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The Fixed Point 
Principle 

Two days later, Craig had another session with Professor 
Griffin. 

"Today," said Griffin, "I wish to show you an important 
principle known as the fixed point principle, which will have 
many applications to various topics that I plan to discuss with 
you later on. A special case of this principle you already 
know-namely, that every bird here is fond of at least one bird. 
Before telling you the general principle, I think it would be 
helpful to consider a couple of special cases. If you can solve 
these special cases, I'm sure you will have no trouble grasping 
the fixed point principle." 

• 1 • 
"How do y~u find a bird A such that for any bird y, Ay = 

yA(AyA)?" 

• 2 • 
"How do you find a bird A such that for any birds y and z, 
Ayz = (z(yA))(yAz)?" 

SOLUTIONS 

Inspector Craig happened to be exceptionally alert that day, 
and he solved the two problems in a surprisingly short time. 

"I can see two different ways of going about this," said 
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Craig. "One method uses the fact that every bird is fond of 
at least one bird; the other method proceeds, as it were, from 
scratch. 

"Using the first method, here is how 1 solve your Problem 
1. Consider the expression yx(xyx)-it is like y A(Ay A) except 
that it has the letter x in place of the letter A. Now, by taking 
an x-y-eliminate of yx(xyx), we can find a bird At such that 
for any birds x and y, Atxy = yx(xyx)." 

"Right, so far," said Griffin. 
"Well, this bird At is fond of some bird A-specifically, 

the bird LAt (LAt), with L as a lark. Thus AtA = A." 
"Excellent!" said Griffin. 
"Since AtA = A," continued Craig, "then for any bird y, 

AtAy = Ay. But also, AtAy = yA(AyA), because for any bird 
x, Atxy = yx(xyx). Since AtAy = yA(AyA) and also AtAy 
= Ay, then Ay = yA(AyA). This solves the problem." 

"Great!" exclaimed Griffin. "But 1 am curious as to the 
second method you had in mind-the method that 'proceeds 
from scratch.' What method is that?" 

"Well," replied Craig, "in the expression yx(xyx), just 
replace x by (xx), thus obtaining the expression 
y(xx) ((xx)y(xx)). Then there is a bird A2 such that for any 
birds x and y, A2Xy = y(xx) ((xx)y(xx)). Then, taking A2 for 
x, A2A2y = y(A2A2)((A2A2)y(A2A2)). And then we take for 
A the bird A2A2, and so Ay = yA(AyA)." 

"Ah, yes!" said Griffin. 
"Actually," said Craig, "I imagine the first method would, 

in general, yield a much shorter expression for A. The prospect 
of finding an x-y-eliminate of the expression y(xx)((xx)y(xx)) 
strikes me as pretty grim compared to finding an x-y-eliminate 
of the expression yx(xyx). So in practice, 1 think 1 would use 
the first method. 

"Of course, the same method-either one, in fact-works 
for your second problem. To find a bird A satisfying the con-
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dition that Ayz = (z(yA))(yAz), let At be an x-y-z-eliminate 
of the expression (z(yx))(yxz), and let A be the bird LAt(LAt). 
Then AtA = A, so AtAyz = Ayz, so Ayz = AtAyz = 

(z(yz))(yAz), and A is the desired bird. 
"The same method would work for any expression with 

four variables instead of three. For example, take the expres
sion x(zwy)(xxw). Ifwe let At be an x-y-z-w-eliminate of this 
expression and let A be the bird LAt (LAt), then for any birds 
y, z, w, Ayzw = A(zwy)(AAw). Indeed, the same method 
would work for any expression with any number of variables. 
Is this the principle you call the fixed point principle?" 

"You have the idea," said Griffin. "To state the fixed point 
principle in its most general form, suppose we take any num
ber of variables x, y, z ... and write down any equation of 
the form Axyz ... = ( ), where ( ) is any expres
sion built from these variables and the letter A. For example, 
( ) might be the expression yA(wAA)(xAz). The fixed 
point principle is that the equation can always be solved for 
A-in other words, there is a bird A such that for any birds 
x, y, z ... it is true that Axyz ... = ( ). In the above 
example, there is a bird A such that for any birds x, y, z, w 
it is true that Axyzw = yA(wAA) (xAz). You will see the 
importance of this principle when we come to the study of 
arithmetical birds. 

"I might remark," added Griffin, "that the existence of a 
sage bird is only a special case of the fixed point principle
the case where ( ) is the expression x(Ax). By the fixed 
point principle, there is then a bird A such that for every bird 
x, Ax = x(Ax)-such a bird A is a sage bird." 

"That's interesting!" said Craig. "I hadn't seen a sage bird 
in that light before." 

The following exercises should give the reader further insight 
into the uses of the fixed point principle. 
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Exercise 1 (Sage birds revisited): Let us look again at the 
problem of finding a sage bird A-only now from the point 
of view of the fixed point principle. 

We are to find a bird A satisfying the equation Ax = 

x(Ax)-for all birds x. In this chapter, we have seen two dif
ferent methods of solving such an equation. Try both methods 
and see what birds you get. Both of them have been encoun
tered in Chapter 13. 

Exercise 2 (Commuting birds revisited): Using both meth
ods, find a bird A such that for every bird x, Ax = xA. Such 
a bird A commutes with every bird x (recall Problem 18, Chap
ter 11). One of the solutions will be the same as that of Problem 
18, Chapter 11; the other solution will be new. What new 
solution do you get? 

Exercise 3: In each case, find a bird A satisfying the given 
requirement. (Better use the first method.) 

a. Ax = Axx 
b. Ax A(xx) 
c. Ax = AA(xx) 

Exercise 4: Find a bird A such that for every bird x, Ax 
AA. 

Exercise 5: In each case, find a bird A satisfying the given 
requirement. 

a. Axy xyA 
b. Axy Ayx 
c. Axy x(Ay) 

Exercise 6: By the fixed point principle, there is a bird A such 
that for any birds x, a, and b, Axab = x(Aaab) (Abab). Using 
this fact, prove the following theorem (known as the double 
fixed point theorem): For any birds a and b there are birds c and 
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d such that acd = c and bed = d. This constitutes a new and 
quite simple proof of the double fixed point theorem. 

SOLUTIONS 

Ex. 1: Using the first method, we must first find a bird At 
such that for all x and y, Atyx = x(yx) , and any bird of which 
At is fond will be a solution. Well, the owl 0 is such a bird 
At, and LO(LO)-or any other bird of which 0 is fond-is 
a sage bird. We thus get the same solution as we got in Problem 
14, Chapter 13. 

Using the second method, we must first find a bird At 
such that for all x and y, Atyx = x(yyx), and then At At will 
be a solution. Well, the Turing bird U is such a bird At, and 
so we see again that our old friend UU is a sage bird. 

Ex. 2: Using the first method, you should get LT(LT)-or 
any other bird of whom the thrush T is fond-as a solution. 
This is the same as Problem 18, Chapter 11. 

Using the second method, you should get the solution 
W'W', where W' is the converse warbler-W'xy = yxx. If 
you get CW(CW) you are also right, since CW is a converse 
warbler. You can easily check that W'W'x = x(W'W'). 

Ex. 3: 
a. LW(LW) 
b. LL(LL) 
c. L(LL)(L(LL)) 

Ex. 4: Some of you may have been stumped by this, since A 
is the only letter on the righthand side of the equation. How
ever, either method still works; we will use the first. 

We must first find a bird At, such that for every x and y, 
Atyx = yy. Well, BKM is such a bird, as you can easily check, 
and so L(BKM)(L(BKM)) is a solution. 
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Ex. 5: 
a. LR(LR) 
b. LC(LC) 
c. LQ(LQ) 

Ex. 6: For any birds x, a, and b, Axab = x(Aaab) (Abab). 
Therefore, if we take a for x, we see that Aaab = 

a(Aaab)(Abab). If, instead, we take b for x, we see that Abab 
= b(Aaab) (Abab). Therefore, if we let e = Aaab and d = 

Abab, we see that e = aed and d = bed. 



() 22 () 

A Glimpse into Infinity 

SOME FACTS ABOUT THE KESTREL 

"y ou know," said Griffin to Craig, in another of their daily 
chats, "despite the fact that Professor Bravura dislikes the 
'lowly' kestrel, this bird has some interesting properties." 

• I • 
"For example," continued Professor Griffin, "suppose we 
have a bird forest in which there are at least two birds. You 
know that a kestrel cannot be fond of itself?" 

"I remember that," replied Craig. He was thinking of 
Problem 19, Chapter 9. 

"Did you know that if the forest contains at least two birds, 
then it is impossible for a kestrel to be fond of an identity 
bird?" 

"I never thought about that," said Craig. 
"The proof is quite ... easy," remarked Griffin. 
What is the proof? 

• 2 • 
"I hate these silly forests having only one bird," said Griffin. 
"In all the problems I will give you today, I am making the 
underlying assumption that the forest has at least two birds. 

"Prove that if K is a kestrel and I is an identity bird, then 
I =F K -in other words, no bird can be both an identity bird 
and a kestrel." 
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• 3 • 
"Another thing," said Griffin: "No starling can be fend of a 
kestrel. Can you see why this is so?" 

• 4 • 
"It follows from this," continued Griffin, "that no starling can 
also be an identity bird. Can you see why?" 

• 5 • 
"I see now," said Craig, "that no bird can be both a starling 
and an identity bird and no bird can be both a kestrel and an 
identity bird. Is it possible for a bird to be both a starling and 
a kestrel?" 

