, we consider two limiting cases. First,we take u = v = 0, i.e., we consider the diffusion-
reaction equation −ε∇2ϕ = s. In this case, P1 = P2 = 0 resulting in the standard central difference
approximation, which can be written as

δxF
h
1,C + δyF

h
2,C = sC, (6.8a)

F h
1,e = − ε

∆x
(
ϕE − ϕC

)
, etc. (6.8b)

The numerical flux in this scheme is the central difference approximation of the diffusive flux −ε∇ϕ.
The other limiting case is ε = 0, corresponding to the advection-reaction equation u · ∇ϕ = s. In this
case scheme (6.7) reduces to the two-dimensional cell-vertex FVM [18, 19]

1
2
(
δxF

h
1,C + δxF

h
1,uy,C

)
+

1
2
(
δyF

h
2,C + δyF

h
2,ux,C

)
=

1
2
(
suy,C + sux,C

)
, (6.9a)

F h
1,e = uϕ̄u,e, etc, (6.9b)

cf. (5.7). The numerical flux is the upwind approximation of the advective flux uϕ and the additional
flux differences at xux,C and xuy,C prevent that the scheme reduces to the first order upwind scheme.

From (6.7)-(6.9) we conclude that the constant coefficient scheme (6.7) is a weighted average of
the central difference approximation (6.8) and the scheme (6.9), the weighting determined by the Peclet
numbers.

7 Extension to time-dependent conservation laws

Next, we extend the scheme to time-dependent conservation laws, restricting ourselves to one space
dimension. The semidiscrete conservation law for ϕj(t) ≈ ϕ(xj , t) reads

ϕ̇j(t)∆x+ Fj+1/2(t)− Fj−1/2(t) = sj(t)∆x, (7.1)

where ϕ̇j(t) ≈ ∂ϕ/∂t(xj , t) and sj(t) = s(xj , t); cf. (2.5). In the following we will omit the explicit
dependence on the variable t.

For the numerical flux Fj+1/2 in (7.1) we have two options. We can simply take the flux (5.2a)
derived from the corresponding BVP (3.2), and henceforth referred to as the stationary complete flux
(SCF) scheme. Alternatively, we can include ∂ϕ/∂t in the numerical flux, if we determine Fj+1/2 from
the quasi-stationary BVP

∂

∂x

(
uϕ− ε∂ϕ

∂x

)
= s− ∂ϕ

∂t
, xj < x < xj+1, (7.2a)

ϕ(xj) = ϕj , ϕ(xj+1) = ϕj+1, (7.2b)

thus including the time derivative in the source term. We can once more apply the theory in Section 3
and Section 4, to arrive at the following expression for the numerical flux

Fj+1/2 = αj+1/2 ϕj − βj+1/2 ϕj+1 + ∆x
(
γj+1/2

(
sj − ϕ̇j

)
+ δj+1/2

(
sj+1 − ϕ̇j+1

))
, (7.3)

referred to as the transient complete flux (TCF) scheme, where the coefficient αj+1/2, βj+1/2 etc are
defined in (5.2b); cf. (5.2a). A similar expression holds for the numerical flux Fj−1/2. Substituting these
in the semidiscrete conservation law (7.1) we obtain the FV-TCF semidiscretisation, given by

bW,jϕ̇j−1 +bC,jϕ̇j +bE,jϕ̇j+1−aW,jϕj−1 +aC,jϕj−aE,jϕj+1 = bW,jsj−1 +bC,jsj +bE,jsj+1,
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(7.4)

with the coefficients aW,j , bW,j etc. defined in (5.4).
The resulting semi-discretisation for the vector of unknowns ϕ is either the ODE system

ϕ̇∆x+ Aϕ = Bs + b1, (7.5a)

for the SCF scheme, or the implicit ODE system

Bϕ̇ + Aϕ = Bs + b2, (7.5b)

for the TCF scheme, with the matrices A and B as defined in Section 5 and with b1 and b2 containing
boundary data. In [32] we have shown that for dominant advection, i.e., |P | large, the semidiscretisation
(7.5b) has much smaller dissipation and dispersion errors than (7.5a), provided the solution is smooth.
For high wave number solutions both semi-discretisations suffer from severe damping and dispersion.
On the other hand, for dominant diffusion, dissipation and dispersion errors for both (7.5a) and (7.5b) are
comparable. For time integration we require an A-stable, one-step method. Our choice is the trapezoidal
rule; see, e.g., [15].

