

The Fundamental Principles of Composite Material Stiffness Predictions

David Richardson

Contents

- Description of example material for analysis
- Prediction of Stiffness using...
 - Rule of Mixtures (ROM)
 - ROM with Efficiency Factor
 - Hart Smith 10% rule
 - Classical Laminate Analysis
 - Simplified approach
- Overview of misconceptions in material property comparison between isotropic materials and composites

Lamina Axis Notation

Diagram taken from Harris (1999)

Example Material for Analysis

- M21/35%/UD268/T700
 - A common Aerospace uni-directional pre-preg material called HexPly M21 from Hexcel
- $E_f = 235 \text{ GPa}$ $E_m = 3.5 \text{ GPa}$
- $\rho_f = 1.78 \text{ g/cm3}$ $\rho_m = 1.28 \text{ g/cm3}$
- $W_r = 35\%$ (composite resin weight fraction)
- Layup = (0/0/0/+45/-45/0/0/0)

Stage 1

- Convert <u>fibre weight fraction</u> of composite to <u>fibre volume fraction</u>
 - Fibre weight fraction used by material suppliers
 - Fibre volume fraction needed for calculations

Fibre Volume Fraction

- Fibre mass fraction of M21 = 65% (0.65)
 - Data sheet says material is 35% resin by weight, therefore 65% fibre by weight
- Calculation of fibre volume fraction
- The resulting volume fraction is 57.2%

Methods of Stiffness Prediction

- Rule of Mixtures (with efficiency factor)
- Hart-Smith 10% Rule
 - Used in aerospace industry as a quick method of estimating stiffness
- Empirical Formulae
 - Based solely on test data
- Classical Laminate Analysis
 - LAP software

Rule of Mixtures

- A composite is a mixture or combination of two (or more) materials
- The Rule of Mixtures formula can be used to calculate / predict...
 - Young's Modulus (E)
 - Density
 - Poisson's ratio
 - Strength (UTS)
 - very optimistic prediction
 - 50% usually measured in test
 - Strength very difficult to predict numerous reasons

Rule of Mixtures for Stiffness

- Rule of Mixtures for Young's Modulus
- Assumes uni-directional fibres
- Predicts Young's Modulus in fibre direction only
 - $E_c = E_f V_f + E_m V_m$
 - Ec = 235×0.572 + 3.5×0.428
 - E_c = 136 GPa

Rule of Mixtures: Efficiency Factor

- The Efficiency Factor or Krenchel factor can be used to predict the effect of fibre orientation on stiffness
- This is a term that is used to factor the Rule of Mixtures formula according to the fibre angle
 - See following slide

Reinforcing Efficiency $\eta_{\theta} = \sum a_n cos^4 \theta$

 a_n = proportion of total fibre content θ = angle of fibres η_{θ} = composite efficiency factor (Krenchel)

$$E_c = \eta_\theta E_f V_f + E_m V_m$$

Efficiency (Krenchel) Factor

Diagram taken from Harris (1999)

Prediction of E for Example Ply

$$E_c = \eta_\theta E_f V_f + E_m V_m$$

 $E_{f} = 235 \text{ GPa}$ $E_{m} = 3.5 \text{ GPa}$ $V_{f} = 0.572$

 $\mathsf{E}(\theta) = (\mathsf{Cos}^{4}\theta \times 235 \times 0.572) + (3.5 \times 0.428)$

Predicted modulus versus angle plotted on following slide

Prediction of Tensile Modulus (Efficiency Factor)

bettertogether

Efficiency Factor for Laminate

- Layup = (0/0/0/+45/-45/0/0/0)
- $\eta = Cos^4 \theta$
 - $0^{\circ} = \eta = 1$
 - $45^{\circ} = \eta = 0.25$
 - $90^{\circ} = \eta = 0$
- Laminate in X-direction
 - (6/8 × 1) + (2/8 × 0.25)
 - (0.75 + 0.0625)
 - 0.8125
- Laminate in Y-direction
 - (6/8 × 0) + (2/8 × 0.25)
 - (0 + 0.0625)
 - 0.0625