"Good question!" said Griffin. "The answer is not difficult 
to figure out." 

What is the answer? Remember, we are assuming that the 
forest contains at least two birds. 

• 6 • 
"Here is a simple but important principle," said Griffin. "You 
have already agreed that no kestrel K can be fond of itself. 
This means that KK # K. This fact can be generalized: For no 
bird x is it the case that Kx = K! Can you prove this?" 

Note: It will be helpful to the reader to recall the cancellation 
law for kestrels, which we proved in Chapter 9, Problem 16-
namely, that ifKx = Ky, then x = y. 

• 7 • 
"Another fact," said Griffin: "We have proved that a kestrel 
K cannot be fond of an identity bird I. This means that KI # 
I. This fact can also be generalized: Prove that there cannot be 
any bird x such that Kx = I." 
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"Well," said Griffin, "I will soon tell you an extremely im
portant fact about kestrels. But first, how about a nice cup of 
tea?" 

"Capital idea!" said Craig. 

SOME NONEGOCENTRIC BIRDS 

While Craig and Griffin are taking time out for tea, let me tell 
you about some other nonegocentric birds. We shall assume 
that the forest contains the birds K and I and that K =P I. On 
this basis, we have already proved that the kestrel K cannot 
be egocentric; recall that by an egocentric bird is meant a bird 
x such that xx = x. Many other birds can also be proved 
nonegocentric. We shall look at a few. 

• 8 • 
Prove that no bird can be both a kestrel and a thrush. 

• 9 • 
Now prove that no thrush T can be egocentric. 

• 10 • 
Prove that if R is a robin, then RII =P I. It can also be proved, 
by the way, that RI =P I and that R =P I. The reader might try 
these as exercises. 

• 11 • 
Now prove that no robin R can be egocentric. 

• 12 • 
Prove that no cardinal C can be egocentric. 

• 13 • 
Prove that no vireo' V can be egocentric. [V xyz = zxy] 
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• 14 • 

Show that for any warbler W: 
a. W is not fond of I. 
b. W is not egocentric. 

• 15 • 
Show that for any starling S: 

a. SI is not fond of I. It can also be shown that S is not 
fond of I. 

b. S is not egocentric. 

• 16 • 
Prove that for any bluebird B: 

a. BKK ~ KK 
b. B cannot be egocentric. 

• 17 • 
Can a queer bird Q be egocentric? 

The reader might have fun looking at some other familiar birds 
and seeing which ones can be shown to be nonegocentric. The 
reader might also find it a good exercise to show that of the 
birds B, C, W, S, R, and T, no pair can be identical-i.e., 
B ~ C, B ~ W, ... , B ~ T, C ~ W, ... , C ~ T, etc. 

KESTRELS AND INFINITY 

"Well," said Griffin, after they had had a delicious tea, com
plete with buttered crumpets, "some of the little problems I 
have given you about kestrels lead to a highly significant fact. 
Again, we consider a forest having at least two birds. Did you 
know that if the forest contains a kestrel K, then it must contain 
infinitely many birds?" 
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"That sounds most interesting!" exclaimed Craig. 
"Some of my former students have given me fallacious 

proofs of this fact," said Griffin. "I recall that when I told this 
to one student, he instantly replied: 'Oh, of course! Just con
sider the infinite series K, KK, KKK, KKKK, . . .' 

"You see why this proof is fallacious?" 

• 18 • 
Why is this proof fallacious? 

• 19 • 
"Of course I see why the proof is fallacious," replied Craig. 
"However, suppose we instead take the series K, KK, K(KK), 
K(K(KK)), K(K(K(KK))), ... Will that work?" 

"You got it!" said Griffin. 
"To tell you the truth, that was only aguess," replied Craig. 

"I haven't really verified in my mind that all these birds are 
really different. For example, how do I know that K(KK) isn't 
really the same bird as K(K(K(K(K(KK)))))?" 

"I'll give you a hint," replied Griffin. '''To simplify the 
notation, let Kl be the bird K; let K2 = KKl. which is KK; 
let K3 = KK2, which is K(KK); let K4 = KK3, which is 
K(K(KK)), and so forth. Thus for each number n, Kn+ 1 = 

KKn. The problem is to show that for two different numbers 
nand m, it cannot be that Kn = Krn. For example, K3 = Ks 
cannot hold; Ks = K17 cannot hold. First recall the cancellation 
law for kestrels: If Kx = Ky, then x = y. Then divide your 
proof into three steps: 

Step 1: Show that for any n greater than 1, Kl # Kn-that 
is, Kl cannot be any of the birds K2, K3, K4, ... 

Step 2: Show that for any numbers nand m, if Kn+ 1 = 

Krn+l. then Kn = Krn. For example, ifK4 were equal to K7 , 

then K3 would have to be equal to K6 • 

Step 3: Using Step 1 and Step 2, show that for no two 
distinct numbers m and n can it be the case that Kn = Krn , and 
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therefore there really are infinitely many birds in the sequence 
K t , K2 , K3 , ... " 

With these hints, Craig solved the problem. What is the 
solution? 

SOLUTIONS 

1 . Suppose a kestrel K is fond of an identity bird I. Then 
KI = I. Therefore, for any bird x, Klx = lx, and since Ix = 
x, then Klx = x. Also Klx = I, since K is a kestrel. This 
means that Klx is equal to both x and I, hence x = I. Therefore, 
if K is fond of I, then every bird x is equal to I and hence I is 
the only bird in the forest. But we are given that there are at 
least two birds in the forest; hence K cannot be fond of I. 

2 • This follows from the last problem. Suppose K = I. Then 
KI = II, hence KI = I. This means that K is fond of I, which, 
according to the last problem, cannot happen. 

3 . Suppose SK = K. Then for any birds x and y, SKxy = 

Kxy. Hence SKxy = x, since Kxy = x. Also, SKxy = Ky(xy) 
= y. Therefore SKxy is equal to both x and y, hence x and 
yare equal. So, if SK = K, then any birds x and yare equal, 
which means that there is only one bird in the forest. 

4 . Suppose S = I. Then SK = IK = K, hence SK = K. 
But SK "" K, as we showed in the last problem; therefore S 

""I. 

5 • Suppose S = K. Then SIKI = KIKI. Now, SIKI = II(KI) 
= I(KI) = KI, whereas KIKI = II = I. Therefore, if S = 
K, then KI = I. But KI "" I, by Problem 1; hence S "" K. 

6 . Suppose there were a bird x such that Kx = K. Then for 
every bird y, it would follow that Kxy = Ky, and hence that 
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x = Ky. Then for any birds Yl and Y2, it would follow that 
KYl = KY2, because x is equal to each of them. Then by the 
cancellation law-Problem 16, Chapter 9-it would follow 
that Yl = Y2. And so the assumption that there is a bird x such 
that Kx = K leads to the conclusion that for any birds Yl and 
Y2, the bird Yl is equal to Y2-in other words, that there is 
only one bird in the forest! 

7 . This is easier. Suppose there is a bird x such that Kx 
I. Then KxI = II, hence x = I, since KxI = x and II = I. 
Then, since Kx = I and x = I, it follows that KI = I. But 
KI -=P I, according to Problem 1. Therefore, there is no bird 
x such that Kx = I. 

8 . Suppose T = K. Then TIK = KIK, hence KI = KIK = 
I, but KI -=P I, according to Problem 7. 

9 . For this and the next several problems, I will make the 
solutions more condensed. By now, the reader should have 
enough experience to fill in any missing steps. I will illus
trate what I mean by "missing steps" in the solution to this 
problem. 

Suppose TT = T. Then TTKI = TKI, hence KTI = IK. 
Missing steps: "because TTKI = KTI and TKI = IK." There
fore T = K. Missing steps: "because KTI = T and IK = K." 
But T -=P K according to Problem 8. Therefore it cannot be 
that TT = T. 

10 • Suppose RII = I. Then RIIK = IK, hence IKI = K by 
simplifying both sides of the equation, hence KI = K, contrary 
to Problem 7. In Problem 7 we proved that there is no bird x 
such that Kx = K, so in particular, KI -=P K. 

11 . Suppose RR = R. Then RRII = RII. Now, RRII = I1R 
= R, so R = RII, hence RII = RIIII = IIII = I. We then 
have RII = I, contrary to the last problem. 
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12 . Suppose CC = C. Then CCIKI = CIKI = 11K = K. 
Also, CCIKI = CKII = KII = I. We then have I = K, con
trary to Problem 2. 

13 . Suppose VV = V. Then VVIII = VIII = III = I. Also 
vvm = IVII = VII, and so VII = I. Then VIIK = IK = 

K. Also VIIK = KII = I, and so we have K = I, contrary to 
Problem 2. 

14 . a. Suppose WI = I. Then WIK = IK = K. Then IKK 
= K, hence KK = K, which we know is not so; no kestrel 
is egocentric. 

b. Suppose WW = W. Then WWI = WI. Now, WWI 
= WII = III = I. Hence we would have WI = I, contrary 
to part a of the problem. 

15 . a. Suppose SI were fond of I. Then SII = I. Then SIlK 
= IK, hence IK(IK) = IK, so KK = K. But KK ~ K, so SII 
~1. 

b. Suppose SS = S. Then ssm = SIII = 11(11) = I. Also 
ssm = SI(SI)I = II(SII) = SII. Hence we have SII = I, con
trary to part a of the problem. 