Analogous to the stationary scheme (5.3), the semidiscretisation (7.4) reduces to the central differ-
ence discretisation

ϕ̇j ∆x− 1
∆x

(
ε̄j+1/2

(
ϕj+1 − ϕj

)
− ε̄j−1/2

(
ϕj − ϕj−1

))
= sj ∆x, (7.6)

for the diffusion-reaction equation ϕt −
(
εϕx

)
x

= s and to the cell-vertex FVM

1
2

(
ϕ̇j−1 + ϕ̇j

)
∆x+ ujϕj − uj−1ϕj−1 = 1

2

(
sj−1 + sj

)
∆x if u > 0, (7.7a)

1
2

(
ϕ̇j + ϕ̇j+1

)
∆x+ uj+1ϕj+1 − ujϕj = 1

2

(
sj + sj+1

)
∆x if u < 0, (7.7b)

for the advection-reaction equation ϕt +
(
uϕ)x = s. All semidiscretisations are second order accurate

in space.

8 Numerical examples

In this section we apply several flux approximations to five model problems to assess their (order of)
accuracy. We consider both diffusion-dominated and advection-dominated flow.

Example 1. Advection-diffusion-reaction equation with boundary layer at outflow.
We solve the BVP [34](

uϕ− εϕ′
)′ = s, 0 < x < 1, (8.1a)

ϕ(0) = 0, ϕ(1) = 1, (8.1b)

with velocity u(x) = 1− b sinπx and source term s chosen such that the exact solution is given by

ϕ(x) = a sin(πx) +
e(x−1)/ε − e−1/ε

1− e−1/ε
. (8.2)

Note that for 0 < ε � 1 the solution has a thin boundary layer of width ε near x = 1. We take the
following parameter values: a = 0.2, b = −0.95 and ε = 1 (dominant diffusion) or ε = 10−5 (dominant
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CF HF
h−1 eh eh/eh/2 eh eh/eh/2

10 2.201× 10−3 3.69 1.823× 10−3 3.81
20 5.967× 10−4 3.84 4.779× 10−4 3.90
40 1.553× 10−4 3.92 1.224× 10−4 3.95
80 3.963× 10−5 3.96 3.098× 10−5 3.97
160 1.001× 10−5 3.98 7.794× 10−6 3.99
320 2.515× 10−6 3.99 1.955× 10−6 3.99
640 6.303× 10−7 3.99 4.894× 10−7 4.00

1280 1.578× 10−7 1.224× 10−7

Table 1: Example 1, errors for diffusion-dominated flow. Parameter values are: a = 0.2, b = −0.95 and
ε = 1.

CF HF
h−1 eh eh/eh/2 eh eh/eh/2

10 2.146× 10−3 3.82 1.977× 10−2 1.86
20 5.613× 10−4 3.91 1.061× 10−2 1.93
40 1.436× 10−4 3.95 5.504× 10−3 1.97
80 3.632× 10−5 3.98 2.801× 10−3 1.99
160 9.121× 10−6 4.00 1.411× 10−3 2.00
320 2.280× 10−6 4.02 7.070× 10−4 2.01
640 5.669× 10−7 4.05 3.525× 10−4 2.02

1280 1.399× 10−7 1.746× 10−4

Table 2: Example 1, errors for advection-dominated flow. Parameter values are: a = 0.2, b = −0.95 and
ε = 10−5.

advection). Let h = ∆x = 1/(N − 1) be the grid size, with N the number of grid points. To determine
the accuracy of a numerical solution we compute the average error eh := ||ϕ − ϕ∗||1/N , where ϕ∗

denotes the exact solution restricted to the grid, as a function of the reciprocal grid size h−1. Table 1
shows eh and the reduction factors eh/eh/2 for ε = 1. Clearly, eh/eh/2 → 4 for h → 0 for both the
HF and CF scheme, and consequently, both schemes display second order convergence behaviour for
h → 0. The numerical errors are approximately the same for both schemes. However, the situation is
quite different for the case ε = 10−5 shown in Table 2. In this case eh/eh/2 → 2 for h → 0 for the HF
scheme, which means that the method is only first order convergent, in agreement with the observation
that the HF-scheme reduces to the first order upwind scheme for the advection-reaction equation; see
Section 5. The CF-scheme still displays second order convergence behaviour, which is consistent with
the reduction of the CF-scheme to the scheme (5.7) for the advection-reaction equation. Obviously, the
CF-solution is in this case much more accurate than the HF-solution.
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ε = 10−1 ε = 10−8

h−1 HF CF HF CF
10 4.41 6.76 2.39 2.36× 101

20 4.54 6.00 1.97 −2.92× 102

40 4.08 3.65 1.96 2.57
80 4.02 3.62 1.98 4.00
160 4.00 3.77 1.99 4.00
320 4.00 3.88 1.99 4.00
640 4.00 3.94 2.00 4.00
1280 4.00 3.97 2.00 4.00

Table 3: Example 2, the rh-values as a function of h−1, for maximum source term smax = 102.