Prediction of E for Example Ply

$$E_c = \eta_\theta E_f V_f + E_m V_m$$

 $E_f = 235 \text{ GPa}$ $E_m = 3.5 \text{ GPa}$ $V_f = 0.572$

 $E_x = (0.8125 \times 235 \times 0.572) + (3.5 \times 0.428)$ $E_x = 109 + 1.5 = 110.5$ GPa

 $E_y = (0.0625 \times 235 \times 0.572) + (3.5 \times 0.428)$ $E_y = 8.4 + 1.5 = 9.9$ GPa

Ten-Percent Rule

- Hart-Smith 1993
 - Each 45° or 90° ply is considered to contribute one tenth of the strength or stiffness of a 0° ply to the overall performance of the laminate
 - Rapid and reasonably accurate estimate
 - Used in Aerospace industry where standard layup [0/±45/90] is usually used

$$E_x = E_{11} \cdot (0.1 + 0.9 \times \% \text{ plies at } 0^\circ)$$

 $\sigma_x = \sigma_{11} \cdot (0.1 + 0.9 \times \% \text{ plies at } 0^\circ)$ $G_{xy} = E_{11} \cdot (0.028 + 0.234 \times \% \text{ plies at } \pm 45^\circ)$

Prediction of Tensile Modulus

Calculation of E₁₁ for Ply

- Using Rule of Mixtures
- $E_{11} = E_f V_f + E_m V_m$
- $E_{11} = 235 \times 0.572 + 3.5 \times 0.428$
- E₁₁ = 136 GPa
- Layup = (0/0/0/+45/-45/0/0/0)
- 6/8 = 75% of plies in zero degree direction

Ten-Percent Rule

- $E_x = E_{11} \times (0.1 + 0.9 \times \% \text{ plies at } 0^\circ)$
- $E_x = 136 \times (0.1 + (0.9 \times 0.75))$
- $E_x = 136 \times (0.775)$
- E_x = 105.4 GPa
- $E_y = E_{11} \times (0.1 + 0.9 \times \% \text{ plies at } 0^\circ)$
- $E_v = 136 \times (0.1 + (0.9 \times 0))$
- $E_v = 136 \times (0.1)$
- E_y = 13.6 GPa

Classical Laminate Analysis

- 4 elastic constants are needed to characterise the in-plane macroscopic elastic properties of a ply
 - $-E_{11} = Longitudinal Stiffness$
 - $-E_{22} = Transverse Stiffness$
 - $-v_{12}$ = Major Poisson's Ratio
 - G₁₂= In-Plane Shear Modulus

Elastic Constant Equations

• E₁₁ = Longitudinal Stiffness (Rule of Mixtures Formulae)

 $E_c = E_f V_f + E_m (1 - V_f)$

 E₂₂ = Transverse Stiffness (Inverse Rule of Mixtures Formulae (Reuss Model))

$$\frac{1}{E_c} = \frac{V_f}{E_f} + \frac{V_m}{E_m}$$

• v₁₂ = Major Poisson's Ratio (Rule of Mixtures for Poisson's Ratio)

 $\nu_{12}=\nu_f V_f+\nu_m(1-V_f)$

• G_{12} = In-Plane Shear Modulus (Inverse Rule of Mixtures for Shear) $\frac{1}{G_{12}} = \frac{V_f}{G_f} + \frac{(1 - V_f)}{G_m}$

Calculation of E_{11} for Ply

- Using Rule of Mixtures
- $E_{11} = E_f V_f + E_m V_m$
- $E_{11} = 235 \times 0.572 + 3.5 \times 0.428$
- E₁₁ = 136 GPa

