The Flight of Discovery I

Reason for the flight

- We have been working on a balloon package for several years. (Call it Discovery 3.)
- Larry Reed AB1JC, Mike Miciukewicz K1MJM, and Eric Klaus, working with Dave Mestre KB1YYJ at the Discovery Museum
- Did not want to risk that package on our first flight.
- Had students from UB who were willing to help, but needed training

Discovery I

- Prototype package in an Omaha Steaks Styrofoam container
- VHF Radio
- Tiny Trak 4
- GoPro Camera donated by photographer Mike Florio
- 2 circuits for cut-down.

Discovery I Electronics

Student training

- 2 cars with students, with Dave Shadlich KB1LTW and Dave Mestre KB1YYJ assisting.
- Each car had a roof antenna, VHF radio, Laptop
- Dire Wolf software used sound card to decode APRS received packets, and fed them to APRSIS software for display on a (local) map
- AB1JC was the fox, and the hounds had to follow staying a mile behind, on the back roads all the way to Monroe
- They were given "last heard coordinates" for the "balloon" near Web Mountain park
- Students had to get coordinates from a squawker in the woods, and hike in half a mile to retrieve it

Our Ground Station

High-Gain VHF and UHF Antennas

Launch Day, 26 September 2015

Up and away

Amateur Assistance

- Electronics
- Larry Reed AB1JC and Dave Shadlich KB1LTW
- Two chase boats
- Ken Johnson NE1CU and Greg/Jan Miller KC1CRT/KC1CRU
- Launch and Tracking assistance
- Mike Miciukewicz K1MJM, Larry Gross W1LAG
- Gary Moyher WE1M, Bob Gilmore WD1M
- Dave Mestre KB1YYJ, at the Discovery Museum
- 441.700 Repeater usage
- Ed/Kevin Cellini N1KGN/N1KGM

From the Air

Flight Path

Cut-down circuits

- Nichrome wire wrapped around mason twine connecting parachute and balloon
- Two circuits
- One fires when Tiny Trak Port C bit 0 goes high
- One fires when pressure altitude exceeds 30k feet
- Connector inside the package connects separate relays from both circuits to the two wires running up the parachute to the nichrome wire

What happened

- During the Launch, the connector to the nichrome wire was pulled loose
- Neither cutdown worked, of course, and the balloon went up until it burst at 89,391 feet.
- We called a marina in Great Peconic bay, L.I., and someone was nice enough to retrieve the hardware.

Flight Path with Time

Montauk Point from 84,000 feet

Altitude Profile

Altitude Profile

Vertical Speed

Altitude Rate Vs Time

65,000 feet, coming down at 60 mph

Temperature inside Container in Degrees F Versus Time Discovery I flight 9/26/15

Course Vs Altitude

Speed Vs Altitude

Lessons Learned

- Do NOT leave loose ropes on the craft - they act like whips on the way down.
- Rethink VHF antenna - it tangled the parachute on the way down. If using another Omaha box, consider putting it Inside the box.
- Don't NEED 5 watts. One watt will do. PLENTY of coverage, and nicer for batteries and electronics.

Lessons Learned

- DO NOT put Proto-board circuitry on the bird. RF interferes with the circuit.
- DO NOT put edge-triggered Delay circuits on board. Implement in software.
- Shield sensitive electronics from the RF
- Thoroughly test all electronics IN THE FLIGHT CONFIGURATION before launch.

YouTube Movie Links

- The Launch (movie courtesy Relnick Observatory)
- https://www.youtube.com/watch?v=aDNC5GbO I
- The Launch (movie from Bob Gilmore WD1M)
- https://youtu.be/J1DQse7jz3c
- From 84,000 to 89,391 feet, and DOWN!
- https://www.youtube.com/watch?v=355MVkVnCw8
- Movie by University of Bridgeport
- https://www.youtube.com/watch?v=vkwUepmWgTI

Servo Test Flight, Upcoming launch late April

Mission Purposes:

1. Test Servos in near space environment
2. Develop Sensors for temp and pressure
3. Establish secure cutdown with backup
4. (Optional) Do Handwarmers function at altitude?

Servo Test Plan

- Four servos
- Two mounted inside the Styrofoam Container, where the temperature will (probably) not go below 20 degrees F.
- Two mounted outside the Container, where the temperature will get down to -60 degrees F, and the air velocity will get to 120 mph down to 60 mph during the top half of the descent.
- Servos controlled from the ground, or from on-board CPU.
- Servo Positions sent to the ground via Telemetry.
- Each servo will move and be measured once per minute.
- We can determine from the telemetry if the servos worked even if the electronics package is not recovered.

Vehicle Electronics