Example 2. Advection-diffusion-reaction equation with interior layer.
We solve the BVP [17](

uϕ− εϕ′
)′ = s, 0 < x < 1, (8.3a)

ϕ(0) = ϕ′(1) = 0, (8.3b)

where the velocity u and the source term s are given by

u(x) = (1 + x)3, s(x) =
smax

1 + smax(2x− 1)2
, (8.4)

respectively. The velocity is a smoothly varying function of x whereas the source term has a sharp peak
at x = 1

2 , causing a steep interior layer, provided 0 < ε� 1; see Figure 5.
For this BVP there is no exact solution available. In order to assess the order of accuracy of both

schemes, we compute numerical approximations of ϕ(1
2) with increasingly smaller grid sizes and apply

Richardson extrapolation to these results; see e.g. [22]. More precisely, let

ϕ(1
2) = ϕh + eh = ϕh/2 + eh/2 = ϕh/4 + eh/4, h = ∆x, (8.5)

where ϕh denotes the numerical approximation of ϕ(1
2) computed with grid size h and eh the corre-

sponding (global) discretisation error, etc. Assuming the following error expansion

eh = Chp +O
(
hq), q > p, (8.6)

we can derive the following relation for the order of accuracy p:

2p .=
ϕh/2 − ϕh
ϕh/4 − ϕh/2

=: rh. (8.7)

The rh-values are presented in Table 3. From this table it is evident that for dominant diffusion, i.e.,
ε = 10−1, both the HF and CF scheme are second order convergent for h → 0. On the other hand, for
dominant advection, i.e., ε = 10−8, the HF scheme shows first order convergence for h → 0, whereas
the CF scheme is still second order convergent. The large entries for h−1 = 10, 20 in the last column of
the table indicate that the approximation (8.7) is not yet valid, or equivalently, the higher order terms in
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Figure 5: Example 2, the source term s (left) and the corresponding (numerical) solution (right) of (8.3).
Parameter values are ε = 10−8, smax = 102 and h−1 = 20.

(8.6) can not be neglected, and more importantly, that the CF-solution is already rather accurate even on
these coarse grids. This is confirmed in Figure 5 which shows the HF and CF solutions compared to the
reduced solution (RS) of the problem (uϕ)′ = s, ϕ(0) = 0 on a rather coarse grid (h−1 = 20).

Example 3. Advection-diffusion equation with steep inlet profile and rotating flow.
Consider the following boundary value problem [17, 26]

∇·(uϕ− ε∇ϕ) = 0, − 1 < x < 1, 0 < y < 1, (8.8a)

ϕ(x, 0) = 1 + tanh(α(2x+ 1)), − 1 ≤ x ≤ 0, (inlet) (8.8b)
∂ϕ

∂y
(x, 0) = 0, 0 < x ≤ 1, (outlet), (8.8c)

ϕ(x, y) = 1− tanh(α), (x = ±1, 0 ≤ y ≤ 1) and (−1 ≤ x ≤ 1, y = 1), (8.8d)

where the (solenoidal) velocity field is given by

u := (u, v) =
(
2y
(
1− x2

)
,−2x

(
1− y2

))
. (8.9)

A steep interior layer is specified at the inlet, which should be advected with the rotating flow, at least
for ε sufficiently small. For ε = 0 the outlet profile should be the exact mirror image of the interior layer
at the inlet, whereas for small ε > 0 the outlet profile is less steep due to diffusion. Numerical solutions
of (8.8) for ε = 10−8 and α = 10 are displayed in Figure 6. Clearly, the HF solution is far too smooth,
due to numerical diffusion, whereas the outlet profile of the CF solution is hardly distorted. Apparently,
inclusion of the cross flux terms in the numerical fluxes reduces numerical diffusion considerably.