16 . a. Suppose BKK = KK. Then BKKI = KKI, hence 
K(KI) = K. This is again contrary to Problem 6, which states 
that there is no bird x such that Kx = K. 

b. Suppose BB = B. Then BBIK = BIK, hence B(IK) = 

BIK. Therefore BK = BIK. Therefore BKK = BIKK = 

I(KK) = KK and we have BKK = KK, contrary to part a of 
the problem. 

17 . Suppose QQ = Q. Then QQIKI = QIKI = K(II) = 

KI. Also, QQIKI = I(QK)I = QKI. Hence QKI = KI. Then 
QKII = KII, so I(KI) = I, hence KI = I, contrary to Problem 
1. Therefore, Q, queer as it may be, is definitely not egocentric. 
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18 . The fallacy is that all the infinitely many of the expres
sions of the series name only two different birds-namely K 
and KK. Clearly KKK = K, hence KKKKK = KKK = K, 
and indeed all the expressions with an odd number ofK's boil 
down to K; all those with an even number of K's boil down 
to KK. 

19 . The series Craig named really works! 
Step 1: We proved in Problem 6 that for every bird x, K 

=;6 Kx. Hence K cannot be any of the birds KKt. KK2, 
KK3, ... Thus Kl is not any of the birds K2, K3, K4 ... 

Step 2: Suppose, for example, that K3 = K lO • Then KK2 
= KK9 , hence by the cancellation law for kestrels, K2 = K9 • 

Of course the proof works for any numbers nand m: If 
Kn+ 1 =, KIn + 1 then KKn = KKIn , and so Kn = KIn. 

Step 3: Suppose, for example, that K4 = K lO • Then by 
successively applying Step 2, we would have K3 = K9 , K2 = 
Ks, Kl = K7 , violating Step 1. 

Obviously the proof works for any two distinct numbers. 

207 



f) 23 () 

Logical Birds 

"I am very proud of this forest," said Professor Griffin one 
day. "Some of the birds here can do very clever things. For 
example, did you know that some of them can do proposi
tionallogic?" 

"I am not sure I understand what you mean by that," re
plied Griffin. 

"Let me first explain some of the basics of propositional 
logic," said Griffin. "To begin with, I am using Aristotelian 
logic, according to which every proposition p is either true or 
false but not both. We use the symbol t to stand for truth and 
f to stand for falsehood. And so the value of any proposition 
p is either t or f-t ifp is true and fifp is false. Now, logicians 
have a way of constructing more complex propositions out of 
simpler ones. For example, given any proposition p, there is 
the proposition not p-symbolized -p-which is false when 
p is true and true when p is false. This is simply schematized: 
-t = f; -f = t. It is usually displayed as the following table, 
called the truth table for negation: 

ELj-p 

. t f 
NegatlOn 

f t 

"Next, given any propositions p and q, we can form their 
conjunction-the proposition that p and q are both true. This 
proposition is symbolized p & q. It is true when p and q are 
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both true, and false otherwise. In other words, t & t = t; t & 
f = f; f & t = f; and f & f = f. These four conditions are 
tabulated by the following table-the so-called truth table for 
conjunction: 

p q p&q 

t t t 

t f f 
Conjunction 

f t f 

f f f 

"Also, given propositions p and q, we can form the prop
osition p v q, which is read 'p or q, or maybe both' and is 
called the disjunction of p and q. This proposition is true if at 
least one of the propositions p and q is true; otherwise it is 
false. The disjunction operation has the following truth table: 

p q pvq 

t t t 

t f t 
Disjunction 

f t t 

f f f 

"As you see, the proposition p v q is false only in the last 
of the four possible cases-the case when p and q both have 
the value f. 

"Next, from propositions p and q we can form the so
called conditional proposition p ~ q, which is read 'if p, then 
q,' or 'p implies q.' The proposition p ~ q is taken to be true 
if either p is false or p and q are both true. The only case when 
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p ~ q is false is when p is true or q is false. Here is the truth 
table for p ~ q: 

p q p~q 

t t t 

t f f 
Conditional 

f t t 

f f t 

"Since p ~ q is true when and only when p is false or p and 
q are both true, it can also be written: (-p) v (p & q). It can 
be written even more simply as (-p) v q, or as -(p & -q). 

"Finally, given any propositions p and q, there is the prop
osition p ~ q, which is read 'p if and only if q,' which asserts 
that p implies q and q implies p. This proposition is true just 
in the case that p and q both have the value t or both have the 
value f. 

p q p~q 

t t t 

t f f 
Equivalence 

f t f 

f f t 

"These five symbols- - (not), & (and), v (or), ~ (if
then), ~ (if and only if)-are called logical connectives. Using 
them, one can form from simple propositions propositions of 
any complexity. For example, we can form the proposition p 
& (q v r), which is true if and only if p is true and also at least 
one of q and r is true. Or we could form the very different 
proposition (p & q) v r, which is true just in case either p and 
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q are both true, or r is true. One can easily compute their truth 
values, given the truth values of p, q, and r, by combining 
the tables [or & and v. O[ course, since there are now three 
variables involved-p, q, and r-we now have eight possi
bilities instead o[ [our. Here is the truth table [or (p & q) v r. 

p q r (p & q) (p & q)v r 

t t t t t 

t t [ t t 

t [ t [ t 

t [ [ [ [ 

[ t t [ t 

[ t [ [ [ 

[ [ t [ t 

[ [ [ [ [ 

"On the other hand, here is the truth table [or p & (q v r). 

p q r qvr p & (q v r) 

t t t t t 

t t [ t t 

t [ t t t 

t [ [ [ [ 

[ t t t [ 

[ t f t [ 

f f t t f 

[ f [ [ f 
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"You see, the two propositions have different truth ta
bles," said Griffin. 

"I understand all this," said Craig, "but how does it relate 
to the birds?" 

"I am coming to that," replied Griffin. "To begin with, I 
have chosen for t and f two particular birds. The first, t, rep
resents truth, or it can be thought of as being the representative 
of all true propositions. The second bird, f, of course, rep
resents falsehood, or is the representative of all false proposi
tions. I call t the bird of truth, or the truth bird, or more briefly, 
just truth. I call f the falsehood bird, or the bird of falsehood, or 
more briefly, just falsehood." 

"What birds are they?" asked Craig. 
"For t, I take the kestrel K; for f, I take the bird KI. And 

so, when we are discussing propositional logic, I use t syn
onymously with K and f synonymously with KI." 

"Why this particular choice?" asked Craig. "It seems quite 
arbitrary!" 

"Oh, there are many other choices that would work," re
plied Griffin, "but this particular one is technically convenient. 
I have adopted this idea from the logician Henk Barendregt. 
I will tell you the technical advantage in a moment. 

"The birds t and f are collectively called propositional birds. 
Thus, there are only two propositional birds-t and f. From 
now on, I shall use the letters p, q, r, and s as standing for 
arbitrary propositional birds, rather than propositions. I call p 
true if p is t and false if p = f. Thus t is called true and f is 
called false. 

"Now, the advantage of Barendregt's scheme is this: 
"For any birds x and y, whether propositional birds or not, 

txy = x, since Kxy = x, and fxy = y, since fxy = Klxy = 
Iy = y. And so for any propositional bird p, pxy is x if P is 
true, and pxy is y if P is false. In particular, if p, q, and rare 
all propositional birds, then pqr = (p & q) v (-p & r)-or 
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what is the same thing, pqr = (p ~ q) & (-p ~ r). This can 
be read 'if p then q; otherwise r. '" 

"You still haven't told me what you mean when you say 
that some of the birds here can do propositional logic," said 
Craig. "Just what do you mean by this?" 

"I was just coming to that!" replied Griffin. "What I mean 
is that for any simple or compound truth table, there is a bird 
here that can compute that table." 

• 1 • 
"For example, there is a bird N-called the negation bird
that can compute the truth table for negation. That is, if you 
call t to N, N will respond by naming f; if you call f to N, N 
will· respond by naming t. Thus Nt = f and Nf = t. In other 
words, for any propositional bird p, Np is the bird -po The 
first problem I want you to try is to find a negation bird N." 

• 2 • 
"Then we have a conjunction bird c such that for any propo
sitional birds p and q, cpq = P & q. In other words, ctt = t; 
ctf = f; cft = f; and cff = f. Can you find a conjunctjon bird 

;>" c. 

• 3 • 
"Now find a disjunction bird d-a bird such that for any prop
ositional birds p and q, dpq = p v q. In other words, dtt = 
t; dtf = t; dft = t; but dff = f. Can you find such a bird d?" 

• 4 • 
"Then there is the if-then bird-a bird i such that itt = t; itf 
= f; ift = t; and iff = t. In other words, ipq = P ~ q. Can 
you find an if-then bird i?" 
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• 5 • 
"Now find the if-and-only-ifbird e-also called an equivalence 
bird-such that for any propositional birds p, q, epq = (p ~ 
q). In other words, ett = t; etf = f; eft = f; and eff = t." 

SOLUTIONS 

1 . Since the Master Forest is combinatorially complete, we 
can find a bird N such that for all x, Nx = xft. Specifically, 
we can take N to be Vft, where V is the vireo. Then Vftx = 
xft. So Nt = tft = f; Nf = fft = t. Thus N is a negation 
bird. 

2 • Consider c such that for any x and y, cxy = xyf. Note: 
We can take c to be Rf, where R is the robin. Then Rfxy = xyf. 