Calculation of E₂₂ for Ply

- Using Inverse Rule of Mixtures Formulae (Reuss Model)
- E₂₂ = 8 GPa

$$\frac{1}{E_c} = \frac{V_f}{E_f} + \frac{V_m}{E_m}$$

Calculate Poisson's Ratio (v₁₂) for Ply

- Using Rule of Mixtures formula
- However, we do not know
 - Poisson's ratio for carbon fibre
 - Poisson's ratio for epoxy matrix
 - We would need to find these for accurate prediction
 - We will assume a Poisson's Ratio (v) of 0.3

$$\nu_{12} = \nu_f V_f + \nu_m (1 - V_f)$$

Calculate Shear Modulus (G₁₂) of Ply

- Using Inverse Rule of Mixtures formula
- G for carbon fibre = 52 GPa (from test)
- G for epoxy = 2.26 GPa (from test)
 - Both calculated using standard shear modulus formula G = E/(2(1+v))
- G_{12} for composite = 5 GPa

$$\frac{1}{G_{12}} = \frac{V_f}{G_f} + \frac{(1 - V_f)}{G_m}$$

Resulting Properties of Ply

- E₁₁ = 136 GPa
- E₂₂ = 8 GPa
- $v_{12} = 0.3$
- G₁₂ = 5 GPa

Matrix Representation

- 4 material elastic properties are needed to charaterise the in-plane behaviour of the linear elastic orthotropic ply
 - We conveniently define these in terms of measured engineering constants (as above)
 - These are usually expressed in matrix form
 - due to large equations produced
 - and subsequent manipulations required
- The stiffness matrix [Q]
- The compliance matrix [S] (inverse of stiffness)

Off-axis Orientation & Analysis

- The stiffness matrix is defined in terms of principal material directions, E₁₁, E₂₂
- However, we need to analyse or predict the material properties in other directions
 - As it is unlikely to be loaded only in principal direction
- We use stress transformation equations for this

 Related to Mohr's stress circle
- The transformation equations are written in matrix form
 - They have nothing to do with the material properties, they are merely a rotation of stresses.

Single Ply

- [6 x 6] stiffness matrix [C] or
- [6 x 6] compliance matrix [S]
 - Often reduced stiffness matrix [Q] for orthotropic laminates [3 x 3]
 - Orthotropic = 3 mutually orthogonal planes of symetry
 - 4 elastic constants characterise the behaviour of the laminate
 - E₁, E₂, v₁₂, G₁₂

Stiffness & Compliance Martricies

$$\begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{21} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases}.$$

Stiffness Matrix [Q]

Calculates laminate stresses from laminate strains

 $\begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xv} \end{cases} = \begin{bmatrix} \overline{S}_{11} & \overline{S}_{12} & \overline{S}_{16} \\ \overline{S}_{21} & \overline{S}_{22} & \overline{S}_{26} \\ \overline{S}_{16} & \overline{S}_{26} & \overline{S}_{66} \end{bmatrix} \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases}$ **Compliance Matrix [S]**

Calculates laminate strains from laminate stresses

(inverse of compliance)

Transformation Matrix

The stress transformation equation that relates known stresses in the z, y coordinate system to stresses in the L, T coordinate system. These are related to the transformation performed using Mohr's stress circle.

$$\begin{cases} \sigma_L \\ \sigma_T \\ \tau_{LT} \end{cases} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\sin \theta \cos \theta \\ \sin^2 \theta & \cos^2 \theta & -2\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases}$$

Transformed Stiffness Components

$$\overline{Q}_{11} = Q_{11}\cos^4\theta + Q_{22}\sin^4\theta + (2Q_{12} + 4Q_{66})\cos^2\theta\sin^2\theta$$

$$\overline{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66})\cos^2\theta\sin^2\theta + Q_{12}(\cos^4\theta + \sin^4\theta)$$

$$\overline{Q}_{22} = Q_{11}\sin^4\theta + Q_{22}\cos^4\theta + (2Q_{12} + 4Q_{66})\cos^2\theta\sin^2\theta$$

$$\overline{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})\cos^2\theta\sin^2\theta + Q_{66}(\cos^4\theta + \sin^4\theta)$$

$$\overline{Q}_{16} = (Q_{11} - 2Q_{66} - Q_{12})\cos^3\theta\sin\theta - (Q_{22} - Q_{12} - 2Q_{66})\cos\theta\sin^3\theta$$

$$\overline{Q}_{26} = (Q_{11} - 2Q_{66} - Q_{12})\cos\theta\sin^3\theta - (Q_{22} - Q_{12} - 2Q_{66})\cos^3\theta\sin\theta$$