To determine the order of accuracy, we apply Richardson extrapolation to numerical approximations
of ϕ(1

2 ,
1
2), i.e., we compute the quotients rh defined in (8.7) with ϕh the numerical approximation of

ϕ(1
2 ,

1
2) computed with grid sizes ∆x = ∆y = h. The results are presented in Table 4. From this we

may conclude, that the CF scheme is second order convergent for h → 0 for both diffusion dominated
flow (ε = 10−2) and advection dominated flow (ε = 10−8). The HF scheme however is second order for
diffusion dominated flow only; it reduces to first order for dominant advection.
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Figure 6: Example 3, solution of boundary value problem (8.8) for α = 10 and ε = 10−8 computed with
∆x = ∆y = 2.5× 10−2. Top: HF scheme, bottom: CF scheme.

ε = 10−2 ε = 10−8

h−1 HF CF HF CF
20 3.12 -1.93 1.49 5.73
40 3.72 1.97 2.26 4.42
80 3.93 3.07 3.15 4.11
160 3.98 3.56 3.29 4.04
320 4.00 3.78 2.77 4.01
640 4.00 3.89 2.38 4.01

Table 4: Example 3, the rh-values as a function of h−1 for α = 10.

Example 4. Advection-diffusion-reaction equation with rotating flow.
Consider the following modification of the BVP (8.8) in Example 3, i.e.,

∇·(uϕ− ε∇ϕ) = s, − 1 < x < 1, 0 < y < 1, (8.10a)

ϕ(x, 0) = 0, − 1 ≤ x ≤ 0, (inlet) (8.10b)
∂ϕ

∂y
(x, 0) = 0, 0 < x ≤ 1, (outlet), (8.10c)

ϕ(x, y) = 0, (x = ±1, 0 ≤ y ≤ 1) and (−1 ≤ x ≤ 1, y = 1), (8.10d)
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where the velocity field is defined in (8.9) and where the source term is given by

s(x, y) = 1
2

smax

1 + smax

(
x′
)2 (1− tanh2

(
β
(

1
2

√
2− y′

)))
,
(
x′, y′

)
:= 1

2

√
2
(
x+ y,−x+ y

)
.

(8.11)

In this example there is no inlet profile, instead, the solution is generated by a source term which has a
sharp peak near

(
x′, y′

)
= (0, 1

2

√
2), i.e., at (x, y) =

(
− 1

2 ,
1
2

)
. Thus, the solution is created in the second

quadrant (x < 0, y > 0). Numerical solutions for β = 10, smax = 102 and ε = 10−8 are given in Figure
7. The solution profile ϕ(0, y) along the centre line is compared with the solution ϕ(x, 0) (0 ≤ x ≤ 1)
at the outlet. Since ε = 10−8 and virtually s = 0 in the first quadrant (x, y > 0), advection is the
only relevant transport term in equation (8.10a), implying that both solution profiles should be almost
the same. This is clearly true for the CF solution, however, the HF outlet profile is too much smeared
out, this due to cross wind diffusion.
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Figure 7: Example 4, solution of boundary value problem (8.10) for β = 10, smax = 102 and ε = 10−8

computed with ∆x = ∆y = 2.5× 10−2. Top: HF scheme, bottom: CF scheme.

Example 5. Advection-reaction equation.
Consider the following model IBVP for hyperbolic-relaxation equations [29]

∂ϕ

∂t
+

∂

∂x

(
uϕ) = −1

τ
ϕ(1− ϕ), 0 < x < 1, t > 0, (8.12a)

ϕ(x, 0) = a(x) = 0.8, 0 < x < 1, (8.12b)

ϕ(0, t) = b(t) = 0.8 + 0.2 sin(2πt), t > 0, (8.12c)
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TCF SCF
h−1 eh eh/eh/2 eh eh/eh/2

20 4.645× 10−2 1.64 5.743× 10−2 1.19
40 2.831× 10−2 1.97 4.837× 10−2 1.21
80 1.436× 10−2 2.75 4.011× 10−2 1.30
160 5.221× 10−3 3.48 3.078× 10−2 1.40
320 1.502× 10−3 3.83 2.198× 10−2 1.52
640 3.918× 10−4 3.95 1.445× 10−2 1.65

1280 9.923× 10−5 8.742× 10−3

Table 5: Example 5, errors for the advection-reaction equation. Parameter values are: u = 0.95, and
τ = 4× 10−2.

where u > 0 is the flow velocity and where τ � 1 is a relaxation time. We choose uτ � 1, which
means that the time scale of advection is much larger than τ . Using the method of characteristics, see
e.g. [12], we can solve the IBVP (8.12) to find