1. ctt = ttf = t 
2. ctf = tff = f 
3. eft = ftf = f 
4. cff = fff = f 
Thus c is a conjunction bird. 

3 . Take d such that for all x and y, dxy = xty. We can 
specifically take d to be Tt, where T is the thrush. Then Ttxy 
= xty. The reader can verify that d is a disjunction bird by 
working out the four cases. 

4 • Take i such that ixy = xyt. We can take i to be Rt, where 
R is the robin. The reader can verify that this bird i works. 

5 • Take e to be such that for all x and y, exy = xy(Ny). 
We can take e to be CSN, where C is the cardinal, S is the 
starling, and N is the negation bird. The reader can easily 
verify that epq = p ~ q. 
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Birds That 
Can Do Arithmetic 

In this episode and the next, Craig found out the true wonders 
of Griffin's forest. 

Shortly before his departure, Craig visited Griffin in his 
study one late-summer day. The weather was beautiful, and 
all the windows of the study were open. Craig was quite sur
prised to see several birds perched on the windowsills engaged 
in lively conversation with Professor Griffin-all in bird lan
guage, of course. As the birds already there left, others would 
come. 

"Ah yes!" said Griffin, after the last bird had departed. "I 
have been testing some of my arithmetical birds. Did you 
know that some of the birds here can do arithmetic?" 

"Will you please explain that?" asked Craig. 
"Well, I'd better start at the beginning," replied Griffin. 

"We will work with the natural number series 0, 1, 2, 3, 4 
... When I use the word 'number' I will always mean either 
o or one of the positive whole numbers. These numbers are 
called natural numbers. By the successor n + of a number n, I 
mean n + 1. Thus 0+ = 1; 1 + = 2; 2+ = 3, and so forth. 

"Now each number n is represented by some bird; I use 
the notation ii to mean the bird that represents n. Thus n is a 
number; ii is a bird-the bird that represents the number n. In 
the scheme I am about to show you for representing numbers 
by birds, the vireo V plays a major role: We will let (J' be the 
bird Vf-which is V(KI)-and we will call (J' the successor bird. 
For 6, we take the identity bird I. We take i to be the bird 
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(10; 2 to be (1i; 3 to be (12, and so forth. Hence 0 = I; i = 

(10; 2 = (1((10); 3 = (1((1((10)), and so forth. Thus 0 = I; i 
Vfl; 2 = Vf(Vfl); 3 = Vf(Vf(Vfl)), and so on." 

"Again, this choice strikes me as arbitrary," said Craig. 
"What's so special about the bird V£?" 

"y ou will see that shortly, " replied Griffin. "Actually there 
are many other possible choices. The first numerical scheme 
was proposed by Alonzo Church. The scheme I am using has 
several technical advantages over Church's; the combinatorial 
logician Henk Barendregt is responsible for it. Anyway, I want 
to start explaining to you how birds here do arithmetic. First 
for some preliminaries: 

"The birds 0, i, 2, 3, and so on I call numerical birds
these are identified with the respective numbers 0, 1, 2, 3, ... 
Now, if I call out a numerical bird ii to a bird A, A doesn't 
necessarily respond by calling back a numerical bird; it might 
call back a nonnumerical bird. Well, a bird A is said to be an 
arithmetical bird of type 1 if for every numerical bird ii, the bird 
Aii is also a numerical bird. Loosely speaking, this means that 
A operating on a number gives you a number. A bird A is 
called an arithmetical bird of type 2 if for any numbers nand m, 
the bird Aiim is a numerical bird. Equivalently, A is a nu
merical bird of type 2 if for every number n, the bird Aii is 
an arithmetical bird of type 1. Similarly, we define arithmetical 
birds of types 3, 4, 5, and so on. Thus, for example, if A is 
an arithmetical bird of type 4, then for any numbers a, b, c, 
and d, the bird Aibcd is a numerical bird. 

"Now come some interesting things. There is a bird here 
called the addition bird, symbolized by EEl, such that for any 
numbers m and n, EElmii is the sum of m and n-or rather, 
the numerical bird representing that sum. That is, EElmii = 

m + n. Thus, for example, EEl2 3 = 5; EEl3 9 = 12. 
"Then we have a bird (8) called a multiplication bird such 

that for any numbers nand m, ®iim is the bird n . m. So, 
for example, (8)25 = 10; (8)37 = 21. 

216 



BIRDS THAT CAN DO ARITHMETIC 

"We also have an exponentiating bird ® such that for any 
numbers nand m, ®lm = k, where k is the number nm_ 
the result of multiplying n by itself m times. So, for example, 
®S 2 = 25; ®2 5 = 32; ®2 3 = 8; ®3 2 = 9. 

"Having these birds," continued Griffin," we can easily 
combine them to form any arithmetical combination we want. 
For example, we can find a bird A such that for any numbers 
a, b, and c, A~b~ = d, where d, say, is (3a2b + 4ca)5 + 7. 

"In fact," continued Griffin, in growing excitement, 
"given any numerical operation that can be performed by one 
of these modern electronic computers, there is a bird here that 
can perform the same operation! For any computer, there is a 
bird here that can match it! 

"Do you realize what this means?" asked Griffin, waxing 
more excited still. "It means that the birds here could totally 
take over the job of the computers. Maybe one day the com
puters of the world will one by one be replaced by birds until 
there are no computers left-only birds! Wouldn't that be a 
beautiful world?" 

Craig thought this idea somewhat visionary, but intrigu
ing, nevertheless. 

"All this sounds most interesting," said Craig, "but I am 
in the dark as to how you find even the basic arithmetic birds 
that add, multiply, and exponentiate. What birds are they?" 

"I am coming to that," replied Griffin, "but first for some 
preliminaries. " 

• 1 • 
"To begin with," said Griffin, "we should be sure that the 
birds 6, i, 2, 3, ... are all distinct-that is, for any numbers 
nand m, if n ¥ m, meaning n is unequal to m, then the bird 
ii is distinct from the bird m. Can you see how to prove this?" 
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2 • The Predecessor Bird P 

"For any positive number n," said Griffin, "by its predecessor 
n - is meant the next lower number. That is, for any positive 
n, n - is the number n - 1. Of course, for any number n, the 
number n + is positive and the predecessor of n + is n. 

"What we now need," said Griffin, "is a bird that calculates 
predecessors. That is, we want a bird P such that for any num
ber n, Pn + = ii. Can you see how to find such a bird P?" 

• 3 • 
"We recall the propositional birds t and f. We now need a bird 
Z called a Zero-tester such that if 0 is called out to Z, you will 
get the response t-meaning, 'True, the number you called is 
0' -whereas if you call out any number other than 0, you will 
get the response f-meaning, 'False, the number is not 0.' That 
is, we want a bird Z such that ZO = t, but for any positive 
number n, Zii = f. Can you find such a bird Z?" 

• 4 • 
"Let me ask you a question," said Griffin. "Do you have any 
reason to believe that there is a bird A such that for any number 
n and any birds x and y, if n = 0, then Aiixy = x, but if n 
is positive, Aiixy = y? That is, is there a bird A such that 
AOxy = x; Alxy = y; A2xy = y; A3xy = y; and so forth?" 

"Oh, of course!" replied Craig, after a moment's thought. 
How did Craig realize this? 

"And now," said Griffin, "we come to some of the more 
interesting birds. Before we consider the problem of finding 
an addition bird, let us consider a slightly simpler problem. 
Let us take any particular number-say 5. How can we find 
a bird A that adds 5 to any number that you call to it? That 
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IS, we want a bird A such that AO = 5; Al = 6; A2 7-
and for any number n, An = n + 5." 

Craig thought about this, but could not find a solution. 
"The idea is based on a principle known as the recursion 

principle," said Griffin. "Suppose A is a bird such that the 
followin~ tw<:? conditions hold: 

1. AO = 5 
2. For every number n, An + = (1(An). 
"Do you see that such a bird A would do the required 

job?" 
"Let us see now," said Craig. "It is given that AO = 5. 

What about AI? Well, by the second condition, Al = (1(AO) 
= (15, since AO = 5, and (15 = 6. Therefore Al = 6. Now 
that we know that Al = 6, it follows that A2 = 7, because 
A2 = (1(AI) = (16 = 7. Yes, of course 1 see why it is that for 
~very nu~ber_n, A_n =_ n +_ 5. We successively prove AO = 
5, Ai = 6, A2 = 7, A3 = 8, and so forth!" 

"Good!" said Griffin. "You have grasped the recursion 
principle. " 

"I am still in the dark, though, about how one finds a bird 
A satisfying those conditions," said Craig. "How does one?" 

"Ah, that's the clever part," said Griffin with a smile. "It 
is based on the fixed point principle, which 1 have already 
explained to you." 

"Really!" said Craig in amazement. "I can't see any con
nection between the two!" 

"I will now explain, " said Griffin. "First of all, do you see 
that Condition 2 can be alternately described as follows? 