Transformed Compliance Components

$$\overline{S}_{11} = S_{11} \cos^4 \theta + S_{22} \sin^4 \theta + (2S_{12} + S_{66}) \cos^2 \theta \sin^2 \theta$$

$$\overline{S}_{12} = (S_{11} + S_{22} - S_{66}) \cos^2 \theta \sin^2 \theta + S_{12} (\cos^4 \theta + \sin^4 \theta)$$

$$\overline{S}_{22} = S_{11} \sin^4 \theta + S_{22} \cos^4 \theta + (2S_{12} + S_{66}) \cos^2 \theta \sin^2 \theta$$

$$\overline{S}_{66} = 4(S_{11} + S_{22} - 2S_{12}) \cos^2 \theta \sin^2 \theta + S_{66} (\cos^2 \theta - \sin^2 \theta)^2$$

$$\overline{S}_{16} = (2S_{11} - S_{66} - 2S_{12}) \cos^3 \theta \sin \theta - (2S_{22} - 2S_{12} - S_{66}) \cos \theta \sin^3 \theta$$

$$\overline{S}_{26} = (2S_{11} - S_{66} - 2S_{12}) \cos \theta \sin^3 \theta - (2S_{22} - 2S_{12} - S_{66}) \cos^3 \theta \sin \theta$$

Individual Compliance & Stiffness terms

$$S_{11} = \frac{1}{E_L}, \quad S_{12} = -\frac{\mu_{LT}}{E_L} = -\frac{\mu_{TL}}{E_T}, \quad S_{22} = \frac{1}{E_T}, \quad S_{66} = \frac{1}{G_{LT}}.$$

$$Q_{11} = \frac{E_L}{(1 - \mu_{LT} \,\mu_{TL})}, \quad Q_{12} = \frac{\mu_{LT} E_T}{(1 - \mu_{LT} \,\mu_{TL})} = \frac{\mu_{TL} E_L}{(1 - \mu_{LT} \,\mu_{TL})},$$

$$Q_{22} = \frac{E_T}{(1 - \mu_{LT} \,\mu_{TL})}, \quad \text{and} \quad Q_{66} = G_{LT}.$$

CLA Derived Formula

- Formula from
 - Engineering Design with Polymers and Composites, J.C.Gerdeen et al.
- Suitable for calculating Young's Modulus of a uni-directional ply at different angles.

$$\frac{1}{E_x} = \frac{Cos^4\theta}{E_{11}} + \frac{Sin^4\theta}{E_{22}} + \left(\frac{1}{G_{12}} - \frac{2v_{12}}{E_{11}}\right)Cos^2\theta Sin^2\theta$$

Example Material ($\theta = 0^{\circ}$)

- E₁₁ = 136 GPa, E₂₂ = 8 GPa
- $v_{12} = 0.3$, $G_{12} = 5$ GPa
- $1/E_x = 1/136 + 0 + 0$
- E_x for 0° fibres = 136 GPa

$$\frac{1}{E_x} = \frac{Cos^4\theta}{E_{11}} + \frac{Sin^4\theta}{E_{22}} + \left(\frac{1}{G_{12}} - \frac{2\nu_{12}}{E_{11}}\right)Cos^2\theta Sin^2\theta$$

Example Material ($\theta = 45^{\circ}$)