ϕ(x, t) =


(

1 +
(

1
ϕ1
− 1
)

et/τ
)−1

, ϕ1 = a(x− ut) for x ≥ ut,(
1 +

(
1
ϕ2
− 1
)

ex/(uτ)

)−1

, ϕ2 = b(t− x/u) for x < ut.
(8.13)

The oscillating boundary condition (8.12c) generates a wave propagating in the positive x-direction. The
ODE dϕ/dt = − 1

τϕ(1−ϕ) corresponding to (8.12a), which holds along the characteristics, has a stable
equilibrium ϕ = 0 and an unstable ϕ = 1. The effect of the source term is therefore that the constant
state ahead of the wave approaches 0, whereas a narrow peak near ϕ(x, t) = 1 is created.

We have computed numerical solutions of (8.12) using the SCF and TCF scheme, in combination
with the trapezoidal rule for time integration. We choose the following parameter values: u = 0.95 and
τ = 4×10−2, and moreover, we take ∆x = ∆t =: h. To determine the accuracy of a numerical solution
we compute the average error eh := h||ϕ − ϕ∗||1 at t = 0.5, where ϕ∗ denotes the exact solution
restricted to the grid, as a function of the reciprocal grid size h−1. Table 5 shows eh and the reduction
factors eh/eh/2. Clearly, for the TCF scheme eh/eh/2 → 4 for h → 0, implying that the discretisation
method is second order. However, the SCF discretisation does not even display first order convergence,
and the corresponding solutions have a much larger discretisation error due to dissipation errors; see
[32].

As an example, we show in Figure 8 the numerical solutions computed with the TCF and SCF
scheme, respectively, computed for h−1 = 1280. Obviously, the SCF scheme suffers from severe damp-
ing, resulting in a far too small maximum, whereas for the TCF scheme the peak near the maximum is
well resolved.

9 Summary, conclusions and future research

We have derived an integral representation for the flux of the one-dimensional advection-diffusion-
reaction equation from a local BVP for the entire equation, including the source term. As a consequence,
the flux consists of two parts, i.e., a homogeneous and an inhomogeneous part, corresponding to the
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Figure 8: Example 5, numerical solution of IBVP (8.12) at t = 0.5 for u = 0.95 and τ = 4 × 10−2

computed with h−1 = 1280. Left: TSC scheme, right: SCF scheme.

homogeneous and particular solution of the BVP, respectively. A new representation of the inhomoge-
neous flux in terms of a Green’s function is given. Combining this integral representation with suitable
quadrature rules, we could derive expressions for the numerical flux. Obviously, also the numerical flux
consists of a homogeneous and an inhomogeneous part. The inhomogeneous part turns out to be very
important for dominant advection, since it ensures that the flux approximation remains second order.
The resulting finite volume scheme turns out to be second order accurate, uniformly in the local Peclet
numbers, virtually never generates spurious oscillations, and moreover, has only a three-point coupling.

For two-dimensional problems we have to include the cross flux term in the inhomogeneous flux.
This means that, say for the discretisation of the x-component f1 of the flux, we have to solve a quasi-
one dimensional BVP, where the source term contains the cross flux term ∂f2/∂y; see (6.1). The finite
volume method obtained this way usually gives very accurate approximations of steep (interior) layers, in
case of dominant advection, and has a compact nine-point stencil. However, (small) spurious oscillations
cannot always be excluded. A remedy to this could be to take a combination of the complete and the
homogeneous fluxes. This is topic of further research.

As a second extension, we applied the complete flux scheme to time-dependent problems. The key
idea is to include the time derivative in the inhomogeneous flux, i.e., the flux is determined from a quasi-
stationary BVP where the source term contains the time derivative. The resulting semidiscretisation
is an implicit ODE system and usually has small dissipation and dispersion errors, see [32]. Spurious
oscillations in the semidiscrete solution can occur, and have to be controlled by a (dissipative) time
integration method.

Currently, we are extending our research in the following directions. First, we combine the integral
representation of the flux with Gauss quadrature rules to derive higher order schemes; first results are
presented in [2]. Second, we analyse several time integration methods when combined with the complete
flux scheme; in particular we investigate exponential time integrators. Finally, we extend the complete
flux scheme to advection-diffusion-reaction systems, where the equations are coupled through an advec-
tion and a diffusion matrix. Preliminary results are promising and will be reported elsewhere.
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