2'. For every number n greater than 0, An = (1(A(Pn))." 
"Yes," said Craig, "because for any number n greater than 

zero, n = m +, where m is the predecessor of n. Therefore 
Condition 2' says that Am + = (1(A(Pm + )), but since Pm + 
= m, then Condition 2' simply says that Am + 
(1(A(Pm + )), or what is the same thing, An = (1(A(Pn)). But, 
of course, this holds only when n is positive." 
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"Good!" said Griffin. "And so you see that what we want 
is a bird A such that An = 5 if n = 0, and An = <T(A(Pn» 

if n "" 0." 
"I see that," said Craig. 
"Well, we use the zero-tester Z," said Griffin. "The bird 

ZiiS(<T(A(Pn))) is 5 if n = 0, and is <T(A(Pn» if n "" 0, and 
so we want a bird A such that for every number n, An = 

ZiiS(<T(A(pn»). Well, by the fixed point principle, there is such 
a bird A-in fact, there is a bird A such that for any bird x, 
whether a numerical bird or not, Ax = ZxS(<T(A(Px))). That 
solves the problem! 

"In case you have forgotten," added Griffin, "we can ob
tain the bird A by first taking a bird At such that for any 
birds x and y, Atyx = ZxS(<T(Y(Px))), and then you can take 
for A any bird of which At is fond-for example, we can take 
LAt(LAt) for A." 

"That is indeed clever!" said Craig in genuine admiration. 
"Who thought of it?" 

"The idea of using the fixed point principle to solve prob
lems like this is attributable to Alan Turing-the same logician 
who discovered the Turing bird. Turing has done some ex
tremely clever things!" 

• 5 • 
"Of course," said Griffin, "the number 5 has no special sig
nificance; I could have taken, say, 7, and asked for a bird A 
such that for all n, An = n + 7. However, we want something 
better than that. We want an arithmetic bird (±) of type 2 such 
that for any two numbers nand m, (±)mn = m + n. Only a 
slight modification of what I have shown you is necessary. 
Can you see how to find such a bird (±)?" 
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• 6 • 
"Next, can you see how to find a bird ® such that for any 
numbers nand m, ®iim = n . m? Of course, you are free to 
use the bird (±) that you have just found." 

• 7 • 
"Now that we have the birds (±) and ®, can you find an ex
ponentiating bird ® such that for any numbers nand m, ®iim 
= k, where k = nm ?" 

PREPARATION FOR THE FINALE 

"I understand you must leave this forest in a couple of days. 
Is that correct?" asked Griffin. 

"Alas, yes!" replied Craig. "I have been called back home 
on a strange case involving a bat and a Norwegian maid." 

"That does sound strange!" remarked Griffin. "At any rate, 
tomorrow I would like to tell you one of the most interesting 
facts of all about this forest. This fact is related .to Godel's 
famous incompleteness theorem, as well as to some results 
discovered by Church and Turing. But today, I must give you 
the necessary background. I must tell you more about arith
metical birds as well as something about property birds and 
relational birds." 

"What are they?" asked Craig. 

• 8 • 
"Well, by a property bird is meant a bird A such that for any 
number n, the bird Aii is a propositional bird-one of the two 
birds t or f. A set S of numbers is said to be computable if there 
is a property bird A such that Aii = t for every n in the set 
S, and Aii = f for every n not in the set S. Such a bird A is 
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said to compute the set S. And a set S is called computable if 
there is a bird A that computes it. 

"The nice thing about a computable set S is that given any 
number n, you can find out whether n belongs to the set or 
whether it doesn't; you just go over to the bird A, which 
computes S, and call out n. If A responds by calling out t, 
you know that n is in the set S; if A calls out f, you know that 
n is not in the set S. 

"As an example, the set E of all even numbers is com
putable-there is a bird A such that AD = t; at = f; A2 = t; 
A3 = f; and for every even number n, An = t, whereas for 
every odd number n, An = f Can you see how to find A? 
You might try using the fixed point principle." 

9 • The Bird g 

"By a relational bird-or more properly, a relational bird of 
degree 2-is meant a bird A such that for any numbers a and 
b, A;f, = t or A;f, = f 

"You are probably familiar with the symbol >, meaning 
'greater than,"'continued Griffin. "For any numbers a and b, 
we write a > b to mean that a is greater than b-so, for ex
ample, 8 > 5 is true; 4 > 9 is false; also 4 > 4 is false. We now 
need a relational bird that computes the relation 'is greater 
than' -that is, we need a bird g such that for any numbers a 
and b, if a > b, then g;f, = t, but if a ::; b, meaning that a is 
less than or equal to b, then g;f, = f. Can you see how to 
find such a bird? 

"This is a bit tricky," Griffin added, "so I had best point 
out the following facts. The relation a> b is the one and only 
relation satisfying the following conditions, for any numbers 
a and b: 

1. If a = 0, then a > b is false. 
2. If a =F 0, then: 

a. Ifb = 0, then a> b is true. 
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b. Ifb =i' 0, then a> b is true if and only if (a - 1) > 
(b - 1). 

"Now, using the fixed point principle, do you see how to 
find the bird g?" 

10 • The Mini~ation Principle 

"Now comes an important principle known as the minimization 
principle," said Griffin. 

"Suppose that A is a relational bird such that for every 
number n, there is at least one number m such that Aiim = 

t. Such a relational bird is sometimes called regular. If A is 
regular, then for every number n there is obviously the smallest 
number k such that A~k = t. Well, the minimization principle 
is that given any regular relational bird A, there is a bird A', 
called a minimizer of A, such that for every number n, A'ii = 

k, when k is the smallest number such that Aiik = t. So, for 
example, if A~O = f and A~i = f and A~2 = f, but A~3 = 
t, then A'ii = 3. Can you see how to prove the minimization 
principle?" 

Craig thought about this for some time. 
"I'd better give you some hints," said Griffin. "Given a 

regular bird A, first show how to find a bird At such that for 
all numbers nand m, the following two conditions hold: 

1. If Aiim = f, then A1iim = Al~m + . 

2. If Aiim = t, then Atiim = m. 
"Then take A'to be CAtO, where C is the cardinal, and 

show that A' is a minimizer of A." 

11 • The Length Measurer 

"By the length of a number n," said Griffin, "we mean the 
number of digits in n, when n is written in ordinary base 10 
notation. Thus the numbers from 0 to 9 have length 1; those 
from 11 to 99 have length 2; those from 100 to 999 have length 
3, and so forth. 
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"We now need a bird .e that measures the length of any 
number-that is, we want .e to be such that for any number 
n, .eii = k, when k is the length of n. So, for example, .e7 = 

1; .e59 = 2; .e648 = 3. Can you see how to find the bird f?" 
Craig thought about this for some time. "Ah!" he finally 

said. "I get the idea! The length of a number n is simply the 
smallest number k such that 10k > n." 

"Good!" said Griffin. 
With this, the reader should have ilO trouble finding the 

bird .e. 

12 • Concatenation to the Base 10 

"Now for the last problem of today," said Griffin. "For any 
numbers a and b, by a*b we mean the number which, when 
written in base 10 notation, consists of a in base 10 notation, 
followed by b in base 10 notation. For example, 53*796 = 

53796; 280*31 = 28031." 
"That's a curious operation on numbers!" said Craig. 
"It is an important one, as you will see tomorrow," replied 

Griffin. "This operation is known as concatenation to the base 
10. And now we need a bird @ that computes this operation

that is, we want @ to be such that for any numbers a and b, 

@ab = a*b. So you see how to find such a bird?" 

SOLUTIONS 

I . We first show that 6 is different from all the birds 1, 2, 
3, ... n+, ... 

Well, suppose there were some number n such that 6 = 
n +. Then I = Vfii. Then IK = VfiiK = Kfii = f. Hence we 
would have K = KI, since IK = K and f = KI, but we already 
know that K ~ KI. Therefore 6 ~ n + . 

We must next show that for any numbers nand m, if m + 
-= n +, then m = n. Well, suppose that n + = m +. Then 
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Vfii = Vfm. Hence Vfiif = Vfmf, so ffii = ffm, hence ii = 
m, since ffii = ii and ffm = m. 

Now that we know that 0 ~ m + and that for every nand 
m, if n + = m + then n = m, the proof that all the birds 0, 
t, 2, . . . ,ii,. . . are distinct proceeds exactly as in the solution 
to Problem 19, Chapter 22. 

2 . Take P to be Tf, where T ~he thrush and f is the bird 
KI, as in the last chapter. Then for any number n, Pn + 
Tfn+ = n+f = Vfiif = ffii = Ii. 

3 . Take Z to be Tt; T is the thrush, and t is the truth bird 
K. Then: 

1. ZO = Ttl = It = t. SO ZO = t. 
2. Now take any number n. Then Zn + = Ttn + = n + t 

= Vfiit = tfA = f. 
Note: Under the particular scheme used by Griffin for rep

resenting numbers by birds, the birds (1", P, and Z are relatively 
easy to find. This is the technical advantage to which Griffin 
referred. Any other scheme that would yield a successor bird, 
a predecessor bird, and a zero-tester would also work. 

4 . The zero-tester Z is such a bird A! Reason: ZOxy = txy, 
since ·ZO = t, and txy = x, so ZOxy = x. But for any n ~ 
0, Zii = f, hence Ziixy = fxy = y. 

5 . The addition operation + is uniquely determined by the 
following two conditions, for any numbers nand m: 

l.n+O=n 
2. n + m + = (n + m) +. That is, n plus the successor of 

m is the successor of n + m. 
We therefore seek a bird A such that for all nand m: 
1. A;;'O = ii 
2. Anm + = a (Aiim), or what is the same thing, for any 

positive m, Aiim = a(Aii(Pm)). 
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Thus A must satisfy the condition that for any n and any 
m, whether 0 or positive, Aiim = Zmii(CJ"(Aii(Pm))). Such a 
bird A exists by the fixed point principle, and so we take <it) 
to be any such bird A. 