- E₁₁ = 136 GPa, E₂₂ = 8 GPa
- $v_{12} = 0.3, G_{12} = 5 \text{ GPa}$
- $1/E_x = 0.25/136 + 0.25/8 + (1/5-0.6/136) \times 0.25$
- $1/E_x = 0.25/136 + 0.25/8 + (1/5-0.6/136) \times 0.25$
- E_x for 45° fibres = 12.2 GPa

$$\frac{1}{E_x} = \frac{Cos^4\theta}{E_{11}} + \frac{Sin^4\theta}{E_{22}} + \left(\frac{1}{G_{12}} - \frac{2v_{12}}{E_{11}}\right)Cos^2\theta Sin^2\theta$$

Example Material ($\theta = 90^\circ$)

- E₁₁ = 136 GPa, E₂₂ = 8 GPa
- $v_{12} = 0.3, G_{12} = 5 \text{ GPa}$
- $1/E_x = 0 + 1/8 + 0$
- E_x for 90° fibres = 8 GPa

$$\frac{1}{E_x} = \frac{Cos^4\theta}{E_{11}} + \frac{Sin^4\theta}{E_{22}} + \left(\frac{1}{G_{12}} - \frac{2\nu_{12}}{E_{11}}\right)Cos^2\theta Sin^2\theta$$

Properties of Laminate

- CFRE (0/0/0/+45/-45/0/0/0)
 - 0° = 136 GPa
 - 45° = 12.2GPa
 - $90^{\circ} = 8 \text{ GPa}$
- Laminate in X-direction
 - (6/8 × 136) + (2/8 × 12.2)
 - 102 + 3 = 105 GPa
- Laminate in Y-direction
 - (6/8 × 8) + (2/8 × 12.2)
 - 6 + 3 = 9 GPa
- Note: This simplified calculation ignores the effect of coupling between extension and shear

Classical Laminate Analysis

- The simplified laminate analysis approach taken ignores the effect of coupling between extension and shear
- Classical Laminate Analysis takes full account of this effect
 - However, this is too long and complex for hand calculations
 - Therefore build a spreadsheet or use software such as LAP (Laminate Analysis Programme)

Summary of Results

For HexPly M21 Pre-preg

with (0/0/0/+45/-45/0/0/0) layup

	ROM & Efficiency factor	Hart-Smith 10% Rule	ROM of CLA rotation formula	Classical Laminate Analysis LAP
E _x	110.5	105.4	105.0	107.1
Ey	9.9	13.6	9.0	15.3

Prediction of Tensile Modulus

Procedure for Structural Analysis

- Classical Laminate Analysis to provide
 - Relationship between in-plane load and strain
 - Relationship between out of plane bending moments and curvatures
 - Plate properties from the A, B and D matrices
- Then analysis is equivalent to classical analysis of anisotropic materials
 - FE analysis
 - Standard formulas to check stiffness

Material Property Comparison

- Young's Modulus of materials
 - Isotropic Materials
 - Aluminium = 70 GPa
 - Steel = 210 GPa
 - Polymers = 3 GPa
 - Fibres
 - Carbon = 240 GPa

– common high strength T700 fibre

Glass = 70 GPa

Care with Property Comparison

- E for Aluminium = 70 GPa
- E for Glass fibre = 70 GPa
- However....
 - 50% fibre volume fraction
 - E now 35 GPa in x-direction
 - E in y-direction = matrix = 3 GPa
 - 0/90 woven fabric
 - 50% of material in each direction
 - E now 17.5 GPa in x and y direction
 - E at 45° = 9 GPa
- Glass reinforced polymer composite now has a low stiffness compared to Aluminium!

Strain

References & Bibliography

- Engineering Design with Polymers and Composites
 - J.C.Gerdeen, H.W.Lord & R.A.L.Rorrer
 - Taylor and Francis, 2006
- Engineering Composite Materials
 - Bryan Harris, Bath University
- Composite Materials UWE E-learning resource
 - David Richardson, John Burns & Aerocomp Ltd.

Contact Details

- Dr David Richardson
- Room 1N22
- Faculty of Engineering and Technology
- University of the West of England
- Frenchay Campus
- Coldharbour Lane
- Bristol
- BS16 1QY
- Tel: 0117 328 2223
- Email: David4.Richardson@uwe.ac.uk