6 . We note that multiplication is the one and only operation 
satisfying the following two conditions: 

1. For any number n, n . 0 = O. 
2. For any numbers nand m, n . m+ = (n . m) + n. 
We therefore want a bird A such that for every nand m, 

Aiim = (Zm)O((<it))(A(ii(Pm))ii)). Again, such a bird A can be 
found by the fixed point principle and we take ® to be such 
a bird. 

7 • The exponential operation obeys the following well
known laws: 

1. nO = 1 
2. nrn+ = nrn x n 

We therefore seek a bird ® such that for all n, ®iio = 1, 
and for any positive number m, ®iim = ®(®iim)ii. Equiv
alently we want a bird ® such that for all nand m, ®iim = 

Zml(®(®iim)ii). Again, such a bird ® can be found by the 
fixed point principle. 

8 . The property of being an even number is the one and 
only property satisfying the following two conditions: 

1. 0 is even. 
2. For any positive number n, n is even if and only if its 

predecessor is not even. 
We therefore seek a bird A such that: 
1. AO = t 

2. For any positive n, Aii = N(A(Pii)), where N is the 
negation bird. 

We thus want a bird A such that for every n, whether 
positive or 0, Aii = Ziit(N(A(Pii))). Again such a bird A exists 
by the fixed point principle. 
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9 . By virtue of the conditions given, we seek a bird g such 
that for any numbers a and b: 

1. If Za = t, then g;f, = f. 
2. If Za = f, then: 

a. If Zb = t, then g;b = t. 
b. If Zb = f, then g;b = g(P;)(Pb). 

Equivalently, we want a bird g such that for all numbers 
a and b, the following holds: 

g;b = Z;f(Zbt(g(P;)(Pb))) 
Again such a bird g exists by the fixed point principle. 

10 . Suppose A is a regular relational bird. By the fixed point 
principle there is a bird Al such that for all birds x and y, AIXy 
= (Axy)y(Alx(ay)). Then for any numbers nand m, Aliim 
= A(iim)m(Aliim +). Thus Condition 1 and Condition 2 
hold, because the value of (Aiim)m(Aliim +) is m, if Aiim 
= t, and is Aliim +, if Aiim = f. 

Following Griffin's suggestion, we assume A' = CAIO. 
Then for every n, A'ii = Aliio (because A'ii = CAIOii = 
AliiO). Now, given an n, let k be the smallest number such 
that Aiif = t. For example, suppose k = 3. Then Aiio = 
f; AiiI = f; Aiii = f; but Aii3 = t. We must show that 
A'ii = 3-in other words, that Aliio = 3. Well, since Aiio 
= f, then Aliio = Aliil, by Condition 1. Since AiiI = f, 
then AliiI = Aliii, again by Condition 1. Since Aiii = f, 
then Aliii = Alii3, again by Condition 1. But now Aii3 = 
t, hence Alii3 = 3, by Condition 2. And so Aliio = AliiI 

Aliii = Alii3 = 3, therefore Aliio = 3, and so A'ii = 
3. 

We illustrated the proof for k = 3, but the reader can read
ily see that the same type of proof would work if k were any 
other number. 

II . A single example should convince the reader of the cor
rectness of Craig's assertions: 
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Suppose n = 647. The length of647 is 3, and 1~ = 1000, 
which is greater than 647. But 1<Y = 100, which is less than 
647. Perhaps we should also consider the case when n itself is 
a power of 10-suppose n, say, is 100. Then 1~ > 100, but 
1<Y, though not less than 100, is not greater than 100; it is equal 
to 100. So 3 is the smallest number such that 1~ > 100. 

Now to find the bird .e: We let At be the bird Bg(®10), 
where B is the bluebird. Then for any numbers nand m, 
Bg(®10);;'tiJ. = g(®10;;')tiJ. = g10 ;;.tiJ., which is t ifl0n > m, 
and is f otherwise. And so At is a relational bird such that 
Atnm = t if and only if 10n > m. We then let A be the bird 
CAt, where C is the cardinal. Then Anm = Atmn, and so 
Anm = t if 10m > n; otherwise Anm = f. Finally, we take .e 
to be a minimizer of A, and so .en is the smallest m such that 
10m > n-in other words, .en = k, where k is the length 
ofn. 

12 . We first illustrate the general idea with an example. Sup
pose a = 572 and b = 39. Then 572*39 = 57239 = 57200 + 
39 = 572.102 + 39, and 2 is the length of 39. 

In general, a*b = a . 10k + b, where k is the length of b. 
We accordingly take @ to be a bird such that for all x and y, 
@xy = E9(®x(®10(.ey)))y. As the reader can easily verify, for 

any numbers a and b, @;& = a . 10k + b, where k is the length 
ofb. 
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Is There an Ideal Bird? 

"Tomorrow I unfortunately must leave," said Craig, "but be
fore I do, I want to tell you of a problem I have been unable 
to solve. Perhaps you may know the answer. 

"Any expression X, built from the symbols Sand K, and 
parenthesized correctly, is the name of some bird. Now, two 
different expressions might happen to name the same bird
for example, the expressions ((SK)K)K and KK(KK) are both 
names of the kestrel K, though the expressions themselves are 
different. Now, what I want to know is this: Given two 
expressions Xl and X2 , is there any systematic way of deter
mining whether or not they name the same bird?" 

"A beautiful question!" replied Griffin. "And it's an amaz
ing coincidence that you ask it today. This was just the topic 
I was planning to talk to you about. This question has been 
on the minds of some of the world's ablest logicians and has 
come to be known as the Grand Question. 

"To begin with, any question as to whether two expres
sions name the same bird can be translated into a question of 
whether a certain number belongs to a certain set of numbers. " 

"How is that?" asked Craig. 
"This is done using a clever device attributable to Kurt 

Godel-the device known as Giidel numbering, which I will 
shortly explain. 

"All the birds here are derivable from Sand K, and their 
behavior-the way a bird x responds to a bird y-is strictly 
determined by the rules of combinatory logic. Combinatory 
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logic is a theory that can be completely formalized. The theory 
uses just five symbols: 

S 
1 

K 
2 

( 
3 

) 
4 5 

"Under each symbol I have written the number called its 
Cadel number, but I'll tell you more about G6del numbering 
a bit later. 

"Any expression built from the two letters Sand K and 
parenthesized correctly is called a term. To be more precise, a 
term is any expression in the first four symbols that is con
structed by the following two rules: 

1. The letters Sand K standing alone are terms. 
2. Given any terms X and Y already constructed, we may 

form the new term (XY). 
"In application to this bird forest, the terms are those 

expressions that are names of birds. The letter S is the name 
of one particular starling-which one doesn't really matter
and the letter K is the name of one particular kestrel. 

"By a sentence is meant an expression of the form X = Y, 
when X and Yare terms. The sentence X = Y is called true 
if X and Yare names of the same bird and false otherwise. In 
order for a sentence X = Y to be true, the term X doesn't 
have to be the same as the term Y; it merely suffices that these 
terms name the same bird. 

"Of course, for any terms X, Y, and Z, the sentence SXYZ 
= XZ(YZ) is true, by definition of the starling, and KXY = 

X is true, by definition of the kestrel. All such sentences are 
taken as axioms of combinatory logic. We also take as axioms 
all sentences of the form X = X; these sentences are trivially 
true. These are the only axioms we shall take. We then prove 
various sentences to be true by starting with the axioms and 
using the usual logical rules for equality, which are: 

1. If we can prove X = Y, then we can conclude that Y 
= X. 
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2. If we can prove X = Y and Y = Z, then we can con
clude that X = Z. 

3. If we can prove X = Y, then for any term Z we can 
conclude that XZ = YZ and that ZX = YX. 

"Now, when I said that the behavior Of1he birds of this 
forest is completely determined by the laws of combinatory 
logic, what I meant is that a sentence X = Y is true, in the 
sense that the terms X and Y name the same bird, if and only 
if the sentence X = Y is provable from the above axioms by 
the rules I have just mentioned. There are no 'accidental' re
lations between our birds; X = Y only if the fact is provable. 

"This system of combinatory logic is known to be con
sistent, in the sense that not every sentence is provable-in 
particular, the sentence KI = K is not provable. If this one 
sentence were provable, then every sentence would be prov
able by essentially the same argument we used to show that 
if KI = K, then there could be only one bird in the forest. W ~ 
will use f to abbreviate KI, and we will also use t synony
mously with K, and so the sentence f = t is an important 
example of a sentence that is not provable in the system. 

"And now for Codel numbering: I have already told you 
that the Codel numbers of the five symbols S, K, (, ), and = 

are respectively 1, 2, 3, 4, and 5. The Codel number of any 
compound expression is obtained by simply replacing each 
symbol with the digit representing its Codel number and then 
reading off the resulting string of digits to the base 10. For 
example, the expression (SK) consists of the third symbol, 
followed by the first symbol, followed by the second symbol, 
followed by the fourth symbol, and so its Codel number is 
3124-three thousand one hundred twenty-four. 

"Now, let '3 be the set of Codel numbers of the true sen
tences. Civen any terms X and Y, they name the same bird 
if and only if the sentence X = Y is true, and the sentence is 
true if and only if its Codel number lies in the set '3. That's 
what I meant when I said that any question of whether or not 

23 1 



THE GRAND QUESTION! 

two terms X and Y name the same bird can be translated into 
a question of whether a certain number-namely, the Codel 
number of the sentence X = Y -lies in a certain set of num
bers-namely, the set 5". 

"Now, the question you are asking boils down to this: Is 
the set 5" a computable set? Is there some purely deterministic 
device that can compute which numbers are in 5" and which 
ones are not? As I have told you, anything a computer can do 
can be done by one of our birds, and so YClur question is equiv
alent to this: Is there here some 'ideal' bird A that can evaluate 
the truth of all sentences of combinatory logic? Is there a bird 
A such that whenever you call out the Codel number of a true 
sentence, the bird will call back "t," and whenever you call 
out any other number, the bird will call back "f"? In other 
words, is there a bird A such that for every n in 5", An = t 
and for every n not in 5", An = f? That is the question you 
are asking. Such a bird could settle all formal mathematical 
questions, because all such questions can be reduced to ques
tions of which sentences are provable in combinatory logic 
and which sentences are not. Combinatory logic is a universal 
system for all of formal mathematics, and so any ideal bird 
might be said to be mathematically omniscient. That is why 
so many people have come to this forest in search of this bird." 

"That is staggering to the imagination!" said Craig. "Is it 
yet known whether or not there is this 'ideal' bird?" 

"The question, in one form or another, has been on the 
minds of many mathematicians and philosophers from Leibniz 
on-and possibly earlier. It can be equivalently formulated: 
Can there be a universal computer that can settle all mathe
matical questions? Thanks to the work of Co del, Church, Tur
ing, Post, and others, the answer to this question is now 
known once and for all. I won't spoil it for you by telling you 
the answer yet, but before this day is over, you will know the 
answer. 

"We did a good deal of the preliminary work yesterday 
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when we derived the concatenation bir~ @, but there are 
still a few preliminaries left before we can answer the Grand 
Question. 

"y ou realize, of course, that for any expressions X and Y, 
if a is the G6del number of X and b is the G6del number of 
Y, then the G6del number ofXY is a*b. For example, suppose 
X is the expression S and Y is the expression K. The G6del 
number of X is 31 and the G6del number of Y is 24. The 
expression XY is (SK) and its G6del number is 3124, which 
is 3h24. Now you can see the significance of the numerical 
operation of concatenation to the base 10." 

1 • Numerals 

"By a numeral is meant any of the terms 0, L 2, . . . , ii, . . . 

We call ii the numeral for the number n. The term ii, like any 
other term, has a G6del number; we let n* be the G6del num
ber of the numeral ii. 

"For example, 0 is I, which in terms of Sand K is the 
expression ((SK)K); this expression has G6del number 
3312424. And so 0* = 3312424. 

"As for 1 *, this is already quite a large number: 1 is the 
expression 0"0, where 0" is the expression (Vf), which in terms 
of Sand K can be seen to be the expression 
(S(K(S(S((SK)K)(K(K((SK)K))))))K)-a horrible expression 
whoseG6delnumberis313231313312424323233124244444424. 
To avoid having to write this number again, I will henceforth 
represent it by the letter s. Thus s is the G6del number of 0". 
Then, since 1 is th~ expression (0"0), the number 1* is 
3*s*0**4. Then 2# = 3*s*1 #*4; 3# = 3*s*2#*4, and so forth. 
For each number n, (n + 1)# = 3*s*n#*4. 

"What we now need is a bird such that when any number 
n is called to the bird, the bird will call back the number n#. 
That is, we want a bird 8 such that for every number n, 8ii 
= ~. Can you see how to find such a bird 8?" 

233 



THE GRAND QUESTION 

2 • Normalization 

"For any expression X," said Griffin, "by rX' is meant the 
numeral designating the G6del number of X. Thus rX' is ii, 

where n is the G6del number of X. We call rX' the G6del 
numeral of X. 

"By the norm of X is meant the expression XrX'-that is, 
X followed by its own G6del numeral. If n is the G6del num
ber of X, then n# is the G6del number ofrX' and so Mn# is 
the G6del number of XrX'-the norm of X. And so if X has 
G6del number n, then the norm of X has G6del number n*n#. 

"We now need a bird d called a normalizer such that for 
every number n, dn = n*n#. This bird is easy to find, now 
that we have the birds 0 and 3. Can you see how?" 

3 • The Second Fixed Point Principle 
"One can do some amazing things with the normalizer," said 
Griffin. "I will give you an example. 

"We shall say that a term X designates a number n if the 
sentence X = ii is true. Obviously, one term that designates 
n is the numeral ii, but there are infinitely many others. For 
example, Iii, I(Iii), I(I(Iii)), ... are all terms that designate n. 
Also, taking 8 for n, the numeral 8 designates 8; so does the 
term 8126; so does the term 8135; so does the term @24. You 
get the idea! 

"We call a term a numerical term if it designates some num
ber n. Every numeral is a numerical term, but not every nu
merical term is a numeral-for example, the expression 8126 
is a numerical term, but it is not a numeral. For any number 
n, there is only one numeral designating it-the numeral ii
but there are infinitely many numerical terms designating it. 

"Now, it is impossible that any numeral can designate its 
own G6del number, because for any number n, the G6del 
number of the numeral ii is much larger than n. All I am saying 
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is that for every n, n# > n. However, there does exist a numerical 
term X that designates its own Godel number." 

"That's surprising!" said Craig. "I have no idea why this 
should be." ~ 

"One can also construct a term that designates twice its 
Godel number," said Griffin, "or one that designates three 
times its Godel number, or one that designates five times its 
Godel number plus seven. All these odd facts are special cases 
of a very important principle known as the second fixed point 
principle, which is this: For any term A, there is a term X such 
that the sentence A rX'" = X is true. Stated otherwise, for any 
term A there is a term X such that X names the same bird as 
A followed by the Godel numeral of X. 

"Can you see how to prove this? Also, can you see how 
the oddities I just mentioned are special cases of the second 
fixed point principle?" 

4 • A Godelian Principle 

"The second fixed point principle yields as a corollary an im
portant principle attributable to Godel, which I will tell you 
in a moment," said Griffin. 

"For any set <;I of numbers, a sentence X is called a Codel 
sentence for <;I if either X is true and its Godel number is in <;I, 

or X is false and its Godel number is not in <;I. Such a sentence 
can be thought of as expressing the proposition that its own 
Godel number is in <;I, because the sentence is true if and only 
if its Godel number is in <;I. 

"Now, Godel's principle is this: For any computable set 
<;I, there is a Godel sentence for <;I. For example, since the set 
of even numbers is computable, then there must be a sentence 
such that either it is true and its Godel number is even, or it 
is false and its Godel number is odd. Again, since the set of 
odd numbers is computable, then there must be a sentence 
such that either it is true and its Godel number is odd, or it 
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is false and its G6del number is even. The remarkable thing 
is that for any computable set, there is a G6del sentence for 
that set. This follows fairly easily from the second fixed point 
principle. Do you see how? 

"I'll give you a hint," added Griffin. "For any set ~, let 
~* be the set of all numbers n such that n*52 is in ~. First 
prove as a lemma-a preliminary fact-that if ~ is comput
able, so is ~*." 

"What is the significance of the number n*52?" asked 
Craig. 

"If n is the G6del number of an expression X," replied 
Griffin, "then ll*52 is the G6del number of the expression X 
= t." 

How is G6del's principle proved? 

5 • The Negation Bird Pops Up 
"One last detail before we answer the Grand Question," said 
Griffin. "For any set ~ of numbers, by ~' we mean the set of 
all numbers not in ~. For example, if ~ is the set of all even 
numbers, ~' is the set of all odd numbers. The set ~' is called 
the complement of~. 

"Prove that if ~ is computable, so is ~'." 

• 6 • 
"Now we have all the pieces of the puzzle," said Griffin. "We 
are letting ?I be the set of G6del numbers of all the true s~n
tences. First ask yourself whether there could possibly be any 
G6del sentence for the complement ?I' of ?I. Then, using the 
last two results, show that the set ?I is not computable." 

"This is amazing indeed!" said Craig, after he realized the so
lution. "It seems to shatter any hope of a purely mechanical 
device that can decide all mathematical questions." 

"It certainly does!" said Griffin. "Any such mechanism 
could determine which numbers are in ?I and which ones are 
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not, hence 5" would be a computable set, which we have just 
seen is not the case. Since 5" is not computable, then there is 
no mechanism that can compute it. In short, no mechanism 
can be mathematically omniscient. 

"Since 5" is not computable," continued GLiffin, "then no 
bird of this forest can compute it, and so there is no ideal bird 
here. Despite the cleverness of many of our birds, none of 
them is mathematically omniscient. 

"But you know," said Griffin, with a dreamy look in his 
eyes, "there has been a rumor that in the days before I came 
here, a bird from another forest far, far away once visited this 
forest and astounded all the other birds by appearing to be 
mathematically omniscient. Of course, this is only a rumor, 
but who really knows? If the rumor is true, then that bird 
must have been most remarkable; no purely mechanistic ex
planation could possibly account for its behavior. Those phi
losophers who are mechanistically oriented and believe that 
birds, humans, and all other biological organisms are nothing 
more than elaborate mechanisms would of course deny that 
any such bird is possible. But I, who do not have complete 
confidence in the philosophy of mechanisms, reserve judg
ment on the matter. I'm not saying that I believe the rumor; 
I'm not saying that there is or was such a bird; I'm merely 
saying that I believe such a bird might be possible. 

"I wish we had more time," concluded Griffin. "There are 
so many more facts about this forest that I believe would in
terest you." 

"I have no doubt!" said Craig, rising. "I am infinitely grate
ful for all you have taught me, and I'm hoping that I might 
be able to visit this forest again one day. " 

"That would be wonderful!" said Griffin. 

Craig left the forest the next day with a twinge of sadness. 
Although part of him looked forward to renewing his more 
normal life of crime detection, Craig realized that in his ad-
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vancing years his interests were veering more and more to the 
purely abstract and theoretical. 

"This vacation has been like an idyllic dream," thought 
Craig, as he reached the exit-also the entrance-gate. "I 
really must visit this forest again!" 

"Only the elite are allowed to leave this forest!" said an 
enormous sentinel who blocked his way. "However, since you 
have entered this forest and only the elite are allowed to enter, 
then you must be one of the elite. Therefore you are free to 
leave, and God speed you well!" 

"This is one ritual I will never understand, " thought Craig, 
as he shook his head with an amused smile. 

SOLUTIONS 

1 . We first need a bird A such that for any number n, An = 

3*s*n*4. We can take A to be B(C@4)(@3*s), where B is the 
bluebird and C is the cardinal. 

Now we want a bird 8 such that for every n, if n = ° then 
8n = Qif, and if n > 0, then 8n = A(Pn). Equivalently, we 
want a bird 8 such that for all n, 8n = (Zn)Qif(A(8(pn))). Such 
a bird 8 can be found by the fixed point principle. 

2 • We take A to be the bird W(DC@8), where W is the war

bler, D is the dove, and C is the cardinal. Then for any number 
n, An = W(DC@8)n = DC@8nn = C@(8n)n = @n(8n) = 

@iifiiV = n *n #. 

3 . Let A be the normalizing bird-or, more precisely, the 
term W(DC@8), which names the normalizing bird. Then for 

any expression X, the sentence ArX'" = rXrX"'''' is true, because 
X has some Godel number n; XrX'" has Godel number n*n#, 
so the above sentence is An = n*n#. 

Now take any term A. Let X be the term BAArBAA"', 
where B is a term for the bluebird. We now show that the 
sentence ArX'" = X is true. 



IS THERE AN IDEAL BIRD? 

The sentence BA~rBA~"" = A(~rBA~"") is obviously true. 
Also the sentence ~rBA~"" = rBA~rBA~"""" is true, hence the 
sentence A(~rBA~"") = ArBA~rBA~"""" is true, and so the sen
tence BA~rBA~"" = ArBA~rBA~"""" is true. This is the sentence 
X = ArX"", and so the sentence ArX"" = Xis 1me. This proves 
the second fixed point principle. 

As an application, let us take I for A. Then there is a term 
X such that (X"" = X is true, hence rX"" = X is true, and 
hence the sentence X = rX"" is true. If we let n be the G6del 
number of X, then the sentence X = ii is true, and so X 
designates its own G6del number n. By the above proof, we 
can take X to be the term BI~rBI~"". However, there is a sim
pler term that designates its G6del number-namely, ~r ~...,. 

A term that designates twice its own G6del number is 
B(®2)~rB(®2)~"". Why? 

4 • Let us first prove the lemma. For any bird A, let A # be 
the bird BA(C@52), where B is the bluebird and C is the car

dinal. For any number n, A #ii = An*52, because A #ii = 
BA(C@52)n = A(C@52n) = A(@n52) = An*52. This proves 

that A #ii = An*52. 
Now suppose A computes g. Then A# must compute S*, 

because for any n in g*, the number n*52 is in g, hence An*52 
= t, and so A #ii = t. Also, for any number n not in g*, the 
number n*52 is not in g, hence An*52 = f, and so A #ii = f. 
This proves that A # computes g*. 

Now for the proof ofG6del's principle. Suppose g is com
putable. Then g* is computable, as we have just seen. Let A 
be a bird that computes g*. By the second fixed point principle 
there is a term X such that the sentence ArX"" = X is true. Let 
Y be the sentence X = t. We will show that Y is a G6del 
sentence for the set g. 

Let n be the G6del number ofX. Then Y, being the sen
tence X = t, has G6del number n*52. 

a. Suppose that Y is true. Then the sentence X = t is true 
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and since the sentence ArX-' = X is also true, then the sentence 
ArX-' = t is true, and so the sentence An = t is true (because 
rX-' is the numeral n). Therefore n belongs to the set ~* (be
cause A computes S*, hence ifn didn't belong to S*, then the 
sentence An = f would be true, which is impossible, since An 
= t is true). Since n belongs to ~*, then n*52 belongs to ~, 
but n*52 is the G6del number of the sentence Y! This proves 
that if Y is true, then its G6del number n*52 belongs to ~. 

b. Conversely, suppose n*52 belongs to~. Then n belongs 
to ~*, hence An = t is true, which means that Y is true. And 
so if the G6del number of Y is in ~, then Y is true, or what 
is the same thing, if Y is false, then its G6del number does 
not belong to ~. 

According to argument a and argument b, we see that if 
Y is true, then its G6del number is in ~ and if Y is false, then 
its G6del number is not in ~. And so Y is a G6del sentence 
for ~. 

5 . Let A compute ~. Then BNA computes ~', where B is 
the bluebird and N is the negation bird. Reason: For any num
ber n, BNAn = N(An). If n belongs to ~' then n doesn't 
belong to ~, hence An = f, hence N(An) = t, so BNAn = 

t. If n doesn't belong to ~', then n belongs to ~, hence An 
= t, hence N(An) = f, and so BNAn = f. Therefore BNA 
computes ~'. 

6 . There certainly cannot be any G6del sentence Y for the 
set '?I', because ifY is true, then its G6del number is in 5", not 
in '?I', and if Y is false, its G6del number is in 5"', not in 5". 
Therefore there is no G6del sentence for 5"'. 

Now, if5" were computable, then 5"' would be computable 
by Problem 5, hence by Problem 4 there would be a G6del 
sentence for 5"'. Since there is no G6del sentence for '?I', then 
the set 5" is not computable. 
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Epilogue 

Inspector Craig arrived home not long afterward, and the first 
thing he did (after solving the case of the bat and the Nor
wegian maid) was to spend a long holiday weekend with his 
old friends McCulloch and the logician Fergusson. * He told 
them the entire story of his summer adventures. 

"I have known nothing about combinatory logic till now," 
said McCulloch, "and I must say that the subject intrigues me 
enormously. But I would like to know how, when, and why 
the field ever got started. What was the motivation, and are 
there any practical applications?" 

"Many," replied Fergusson (who was quite knowledgeable 
about all this). "Why, these days combinatory logic is one of 
the big things in computer science and artificial intelligence. 
The study of combinators started early in the twenties, pio
neered by Shonfinkel. It is curious that schon in German means 
"beautiful," and finkel means "bird," hence Shonfinkel means 
"beautiful bird." So perhaps there's been a connection between 
birds and combinators all along! At any rate, the subject was 
further developed by Curry, Fitch, Church, Kleene, Rosser, 
and Turing, and in later years by Scott, Seldin, Hindley, Bar
andregt, and others. Their interests were purely theoretical; 
they were exploring the innermost depths of logic and math
ematics. No one then could have dreamed of the impact the 
subject would one day have on computer science. In recent 
times, the subject has been put on a more solid foundation
largely through the efforts of the logician Dana Scott, who 
provided interesting models for the theory." 

* A complete account of McCulloch's remarkable number machines and Fergus
son's logic machines can be found in The Lady or the Tiger? (Alfred A. Knopf, 1982). 



EPILOGUE 

"How is combinatory logic related to computer science?" 
asked Craig. "Professor Griffin didn't say too much about 
that. " 

"Why, in the construction of programs," replied Fergusson. 
"Computers run on programs, you know, and these days all 
computer programs can be written in terms of combinators. 
The essential idea is that, given any programs X and Y, we 
can obtain a new program by feeding Y as input to the com
puter whose program is X; the resulting output is the program 
XY. The situation is analogous to calhng out the name of one 
of Griffin's birds y to a bird x and getting the name of the 
bird xy as a response. The analogy is quite exact: Just as all 
combinatorial birds are derivable from the two birds Sand K, 
so are all computer programs expressible in terms of the basic 
combinators Sand K. We have here a case of what mathe
maticians call isomorphism, which in this instance means that 
the birds of Griffin's forest can be put into a one-to-one cor
respondence with all computer programs in such a manner 
that if a bird x corresponds to a program X and a bird y cor
responds to a program Y, then the bird xy will correspond to 
the program XY. This is what Griffin must have meant when 
he said that, given any computer, there is a bird in his forest 
which can match it. 

"I can certainly see," concluded Fergusson, "why Griffin 
has no need of computers: Because of the isomorphism of his 
forest of birds to the class of computer programs, it follows 
that any information a computer scientist can obtain from run
ning his programs, Griffin can get just as surely by interro
gating his birds. And yet Griffin's ideals seem to contrast 
strangely with those of people working in artificial intelli
gence. The latter are trying to simulate the thinking of bio
logical organisms. Griffin is now turning the tables by using 
biological organisms-birds, in this case-to do the work of 
clever mechanisms. I believe the two approaches cannot but 
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supplement each other, and it should be extremely interesting 
to see the outcome of all this!" 

Many years later, Craig did indeed return to-the Master Forest. 
But that is another story. 
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